人教版七年级数学上册

合集下载

人教版新版教材初中七年级上册数学课本目录

人教版新版教材初中七年级上册数学课本目录

人教版新版教材初中七年级上册数学课本目

目录
第一章有理数
1.1 正负数
1.2 相反数和绝对值
1.3 有理数的比较
1.4 有理数的加减
1.5 有理数的乘法
1.6 有理数的除法
第二章代数式
2.1 代数式的概念
2.2 代数式的展开和化简
2.3 多项式和单项式
2.4 单项式的加减
2.5 一元二次方程
第三章整式的乘法与因式分解
3.1 整式的乘法
3.2 因式分解公式的应用
3.3 取整与判定约数
第四章方程与不等式
4.1 方程的概念
4.2 一元一次方程的解法
4.3 不等式的概念
4.4 一元一次不等式的解法
第五章平面图形的初步认识5.1 线段、射线和直线
5.2 角的概念
5.3 角的分类与角度的度量
5.4 特殊角的性质
5.5 三角形的概念
第六章三角形
6.1 直角三角形的性质
6.2 三角形的角平分线
6.3 三角形的内心、外心、垂心和重心6.4 三角形的相似
6.5 三角形的面积公式
第七章数据与概率
7.1 平均数
7.2 中位数和众数
7.3 数据的图示表示
7.4 概率的概念和基本事件
附录
习题答案
常用数学符号表。

完整版)人教版七年级数学上册知识点归纳

完整版)人教版七年级数学上册知识点归纳

完整版)人教版七年级数学上册知识点归纳第一章有理数1.1 正数和负数正数是大于零的数,负数是小于零的数。

有些数既不是正数也不是负数,它们被称为零。

在同一个问题中,用正数和负数表示的量具有相反的意义。

需要注意的是,-a不一定是负数,+a也不一定是正数。

自然数指的是正整数和零的集合,也就是我们常说的自然数。

我们可以用a>0表示a是正数,a≥0表示a是正数或零,a<0表示a是负数,a≤0表示a是负数或零。

1.2 有理数有理数包括正整数、负整数、正分数和负分数,它们都可以写成分数的形式。

正整数和负整数统称为整数。

有理数可以分为六类:正整数、正分数、零、负分数、负整数和整数。

我们可以用数轴来表示有理数,数轴是一条直线,有原点、正方向和单位长度三个要素。

一般来说,当a是正数时,数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度。

两个点关于原点对称,当a是正数时,在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称。

相反数指的是只有符号不同的两个数,它们互为相反数。

a的相反数是-a,的相反数是0.在数轴上,表示相反数的两个点关于原点对称。

绝对值是数a到原点的距离,用|a|表示。

一个正数的绝对值是其本身,一个负数的绝对值是其相反数。

的绝对值是0.绝对值可以表示为a=|a|或a=-|a|。

如果a>0,则|a|=a,如果a<0,则|a|=-a。

有理数的比较可以在数轴上表示,从左到右的顺序就是从小到大的顺序。

需要注意的是,正数大于零,大于负数,正数大于负数;两个负数,其绝对值大的反而小。

1.3 有理数的加减法有理数的加减法可以用数轴来表示。

当加上一个正数时,表示数的点向右移动,当加上一个负数时,表示数的点向左移动。

同样地,当减去一个正数时,表示数的点向左移动,当减去一个负数时,表示数的点向右移动。

新人教版七年级上册数学1

新人教版七年级上册数学1

亲爱的读者: 春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一 样阳光,心情像桃花一样美丽,感谢你的阅读。
≈ 1.68 ; (3)-5.28÷0.75×(-3.14)≈ 22.11 ; (4)37.5-(-4.2)×31÷(-16)≈29.36 .
课堂小结
有理数的加减乘除混合运算的运算顺序: 如无括号,则按照先乘除,后加减的顺序进行;
如有括号,先算括号里面的;同级运算中,要按从 左到右的顺序来计算;计算中要能合理运用运算律 进行简化计算.
除法没有分配律.
例题精析
正确解法:
(12)
1 3
+
1 4
1 6
(12)
4 12
+
3 12
2 12
(12) 5 12
(12) 12 5
在有理数的混合运算中有两种常见的错误: 一是运算顺序出现错误;
144 . 5
二是乱用运算律.
例题精析
例4 某公司去年1~3月平均每月亏损1.5万元,4~6月平均盈利2万元, 7~10月平均盈利1.7万元,11~12月平均亏损2.3万元,这个公司去年 总盈亏情况如何?
课堂精练
1 计算12-7×(-4)+8÷(-2)的结果是( D )
A.-24
B.-20
C.6
D.36
2 若两个数的和为0,且商为-1,则这两个数( C )
A.互为相反数
B.互为倒数
C.互为相反数且不为零 D.以上都不对
课堂精练
3 根据有理数的运算律,下列等式正确的是( B )
A. a-b=b-a
1 3
1 2
3 11
5 4
.
解:(1)25×6+(-127)=150+(-127)=23.

人教七年级数学上知识点

人教七年级数学上知识点

人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。

二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。

三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。

四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。

五、解方程
一元一次方程的概念和性质,基本解法和应用。

六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。

七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。

八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。

九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。

十、几何变换
平移、旋转、翻折及其组合。

以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。

希望本文对广大师生有所帮助,祝大家学习进步!。

人教版七年级上册数学全册教学课件完整版

人教版七年级上册数学全册教学课件完整版
数据的比较
通过对比不同组别或时间点的数据,发现数据间的差异和 变化趋势。比较方法可以是横向比较(同一时间点不同组 别)或纵向比较(同一组别不同时间点)。
数据的相关性分析
探讨两个或多个变量之间的关系,包括正相关、负相关和 无相关。相关性分析可以帮助我们预测一个变量的变化对 另一个变量的影响。
22
06
25
概率在生活中的应用举例
01
02
03
04
游戏公平性的判断
通过计算游戏双方获胜的概率 来判断游戏是否公平。
决策中的风险评估
在决策过程中,通过计算各种 可能结果发生的概率来评估风
险。
医学诊断的准确性
通过计算某种疾病在某种症状 下的条件概率来评估医学诊断
的准确性。
天气预报的可靠性
通过计算某种天气现象在历史 数据中出现的概率来评估天气
04
图形与几何初步
2024/1/26
15
直线、射线、线段和角的概念与性质
射线
射线有一个端点,可以向一个 方向无限延伸。
角的概念
角是由两条有公共端点的射线 组成的图形。
直线
直线是无限延伸的,没有端点 ,可以向两个方向无限延伸。
2024/1/26
线段
线段有两个端点,是直线或射 线的一部分,有一定的长度。
人教版七年级上册数 学全册教学课件完整 版
2024/1/26
1
目 录
2024/1/26
• 绪论 • 有理数及其运算 • 整式的加减与一元一次方程 • 图形与几何初步 • 数据的收集与整理 • 概率初步知识与事件的概率 • 拓展内容:数理逻辑初步
2
01
绪论
2024/1/26

人教版七年级数学上册知识点总结大全

人教版七年级数学上册知识点总结大全

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二、知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版七年级数学上册各章知识点总结

人教版七年级数学上册各章知识点总结

人教版七年级数学上册各章知识点总结第一章:有理数1. 有理数和整数的关系- 自然数是有理数,因为每个自然数都可以表示为分子为自然数、分母为1的有理数。

- 整数是有理数,因为每个整数都可以表示为分母为1的有理数。

- 分数是有理数,因为每个真分数都可以表示为分母不为0的有理数。

2. 有理数的加减法- 同号两数相加,取相同的符号,并将绝对值相加。

- 异号两数相加,取绝对值较大的符号,并将绝对值较大的数减去较小的数的绝对值。

3. 有理数的乘除法- 同号两数相乘,积为正数。

- 异号两数相乘,积为负数。

- 有理数相除,分子乘以倒数。

第二章:代数初步1. 代数式的基本概念- 代数式由变量、常数和运算符号组成。

- 代数式可以通过代入变量的具体数值来求得结果。

2. 代数式的计算- 同类项相加或相减,保持字母不变,系数相加或相减。

- 不同类项之间无法进行运算。

3. 代数式的应用- 通过列式子,可以将一个具体问题转化为代数式,从而解决问题。

第三章:小数1. 小数的定义和读法- 小数是有理数的一种表示形式,可以用分数的形式表示。

- 小数读法遵循读整数部分,读小数点,读小数部分的规则。

2. 小数的加减法- 小数相加减时,要保持小数点的位置对齐,然后按照整数加减法的规则进行运算。

3. 小数与分数的相互转化- 将小数转为分数,小数点后的位数作为分母,去掉小数点后的位数作为分子。

- 将分数转为小数,分子除以分母。

第四章:倍数和约数1. 倍数的概念- 如果一个数能被另一个数整除,则这个数是另一个数的倍数。

2. 倍数和公倍数- 两个数的公倍数是能同时整除这两个数的数。

- 两个数的最小公倍数是能整除这两个数的最小正整数。

3. 约数的概念- 如果一个数能整除另一个数,则这个数是另一个数的约数。

4. 因数和公因数- 两个数的公因数是能够同时整除这两个数的数。

- 两个数的最大公因数是能够整除这两个数的最大正整数。

第五章:比例1. 比例的基本概念- 比例是两个数之间的比较关系,可以用两个等比例的分数表示。

(完整版)最新人教版七年级数学上册目录及知识点汇总

(完整版)最新人教版七年级数学上册目录及知识点汇总

人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

人教版初中数学七年级上册

人教版初中数学七年级上册

人教版初中数学七年级上册目录:第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4 有理数的乘除法观察与猜想翻牌游戏中的数学道理1.5 有理数的乘方数学活动小结复习题1第二章整式的加减2.1 整式阅读与思考数字1与字母X的对话2.2 整式的加减信息技术应用电子表格与数据计算小结复习题2第三章一元一次方程3.1 从算式到方程阅读与思考“方程”史话3.2 解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程数学活动小结复习题3第四章几何图形初步4.1 几何图形阅读与思考几何学的起源4.2 直线、射线、线段阅读与思考长度的测量4.3 角4.4 课题学习设计制作长方体形状的包装纸盒小结复习题4部分中英文词汇索引《义务教育教科书· 数学》七年级上册介绍(一)(2012修订)课程教材研究所李海东《义务教育教科书·数学》七年级上册包括有理数,整式的加减、一元一次方程,几何图形初步四章内容,学习内容涉及到了《义务教育数学课程标准(2011年版)》(以下简称《课程标准》)中“数与代数”“图形与几何”“综合与实践”三个领域,其中每一章都是相关领域的基础内容,是后续学习的基础。

本书供义务教育七年级上学期使用,全书共需约62课时,具体分配如下:第一章有理数约19课时第二章整式的加减约8课时第三章一元一次方程约19课时第四章几何图形初步约16课时一、教科书内容概述第1章“有理数”的主要内容是有理数的有关概念及其运算。

通过本章的学习,要使学生了解有理数产生的必要性、有理数的意义,能够从事有理数运算,体会“数的扩张”的一致性,并能解决一些简单实际问题。

首先,教科书在前面两个学段学习的正数的基础上,引入了负数的概念,这不仅是实际的需要, 也是学习第三学段数学内容的需要;接着引进数轴、相反数、绝对值等关于有理数的一些概念,这样一方面加深对有理数(特别是负数)的认识,另一方面也为学习有理数运算做准备;在此基础上,介绍有理数的加法、减法、乘法、除法和乘方运算的意义、法则和运算律,这是本章的重点。

人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)人教版数学七年级上册教案第1篇一、教材分析1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用3、教学的重点、难点:重点:邻补角、对顶角的概念,对顶角的性质和应用。

难点:理解对顶角性质的探索(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。

同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。

)4、教学目标:A:知识与技能目标(1).理解对顶角和邻补角的概念,能在图形中辨认.(2).掌握对顶角相等的性质和它的推证过程(3).会用对顶角的性质进行有关的简单推理和计算.B:过程与方法目标(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

(2).体会具体到抽象再到具体的思想方法.C:情感、态度与价值目标(1).感受图形中和谐美、对称美.(2).感受合作交流带来的成功感,树立自信心.(3).感受数学应用的广泛性,使学生更加热爱数学二、学情分析:在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.三、教法和学法:教法:叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.四、教学过程:1课前准备:课件,剪刀,纸片,相交线模型2教学过程:设置以下六个环节环节一:情景屋(创设情景,激发学习动机)请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线环节二:问题苑(合作交流,解释发现)通过一些问题的设置,激发学生探究的欲望,具体操作:(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

人教版七年级上册数学知识点(3篇)

人教版七年级上册数学知识点(3篇)

人教版七年级上册数学知识点(3篇)人教版七年级上册数学知识点1第四章:几何图形初步一几何图形几何学:数学中以空间形式为研究对象的分支叫做几何学。

从实物中抽象出的各种图形统称为几何图形。

几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。

1、几何图形的投影问题每一种几何体从不同的方向去看它,可以得到不同的简单平面几何图形。

实际上投影所得到的简单平面几何图形是被投影几何体可遮挡视线的部分在平面内所留下的影子。

2、立体图形的展开问题将立体图形的表面适当剪开,一、点、线、面、体1、点、线、面、体的概念点动成线,线动成面,面动成体由平面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;(2)体是由面组成、面与面相交成线、线与线相交成点;二、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。

线段可以量出长度。

(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。

射线无法量出长度。

(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。

直线无法量出长度。

概念剖析:①线段有两个端点,射线有一个端点,直线没有端点;②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;③线段只有长短之分,而没有大小之别,射线和直线既没有长短之分,也没有大小之别;例1、下列说法正确的是()A、5㎝长的直线比3㎝长的直线要长2㎝;B、线段向两个方向无限延伸就形成了直线;C、直线和射线都是不可度量的,所以它们都无法表示;D、直线AB、射线AB 和线段AB表示的都是同一几何图形;2、线段、射线、直线的表示方法(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。

七年级上册数学课本答案人教版【五篇】

七年级上册数学课本答案人教版【五篇】

导语:多阅读和积累,可以使学⽣增长知识,使学⽣在学习中做到举⼀反三。

以下是⽆忧考整理的七年级上册数学课本答案⼈教版【五篇】,希望对⼤家有帮助。

习题1.1答案1.解:根据正数、负数的定义可知,正数有:5,o.56,12/5,+2,负数有:-5/7,-3,-25.8,-0.0001.-600.2.解:(1)0.08m表⽰⽔⾯⾼于标准⽔位0.08m;-0.2m表⽰⽔⾯低于标准⽔位0.2m.(2)⽔⾯低于标准⽔位0.1m,记作-0.1m;⾼于标准⽔位0.23m,记作+0.23m(或0.23m).3.解:不对.O既不是正数,也不是负数.4.解:表⽰向前移动5m.这时物体离它两次移动前的位置为Om,即回到了它两次移动前的位置.5.解:这七次测量的平均值为(79.4+80.6+80.8+79.1+80+79.6+80.5)/7=80(m).以平均值为标准,七次测量的数据⽤正数、负数表⽰分别为:-0.6m,+0.6m.+0.8m,-0.9m,Om,-0.4m.⼗0.5rn6.解:氢原⼦中的原⼦核所带电荷可以⽤+1表⽰,氢原⼦中的电⼦所带电荷以⽤-1表⽰.7.解:由题意得7-4-4=-1(℃).8.解:中国、意⼤利服务出⼝额增长了;美国、德国、英国、⽇本服务出⽇额减少了;意⼤利增长率;⽇本增长率最低.习题1.2答案1.解:正数:{15,0.15,22/5,+20,…);负数:{-3/8,-30,-12.8,-60,…}.点拨:依据正负数的概念进⾏准确分类做到不重不漏.2.解:如图1-2-20所⽰.3.解:当沿数轴正⽅向移动4个单位长时,点B表⽰的数是1;当沿数轴反⽅向移动4个单位长时,点B表⽰的数是-7.4.解:各数的相反数分别为4,-2,1.5,0,-1/3,9/4.在数轴上表⽰如图1-2-21所⽰.5.解:⼁-125⼁=125,⼁+23⼁=23,⼁-3.5⼁=3.5,⼁0⼁=0,⼁2/3⼁=2/3,⼁-3/2⼁=3/2,⼁-0.05⼁=0.05.-125的绝对值,0的绝对值最⼩.6.解:-3/2<-2/3<-1/2<-0.25<-0.15<0<0.05<+2.3.7.解:各城市某年⼀⽉份的平均⽓温(℃)按从⾼到低的顺序排列为13.1,3.8,2.4,-4.6,-19.4.8.解:因为l+5l=5,⼁-3.5⼁=3.5,⼁+0.7⼁=0.7,⼁-2.5⼁=2.5,⼁-0.6⼁=0.6,所以从左向右数,第五个排球的质量最接近标准.9.解:-9.6%最⼩.增幅是负数说明⼈均⽔资源占有量在下降.10.解:表⽰数1的点与表⽰-2和4的点的距离相等,都是3.11.解:(1)有,如-0.1,-0.12,-0.57,…;有,如-0.15,-0.42,-0.48,….(2)有,-2;-1,0,1.(3)没有.(4)如-101,-102,-102.5.12.解:不⼀定,x还可能是-2;x=0;x=0.习题1.3答案1.(1)-4;(2)8;(3)-12;(4)-3;(5)-3.6;(6)-1/5;(7)1/15;(8)-41/3.2.(1)3;(2)0;(3)1.9;(4)-1/5.3.(1)-16;(2)0;(3)16;(4)0;(5)-6;(6)6;(7)-31;(8)102;(9)-10.8;(10)0.2.4.(1)1;(2)1/5;(3)1/6;(4)-5/6;(5)-1/2;(6)3/4;(7)-8/3;(8)-8.5.(1)3.1;(2)3/4;(3)8;(4)0.1;(5)-63/4;(6)0.6.解:两处⾼度相差:8844.43-(-415)=9259.43(m).7.解:半夜的⽓温为-7+11-9=-5(℃).8.解:132-12.5-10.5+127-87+136.5+98=383.5(元).答:⼀周总的盈亏情况是盈利383.5元.9.解:25×8+1.5-3+2-0.5+1-2-2-2.5=200-5.5=194.5(kg).答:这8筐⽩菜⼀共194.5kg.10.解:各天的温差如下:星期⼀:10-2=8(℃),星期⼆:12-1=11(℃),星期三:11-0=11(℃),星期四:9-(-1)=10(℃),星期五:7-(-4)=11(℃),星期六:5-(-5)=10(℃),星期⽇:7-(-5)=12(℃).答:星期⽇的温差,星期⼀的温差最⼩.11.(1)16(2)(-3)(3)18(4)(-12)(5)(-7)(6)712.解:(-2)+(-2)=-4,(-2)+(-2)+(-2)=-6,(-2)+(-2)+(-2)+(-2)=-8,(-2)+(-2)+(-2)+(-2)+(-2)=-10,(-2)×2=4,(-2)×3=-6,(-2)×4=8,(-2)×5=-10.法则:负数乘正数积为负,积的绝对值等于两个数的绝对值的积.13.解:第⼀天:0.3-(-0.2)=0.5(元);第⼆天:0.2-(-0.1)=0.3(元);第三天:0-(-0.13)=0.13(元).平均值:(0.5+0.3+0.13)÷3=0.31(元).习题1.4答案1.解:(1)(-8)×(-7)=56;(2)12X(-5)=-60;(3)2.9×(-0.4)=-1.16;(4)-30.5X0.2=-6.1;(5)100×(-0.001)=-0.1;(6)-4.8×(-1.25)=6.2.解:(1)1/4×(-8/9)=-2/9;(2)(-5/6)×(-3/10)=1/4;(3)-34/15×25=-170/3;(4)(-0.3)×(-10/7)=3/7.3.解:(1)-1/15;(2)-9/5;(3)-4;(4)100/17;(5)4/17;(6)-5/27.4.解:(1)-91÷13=-7;(2)-56÷(-14)=4;(3)16÷(-3)=-16/3;(4)(-48)÷(-16)=3;(5)4/5÷(-1)=-4/5;(6)-0.25÷3/8=-2/3.5.解:-5,-1/5,-4,6,5,1/5,-6,4.6.解:(1)(-21)/7=-3;(2)3/(-36)=-1/12;(3)(-54)/(-8)=27/4;(4)(-6)/(-0.3)=20.7.解:(1)-2×3×(-4)=2×3×4=24;(2)-6×(-5)×(-7)=-6×5×7=-210;(3)(-8/25)×1.25×(-8)=8/25×8×5/4=16/5;(4)0.1÷(-0.001)÷(-1)=1/10×1000×1=100;(5)(-3/4)×(-11/2)÷(-21/4)=-3/4×3/2×4/9=-1/2;(6)-6×(-0.25)×11/14=6×1/4×11/14=33/28;(7)(7)×(-56)×0÷(-13)=0;(8)-9×(-11)÷3÷(-3)=-9×11×1/3×1/3=-11.8.解:(1)23×(-5)-(-3)÷3/128=-115+3×128/3=-115+128=13;(2)-7×(-3)×(-0.5)+(-12)×(-2.6)=-7×3×0.5+12×2.6=-10.5+31.2=20.7;(3)(13/4-7/8-7/12)÷(-7/8)+(-7/8)÷(13/4-7/8-7/12)=(7/4-7/8-7/12)×(-8/7)+(-7/8)÷7/24=7/24×(-8/7)-3=-31/3;(4)-⼁-2/3⼁-⼁-1/2×2/3⼁-⼁1/3-1/4⼁-⼁-3⼁=-2/3-1/3-1/12-3=-49/12.9.解:(1)(-36)×128÷(-74)≈62.27;(2)-6.23÷(-0.25)×940=23424.80;(3)-4.325×(-0.012)-2.31÷(-5.315)≈0.49;(4)180.65-(-32)×47.8÷(-15.5)≈81.97.点拨:本题考查⽤计算器进⾏混合运算,要注意计算器的按键顺序与⽅法和计算结果的精确度.10.(1)7500(2)-140(3)200(4)-12011.解:450+20×60-12×120=210(m).答:这时直升机所在⾼度是210m.12.(1)<,<(2)<,<(3)>,>(4)=,=点拨:有理数相乘(除)的法则中明确指出先要确定积的符号,即两数相乘(或相除)同号得正,异号得负.13.解:2,1,-2,-1.⼀个⾮0有理数不⼀定⼩于它的2倍,因为⼀个负数⽐它的2倍⼤.14.解:(-2+3)a.15.解:-2,-2,2.(1)(2)均成⽴,从它们可以总结出:分⼦、分母以及分数这三者的符号,改变其中两个,分教的值不变.习题1.5答案1.解:(1)-27;(2)16;(3)2.89;(4)-64/27;(5)8;(6)36.点拨:本题要根据乘⽅的意义来计算,还应注意乘⽅的符号法则,乘⽅的计算可转化为乘法的计算,计算时应先确定幂的符号.2.解:(1)429981696;(2)112550881;(3)360.944128;(4)-95443,993.3.解:(1)(-1)^100×5+(-2)⁴÷4=1×5+16÷4=5+4=9;(2)(-3)³-3×(-1/3)⁴=-27-3×1/81=-27-1/27=-271/27;(3)7/6×(1/6-1/3)×3/14÷3/5=7/6×(-1/6)×3/14×5/3=-5/72;(4)(-10)³+[(-4)²-(1-3²)×2]=-1000+(16+8×2)=-1000+32=-968;(5)-2³÷4/9×(-2/3)²=-8×9/4×4/9=-8;(6)4+(-2)³×5-(-0.28)÷4=4-8×5-(-0.07)=4-40+0.07=-35.93.4.解:(1)235000000=2.35×10⁸;(2)188520000=1.8852×10⁸;(3)701000000000=7.01×10^11;(4)-38000000=-3.8×10⁷.点拨:科学记数法是⼀种特定的记数⽅法,应明⽩其中包含的基本原理及其结构特征,即要掌握形如a×10^n的结构特征:1≤⼁a⼁<10,n为正整数.5.解:3×10⁷=30000000;1.3×10³=1300;8.05X10^6=8050000;2.004×10⁵=200400;-1.96×10⁴=-19600.6.解:(1)0.00356≈0.0036;(2)566.1235≈566;(3)3.8963≈3.90;(4)0.0571≈0.057.7.解:平⽅等于9的数是±3,⽴⽅等于27的数是3.8.解:体积为a.a.b=a²b,表⾯积为2.a.a+4.a.b=2a²+4ab.当a=2cm,b=5cm时,体积为a²b=2²×5=20(cm³);表⾯积为2a²+4ab=2×2²+4×2×5=48(cm²).9.解:340m/s=1224km/h=1.224×10³km/h.因为1.1×10⁵krn/h>l.224×10³kn/h,所以地球绕太阳公转的速度⽐声⾳在空⽓中的传播速度⼤.点拨:⽐较⽤科学记数法表⽰的两个正数,先看10的指数的⼤⼩,10的指数⼤的那个数就⼤;若10的指数相同,则⽐较前⾯的数a,a⼤的则⼤.10.解:8.64×10⁴×365=31536000=3.1536×10⁷(s).11.解:(1)0.1²=0.01;1²=1;10²=100;100²=10000.观察发现:底数的⼩数点向左(右)移动⼀位时,平⽅数⼩数点对应向左(右)移动两位.(2)0.1³-0.001;1³=1;10³=1000;100³=1000000.观察发现:底数的⼩数点向左(右)移动⼀位时,⽴⽅数⼩数点对应向左(右)移动三位.(3)0.1⁴=0.0001;1⁴—1;10⁴=10000;100⁴=100000000.观察发现:底数的⼩数点向左(右)移动⼀位时,四次⽅数⼩数点对应向左(右)移动四位.12.解:(-2)²=4;2²=4;(-2)³=-8,2³=8.当a<0时,a²>0,-a²<0.故a²≠-a²;a³<0,-a³>0,故a³≠-a³,所以当a<0时,(1)(2)成⽴,(3)(4)不成⽴,。

人教版七年级上册数学课本知识点归纳

人教版七年级上册数学课本知识点归纳

人教版七年级上册数学课本知识点归纳人教版七年级上册数学课本知识点归纳第一章有理数一、正负数1.正数:大于0的数。

2.负数:小于0的数。

3.零:既不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

二、有理数1.有理数:由整数和分数组成的数。

包括:正整数、负整数、正分数、负分数。

可以写成两个整数之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的,如π)2.整数:正整数、零、负整数,统称整数。

3.分数:正分数、负分数。

三、数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示0,这个点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

例如:2的相反数是-2,-3的相反数是3.4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

四、有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,结果的符号不变,并把绝对值相加。

异号相加,结果的符号取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0.一个数同0相加减,仍得这个数。

3.加法交换律:a+b= b+a,两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c = a+(b+c),三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a-b = a+(-b),减去一个数,等于加这个数的相反数。

五、有理数乘法1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0.2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba。

4.乘法结合律:(ab)c = a(bc)。

5.乘法分配律:a(b+c)=ab+ac。

六、有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

人教版数学七年级上册知识点汇总

人教版数学七年级上册知识点汇总

第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。

人教版七年级数学上册的教学计划(6篇)

人教版七年级数学上册的教学计划(6篇)

人教版七年级数学上册的教学计划一、指导思想七年级数学是初中数学的重要组成部分,通过本学期的教学,要使学生学会适应日常生活,参加生产和进一步学习所必须的基础知识与基本技能,进一步培养运算能力、思维能力和空间观念:能够运用所学的知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质及初步的辩证唯物主义的观点。

二、学生基本情况根据分班考试的情况来分析学生的数学成绩并不理想,总体的水平一般,尖子生少、低分的学生较多。

学生学习积极性不高,厌学情况严重,纪律涣散,意志力薄弱,学习欠缺勤奋,学习的自觉性不高。

三、教学目标要求期中授完第九章,期末授完下册全册。

1、认真做好教学六认真工作。

把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、兴趣是的老师,爱因斯坦如是说。

激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

6、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

7、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

8、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。

人教版七年级数学上册的教学计划(二)为了更好的完成学校的七年级数学的教学任务,依照教导处的工作计划,针对学生的特点和所教班级学生的具体情况特制订如下教学计划:一、教学指导思想结合____版的《初中数学新课程标准》,根据学生实际情况,积极开展课堂教学改革,提高课堂教学效率,向____分钟要质量。

新版七年级上册数学书人教版

新版七年级上册数学书人教版

新版七年级上册数学书人教版一、有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 例如:3是正整数, - 5是负整数,0.5(即1/2)是分数, - 0.333…(即 - 1/3)也是分数。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 任何一个有理数都可以用数轴上的一个点来表示。

例如,2在原点右边2个单位长度处, - 3在原点左边3个单位长度处。

3. 相反数。

- 只有符号不同的两个数叫做互为相反数。

例如,3和 - 3互为相反数,0的相反数是0。

- 在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

4. 绝对值。

- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

例如,5 = 5, - 3=3。

- 绝对值的几何意义:一个数的绝对值就是这个数在数轴上所对应的点到原点的距离。

5. 有理数的加减法。

- 加法法则:- 同号两数相加,取相同的符号,并把绝对值相加。

例如,3+5 = 8,(-2)+(-3)= - 5。

- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如,3+( - 2)=1, - 5+3=-2。

- 一个数同0相加,仍得这个数。

- 减法法则:减去一个数,等于加上这个数的相反数。

例如,5 - 3 = 5+( -3)=2。

6. 有理数的乘除法。

- 乘法法则:- 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如,3×5 = 15,(-2)×(-3)=6,2×(-3)= - 6。

- 任何数同0相乘,都得0。

- 多个有理数相乘:几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

例如,(-2)×(-3)×(-4)= - 24,(-2)×3×4=-24,2×3×4 = 24。

人教版七年级上册数学教学计划(30篇)

人教版七年级上册数学教学计划(30篇)

人教版七年级上册数学教学计划(30篇)人教版七年级上册数学教学计划(精选30篇)人教版七年级上册数学教学计划篇1一、情况分析1、学生情况:从上学期的教学观察与测试结果看,这班学生的学习态度较端正,学习积极性不高,跟不上教学进度的多。

自主、合作、探究的风气尚未形成。

勤思好问的少。

为此新学期的数学教学要积极尝试自主、合作、探究学习,注意培养学生的学习兴趣和习惯品质,努力提高综合成绩,尽量缩小与其他三个班级的差距。

2、教材情况:本学期是本年级学生初中学习阶段的第二学期。

新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组。

现行教材、教学大纲要求学生从身边的实际问题出发,乘坐“观察”、“思考”、“探究”、“讨论”、“归纳”之舟,去探索、发现数学的奥妙,用学到的本领去解决“复习巩固”、“综合运用”、“拓展探索”等不同层次的问题。

教师在灵活选用现有教材的基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质。

二、目标要求本学期的数学教学要从学生的实际问题出发,积极引导学生“观察”、“思考”、“探究”、“讨论”、“归纳”数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决“复习巩固”、“综合运用”、“拓展探索”等不同层次的问题。

教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力。

在期末考试中力争生均分70分左右,合格率60%以上。

三.教学措施1.认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质。

2.把握学生思想动态,及时与学生沟通,搞好师生关系。

3.充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。

人教版七年级数学上册教案(通用18篇)

人教版七年级数学上册教案(通用18篇)

人教版七年级数学上册教案〔通用18篇〕篇1:人教版七年级数学上册教案教学目的 1,掌握绝对值的概念,有理数大小比拟法那么.2,学会绝对值的计算,会比拟两个或多个有理数的大小.3.体验数学的概念、法那么来自于实际生活,浸透数形结合和分类思想.教学难点两个负数大小的比拟知识重点绝对值的概念教学过程(师生活动) 设计理念设置情境引入课题星期天黄老师从学校出发,开车去玩耍,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),假如规定向东为正,①用有理数表示黄老师两次所行的路程;②假如汽车每公里耗油0.15升,计算这天汽车共耗油多少升?学生考虑后,老师作如下说明:实际生活中有些问题只关注量的详细值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的间隔和汽油的价格,而与行驶的方向无关;观察并考虑:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的间隔 .学生答复后,老师说明如下:数轴上表示数的点到原点的间隔只与这个点分开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的间隔叫做数a的绝对值,记做|a|例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答那么与符号没有关系,说明实际生活中有些问题,人们只需知道它们的详细数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联络.因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难承受,所以配置此观察与考虑,为建立绝对值概念作准备.合作交流探究规律例1求以下各数的绝对值,并归纳求有理数a 的绝对有什么规律?、-3,5,0,+58,0.6要求小组讨论,合作学习.老师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法那么(见教科书第15页).稳固练习:教科书第15页练习.其中第1题按法那么直接写出答案,是求绝对值的根本训练;第2题是对相反数和绝对值概念进展区分,对学生的分析^p 、判断才能有较高要求,要注意考虑的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法那么,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,老师在教学过程中只是组织者.本着这个理念,设计这个讨论.结合实际发现新知引导学生看教科书第16页的图,并答复相关问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;观察并考虑:观察这些点在数轴上的位置,并考虑它们与温度的上下之间的关系,由此你觉得两个有理数可以比拟大小吗?应怎样比拟两个数的大小呢?学生交流后,老师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.在上面14个数中,选两个数比拟,再选两个数试试,通过比拟,归纳得出有理数大小比拟法那么想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的间隔 (即它们的绝对值)以及这两个数的大小之间的关系.要求学生在头脑中有明晰的图形. 让学生体会到数学的规定都来于生活,每一种规定都有它的合理性数在大小比拟法那么第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来理解,所以配置想象练习,加强数与形的想象。

七年级上册数学人教版

七年级上册数学人教版

七年级上册数学人教版
一、数的认识与运算本部分主要介绍了整数、分数、小数的概念与运算。

其中,整数的四则运算、分数的加减乘除、小数的四则运算以及各种数的转化都被详细地描述了。

二、代数式与方程式本部分主要介绍了代数式、多项式、方程式的概念以及运算法则。

此外,还介绍了一元一次方程的解法和应用。

三、几何图形与运算本部分主要介绍了点、线、面的概念以及各种几何图形的特性和运算法则。

特别是对于平面图形的面积和周长的计算方法都被详细地讲解了。

四、比例与相似本部分主要介绍了比例与相似的概念、判定与运算法则。

通过学习本部分,学生可以掌握比例和相似图形的求解方法。

五、数的统计与概率本部分主要介绍了统计学的基本概念和方法,包括频率分布、中心与离散程度的计算和图形展示等。

此外,还涉及了概率的基本概念和运算,包括事件的概率、随机变量和分布等方面的知识。

六、函数本部分主要介绍了函数的概念、性质、图像和应用方面的知识。

学生通过学习本部分,可以深入了解函数的概念,进一步提高数学应用能力。

七、立体几何本部分主要介绍了立体图形的概念、特性和运算法则,包括立方体、长方体、球的表面积和体积等方面的知识。

综上所述,七年级上册数学课本人教版电子课本是一本详细全面的数学学习资料,对于学生的学习十分有帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册1.1正数和负数教学目标:1、了解正数与负数是从实际需要中产生的2、能判断一个数是正数还是负数3、会用正负数表示实际问题中具有相反意义的量教学重点:正、负数的概念教学难点:负数的概念教学过程一、创设情境,引入新课问题:讷河市某一天的最高温度是零上5℃,最低温度是零下5℃,要表示这两个温度,都记作5℃不能区别清楚,那么如何表示呢?为了能表示这些量,需要引入一种新数,引入新课1.1正数和负数。

二、合作交流,探索新知1、相反意义的量问题1:日常生活中,经常会遇到这样的一些量例1:汽车向西行驶3千米和向东行驶2千米例2:高于海平面8844米和低于海平面155米例3:收入100元和支出50元例4:气温有零上20℃和零下20℃学生讨论:上述四个例子内容不同,但有一个共同特点,这个共同特点是什么?问题2:你能举出一些日常生活中相反意义的量的实例吗?学生合作交流,举出实例师生归纳①相反意义的一些词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降,前进与后退等。

②意义相反量包括:一、意义相反,二、要有量值。

2、正数与负数问题1:如何来表示具有相反意义的量呢?为了用数表示具有相反意义的量,把其中一种意义的量规定为正的,把它相反的量规定为负的。

如:零上,前进,收入,上升,记为正的,用小学学过的数(0除外)表示;零下,后退,支出,下降记为负的,在小学学过的数(0除外)前面加上“-”号。

问题2:请同学们把下面例子中的两个量表示出来⑴如果增加2千克,记为2千克,那么减少3千克如何表示?⑵如果规定上升为正,那么风筝上升10米,下降3米,如何表示?⑶在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02g记作+0.02g,那么-0.02g表示什么?师生归纳:正数:大于0的数负数:在正数前面加“-”号的数叫做负数说明:1、“零”既不是正数,也不是负数2、对于正、负数不能简单理解为带“+”号的数就是正数,带负号的数就是负数。

三、巩固提高,熟练技能1、课本第3页练习1,2,3,42、第4页例题四、小结:师:围绕下面3个问题,引导学生回顾本节内容1、什么是正数?什么是负数?2、什么是具有相反意义的量?3、引入负数后,零的意义是什么?五、作业:课本第5页习题1.1第1-2题六、拓展练习观察下列依次排列的两组数,根据你发现的规律接着写出下面的3个数⑴1,1,-1,-1,1,1,-1,-1,…⑵1,2,-3,-4,5,6,-7,-8…讷河五中刘树生1.2.1有理数教学目标:1、正确理解有理数的概念及分类,能准确区分正整数,0,负整数,正分数,负分数2、掌握有理数的分类方法教学重点:正确理解有理数的概念教学难点:有理数的分类教学过程一、创设情境,引入新课问题1、回忆一下,我们学过哪些数?让三名学生在黑板上写出,其他同学在练习本上写出,并补充在黑板上。

问题2、观察黑板上的这些数,给他们分类。

学生独立思考,讨论、交流分类情况。

师生归纳:我们已学过5类不同的数:正整数,0,负整数,正分数,负分数二、合作交流,探索新知1、有理数意义师:引导学生对5类数概括得出:正整数、0、负整数统称为整数正分数、负分数统称为分数整数和分数统称为有理数2、有理数分类:学生交流讨论,师适当引导得出两种分类⑴按定义分类 ⑵按性质分类 三、巩固提高,熟练技能练习1、课本第8页练习练习2、把下列各数填在相应的集合内20.-0.08,1,3.14,-2,0,1302-,-98,132-,-1,218- {}{}{}{}{}{}{}{}{}{}整数集合 分数集合 正数集合 负数集合 正整数集合 负整数集合 正分数集合 负分数集合 正有理数集合 负有理数集合 四、小结:通过本节课的学习,你有哪些收获?存在哪些疑问?可以归纳为如下几点:1、本节主要学习有理数概念及分类2、主要用到的思想方法是分类思想3、注意分类时不重不漏,标准统一五、作业课本 第14页习题1.2第1题六、拓展练习下面两个圆圈分别表示负数集合和整数集合,请你在每个圈内填入8个数,其中4个数既是负数又是整数,这样的数填在哪里?圈中重合的部分表示什么数集合?讷河五中 刘树生有理数 整数 分数 正整数0 正分数 负分数 负整数 有理数 正有理数负有理数 0正整数负整数负分数 正分数1.2.2数轴教学目标:一、知识与技能1、理解数轴的概念,会画数轴。

2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数。

二、过程与方法:体会数形结合的数学思想方法。

三、情感态度与价值观:感受数学活动充满创造和探索。

教学重点:正确理解数轴的概念和用数轴上的点表示有理数。

教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形结合的思想方法。

教学过程一、创设情境,引入新课问题1:教材第8页中问题并进行板书学生会画一直线表示马路,左西右东,在直线上取一点O表示车站的位置,规定一个单位长度表示1米,于是点O的右边距离O点3个和7.5单位的点B和点C,分别表示柳树和杨树的位置;点O的左边距离O点3个和4.8个单位长度的点D 和点E,分别表示槐树和电线杆的位置。

问题2:怎样用数轴简明地表示这些树、电线杆与车站的相对位置关系呢?(用数轴体现出方向、距离的不同)规定从左向右表示由西到东,把点O左右两边的数分别用负数和正数表示,由此可见正数、O和负数可用一条直线上的点表示出来。

问题3:你还能举出生活中用直线上的点表示数的例子吗?学生思考并讨论交流后得出如温度计,让学生看教材9页二、探索新知1、引入数轴概念通过上面的问题,我们知道正数、0和负数可用一条直线上的点表示出来,一般地在数学中人们用画图的方式把数“直观化”,通常用一条直线上的点表示数,这条直线叫做数轴。

2、揭示数轴内涵问题:表示含数的直线(数轴)需具备什么条件?才能将不同的数用它上面的点清楚的表示出来呢?你能试着画出满足条件的数轴吗?学生动手画,展示不同画法,讨论交流哪种画法最规范,然后师生共同分析归纳得出数轴的特征。

(1)数轴是一条直线(2)数轴三要素:①原点②正方向③单位长度由此我们也可以说:规定了原点、正方向和单位长度的直线叫做数轴3、画数轴表示数问题1:画一条数轴(教师演示,规范学生的画法)问题2:在你画的数轴上找出表示-2,+2,0,+4,-3的点,分别注上字母A,B,C,D,E,并说明你是怎样找的?学生分别做答。

问题3:分数(或小数)也可用数轴上的点表示吗?你能在数轴上找出4.5和32-的点吗?怎么找?学生作答。

问题4:在你画的数轴上能找到10000和100001的点,这样的点存在吗? 学生思考交流,教师鼓励学生大胆猜想,各自发表见解。

深化对数轴概念的认识,这样做可引导学生进行抽象的思维活动,使学生从直观认识上升到理性认识。

由此可得出结论:所有的有理数都可以在数轴上找到唯一确定的点表示。

问题5:观察数轴上的点表示正数的点有什么特征,表示负数的点呢?它们到原点的距离是多少?由此你能得出什么结论? 教师引导学生讨论归纳,内容见9页三、巩固提高1、教材10页练习 1、2题2、(1)画一条数轴,并表示如下各点:0.50.10.75±±±,,(2)画一条数轴,并表示如下各点:1000,5000,-2000(3)数轴上标出到原点的距离小于3的整数;(4)数轴上标出-5和+5之间所有整数。

四、总结、反思1、什么是数轴?2、如何画数轴?3、如何在数轴上表示有理数?五、布置作业 课本第14页第1、2题讷河五中刘树香1.2.3 相反数教学目标:知识与技能:1、掌握相反数概念,给出一个数能求出它的相反数。

2、了解一对互为相反数在数轴上的位置关系。

过程与方法:利用数轴观察相反数。

情感态度与价值观:通过相反数的几何意义,进一步渗透数形结合的思想。

教学重点:求已知数的相反数。

教学难点:根据相反数的意义化简符号 。

教学过程一、创设情境,引入新课问题1:如果向右为正,向右走5米,向左走5米,各记作什么?学生回答问题2:在数轴上画出表示-5,5的点,并观察表示它们的点具有怎样的特征?师生共同总结,得出结论:问题3:举出几组具有这种特点的两个数。

学生举例二、探索新知1、相反数的定义问题:像5和―5,2和-2,1.5和-1.5这样的两个数叫互为相反数试述具备什么特点的两个数是互为相反数?学生讨论后回答。

归纳得出:只有符号不同的两个数叫做互为相反数2、理解概念⑴判断:①-3的相反数是31( ) ②-4是相反数 ( )③相反数等于它本身的数只有0( )④符号不同的两个数互为相反数( )⑵在数轴上任意标出4个数,并标出它们的相反数⑶分别写出8,-7,0,-0.5的相反数⑷指出-2.4,53 ,-1.7,1各是什么数的相反数? ⑸a 的相反数是什么?3、化简符号问题1:若把a 换成+5,-7时,这些数的相反数怎样表示?学生作答。

(1) -(+4)是___相反数,-(+4)=___(2) -(+61)是___相反数, -(+61)=___ (3)-(-8.1)是___相反数,-(-8.1)=___(4)-(-100)是___相反数,-(-100)=___问题2:在一个数前面加上“-”号表示这个数的相反数,如果在这些数前面加上“+”号呢?如:+(-3),+(+5.2) 学生回答:问题1、2师生归纳总结:多重符号化简的结果是由“-”号的个数决定的三、巩固训练1、11页练习 1、2、3题2、填空(1)2.6的相反数是(2) 是-100的相反数(3)-25是 的相反数 (4)8.3和 互为相反数3、化简下列各数-(-78)= ;-(+0.77)= ;+(-9)= ;+(+5)= ;4、⑴若X =-2,则-X = ;⑵若M =0,则-M = ;⑶若-a =-6,则a = ;四、总结反思1、相反数的定义。

2、互为相反数的数在数轴上表示的点的特征。

3、怎样求一个数的相反数。

五、布置作业教材15页习题1.2第3题讷河五中刘树香1.2.4 绝对值第一课时一、教学目标知识与技能:1.从数形两个方面理解绝对值的代数、几何意义,初步了解数形结合的思想。

2.会求一个数的绝对值。

掌握绝对值的有关性质。

过程与方法:体验运用绝对值解决实际问题的过程,感受数学在生活中的应用价值。

学会与人合作交流。

情感态度与价值观:通过应用绝对值解决实际问题,激发学生学习数学的欲望,培养学生学习兴趣。

二、重点、难点重点:利用绝对值概念求一个数的绝对值。

难点:绝对值的几何意义的应用。

三、教具:投影(电脑)、三角板、自制胶片。

四、教学过程(一)创设情境,激情引入:师放投影。

如图:乙汽车甲汽车问题:甲乙两辆汽车从同一处O出发,分别向东、向西行驶10千米,到达A、B两处。

相关文档
最新文档