2015-2016高中数学 1.1.3第2课时 补集及集合运算的综合应用学业达标测试 新人教A版必修1

合集下载

高中数学《补集及集合运算的综合应用》导学案

高中数学《补集及集合运算的综合应用》导学案

1.1.3集合的基本运算第2课时补集及集合运算的综合应用1.全集(1)全集定义:□1如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)全集符号表示:□2全集通常记作U.2.补集的定义(1)自然语言:□3对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A.(2)符号语言:∁U A=□4{x|x∈U且x∉A}.(3)图形语言:□5用Venn图表示,如下图阴影部分所示,表示∁A.U□61.判一判(正确的打“√”,错误的打“×”)(1)一个集合的补集一定含有元素.()(2)集合∁B C与∁A C相等.()(3)集合A与集合A在全集U中的补集没有公共元素.()答案(1)×(2)×(3)√2.做一做(1)(教材改编P11T4)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M 等于()A.U B.{1,3,5}C.{3,5,6} D.{2,4,6}(2)(教材改编P11T4)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于()A.{1,3,4} B.{3,4}C.{3} D.{4}(3)设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4}C.{x|x≤1} D.{x|x≥1}答案(1)C(2)D(3)C『释疑解难』1.全集理解全集不是固定不变的,是相对于研究的问题而言的,如在整数范围内研究问题,Z是全集,而在实数范围内研究问题,R是全集.如若只讨论大于0小于5的实数,可选{x|0<x<5}为全集.通常也把给定的集合作为全集.2.补集理解(1)补集是相对于全集而言的,它与全集不可分割.一方面,若没有定义全集,则不存在补集的说法;另一方面,补集的元素逃不出全集的范围.(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A的补集的前提是A为全集U的子集,随着所选全集的不同,得到的补集也是不同的.(3)集合的补集运算与实数的减法运算可进行类比:实数集合被减数a被减集合(全集)A减数b减集合B差a-b补(余)集∁A B(4)符号∁U A有三层意思:①A是U的子集,即A⊆U;②∁U A表示一个集合,且(∁U A)⊆U;③∁U A是U中不属于A的所有元素组成的集合,即∁U A={x|x∈U,且x∉A}.(5)若x∈U,则x∈A或x∈∁U A,二者必居其一.探究1补集的简单运算例1(1)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A =________;(2)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________.解析(1)将集合U和集合A分别表示在数轴上,如图所示. 由补集定义可得∁U A={x|x<-3或x=5}.(2)解法一:A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.解法二:借助V enn图,如图所示.由图可知B={2,3,5,7}.答案(1){x|x<-3或x=5}(2){2,3,5,7}拓展提升求集合补集的基本方法及处理技巧(1)基本方法:定义法.(2)两种处理技巧①当集合用列举法表示时,可借助Venn图求解;②当集合是用描述法表示的连续数集时,可借助数轴,利用数轴分析求解.【跟踪训练1】(1)设集合U={1,2,3,4,5,6},M={1,3,5},则∁M=()UA.{2,4,6} B.{1,3,5}C.{1,2,4} D.U(2)若全集U={x∈R|-2≤x≤2},则集合A={x∈R|-2≤x≤0}的补集∁U A为()A.{x∈R|0<x<2} B.{x∈R|0≤x<2}C.{x∈R|0<x≤2} D.{x∈R|0≤x≤2}答案(1)A(2)C解析(1)因为集合U={1,2,3,4,5,6},M={1,3,5},所以∁U M={2,4,6}.(2)借助数轴(如图)易得∁U A={x∈R|0<x≤2}.探究2交、并、补集的综合运算例2已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3}.求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.解把全集U和集合A,B在数轴上表示如下:由图可知∁U A={x|x≤-2或3≤x≤4},A∩B={x|-2<x<3},∁U(A∩B)={x|x≤-2或3≤x≤4},(∁U A)∩B={x|-3<x≤-2或x=3}.拓展提升1.补集的性质及混合运算的顺序(1)A∪(∁U A)=U,A∩(∁U A)=∅.(2)∁U(∁U A)=A,∁U U=∅,∁U∅=U.(3)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).2.当集合是用列举法表示时,如数集,可以通过列举集合的元素分别得到所求的集合;当集合是用描述法表示时,如不等式形式表示的集合,则可借助数轴求解.3.集合的交、并、补运算是同级运算,因此在进行集合的混合运算时,有括号的先算括号内的,然后按照从左到右的顺序进行计算.【跟踪训练2】 已知集合A ={x ||x |≤2},B ={x |-3<x <0},C ={x |x ≤1}.求:A ∩C ,A ∪B ,(∁R A )∩B .解 A ∩C ={x |-2≤x ≤2}∩{x |x ≤1}={x |-2≤x ≤1};A ∪B ={x |-2≤x ≤2}∪{x |-3<x <0}={x |-3<x ≤2}; (∁R A )∩B ={x |x <-2或x >2}∩{x |-3<x <0}={x |-3<x <-2}. 探究3 利用集合间的关系求参数例3 已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围.解 ∁R B ={x |x ≤1或x ≥2}≠∅,∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论.①若A =∅,此时有2a -2≥a ,∴a ≥2.②若A ≠∅,则有⎩⎪⎨⎪⎧ 2a -2<a ,a ≤1或⎩⎨⎧ 2a -2<a ,2a -2≥2.∴a ≤1.综上所述,a ≤1或a ≥2.[条件探究] 本例中若把“A ∁R B ”换成“A ∩∁R B =∅”,则a 的取值范围为多少?解 ①若A =∅,则a ≥2满足题意.②若A ≠∅,则需满足⎩⎪⎨⎪⎧ 2a -2<a ,2a -2≥1,a ≤2,解得32≤a <2,综上所述a ≥32.拓展提升 利用补集求参数问题的方法(1)解答本题的关键是利用A ∁R B ,对A =∅与A ≠∅进行分类讨论,转化为等价不等式(组)求解,同时要注意区域端点的问题.(2)不等式中的等号在补集中能否取到,要引起重视,还要注意补集是全集的子集.(3)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行集合的交、并、补运算时,常借助数轴求解.【跟踪训练3】 已知集合A ={x |x <a },B ={x |1<x <3}.(1)若A ∪(∁R B )=R ,求实数a 的取值范围;(2)若A ∁R B ,求实数a 的取值范围.解 (1)∵B ={x |1<x <3},∴∁R B ={x |x ≤1或x ≥3},因而要使A ∪(∁R B )=R ,结合数轴分析(如图),可得a ≥3.(2)∵A ={x |x <a },∁R B ={x |x ≤1或x ≥3}.要使A ∁R B ,结合数轴分析(如图),可得a ≤1.探究4 补集思想的应用——正难则反例4 若集合A ={x |ax 2+3x +2=0}中至多有1个元素,求实数a 的取值范围.解 假设集合A 中含有2个元素,即ax 2+3x +2=0有两个不相等的实数根,则⎩⎪⎨⎪⎧ a ≠0,Δ=9-8a >0,解得a <98且a ≠0,则此时实数a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪ a <98且a ≠0.在全集U =R 中,集合⎩⎨⎧⎭⎬⎫a ⎪⎪⎪ a <98且a ≠0的补集是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪ a ≥98或a =0 .所以满足题意的实数a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≥98或a =0. 拓展提升运用补集思想解题的方法当从正面考虑情况较多,问题较复杂的时候,往往考虑运用补集思想.其解题步骤为:(1)否定已知条件,考虑反面问题;(2)求解反面问题对应的参数范围;(3)取反面问题对应的参数范围的补集.【跟踪训练4】 已知集合A ={y |y >a 2+1或y <a },B ={y |2≤y ≤4},若A ∩B ≠∅,求实数a 的取值范围.解 因为A ={y |y >a 2+1或y <a },B ={y |2≤y ≤4},我们不妨先考虑当A ∩B =∅时a 的取值范围,在数轴上表示集合A ,B ,如图所示.由⎩⎨⎧ a ≤2,a 2+1≥4,得⎩⎨⎧ a ≤2,a ≥3或a ≤-3,故a ≤-3或3≤a ≤2.即A ∩B =∅时,a 的取值范围为a ≤-3或3≤a ≤2,故A ∩B ≠∅时,a 的取值范围为a >2或-3<a < 3.1.全集与补集的互相依存关系(1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z 就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A 的补集的前提是A 是全集U 的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A 的数学意义包括两个方面:首先必须具备A ⊆U ;其次是定义∁U A ={x |x ∈U ,且x ∉A },补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U ,求子集A ,若直接求A 困难,可先求∁U A ,再由∁U (∁U A )=A 求A .1.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}答案D解析由题,知A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.2.已知三个集合U,A,B之间的关系如图所示,则(∁U B)∩A=()A.{3} B.{0,1,2,4,7,8}C.{1,2} D.{1,2,3}答案C解析由Venn图可知U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6},所以(∁U B)∩A={1,2}.3.设全集U={x∈N|x≤8},集合A={1,3,7},B={2,3,8},则(∁A)∩(∁U B)=()UA.{1,2,7,8} B.{4,5,6}C.{0,4,5,6} D.{0,3,4,5,6}答案C解析∵U={x∈N|x≤8}={0,1,2,3,4,5,6,7,8},∴∁U A={0,2,4,5,6,8},∁U B={0,1,4,5,6,7},∴(∁U A)∩(∁U B)={0,4,5,6}.4.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(∁U A )∪(∁U B )=________.答案 {1,2,3,6,7}解析 由题可得∁U A ={1,3,6},∁U B ={1,2,6,7},∴(∁U A )∪(∁U B )={1,2,3,6,7}.5.已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,求实数m 的值.解 A ={-1,2},B ∩(∁U A )=∅等价于B ⊆A .当m =0时,B =∅⊆A ;当m ≠0时,B =⎩⎨⎧⎭⎬⎫-1m . ∴-1m =-1或-1m =2,即m =1或m =-12.综上,m 的值为0,1,-12.A 级:基础巩固练一、选择题1.设集合U ={1,2,3,4},A ={1,2},B ={2,4},则∁U (A ∪B )=( )A .{2}B .{3}C .{1,2,4}D .{1,4}答案 B解析 集合U ={1,2,3,4},A ={1,2},B ={2,4},则∁U (A ∪B )={3},故选B.2.已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R |x ≥3},则下图中阴影部分所表示的集合为( )A.{1} B.{1,2}C.{1,2,3} D.{0,1,2}答案B解析由题意得A∩B={3,4,5},阴影部分所表示的集合为集合A去掉集合A∩B中的元素所组成的集合,所以为{1,2}.3.M={x|x<-2或x>2},N={x|x≤m},若(∁R M)∩N≠∅,则实数m的取值范围为()A.m<2 B.m≥-2C.m>-1 D.-2≤m≤2答案B解析∁R M={x|-2≤x≤2},再利用数轴来解决(∁R M)∩N≠∅时m的取值范围,易知m≥-2.4.下列四个命题中,设U为全集,则不正确的命题是()A.若A∩B=∅,则(∁U A)∪(∁U B)=UB.若A∪B=∅,则A=B=∅C.若A∪B=U,则(∁U A)∩(∁U B)=∅D.若A∩B=∅,则A=B=∅答案D解析由图易知,A正确;由A∪B=∅,得A=B=∅,B正确;由Venn图易知C正确.故选D.5.已知U=R,A={x|x>0},B={x|x≤-1},则(A∩∁U B)∪(B∩∁U A)=()A.∅B.{x|x≤0}C.{x|x>-1} D.{x|x>0或x≤-1}答案D解析∵A∩∁U B={x|x>0},B∩∁U A={x|x≤-1},∴(A∩∁U B)∪(B∩∁U A)={x|x>0或x≤-1}.二、填空题6.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.答案{7,9}解析∵U={n∈N|1≤n≤10}={1,2,3,4,5,6,7,8,9,10},A={1,2,3,5,8},∴∁U A={4,6,7,9,10},又∵B={1,3,5,7,9},∴(∁U A)∩B={7,9}.7.已知集合A={1,3,x},B={1,x2},若B∪(∁U B)=A,则∁U B =________.答案{-3}或{3}或{3}解析因为B∪(∁U B)=A,所以A=U.①当x2=3时,x=±3,B={1,3},∁U B={3}或{-3}.②当x2=x时,x=0或1.当x=0时,B={0,1},∁U B={3};而当x=1时不合题意,舍去.8.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.答案12解析设两项运动都喜欢的人数为x,画出Venn图得到方程15-x+x+10-x+8=30⇒x=3,所以喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).三、解答题9.已知集合A={x|-4≤x≤-2},集合B={x|x+3≥0}.求:(1)A∩B;(2)A∪B;(3)∁R(A∩B).解由已知得B={x|x≥-3},(1)A∩B={x|-3≤x≤-2}.(2)A∪B={x|x≥-4}.(3)∁R(A∩B)={x|x<-3或x>-2}.B级:能力提升练10.已知集合M={x∈N*|1≤x≤15},集合A1,A2,A3满足:①每个集合都恰有5个元素;②A1∪A2∪A3=M.集合A i中元素的最大值与最小值之和称为集合A i的特征数,记为X i(i=1,2,3),求X1+X2+X3的最小值和最大值.解∵集合A1,A2,A3满足:①每个集合都恰有5个元素;②A1∪A2∪A3=M,∴A1,A2,A3中一定各包含五个数值.当X1+X2+X3取得最小值时,集合A1,A2,A3中的最小值分别是1,2,3,最大值是15,11,7,和最小,如:A1={1,12,13,14,15},A2={2,8,9,10,11},A3={3,4,5,6,7}时,X1+X2+X3最小,最小值为39,当集合A1,A2,A3中的最小值分别是1,5,9,最大值是15,14,13时,和最大,如:当A1={1,2,3,4,15},A2={5,6,7,8,14},A3={9,10,11,12,13}时,X1+X2+X3最大,最大值为57.。

1.1.3 第2课时 补集与集合的综合运算

1.1.3 第2课时 补集与集合的综合运算

变式训练已知集合A={x|x<-6,或x>3},B={x|k-1≤x-1≤k},若
A∩B≠⌀,求k的取值范围.
分析:A∩B≠⌀时对应的k的取值范围不好直接求解,可考虑问题的
反面:先求A∩B=⌀时对应的k的取值范围,再取其“补集”,即可得
A∩B≠⌀时k的取值范围.
解:由已知可得B={x|k≤x≤k+1},
于维恩图来求解,这样处理起来,相对来说比较直观、形象,且解答
时不易出错.
课堂篇
探究学习
探究一
探究二
探究三
思想方法
当堂检测
变式训练2集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁RB)=(
Aபைடு நூலகம்{x|x>1}
B.{x|x≥1}
C.{x|1<x≤2}
D.{x|1≤x≤2}
答案:D
)
课堂篇
探究三
思想方法
当堂检测
3.有下列命题:
①若A∩B=U,则A=B=U;②若A∪B=⌀,则A=B=⌀;
③若A∪B=U,则∁UA∩∁UB=⌀;④若A∩B=⌀,则A=B=⌀;
⑤若A∩B=⌀,则∁UA∪∁UB=U;⑥若A∪B=U,则A=B=U.
其中不正确的有(
)
A.0个 B.2个 C.4个D.6个
解析:①若集合A,B中有一个为U的真子集,那么A∩B≠U,所以
A=B=U;②若集合A,B中有一个不为空集,那么A∪B≠⌀,所以A=B=⌀;
③因为∁UA∩∁UB=∁U(A∪B),而A∪B=U,所以∁UA∩∁UB=∁U(A∪B)=⌀;
④当集合A,B中只要有一个为空集或两个集合中没有共同的元素,
就有A∩B=⌀,所以不一定有A=B=⌀;⑤因为∁UA∪∁UB=∁U(A∩B),而

高中数学1.1.3 集合的基本运算 第2课时 补集及综合应用

高中数学1.1.3  集合的基本运算 第2课时  补集及综合应用

的 交集运算 性 Venn图
合 应
概念.


补集运算
只要时刻保持一份自信、一颗不息的奋 斗雄心,生命的硕果就会如影相随。
解析:A B x 1 x 2; A B x 1 x 3 U A x x 1或x 2; U B x x 1或x 3; U (A B) x x 1或x 3; ( U A) ( U B) x x 1或x 3 .
回顾本节课你有什么收获?
补 并集运算
全集

数轴


和补

集的
∁UA= {x|x≤-2或x≥1}
思考交流 补集与全集是两个密不可分的概念,同一个集合
在不同的全集中补集是不同的,不同的集合在同一个 全集中的补集也不同.
另外全集是一个相对概念.如果全集换成其他集 合时,在记号∁UA中的U要相应变换.
从而我们会注意到补集应该有许多运算性质,下 面我们逐一探求.
探究点3 补集的运算性质(1) 若全集为U,AU,则:
都是U的子集,若 A ( U B) 5,13, 23 ,
A ( U B) 2,3,5,7,13,17, 23, ( U A) ( U B) 3,7,
你能求出集合A,B吗?
解:A 2,5,13,17,23, B 2,11,17,19,29
A
5,13,23
U
2, B
17 11,19,29
Venn图 的灵活 运用
(2)求集合A的补集的前提是“A是全集U的子集”,
集合A其实是给定的条件.
(√)
例1 (1) 设U={x|x是小于9的正整数},A={1,2,3},
B={3,4,5,6},求 U A, U B. (2)设全集U={x|x是三角形},A={x|x是锐角三角形},

高中数学第一章集合与函数概念1.1.3集合的基本运算第2课时补集及集合的综合应用教案数学教案

高中数学第一章集合与函数概念1.1.3集合的基本运算第2课时补集及集合的综合应用教案数学教案

第2课时补集及集合的综合应用[目标] 1.理解全集与补集的含义,会求给定子集的补集;2.能用Venn图表达集合的关系及运算;3.能利用集合的相关运算解决有关的实际应用问题,意在培养数学建模及数学运算的核心素养.[重点] 全集与补集的含义,求补集以及用Venn图表达集合的运算.[难点] 集合的综合运算及应用.知识点补集[填一填]1.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.2.补集对于一个集合A,由全集U中不属于A的所有元素组成的集合称为集合A相对文字语言于全集U的补集,记作∁U A.符号语言∁U A={x|x∈U,且x∉A}图形语言(1)∁U U=∅;(2)∁U∅=U;(3)(∁U A)∪A=U;(4)A∩(∁U A)=∅;(5)∁U(∁U A)=A.[答一答]1.全集是不是一个固定不变的集合?集合A的补集是不是唯一的?提示:全集不是固定不变的,它因研究问题的改变而改变;A 的补集不唯一,随全集的改变而改变.2.∁U A的含义是什么?提示:∁U A的含义:∁U A包含的三层意思①A⊆U;②∁U A是一个集合,且∁U A⊆U;③∁U A是由U中所有不属于A的元素构成的集合.3.判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画“×”.(1)∁A∅=A.( √)(2)∁N N*={0}.( √)(3)∁U(A∪B)=(∁U A)∪(∁U B).( ×)类型一补集的简单运算[例1] 已知集合A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B);B∩(∁R A).[解]集合A={x|3≤x<7},B={x|2<x<10}.如图,将集合A,B在数轴上表示出来.易知A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},∁R A={x|x<3或x≥7}.∴∁R(A∪B)={x|x≤2或x≥10}.B∩(∁R A)={x|2<x<10}∩{x|x<3或x≥7}={x|2<x<3或7≤x<10}.求解与补集有关的运算时,首先明确全集是什么,然后根据补集即全集中去掉该集合中元素后剩余元素构成的集合求出补集,再根据补集求解与补集有关的运算.[变式训练1] 设U={x|x≤4},A={x|-1≤x≤2},B={x|1≤x≤3}.求(1)(∁U A)∪B;(2)(∁U A)∩(∁U B).解:(1)∵U={x|x≤4},A={x|-1≤x≤2}.∴∁U A={x|x<-1或2<x≤4}.∴(∁U A)∪B={x|x<-1或2<x≤4}∪{x|1≤x≤3}={x|x<-1或1≤x≤4}.(2)∵U={x|x≤4},B={x|1≤x≤3}.∴∁U B={x|x<1或3<x≤4}.∴(∁U A)∩(∁U B)={x|x<-1或2<x≤4}∩{x|x<1或3<x≤4}={x|x<-1或3<x≤4}.类型二Venn图的应用命题视角1:利用Venn图进行有限数集的运算[例2] 设全集U={x|x≤20的质数},A∩(∁U B)={3,5},(∁U A)∩B={7,19},(∁U A)∩(∁U B)={2,17},求集合A,B.[分析] 题目给出的关系较复杂,不易理清,所以用Venn图解答.[解]易得U={2,3,5,7,11,13,17,19}.由题意,利用如图所示的Venn图,知集合A={3,5,11,13},B={7,11,13,19}.与集合有关的复杂题目,通常利用Venn图,将集合中元素的个数,以及集合间的关系直观地表示出来,进而根据图示逐一将文字陈述的语句“翻译”成数学符号语言,利用方程思想解决问题.[变式训练2] 设全集U={1,2,3,4,5},A∩B={2},(∁U A)∩B ={4},∁U(A∪B)={1,5},下列结论正确的是( A )A.3∈A,3∉B B.3∉A,3∈BC.3∈A,3∈B D.3∉A,3∉B解析:根据条件画出Venn图,如图,3∈A,3∉B.命题视角2:利用Venn图进行抽象集合的运算[例3] 如图,请用集合U,A,B,C分别表示下列部分所表示的集合:Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ.[解]区域Ⅰ是三个集合的公共部分,因此Ⅰ=A∩B∩C;区域Ⅱ是集合A与B的交集与集合C在U中的补集的交集,因此Ⅱ=(A∩B)∩(∁U C);区域Ⅲ是集合A与C的交集与集合B在U中的补集的交集,因此Ⅲ=(A∩C)∩(∁U B);区域Ⅳ是集合B 与C 的交集与集合A 在U 中的补集的交集,因此Ⅳ=(B ∩C )∩(∁U A );区域Ⅴ是集合A 与集合B ∪C 在U 中的补集的公共部分构成的,因此Ⅴ=A ∩[∁U (B ∪C )];同理可求Ⅵ=C ∩[∁U (A ∪B )],Ⅶ=B ∩[∁U (A ∪C )].而区域Ⅷ是三个集合A ,B ,C 的并集在U 中的补集,因此Ⅷ=∁U (A ∪B ∪C ).利用Venn 图可以将抽象的问题转化为具体的图形,具有简单、直观的特点.[变式训练3] 已知I 为全集,集合M ,N ⊆I, 若M ∩N =N ,则( C )A .∁I M ⊇∁I NB .M ⊆∁I NC .∁I M ⊆∁I ND .M ⊇∁I N解析:根据条件画出Venn 图,由补集的定义及集合间的关系可迅速作出选择.类型三 集合在实际问题中的应用[例4] 2019年初,某市政府对水、电提价召开听证会,如记“对水提价”为事件A ,“对电提价”为事件B .现向100名市民调查其对A ,B 两事件的看法,有如下结果:赞成A 的人数是全体的35,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A ,B 都不赞成的市民人数比对A ,B 都赞成的市民人数的13多1人.问:对A ,B 都赞成的市民和都不赞成的市民各有多少人?[解] 赞成A 的人数为100×35=60,赞成B 的人数为60+3=63.如图所示,设对事件A ,B 都赞成的市民人数为x ,则对A ,B 都不赞成的市民人数为x 3+1. 依题意,可得(60-x )+(63-x )+x +x 3+1=100,解得x =36,即对A ,B 两事件都赞成的市民有36人,对A ,B 两事件都不赞成的市民有13人.利用Venn 图解决生活中的问题时,先把生活中的问题转化成集合问题,借助于Venn 图的直观性把它表示出来,再根据集合中元素的互异性求出问题的解.[变式训练4] 某班共有学生30人,其中15人喜欢篮球运动,10人喜欢乒乓球运动,8人对这两项运动都不喜欢,求喜欢篮球运动但不喜欢乒乓球运动的人数.解:设全集U ={全班30名学生},A ={喜欢篮球运动的学生},B ={喜欢乒乓球运动的学生},设既喜欢篮球运动又喜欢乒乓球运动的人数为x ,则喜欢篮球运动但不喜欢乒乓球运动的人数为15-x ,喜欢乒乓球运动但不喜欢篮球运动的人数为10-x ,则有(15-x )+x +(10-x )+8=30,解得x =3.所以15-x =15-3=12,即喜欢篮球运动但不喜欢乒乓球运动的人数为12.1.设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=( C )A.{x|-3<x<0} B.{x|-3<x<-1}C.{x|-3<x≤-1} D.{x|-3<x<3}解析:∵A={x|-3<x<3},∁R B={x|x≤-1,或x>5},∴A∩(∁R B)={x|-3<x≤-1}.2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( D )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:∵U=R,A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0,或x≥1}.∴∁U(A∪B)={x|0<x<1}.3.已知全集U=R,A={x|1≤x<b},∁U A={x|x<1,或x≥2},则实数b=2.解析:∵∁U A={x|x<1,或x≥2}.∴A={x|1≤x<2}.∴b=2.4.已知全集U={1,2,3,4,5,6},集合A={1,3},集合B={3,4,6},集合U,A,B的关系如图所示,则图中阴影部分所表示的集合用列举法表示为{4,6}.解析:题图中阴影部分所表示的集合为B∩(∁U A)={3,4,6}∩{2,4,5,6}={4,6}.5.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≤0,或x ≥52,求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ). 解:将集合A ,B ,P 分别表示在数轴上,如图所示.∵A ={x |-4≤x <2},B ={x |-1<x ≤3},∴A ∩B ={x |-1<x <2},∁U B ={x |x ≤-1,或x >3}.又P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≤0,或x ≥52, ∴(∁U B )∪P =⎩⎨⎧⎭⎬⎫xx ≤0,或x ≥52. 又∁U P =⎩⎨⎧⎭⎬⎫x 0<x <52, ∴(A ∩B )∩(∁U P )={x |-1<x <2}∩⎩⎨⎧⎭⎬⎫x 0<x <52={x |0<x <2}. ——本课须掌握的两大问题1.在进行集合间的基本运算时,除了紧扣定义和性质,还要注意以下方法与技巧:(1)进行集合运算时,可按照如下口诀进行:交集元素仔细找,属于A 且属于B ;并集元素勿遗漏,切忌重复仅取一;全集U 是大范围,去掉U 中A 元素,剩余元素成补集.(2)解决集合的混合运算问题时,一般先运算括号内的部分,如求(∁U A )∩B 时,先求出∁U A ,再求交集;求∁U (A ∪B )时,先求出A ∪B ,再求补集.(3)若所给集合是有限集,可先把集合中的元素一一列举出来,然后再结合交集、并集、补集的定义求解.另外,此类问题在解答过程中常常借助Venn图来求解.若所给集合是无限集(数集),在进行运算时常借助数轴,把已知集合表示在同一数轴上,再根据交集、并集、补集的定义求解,解题过程中要注意端点问题.2.解决有关集合的实际应用题时,要学会将文字语言转化为集合语言.涉及交叉有限集的元素个数问题往往用Venn图法处理较为方便.学习至此,请完成课时作业5学科素养培优精品微课堂补集思想的应用开讲啦对于一些比较复杂、比较抽象,条件和结论之间关系不明确,难以从正面入手的数学问题,在解题时,应从问题的反面入手,探求已知和未知的关系,化难为易、化隐为显,从而将问题解决,这就是“正难则反”的解题策略.“正难则反”策略运用的是补集思想,也是处理问题的间接化原则的体现.运用补集思想求参数的取值范围的步骤:①否定已知条件,考虑反面问题;②求解反面问题对应参数的范围;③对反面问题对应参数的范围取补集.[典例] 已知集合A={x|x2-5x-6=0},B={x|x2+ax+a2-12=0},若B∪A≠A,求实数a的取值范围.[分析] B∪A≠A,说明B⃘A,这时我们可以先由B∪A=A,求出实数a的取值范围,再利用“补集思想”求解.[解] 若B ∪A =A ,则B ⊆A .∵A ={x |x 2-5x -6=0}={-1,6},∴集合B 有以下三种情况:①当B =∅时,Δ=a 2-4(a 2-12)<0,即a 2>16,∴a <-4或a >4. ②当B 是单元素集合时,Δ=a 2-4(a 2-12)=0,∴a =-4或a =4.若a =-4,则B ={2}⃘A ;若a =4,则B ={-2}⃘A .③当B ={-1,6}时,-1,6是方程x 2+ax +a 2-12=0的两个根,∴⎩⎪⎨⎪⎧ -a =-1+6,a 2-12=-1×6,a 的值不存在.综上可得,当B ∪A =A 时,实数a 的取值范围为{a |a <-4或a >4}.故若B ∪A ≠A ,则实数a 的取值范围为{a |-4≤a ≤4}.[名师点评] 值得注意的是在使用补集思想解题时,需要明确全集是什么,子集是什么,否则就会出错.[对应训练] 已知集合A ={x |x 2-4mx +2m +6=0,x ∈R },B ={x |x <0,x ∈R },若A ∩B ≠∅,求实数m 的取值范围.解:由题知A ≠∅,所以设全集U ={m |Δ=(-4m )2-4(2m +6)≥0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m ≤-1或m ≥32. 若A ∩B =∅,则方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,故⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2=4m ≥0,x 1x 2=2m +6≥0,解得m ≥32. 因为集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪ m ≥32相对于集合U 的补集为{m |m ≤-1}, 所以实数m 的取值范围为{m |m ≤-1}.。

高中数学1.1.3集合的基本运算第二课时补集及综合应用

高中数学1.1.3集合的基本运算第二课时补集及综合应用

第二课时补集及综合应用【选题明细表】知识点、方法题号补集的运算1,3 集合的交、并、补集综合运算2,4,5,9,12Venn图的应用6,7综合应用8,10,11,13,141.设全集U={1,2,3,4,5},集合A={1,2},则?U A等于( B )(A){1,2} (B){3,4,5}(C){1,2,3,4,5} (D)解析:因为U={1,2,3,4,5},A={1,2},所以?U A={3,4,5}.2.已知集合A,B,全集U={1,2,3,4},且?U(A∪B)={4},B={1,2},则A∩(?U B)等于( A )(A){3} (B){4} (C){3,4} (D)解析:因为全集U={1,2,3,4},且?U(A∪B)={4},所以A∪B={1,2,3},因为B={1,2},所以?U B={3,4},A={3}或{1,3}或{3,2}或{1,2,3}.所以A∩(?U B)={3}.故选A.3.(2018·洛阳高一月考)设全集U={x|x>1},集合A={x|x>2},则?U A等于( A )(A){x|1<x≤2} (B){x|1<x<2}(C){x|x>2} (D){x|x≤2}解析:画出数轴可知,?U A={x|1<x≤2}.故选A.4.(2018·宁波大学附中高一期中)设集合A={1,2,3,4},B={3,4,5},全集U=A∪B,则集合?U(A∩B)的元素个数有( C )(A)1个(B)2个(C)3个(D)4个解析:A∪B={1,2,3,4,5},A∩B={3,4},所以?U(A∩B)={1,2,5}.故选C.5.已知全集U=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N*},则( C )(A)U=A∪B (B)U=(?U A)∪B(C)U=A∪(?U B) (D)U=(?U A)∪(?U B)解析:由题意易得B A,画出如图所示的示意图,显然U=A∪(?U B),故选C.6.已知全集U=R,集合A={1,2,3,4,5},B={x|x≥2},则图中阴影部分所表示的集合为( D )(A){0,1,2}(B){0,1}(C){1,2}(D){1}解析:因为?R B={x|x<2},所以图中阴影部分为A∩(?R B)={1}.故选D.7.已知全集U={x∈N+|x<9},(?U A)∩B={1,6},A∩(?U B)={2,3},?U(A∪B)={5,7,8},则B等于( B )(A){2,3,4} (B){1,4,6} (C){4,5,7,8} (D){1,2,3,6}解析:U={1,2,3,4,5,6,7,8},如图,可知A∩B={4},B={1,4,6},故选B.8.设全集U=R,A={x|x<1},B={x|x>m},若?U A?B,则实数m的取值范围是.解析:因为全集U=R,A={x|x<1},则?U A={x|x≥1},又B={x|x>m},且?U A?B,则m<1.所以实数m的取值范围是{m|m<1}.答案:{m|m<1}9.已知R为实数集,集合A={x|1≤x≤2},若B∪(?R A)=R,B∩(?R A)= {x|0<x<1,或2<x<3},求集合B.解:因为A={x|1≤x≤2},所以?R A={x|x<1,或x>2}.又B∪(?R A)=R,A∪(?R A)=R,可得A? B.而B∩(?R A)={x|0<x<1,或2<x<3},所以{x|0<x<1,或2<x<3}?B.借助于数轴可得B=A∪{x|0<x<1,或2<x<3}={x|0<x<3}.10.设集合P={x|x≥1},Q={x|x2<1},则( D )(A)P?Q (B)Q?P(C)?R P??R Q (D)Q??R P解析:因为Q={x|-1<x<1},?R P={x|x<1},所以Q??R P.故选D.11.(2018·北京市海淀区高三期末)已知全集U=R,M={x|x≤1},P= {x|x≥2},则?U(M∪P)等于( A )(A){x|1<x<2} (B){x|x≥1}(C){x|x≤2} (D){x|x≤1或x≥2}解析:因为M∪P={x|x≤1或x≥2},所以?U(M∪P)={x|1<x<2}.故选A.12.已知U=R,A={x|a≤x≤b},?U A={x|x<3或x>4},则ab= . 解析:因为A∪(?U A)=R,所以a=3,b=4,所以ab=12.答案:1213.已知全集U=R,集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}且A? ?U B,求实数a的取值范围.解:若B=,则a+1>2a-1,则a<2,此时?U B=R,所以A??U B;若B≠,则a+1≤2a-1,即a≥2,此时?U B={x|x<a+1,或x>2a-1},由于A??U B,如图,则a+1>5,所以a>4,所以实数a的取值范围为{a|a<2,或a>4}.14.已知U=R,集合A={x|a-2<x<a+2},B={x|x2-(a+2)x+2a=0},a∈R.(1)若a=0,求A∪B;(2)若(?U A)∩B≠,求a的取值范围.解:(1)若a=0,则A={x|-2<x<2},B={0,2},所以A∪B={x|-2<x≤2}.(2)因为?U A={x|x≤a-2或x≥a+2},当a≠2时,B={2,a},因为(?U A)∩B≠,又a-2<a<a+2,所以2∈(?U A),所以2≤a-2或2≥a+2,解得a≥4或a≤0,当a=2时,A={x|0<x<4},?U A={x|x≤0或x≥4},B={2},此时(?U A)∩B=,不合题意,综上所述,a的取值范围是{a|a≤0或a≥4}.。

第一章 1.1.3 第2课时补集及综合应用

第一章  1.1.3  第2课时补集及综合应用

第2课时补集及综合应用学习目标 1.理解全集、补集的概念.2.准确翻译和使用补集符号和Venn图.3.会求补集,并能解决一些集合综合运算的问题.知识点一全集思考老和尚问小和尚:“如果你前进是死,后退是亡,那你怎么办?”小和尚说:“我从旁边绕过去.”在这一故事中,老和尚设定的运动方向共有哪些?小和尚设定的运动方向共有哪些?答案老和尚设定的运动方向只有2个:前进,后退.小和尚偷换了前提:运动方向可以是四面八方任意方向.梳理思考实数集中,除掉大于1的数,剩下哪些数?答案剩下不大于1的数,用集合表示为{x∈R|x≤1}.梳理类型一求补集例1(1)若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于()A.{x|0<x<2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|0≤x≤2}答案 C解析∵U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},∴∁U A={x|0<x≤2},故选C.(2)设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.解根据题意可知,U={1,2,3,4,5,6,7,8},所以∁U A={4,5,6,7,8},∁U B={1,2,7,8}.(3)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B,∁U(A∪B).解根据三角形的分类可知A∩B=∅,A∪B={x|x是锐角三角形或钝角三角形},∁U(A∪B)={x|x是直角三角形}.反思与感悟求集合的补集,需关注两处:一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图、数轴、坐标系来求解.跟踪训练1(1)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=________.答案{3,4,5}(2)已知集合U=R,A={x|x2-x-2≥0},则∁U A=________.答案{x|-1<x<2}(3)已知全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|xy>0},则∁U A=________.答案{(x,y)|xy≤0}类型二补集性质的应用命题角度1补集性质在集合运算中的应用例2已知A={0,2,4,6},∁U A={-1,-3,1,3},∁U B={-1,0,2},用列举法写出集合B.解∵A={0,2,4,6},∁U A={-1,-3,1,3},∴U={-3,-1,0,1,2,3,4,6}.而∁U B={-1,0,2},∴B=∁U(∁U B)={-3,1,3,4,6}.反思与感悟从Venn图的角度讲,A与∁U A就是圈内和圈外的问题,由于(∁U A)∩A=∅,(∁A)∪A=U,所以可以借助圈内推知圈外,也可以反推.U跟踪训练2如图所示的V enn图中,A、B是非空集合,定义A*B表示阴影部分的集合.若A ={x|0≤x≤2},B={y|y>1},则A*B=________________.答案 {x |0≤x ≤1或x >2}解析 A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥0}, 由图可得A *B =∁(A ∪B )(A ∩B )={x |0≤x ≤1或x >2}. 命题角度2 补集性质在解题中的应用) 例3 关于x 的方程:x 2+ax +1=0,① x 2+2x -a =0,② x 2+2ax +2=0,③若三个方程至少有一个有解,求实数a 的取值范围. 解 假设三个方程均无实根,则有⎩⎪⎨⎪⎧ Δ1=a 2-4<0,Δ2=4+4a <0,Δ3=4a 2-8<0,即⎩⎪⎨⎪⎧-2<a <2,a <-1,-2<a < 2.解得-2<a <-1,∴当a ≤-2或a ≥-1时,三个方程至少有一个方程有实根, 即a 的取值范围为{a |a ≤-2或a ≥-1}.反思与感悟 运用补集思想求参数取值范围的步骤:(1)把已知的条件否定,考虑反面问题;(2)求解反面问题对应的参数的取值范围;(3)求反面问题对应的参数的取值集合的补集. 跟踪训练3 若集合A ={x |ax 2+3x +2=0}中至多有一个元素,求实数a 的取值范围. 解 假设集合A 中含有2个元素, 即ax 2+3x +2=0有两个不相等的实数根,则⎩⎪⎨⎪⎧a ≠0,Δ=9-8a >0,解得a <98,且a ≠0,则集合A 中含有2个元素时,实数a 的取值范围是{a |a <98且a ≠0}.在全集U =R 中,集合{a |a <98且a ≠0}的补集是{a |a ≥98或a =0},所以满足题意的实数a 的取值范围是{a |a ≥98或a =0}.类型三 集合的综合运算例4 (1)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )等于()A.{3}B.{4}C.{3,4}D.∅答案 A解析 ∵∁U (A ∪B )={4},∴A ∪B ={1,2,3}, 又∵B ={1,2},∴∁U B ={3,4}, A 中必有3,可以有1,2,一定没有4. ∴A ∩(∁U B )={3}.(2)已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪(∁R B )=R ,则实数a 的取值范围是________. 答案 a ≥2解析 ∵∁R B ={x |x <1或x >2}且A ∪(∁R B )=R , ∴{x |1≤x ≤2}⊆A ,∴a ≥2.反思与感悟 解决集合的混合运算时,一般先计算括号内的部分,再计算其他部分.有限集混合运算可借助Venn 图,与不等式有关的可借助数轴.跟踪训练4 (1)已知集合U ={x ∈N |1≤x ≤9},A ∩B ={2,6},(∁U A )∩(∁U B )={1,3,7},A ∩(∁U B )={4,9},则B 等于( )A.{1,2,3,6,7}B.{2,5,6,8}C.{2,4,6,9}D.{2,4,5,6,8,9}答案 B解析 根据题意可以求得U ={1,2,3,4,5,6,7,8,9},画出Venn 图(如图所示),可得B ={2,5,6,8},故选B.(2)已知集合U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B).解如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},∴∁U A={x|x≤-2或3≤x≤4},∁U B={x|x<-3或2<x≤4}.A∩B={x|-2<x≤2},∴(∁U A)∪B={x|x≤2或3≤x≤4},A∩(∁U B)={x|2<x<3}.1.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M等于()A.UB.{1,3,5}C.{3,5,6}D.{2,4,6}答案 C2.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于()A.{1,3,4}B.{3,4}C.{3}D.{4}答案 D3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1}B.{x|x≤-4}C.{x|x≤1}D.{x|x≥1}答案 C4.设全集U=R,则下列集合运算结果为R的是()A.Z∪∁U NB.N∩∁U NC.∁U(∁U∅)D.∁U Q答案 A5.设全集U=M∪N={1,2,3,4,5},M∩(∁U N)={2,4},则N等于()A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4}答案 B1.全集与补集的互相依存关系(1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.课时作业一、选择题1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}答案 C解析∁U A={0,4},所以(∁U A)∪B={0,2,4},选C.2.已知全集U=R,集合M={x|x2-4≤0},则∁U M等于()A.{x|-2<x<2}B.{x|-2≤x≤2}C.{x|x<-2或x>2}D.{x|x≤-2或x≥2}答案 C解析∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.3.已知全集U={1,2,a2-2a+3},A={1,a},∁U A={3},则实数a等于()A.0或2B.0C.1或2D.2答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.4.图中的阴影部分表示的集合是( )A.A ∩(∁U B )B.B ∩(∁U A )C.∁U (A ∩B )D.∁U (A ∪B )答案 B解析 阴影部分表示集合B 与集合A 的补集的交集. 因此,阴影部分所表示的集合为B ∩(∁U A ).5.已知U 为全集,集合M ,N ⊆U ,若M ∩N =N ,则( ) A.∁U N ⊆∁U M B.M ⊆∁U N C.∁U M ⊆∁U N D.∁U N ⊆M答案 C解析 由M ∩N =N 知N ⊆M .∴∁U M ⊆∁U N .6.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A 等于( ) A.∅ B.{2} C.{5} D.{2,5}答案 B解析 因为A ={x ∈N |x ≤-5或x ≥5}, 所以∁U A ={x ∈N |2≤x <5},故∁U A ={2}. 二、填空题7.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=______,(∁U A )∩(∁U B )=________.答案 {x |0<x <1} {x |0<x <1}解析 A ∪B ={x |x ≤0或x ≥1},∁U (A ∪B )={x |0<x <1}.∁U A ={x |x >0},∁U B ={x |x <1},∴(∁U A )∩(∁U B )={x |0<x <1}.8.若全集U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|x >0,y >0},则点(-1,1)________∁U A .(填“∈”或“∉”) 答案 ∈解析显然(-1,1)∈U,且(-1,1)∉A,∴(-1,1)∈∁U A.9.设U=R,已知集合A={x|x>1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是________.答案a≤1解析∁U A={x|x≤1},∵(∁U A)∪B=R,∴B⊇{x|x>1},∴a≤1.10.若集合A={x|0≤x≤2},B={x|x<0或x>1},则图中阴影部分所表示的集合为________.答案{x|x≤1或x>2}解析如图,设U=A∪B=R,A∩B={x|1<x≤2},∴阴影部分为∁U(A∩B)={x|x≤1或x>2}.三、解答题11.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁U A)=R,B∩(∁U A)={x|0<x<1或2<x<3},求集合B.解∵A={x|1≤x≤2},∴∁U A={x|x<1或x>2}.又B∪(∁U A)=R,A∪(∁U A)=R,可得A⊆B.而B∩(∁U A)={x|0<x<1或2<x<3},∴{x|0<x<1或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1或2<x<3}={x|0<x<3}.12.已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,求实数m 的值. 解 A ={-1,2},B ∩(∁U A )=∅等价于B ⊆A . 当m =0时,B =∅⊆A ; 当m ≠0时,B ={-1m}.∴-1m =-1,或-1m =2,即m =1或m =-12.综上,m 的值为0,1,-12.13.设全集为R ,A ={x |3<x <7},B ={x |4<x <10}. (1)求∁R (A ∪B )及(∁R A )∩B ;(2)若C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围. 解 (1)∵A ∪B ={x |3<x <10}, ∴∁R (A ∪B )={x |x ≤3或x ≥10}. 又∵∁R A ={x |x ≤3或x ≥7}, ∴(∁R A )∩B ={x |7≤x <10}. (2)∵A ∩C =A ,∴A ⊆C .∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3⇒⎩⎨⎧a ≥3,a ≤7⇒3≤a ≤7.∴a 的取值范围为{a |3≤a ≤7}. 四、探究与拓展14.如图,已知I 是全集,A ,B ,C 是它的子集,则阴影部分所表示的集合是( )A.(∁I A ∩B )∩CB.(∁I B ∪A )∩CC.(A ∩B )∩(∁I C )D.(A ∩∁I B )∩C答案 D解析 由题图可知阴影部分中的元素属于A ,不属于B ,属于C ,则阴影部分表示的集合是(A ∩∁I B )∩C .15.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M ={(x ,y )|y -3x -2=1},P ={(x ,y )|y ≠x +1},求∁U(M∪P).解集合M表示的是直线y=x+1上除去点(2,3)的所有点,集合P表示的是不在直线y=x +1上的所有点,显然M∪P表示的是平面内除去点(2,3)的所有点,故∁U(M∪P)={(2,3)}.。

教学设计6:1.1.3 第2课时 补集及综合应用

教学设计6:1.1.3 第2课时 补集及综合应用

1.1.3集合的基本运算第2课时补集及综合应用●三维目标1.知识与技能(1)使学生参与并体会全集的必要性,理解集合的子集、补集的含义,会求补集;(2)能够应用Venn图和数轴表述集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法通过对全集补集概念、性质、规律的探究,不断提高学生抽象概括能力,培养数形结合能力,掌握归纳类比的方法.3.情感、态度与价值观(1)在参与数学学习的过程中,培养学生主动学习的意识;(2)在将所学知识系统化、条理化的基础上通过合作学习的形式,培养学生积极参与的主体意识;(3)在感受生活中集合实例的同时,让学生认识到数学的科学价值、应用价值.●重点难点重点:补集概念的理解及初步应用.难点:全集的理解,补集应用中方法规律的探究.重难点的突破:结合学生的知识水平及认知特点,建议授课时以数集的扩充为切入点:如求方程x2-2=0在不同范围内的解,使学生初步明白范围设定的必要性,接着通过师生、生生的多方交流,对全集的概念有一个确切的认识.全集概念为本节课的难点之一,必要时,可通过多举实例加深概念理解.由于全集与补集相辅相成,理解了全集,补集概念的形成轻而易举.在概括出补集定义之后,引导学生类比交、并集得出补集的符号语言和图示语言两种表示形式,以形象直观的方式,加深对新知识的理解.由于求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,故可通过具体案例,采用固定集合A变换全集U的方式,让学生切实理解补集的运算,在突出重点的同时化解难点.素之间有什么关系?【提示】集合D包含集合A、B、C中的所有元素.(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.【问题导思】A={高一(2)班参加排球队的同学},B={高一(2)班没有参加排球队的同学},U={高一(2)班的同学}.1.集合A,B,U有何关系?【提示】U=A∪B.2.B中元素与U和A有何关系?【提示】B中元素在U中不在A中.例1(1)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________.(2)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________.【思路探究】(1)先结合条件,由补集的性质求出全集U,再由补集的定义求集合B,也可借助Venn求解.(2)利用补集的定义,借助于数轴的直观作用求解.【自主解答】(1)法一A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.法二借助Venn图,如图所示.由图可知B={2,3,5,7}.(2)将集合U和集合A分别表示在数轴上,如图所示.由补集定义可得∁U A={x|x<-3或x=5}.【答案】(1){2,3,5,7}(2){x|x<-3或x=5}互动探究若把第(2)题的条件“U={x|x≤5}”换成“U={x|-6<x<6}”,求相应问题.【解】 ∵U ={x |-6<x <6},A ={x |-3≤x <5},∴∁U A ={x |-6<x <-3或5≤x <6}.例2设全集为R ,A ={x |3≤x <7},B ={x |2<x <10},求∁R (A ∪B )及(∁R A )∩B .【思路探究】 在数轴上表示集合A 、B →求A ∪B →求∁R A ∪B→求∁R A →求∁R A ∩B 【自主解答】 把全集R 和集合A 、B 在数轴上表示如下:由图知,A ∪B ={x |2<x <10},∴∁R (A ∪B )={x |x ≤2,或x ≥10}.∵∁R A ={x |x <3,或x ≥7},∴(∁R A )∩B ={x |2<x <3,或7≤x <10}.变式训练 已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6} 【解析】 因为∁U A ={2,4,6,7,9},∁U B ={0,1,3,7,9},所以(∁U A )∩(∁U B )={7,9}.【答案】 B例3已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ≠⊂∁R B ,求a 的取值范围. 【思路探究】 先求∁R B →分情况讨论→由A ∁R B ,求a【自主解答】 ∁R B ={x |x ≤1,或x ≥2}≠∅,∵A ≠⊂∁R B ,∴分A =∅和A ≠∅两种情况讨论. (1)若A =∅,此时有2a -2≥a ,∴a ≥2;(2)若A ≠∅,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1,或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2. ∴a ≤1.综上所述,a 的取值范围为{a |a ≤1,或a ≥2}.变式训练已知集合A ={x |x <a },B ={x |1<x <3},若A ∪∁R B =R ,求实数a 的取值范围.【解】 ∵B ={x |1<x <3},∴∁R B ={x |x ≤1或x ≥3},因而要使A ∪∁R B =R ,结合数轴分析(如图),可得a 的取值范围为{a |a ≥3}.因对补集的概念认识不到位致误典例.设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.【错解】 ∵∁U A ={5},∴5∈U 且5∉A ,∴a 2+2a -3=5,且|2a -1|≠5,解得a =2或a =-4,即实数a 的值是2或-4.【错因分析】 上述求解的错误在于忽略验证“A ⊆U ”这一隐含条件.【防范措施】 准确理解补集的概念是求解此类问题的关键.实际上∁U A 的数学意义包括两个方面,首先必须具备A ⊆U ,其次是定义∁U A ={x |x ∈U ,且x ∉A }.因此本题应先由5∈U 求出a 的值,再利用5∉A 验证a 的值是否合题意.【正解】 法一 ∵∁U A ={5},∴5∈U 且5∉A ,∴a 2+2a -3=5,且|2a -1|≠5,解得a =2或a =-4.当a =2时,|2a -1|=3,A ={2,3},符合题意;而当a =-4时,A ={9,2},不是U 的子集.∴a 的取值是2.法二 ∵∁U A ={5},∴5∈U 且5∉A ,且|2a -1|=3.∴⎩⎪⎨⎪⎧a 2+2a -3=5|2a -1|=3. 解得a =2,即a 的取值是2.课堂小结1.求某一集合的补集的前提必须明确全集,同一集合在不同全集下的补集是不同的.2.补集作为一种思想方法,为我们研究问题开辟了新思路,在正向思维受阻时,改用逆向思维,若直接求A 困难,则使用“正难则反”策略,先求∁U A ,再由∁U (∁U A )=A ,求A .当堂达标1.设全集U ={1,2,3,4,5},集合A ={1,2},则∁ U A =( )A .{1,2}B .{3,4,5}C .{1,2,3,4,5}D .∅【解析】 ∵U ={1,2,3,4,5},A ={1,2},∴∁ U A ={3,4,5}.【答案】 B2.已知U ={0,1,2,3},A ={1,2},B ={0,1},则(∁U A )∪B =________.【解析】 ∵U ={0,1,2,3},A ={1,2},∴∁U A ={0,3},∴(∁U A )∪B ={0,1,3}.【答案】 {0,1,3}3.已知全集为R ,集合A ={x |x <1,或x ≥5},则∁R A =________.【解析】 如图所示,集合A ={x |x <1,或x ≥5}的补集是∁R A ={x |1≤x <5}.【答案】 {x |1≤x <5}4.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤0或x ≥52,求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).【解】 将集合A ,B ,P 表示在数轴上,如图.∵A ={x |-4≤x <2},B ={x |-1<x ≤3},∴A ∩B ={x |-1<x <2}.∴∁U B ={x |x ≤-1,或x >3},又∵P =⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≤0或x ≥52,∴(∁U B )∪P =⎩⎨⎧⎭⎬⎫x |x ≤0,或x ≥52,又∁U P =⎩⎨⎧⎭⎬⎫x |0<x <52, ∴(A ∩B )∩(∁U P )={x |-1<x <2}∩⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <52={x |0<x <2}. 课后练习一、选择题1.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}【解析】 ∵A ={1,2},B ={2,3},∴A ∪B ={1,2,3},∴∁U (A ∪B )={4}.【答案】 D2.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是( )A B C D【解析】 N ={x |x 2+x =0}={0,-1},∴N ⊆M ,又U =R ,故选B.【答案】 B3.若全集U ={0,1,2,3}且∁U A ={2},则集合A 的真子集共有( )A .3个B .5个C .7个D .8个【解析】 ∵U ={0,1,2,3},∁U A ={2},∴A ={0,1,3},∴集合A 的真子集共有23-1=7个.【答案】 C4.设全集U ={1,3,5,7,9},集合A ={1,|a -5|,9},∁U A ={5,7},则a 的值是( )A.2B.8C.-2或8D.2或8【解析】∵A∪∁U A=U,∴|a-5|=3,∴a=2或8.【答案】D5.已知集合A={x|x<a},B={x|1<x<2},且A∪∁R B=R,则实数a的取值范围是()A.{a|a≤1}B.{a|a<1}C.{a|a≥2}D.{a|a>2}【解析】如图所示,若能保证并集为R,则只需实数a在数2的右边,注意等号的选取.选C.【答案】C6.已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=________.【解析】∵U={2,3,6,8},A={2,3},∴∁U A={6,8}.∴(∁U A)∩B={6,8}∩{2,6,8}={6,8}.【答案】{6,8}7.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.【解析】法一如图,全班同学组成集合U,喜欢篮球的组成集合A,喜欢乒乓球运动的组成集合B,则A∩B中人数为:15+10+8-30=3人,∴喜欢篮球不喜欢乒乓球运动的人数为15-3=12人.法二设所求人数为x,则只喜爱乒乓球运动的人数为10-(15-x)=x-5,故15+x-5=30-8⇒x=12.【答案】128.设U=R,A={x|a≤x≤b},∁U A={x|x<3,或x>4},则a+b=________.【解析】∵U=R,A={x|a≤x≤b},∴∁U A={x|x<a,或x>b},又∁U A={x|x<3,或x>4},∴a=3,b=4,a+b=7.【答案】79.已知集合A={x|3≤x<6},B={x|2<x<9}.分别求∁R(A∩B),(∁R B)∪A.【解】∵A∩B={x|3≤x<6},∴∁R(A∩B)={x|x<3,或x≥6}.∵∁R B ={x |x ≤2,或x ≥9},∴(∁R B )∪A ={x |x ≤2,或3≤x <6,或x ≥9}.10.设全集U ={2,4,-(a -3)2},集合A ={2,a 2-a +2},若∁U A ={-1},求实数a 的值.【解】 由∁U A ={-1},可得⎩⎪⎨⎪⎧ -1∈U -1∉A ,所以⎩⎪⎨⎪⎧ -a -32=-1a 2-a +2≠-1, 解得a =4或a =2.当a =2时,A ={2,4},满足A ⊆U ,符合题意;当a =4时,A ={2,14},不满足A ⊆U ,故舍去.综上可知,a 的值为2.11.已知全集U =R ,集合A ={x |-2≤x ≤5},B ={x |a +1≤x ≤2a -1}且A ⊆∁U B ,求实数a 的取值范围.【解】 若B =∅,则a +1>2a -1,则a <2,此时∁U B =R ,∴A ⊆∁U B ; 若B ≠∅,则a +1≤2a -1,即a ≥2,此时∁U B ={x |x <a +1,或x >2a -1}, 由于A ⊆∁U B ,如图,则a +1>5,∴a >4,∴实数a 的取值范围为{a |a <2,或a >4}.。

高中数学 1.1.3集合的基本运算(第2课时补集及综合应用)课件 新人教A版必修1

高中数学 1.1.3集合的基本运算(第2课时补集及综合应用)课件 新人教A版必修1

图形 语言
2020/12/31
ppt课件
2
1.全集一定包含任何一个元素吗? 【提示】 全集仅包含我们研究问题所涉及的全部元素,而 非任何元素. 2.∁AC与∁BC相等吗? 【提示】 不一定.若A=B,则∁AC=∁BC,否则不相等.
2020/12/31
ppt课件
3
已知全集U、集合A={1,3,5,7,9},∁UA={2,4,6,8},∁UB= {1,4,6,8,9},求集合B.
6
已知全集U={x|x≤5},集合A={x|-2<x<2},B={x|-3< x≤3}.求∁UA,A∩B,∁U(A∩B),(∁UA)∩B.
【思路点拨】 由题目可获取以下主要信息: ①全集U,集合A、B均为无限集; ②所求问题为集合间交、并、补运算.解答此题可借助数轴 求解.
2020/12/31
ppt课件
2020/12/31
ppt课件
12
【解析】 (1)∁RB={x|x≤1或x≥2}, 若A⊆∁RB,则a≤1(如图所示) (2)∁RB={x|x≤1或x≥2},A ∁RB, ∴分A=Ø和A≠Ø两种情况讨论, ①若A=Ø,∵A ∁RB, ∴此时有2a-2≥a, ∴a≥2. ②若A≠Ø, 则有 或 , ∴a≤1或a∈Ø, 综上所述,a≤1或a≥2.
2020/12/31
ppt课件
13
1.全集与补集概念的理解 (1)补集既是集合之间的一种关系,同时也是集合之间的一种 运算.求集合A的补集的前提是A是全集U的子集,随着所选全集 的不同,得到的补集也是不同的,因此,它们是互相依存、不可 分割的两个概念. (2)若x∈U,则x∈A和x∈∁UA二者必居其一,不仅如此,结 合Venn图及全集与补集的概念,不难得到如下性质:A∪(∁UA)= U,A∩(∁UA)=Ø,∁U(∁UA)=A.

2015-2016高中数学 1.1.3第2课时 补集及集合运算的综合应用课件 新人教A版必修1

2015-2016高中数学 1.1.3第2课时 补集及集合运算的综合应用课件 新人教A版必修1

解:方法一:A={1,3,5,7},∁UA={2,4,6}, ∴U={1,2,3,4,5,6,7}, 又∁UB={1,4,6},∴B={2,3,5,7}.
方法二:借助 Venn 图,如图所示,
由图可知 B={2,3,5,7}.
求集合补集的基本方法及处理技巧
(1)基本方法:定义法.
(2)两种处理技巧: ①当集合用列举法表示时,直接套用定义或借助Venn图求 解. ②当集合是用描述法表示的连续数集时,可借助数轴,利 用数轴分析求解.
∴∁UA={-5,-4,3,4}, ∁UB={-5,-4,5}.
方法二:可用 Venn 图表示
则∁UA={-5,-4,3,4},∁UB={-5,-4,5}.
集合的交、并、补综合运算 已知全集U={x|x≤4},集合A={x|-2<x<3}, B={x|- 3≤x≤2},求A∩B,(∁UA)∪B,A∩(∁UB). 思路点拨:利用数轴,分别表示出全集U及集合A,B,先求
解:∵B={x|-3≤x-1≤2}={x|-2≤x≤3}, ∴(1)A∩B={x|1<x≤3}.
(2)∁UA∪∁UB={x|x≤1或x>3}.
利用集合的交、并、补求参数范围 已知集合A={x|2a-2<x<a},B={x|1<x<2},且A∁RB,
求a的取值范围.
思路点拨: 由B → 求∁RB → 列不等式组 → 解不等式组 → a的取值范围
1.对全集的理解
可以认为是将要研究的问题限定在一个范围内进行,这个
范围以外的问题不在我们研究的范围以内,这时就有理由将所 研究的这个范围视为全集.全集并不是固定不变的,它是依据 具体问题来加以选择的.
2.对补集的理解 (1)补集是以“全集”为前提的,离开了全集,补集就无意 义了.集合 A在不同全集中补集也是不同的,因而在描述补集 概念时应注明是在哪个全集中的补集. (2)补集既是集合之间的一种关系,又是集合的一种运算, 同时也是一种思想方法. (3)∁UA的三层含义:

2015-2016高中数学1.1.3第2课时补集及集合运算的综合应用课时作业新人教A版必修1

2015-2016高中数学1.1.3第2课时补集及集合运算的综合应用课时作业新人教A版必修1

活页作业(五) 补集及集合运算的综合应用1.已知全集U={0,1,2},且∁U A={2},则A等于( )A.{0} B.{1}C.∅D.{0,1}解析:∵∁U A={2},∴A={0,1}.答案:D2.(2013·安徽高考)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=( ) A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}解析:解不等式求出集合A,进而得∁R A,再由集合交集的定义求解.因为集合A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.答案:A3.如图所示,U是全集,A、B是U的子集,则图中阴影部分表示的集合是( )A.A∩BB.B∩(∁U A)C.A∪BD.A∩(∁U B)解析:阴影部分在B中且在A的外部,由补集与交集的定义可知阴影部分可表示为B∩(∁U A).答案:B4.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是( )A.a≤1 B.a<1C.a≥2 D.a>2解析:如图所示,若能保证并集为R,则只需实数a在数2的右边,注意等号的选取.选C.答案:C5.若全集U=R,集合A={x|x≥1}∪{x|x≤0},则∁U A=______.解析:∵A={x|x≥1}∪{x|x≤0},∴∁U A={x|0<x<1}.答案:{x|0<x<1}6.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________.解析:∵∁U A={x|x<0},∁U B={y|y<1},∴∁U A∁U B.如图.答案:∁U A∁U B7.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a}.(1)求(∁R A)∩B;(2)若A⊆C,求a的取值范围.解析:(1)∵A={x|3≤x<7},∴∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3或7≤x<10}.(2)∵C={x|x<a},且A⊆C,如图所示,∴a≥7,∴a的取值范围是{a|a≥7}.8.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-2或x>4},那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4} B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}解析:∵∁U A={x|x<-2或x>3},∁U B={x|-2≤x≤4},如图∴(∁U A)∩(∁U B)={x|3<x≤4},故选A.答案:A9.全集U=R,A={x|x<-3,或x≥2},B={x|-1<x<5},则集合C={x|-1<x<2}=________(用A、B或其补集表示).解析:如图所示,由图可知C ⊆∁U A ,且C ⊆B ,∴C =B ∩(∁U A ). 答案:B ∩(∁U A )10.设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}. (1)当a =-4时,求A ∩B 和A ∪B ; (2)若(∁R A )∩B =B ,求实数a 的取值范围.解:(1)∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤3, 当a =-4时,B ={x |-2<x <2},∴A ∩B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12≤x <2,A ∪B ={x |-2<x ≤3}.(2)∁R A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <12,或x >3,当(∁R A )∩B =B 时,B ⊆∁R A .①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a }. 要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≥-14.11.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}=(-3},N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3,}∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2},∵B ∪A =A ,∴B ⊆A ,∴B =∅或B ={2}. 当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3.综上所述,所求a 的取值范围是{a |a ≥3}.12.某班共50人,参加A 项比赛的共有30人,参加B 项比赛的共有33人,且A ,B 两项都不参加的人数比A ,B 都参加的人数的13多1人,则只参加A 项不参加B 项的有____人.解析:如图所示,设A ,B 两项都参加的有x 人,则仅参加A 项的共(30-x )人,仅参加B 项的共(33-x )人,A ,B 两项都不参加的共⎝ ⎛⎭⎪⎫13x +1人,根据题意得x +(30-x )+(33-x )+⎝ ⎛⎭⎪⎫13x +1=50,解得x =21,所以只参加A 项不参加B 项共有30-21=9,故填9.答案:91.全集与补集的互相依存关系(1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z 就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A 的补集的前提是A 是全集U 的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A 的数学意义包括两个方面:首先必须具备A ⊆U ;其次是定义∁U A ={x |x ∈U ,且x ∉A },补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U ,求子集A ,若直接求A 困难,可先求∁U A ,再∁U (∁U A )=A 求A .。

【金版教程】-高中数学 1.1.3.2补集及集合运算的综合应用课后课时精练 新人教A版必修1

【金版教程】-高中数学 1.1.3.2补集及集合运算的综合应用课后课时精练 新人教A版必修1

【金版教程】2015-2016高中数学 1.1.3.2补集及集合运算的综合应用课后课时精练新人教A版必修11.[2015·玉溪一中检测]若集合P={x|x≤4,x∈N*},Q={x|x>3,x∈Z},则P∩(∁Z Q)等于( )A.{1,2,3,4} B.{1,2,3}C.{0,1,2,3} D.{x|1<x≤3,x∈R}[解析]由题意得P={1,2,3,4},Q={4,5,6,…},P∩(∁Z Q)={1,2,3}.[答案] B2.[2014·辽宁高考]已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}[解析]A∪B={x|x≤0或x≥1},因此∁U(A∪B)={x|0<x<1}.故选D.[答案] D3.如果U={x|x是小于9的正整数},A={1,2,3,4},B={3,4,5,6},那么(∁U A)∩(∁U B)等于( )A.{1,2} B.{3,4}C.{5,6} D.{7,8}[解析]U={1,2,3,4,5,6,7,8},∴∁U A={5,6,7,8},∁U B={1,2,7,8}.∴(∁U A)∩(∁U B)={7,8}.[答案] D4.[2014·太原五中高一月考]下列四个命题中,设U为全集,则不正确的命题是( ) A.若A∩B=∅,则(∁U A)∪(∁U B)=UB.若A∪B=∅,则A=B=∅C.若A∪B=U,则(∁U A)∩(∁U B)=∅D.若A∩B=∅,则A=B=∅[解析]由图易知,A正确;由A∪B=∅,得A=B=∅,B正确;由文氏图易知C正确.故选D.[答案] D5. [2015·台州中学高一统考]设全集U是实数集R,M={x|x2>4},N={x|x≥3或x<1}都是U的子集,则图中阴影部分所表示的集合是( )A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤2} D.{x|x<2}[解析]阴影部分表示集合N∩(∁U M),∵M={x|x>2或x<-2},∁U M={x|-2≤x≤2},∴N∩(∁U M)={x|x≥3或x<1}∩{x|-2≤x≤2}={x|-2≤x<1}.[答案] A二、填空题6.[2014·重庆高考]设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.[解析]∵U={n∈N|1≤n≤10},A={1,2,3,5,8},∴∁U A={4,6,7,9,10},又∵B={1,3,5,7,9},∴(∁U A)∩B={7,9}.[答案]{7,9}7.集合A含有10个元素,集合B含有8个元素,集合A∩B含有3个元素,则集合A ∪B有__________个元素.[解析]由A∩B含有3个元素知,仅有3个元素相同,根据集合元素的互异性,集合的元素个数为10+8-3=15,或直接利用文氏图(如图)得出结果.[答案]158.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.[解析]由已知得有22人喜爱乒乓球运动或喜爱篮球运动,则有3人既喜爱篮球运动又喜爱乒乓球运动,故喜爱篮球运动但不喜爱乒乓球运动的人数为12.[答案] 12 三、解答题9.已知全集U ={2,0,3-a 2},P ={2,a 2-a -2}且∁U P ={-1},求实数a . [解] ∵U ={2,0,3-a 2},P ={2,a 2-a -2},∁U P ={-1},∴⎩⎪⎨⎪⎧3-a 2=-1,a 2-a -2=0,解得a =2.10.设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,求m 的值.[解] A ={-2,-1},由(∁U A )∩B =∅,得B ⊆A ,∵方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0, ∴B ≠∅.∴B ={-1}或B ={-2}或B ={-1,-2}. ①若B ={-1},则m =1;②若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)·(-2)=4,这两式不能同时成立,∴B ≠{-2};③若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)·(-2)=2,由这两式得m =2.经检验知m =1或m =2符合条件. 综上可得m =1或m =2.。

高中数学1.1.3集合的基本运算第2课时全集补集及综合应用新人教B版必修第一册

高中数学1.1.3集合的基本运算第2课时全集补集及综合应用新人教B版必修第一册

第2课时全集、补集及综合应用[A 基础达标]1.设集合U={1,2,3,4,5,6},集合A={1,3,5},B={3,4,5},则∁U(A∪B)=( ) A.{2,6} B.{3,6}C.{1,3,4,5} D.{1,2,4,6}解析:选A.由题知A∪B={1,3,4,5},所以∁U(A∪B)={2,6}.故选A.2.已知全集U=R,集合A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D.由已知得A∪B={x|x≤0或x≥1},故∁U(A∪B)={x|0<x<1}.3.已知集合A={x|x是菱形或矩形},B={x|x是矩形},则∁A B=( )A.{x|x是菱形}B.{x|x是内角都不是直角的菱形}C.{x|x是正方形}D.{x|x是邻边都不相等的矩形}解析:选B.由集合A={x|x是菱形或矩形},B={x|x是矩形},则∁A B={x|x是内角都不是直角的菱形}.4.已知全集U={1,2,3,4},且∁U(A∪B)={4},B={1,2},则A∩(∁U B)=( ) A.{3} B.{4}C.{3,4} D.∅解析:选A.因为全集U={1,2,3,4},且∁U(A∪B)={4},所以A∪B={1,2,3},又B ={1,2},所以∁U B={3,4},A={3}或{1,3}或{2,3}或{1,2,3},所以A∩(∁U B)={3}.故选A.5.(2019·沈阳检测)已知全集U=R,集合A={x|x<-1或x>4},B={x|-2≤x≤3},那么阴影部分表示的集合为( )A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x≤-1} D.{x|-1≤x≤3}解析:选D.由题意得,阴影部分所表示的集合为(∁U A)∩B={x|-1≤x≤4}∩{x|-2≤x≤3}={x|-1≤x≤3}.6.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U (A ∪B )中元素的个数为________.解析:由题意得,A ={1,2},B ={2,4},所以A ∪B ={1,2,4},所以∁U (A ∪B )={3,5},故有2个元素.答案:27.设全集U ={0,1,2,3},集合A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________. 解析:由题意可知,A ={x ∈U |x 2+mx =0}={0,3},即0,3为方程x 2+mx =0的两根, 所以m =-3.答案:-38.已知全集U =R ,A ={x |1≤x <b },∁U A ={x |x <1或x ≥2},则实数b =________. 解析:因为∁U A ={x |x <1或x ≥2},所以A ={x |1≤x <2}.所以b =2.答案:29.已知集合A ={x |-1<x ≤3},B ={x |1≤x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).解:∁R (A ∪B )={x |x ≤-1或x ≥6},∁R (A ∩B )={x |x <1或x >3},(∁R A )∩B ={x |3<x <6}, A ∪(∁R B )={x |x ≤3或x ≥6}.10.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁R A )∩B ={2},A ∩(∁R B )={4},求实数a ,b 的值.解:由条件(∁R A )∩B ={2}和A ∩(∁R B )={4},知2∈B ,但2∉A ;4∈A ,但4∉B .将x =2和x =4分别代入B ,A 两集合中的方程得⎩⎪⎨⎪⎧22-2a +b =0,42+4a +12b =0,即⎩⎪⎨⎪⎧4-2a +b =0,4+a +3b =0. 解得a =87,b =-127即为所求. [B 能力提升]11.已知集合M ={x |x <-2或x ≥3},N ={x |x -a ≤0},若N ∩∁R M ≠∅(R 为实数集),则a 的取值范围是________.解析:由题意知∁R M ={x |-2≤x <3},N ={x |x ≤a }.因为N ∩∁R M ≠∅,所以a ≥-2.答案:a ≥-212.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.解:(1)当m =1时,B ={x |1≤x <4},A ∪B ={x |-1<x <4}.(2)∁R A ={x |x ≤-1或x >3}.当B =∅,即m ≥1+3m 时,得m ≤-12,满足B ⊆∁R A ; 当B ≠∅时,要使B ⊆∁R A 成立,则⎩⎪⎨⎪⎧m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3.综上可知,实数m 的取值范围是m >3或m ≤-12. 13.设全集U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,求实数m 的值.解:由已知,得A ={-2,-1},由(∁U A )∩B =∅,得B ⊆A ,因为方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0,所以B ≠∅. 所以B ={-1}或B ={-2}或B ={-1,-2}.①若B ={-1},则m =1;②若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)×(-2)=4,这两式不能同时成立,所以B ≠{-2};③若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)×(-2)=2,由这两式得m =2.经检验,知m =1,m =2均符合题意.所以m =1或2.[C 拓展探究]14.已知全集U ={不大于20的质数},若M ,N 为U 的两个子集,且满足M ∩(∁U N )={3,5},(∁U M )∩N ={7,19},(∁U M )∩(∁U N )={2,17},则M =________,N =________.解析:法一:U ={2,3,5,7,11,13,17,19},如图所示,所以M ={3,5,11,13},N ={7,11,13,19}.法二:因为M ∩(∁U N )={3,5},所以3∈M ,5∈M 且3∉N ,5∉N .又因为(∁U M )∩N ={7,19},所以7∈N ,19∈N 且7∉M ,19∉M .又因为(∁U M)∩(∁U N)={2,17},所以∁U(M∪N)={2,17},所以M={3,5,11,13},N={7,11,13,19}.答案:{3,5,11,13} {7,11,13,19}。

第一章 1.1.3 第2课时 集合的全集、补集

第一章 1.1.3 第2课时  集合的全集、补集

第2课时 集合的全集、补集学习目标 1.理解全集、补集的概念.2.准确翻译和使用补集符号和Venn 图.3.会求补集,并能解决一些集合的综合运算问题.知识点一 全 集定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集. 记法:全集通常记作U .思考1 为了研究集合A ={1,2,3,4,5,6},B ={1,2,3},C ={1,3,5}之间的关系,要从中选一个集合作为全集,这个集合应该是________. 答案 A思考2 全集一定包含任何一个元素吗?若全集是数集,则一定是实数集R 吗? 答案 不一定;不一定. 知识点二 补 集1.根据研究问题的不同,可以指定不同的全集.( √ )2.存在x 0∈U ,x 0∉A ,且x 0∉∁U A .( × )3.设全集U =R ,A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 1x >1,则∁U A =⎩⎨⎧⎭⎬⎫x ⎪⎪1x ≤1.( × ) 4.设全集U ={}(x ,y )|x ∈R ,y ∈R ,A ={}(x ,y )|x >0且y >0,则∁U A ={}(x ,y )|x ≤0且y ≤0.( × )题型一 补集的运算例1 (1)已知全集U ={a ,b ,c },集合A ={a },则∁U A 等于( ) A.{a ,b } B.{a ,c } C.{b ,c } D.{a ,b ,c } 考点 补集的概念及运算 题点 有限集合的补集 答案 C解析 ∁U A ={}x |x ∈U 且x ∉A ={}b ,c .(2)若全集U ={x ∈R |-2≤x ≤2},A ={x ∈R |-2≤x ≤0},则∁U A 等于( ) A.{x |0<x <2} B.{x |0≤x <2} C.{x |0<x ≤2}D.{x |0≤x ≤2}考点 补集的概念及运算 题点 无限集合的补集 答案 C解析 ∵U ={x ∈R |-2≤x ≤2}, A ={x ∈R |-2≤x ≤0}, ∴∁U A ={x |0<x ≤2},故选C.反思感悟 求集合的补集,需关注两处:一是确认全集的范围;二是善于利用数形结合求其补集,如借助Venn 图、数轴、坐标系来求解.跟踪训练1 (1)设集合U ={1,2,3,4,5},集合A ={1,2},则∁U A =________. 考点 补集的概念及运算 题点 有限集合的补集 答案 {3,4,5}(2)已知全集U ={a ,b ,c ,d ,e },集合A ={b ,c ,d },B ={c ,e },则(∁U A )∪B 等于( ) A.{b ,c ,e } B.{c ,d ,e } C.{a ,c ,e } D.{a ,c ,d ,e } 答案 C解析 ∁U A ={a ,e },(∁U A )∪B ={a ,c ,e }.(3)若全集U =R ,集合A ={x |1<x ≤3},则∁U A 等于( ) A.{x |x <1或x ≥3} B.{x |x ≤1或x >3} C.{x |x <1或x >3} D.{x |x ≤1或x ≥3} 答案 B解析 U =R ,∁U A ={x |x ≤1或x >3}. 题型二 补集的应用例2 (1)设全集U ={1,3,5,7},集合M ={1,|a -5|},∁U M ={5,7},则a 的值为________.答案 2或8解析 由U ={1,3,5,7},M ={1,|a -5|},∁U M ={5,7}知M ={1,3}. ∴|a -5|=3,∴a =8或2.(2)已知A ={0,2,4,6},∁U A ={-1,-3,1,3},∁U B ={-1,0,2},用列举法写出集合B . 考点 补集的概念及运算 题点 有限集合的补集解 ∵A ={0,2,4,6},∁U A ={-1,-3,1,3}, ∴U ={-3,-1,0,1,2,3,4,6}. 而∁U B ={-1,0,2},∴B =∁U (∁U B )={-3,1,3,4,6}.反思感悟 从Venn 图的角度讲,A 与∁U A 就是圈内和圈外的问题,由于(∁U A )∩A =∅,(∁U A )∪A =U ,所以可以借助圈内推知圈外,也可以反推.跟踪训练2 (1)已知集合A ={x |x ≥1},B ={x |x >2a +1},若A ∩(∁R B )=∅,则实数a 的取值范围是________________________________________________________________________. 答案 {a |a <0}解析 ∁R B ={x |x ≤2a +1}. 由A ∩(∁R B )=∅, ∴2a +1<1,∴a <0.(2)设全集U ={0,1,2,3},集合A ={x |x 2+mx =0},若∁U A ={1,2},则实数m =________. 答案 -3解析 ∵U ={0,1,2,3},∁U A ={1,2}, ∴A ={0,3}.∴0,3是x 2+mx =0的两个根,∴m =-3. 题型三 集合的综合运算例3 (1)已知全集U ={}1,2,3,4,5,6,集合P ={}1,3,5,Q ={}1,2,4,则(∁U P )∪Q等于( )A.{}1B.{}3,5C.{}1,2,4,6D.{}1,2,3,4,5考点 交并补集的综合问题 题点 有限集合的交并补运算 答案 C解析 ∵∁U P ={}2,4,6, ∴(∁U P )∪Q ={}1,2,4,6.(2)已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪(∁R B )=R ,则实数a 的取值范围是________.考点 交并补集的综合问题题点 与交并补集运算有关的参数问题 答案 {a |a ≥2}解析 ∵∁R B ={x |x <1或x >2}且A ∪(∁R B )=R , ∴{x |1≤x ≤2}⊆A ,∴a ≥2.反思感悟 解决集合的混合运算时,一般先计算括号内的部分,再计算其他部分.有限集合混合运算可借助Venn 图,与不等式有关的可借助数轴.跟踪训练3 (1)已知M ,N 为集合I 的非空真子集,且M ≠N ,若N ∩(∁I M )=∅,则M ∪N 等于( )A.MB.NC.ID.∅ 答案 A解析 如图所示,因为N ∩(∁I M )=∅,所以N ⊆M ,所以M ∪N =M .(2)设集合A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},A ∩B ={2}. ①求a 的值及A ,B ;②设全集U =A ∪B ,求(∁U A )∪(∁U B );③设全集U =A ∪B ,写出(∁U A )∪(∁U B )的所有子集.解 ①因为A ∩B ={2},所以2∈A ,且2∈B ,代入可求得a =-5,所以A ={x |2x 2-5x +2=0}=⎩⎨⎧⎭⎬⎫12,2,B ={x |x 2+3x -10=0}={-5,2}.②由①可知U =⎩⎨⎧⎭⎬⎫-5,12,2,所以∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12,所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12.③由②可知(∁U A )∪(∁U B )的所有子集为∅,{-5},⎩⎨⎧⎭⎬⎫12,⎩⎨⎧⎭⎬⎫-5,12.根据补集的运算求参数典例 (1)设全集U ={3,6,m 2-m -1},A ={|3-2m |,6},∁U A ={5},求实数m . 解 ∵∁U A ={5}, ∴5∈U 且5∉A ,∴⎩⎪⎨⎪⎧m 2-m -1=5,|3-2m |≠5, 由m 2-m -1=5,得m 2-m -6=0,∴m =-2或m =3.①当m =-2时,|3-2m |=7≠5, 此时U ={3,5,6},A ={6,7}, 不符合要求,舍去; ②当m =3时,|3-2m |=3,此时,U ={3,5,6},A ={3,6}满足∁U A ={5}. 综上所述m =3.(2)已知全集U =R ,集合A ={x |-2≤x ≤5},B ={x |a +1≤x ≤2a -1},且A ⊆(∁U B ),求实数a 的取值范围.解 若B =∅,则a +1>2a -1,即a <2,此时∁U B =R ,所以A ⊆(∁U B ). 若B ≠∅,则a +1≤2a -1,即a ≥2,此时∁U B ={x |x <a +1或x >2a -1}, 又A ⊆(∁U B ),所以a +1>5或2a -1<-2,所以a >4或a <-12(舍去).所以实数a 的取值范围为{a |a <2或a >4}. [素养评析] (1)由集合的补集求解参数的方法①有限集:由补集求参数问题,若集合中元素个数有限时,可利用补集定义并结合集合知识求解.②无限集:与集合交、并、补运算有关的求参数问题,若集合中元素有无限个时,一般利用数轴分析法求解.(2)理解运算对象,掌握运算法则,选择运算方法,求得运算结果,充分体现了数学运算的数学核心素养.1.设集合U ={1,2,3,4,5,6},M ={1,2,4},则∁U M 等于( ) A.U B.{1,3,5} C.{3,5,6} D.{2,4,6} 考点 补集的概念及运算 题点 有限集合的补集 答案 C2.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )等于( ) A.{1,3,4} B.{3,4} C.{3} D.{4} 考点 交并补集的综合问题 题点 有限集合的交并补运算 答案 D3.设集合S ={x |x >-2},T ={x |-4≤x ≤1},则(∁R S )∪T 等于( )A.{x|-2<x≤1}B.{x|x≤-4}C.{x|x≤1}D.{x|x≥1}考点交并补集的综合问题题点无限集合的交并补运算答案 C4.设集合U={0,1,2,3,4},M={1,2,4},N={2,3},则(∁U M)∪N=________.答案{0,2,3}5.设全集U=Z,A={x∈Z|x<4},B={x∈Z|x≤2},则∁U A与∁U B的关系是________.答案∁U A∁U B解析∁U A={4,5,6,…},∁U B={3,4,5,6,…},∴∁U A∁U B.1.全集与补集的互相依存关系(1)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(2)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A,求A.一、选择题1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}考点交并补集的综合问题题点有限集合的交并补运算答案 C解析∁U A={0,4},所以(∁U A)∪B={0,2,4},故选C.2.设全集U={1,2,3,4,5},集合A={1,3,5},B={2,5},则A∪(∁U B)等于()A.{2}B.{1,3}C.{3}D.{1,3,4,5}答案 D3.已知U=R,集合A={x|x<-2或x>2},则∁U A等于()A.{x |-2<x <2}B.{x |x <-2或x >2}C.{x |-2≤x ≤2}D.{x |x ≤-2或x ≥2}考点 补集的的概念及运算 题点 无限集合的补集 答案 C解析 ∁U A 为数轴上去掉集合A 的剩余部分.4.设全集U ={1,2,3,4,5},集合A ={2,4},B ={1,2,3},则图中阴影部分所表示的集合是( )A.{4}B.{2,4}C.{4,5}D.{1,3,4}答案 A解析 (∁U B )∩A ={4,5}∩{2,4}={4}.5.设全集U =R ,集合A ={x |x >0},B ={x |x >1},则A ∩(∁U B )等于( ) A.{x |0≤x <1} B.{x |0<x ≤1} C.{x |x <0} D.{x |x >1}答案 B解析 ∵∁U B ={x |x ≤1}, ∴A ∩(∁U B )={x |0<x ≤1}.6.若全集U ={0,1,2,3,4,5},且∁U A ={x ∈N *|1≤x ≤3},则集合A 的真子集共有( ) A.3个 B.4个 C.7个 D.8个 答案 C解析 ∁U A ={x ∈N *|1≤x ≤3}={1,2,3},∴A ={0,4,5},∴集合A 的真子集共有23-1=7(个).7.已知全集U ={1,2,a 2-2a +3},A ={1,a },∁U A ={3},则实数a 等于( ) A.0或2 B.0 C.1或2 D.2 考点 补集的概念及运算 题点 由补集运算结果求参数的值 答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.8.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},A ∩(∁U B )={9},则A 等于( ) A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9} 答案 D解析画Venn图,由图可知A={3,9}.二、填空题9.设全集U={1,2,3,4,5},集合A={1,2,3},B={3,4,5},则∁U(A∩B)=________.答案{1,2,4,5}10.已知全集U={x|-3≤x<2},集合M={x|-1<x<1},∁U N={x|0<x<2},则M∪N=________. 答案{x|-3≤x<1}解析∵U={x|-3≤x<2},∁U N={x|0<x<2},∴N=∁U(∁U N)={x|-3≤x≤0}.∴M∪N={x|-3≤x<1}.11.若集合A={x|0≤x≤2},B={x|x<0或x>1},则图中阴影部分所表示的集合为________________.考点Venn图表达的集合关系及运用题点Venn图表达的集合关系答案{x|x≤1或x>2}解析如图,设U=A∪B=R,A∩B={x|1<x≤2},∴阴影部分为∁U(A∩B)={x|x≤1或x>2}.三、解答题12.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁U A)=R,B∩(∁U A)={x|0<x<1或2<x<3},求集合B.考点交并补集的综合问题题点无限集合的交并补运算解∵A={x|1≤x≤2},∴∁U A={x|x<1或x>2}.又B∪(∁U A)=R,A∪(∁U A)=R,可得A⊆B.而B∩(∁U A)={x|0<x<1或2<x<3},∴{x |0<x <1或2<x <3}⊆B . 借助于数轴可得B =A ∪{x |0<x <1或2<x <3}={x |0<x <3}. 13.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }. (1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围. 考点 交并补集的综合问题题点 与交并补集运算有关的参数问题 解 (1)m =1,B ={x |1≤x <4}, A ∪B ={x |-1<x <4}. (2)∁R A ={x |x ≤-1或x >3}. 当B =∅时,即m ≥1+3m 得m ≤-12,满足B ⊆∁R A ,当B ≠∅时,要使B ⊆∁R A 成立,则⎩⎪⎨⎪⎧ m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3. 综上可知,实数m 的取值范围是 ⎩⎨⎧⎭⎬⎫m |m >3或m ≤-12.14.如图,已知I 是全集,A ,B ,C 是它的子集,则阴影部分所表示的集合是( )A.(∁I A ∩B )∩CB.(∁I B ∪A )∩CC.(A ∩B )∩(∁I C )D.(A ∩∁I B )∩C考点 Venn 图表达的集合关系及运用 题点 Venn 图表达的集合关系 答案 D解析 由题图可知阴影部分中的元素属于A ,不属于B ,属于C ,则阴影部分表示的集合是(A ∩∁I B )∩C .15.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0}满足(∁R A )∩B ={2},A ∩(∁R B )={4},求实数a ,b 的值.解 由(∁R A )∩B ={2}和A ∩(∁R B )={4}, 知2∈B ,但2∉A ;4∈A ,但4∉B .将x =2和x =4分别代入集合B ,A 中的方程,得⎩⎪⎨⎪⎧22-2a +b =0, 42+4a +12b =0, 即⎩⎪⎨⎪⎧4-2a +b =0,4+a +3b =0, 解得a =87,b =-127.经检验,a =87,b =-127符合题意.。

高中数学 1.1.3集合的基本运算第二课时补集及综合应用教学精品课件 新人教A版必修1

高中数学 1.1.3集合的基本运算第二课时补集及综合应用教学精品课件 新人教A版必修1
RA={x|x<-1,或 x≥5};
第二十一页,共45页。
(2)通过改变原不等式的不等号方向取补
集时,要防止漏解.如
A=
x
1 x
0
,
RA

x
1 x
0
={x|x>0}.应先求出
A={x|x<0},再求 RA={x|x≥0})
第二十二页,共45页。
跟踪训练 2 1:(2012 年高考辽宁卷改编) 已知全集 U={0,1,2,3,4,5,6,7,8,9},集合 A={0,1,3,5,8},集合 B={2,4,5,6,8},求 A∩B,A∪B,( UA)∩( UB),A∩( UB), ( UA)∩B.
第四十三页,共45页。
3
解:赞成 A 的人数为 50× =30,赞成 B 的人
5
数为 30+3=33, 如图所示.记 50 名学生组成的 集合为 U,赞成事件 A 的学生全体为集合 A; 赞成事件 B 的学生全体为集合 B. 设对事件 A,B 都赞成的学生人数为 x,
第四十四页,共45页。
则对 A,B 都不赞成学生人数为 x +1,赞 3
第十六页,共45页。
(2)如何求解无限集的补集?(常借助于数 轴,把已知集合及全集分别表示在数轴上, 然后再根据补集的定义求解,这样处理比 较形象直观,解答过程中注意边界问题)
第十七页,共45页。
跟踪训练 1 1:(2012 南通市通州区高一期
中)设全集 U=R,集合 A={x|2<x≤5},则
A={x|-2<x<3},B={x|-3<x≤3}.求 UA,A ∩B, U(A∩B),( UA)∩B.
第四十一页,共45页。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档