新人教版七下数学六章实数全章新思想导学案 共16页Microsoft Word 文档

合集下载

2023年人教版七年级数学下册第六章《实数》导学案

2023年人教版七年级数学下册第六章《实数》导学案

新人教版七年级数学下册第六章《实数》导学案课型:展示课【学习目标】1.知道无理数是客观存在的,了解无理数和实数的概念,能对实数按要求进行分类,同时会判断一个数是有理数还是无理数;2.知道实数和数轴上的点一一对应;3.经历用有理数估算2的探索过程,从中感受“逼近”的数学思想,发展数感,激发学生的探索创新精神【重点难点预测】1、知道无理数的客观存在性、无理数和实数的概念;2、会判断一个数是有理数还是无理数.3、无理数探究中“逼近”思想的理解一、学前准备【自学新知】用计算器计算,把下列有理数写成小数的形式,你能发现什么:53-, 847, 119, 911, 95, 结论:我们把 叫做无理数。

和 统称为实数。

如:。

G,…都是无理数,π=3.14159265…也是无理数。

2、下列各数哪些是有理数?哪些是无理数?31,3.1,02021020XX2…,2,-π,38,36,325,2π。

用根号表示的数一定是无理数吗?二、探究活动【探究无理数】探索活动1 2是个整数吗?为什么?探索活动 2 那么,2是一个分数吗?面对这个问题,我们该如何解决呢?请同学们分组讨论。

探索活动3 2到底多大呢?请同学们根据前面的结果,分组讨论,精确地估计2的范围。

归纳结论:备注 (教师复备栏及学生笔记)这是一个无限不循环小数,我们称这样的数是 。

我们把有理数和无理数统称为 。

【例题研讨】例1.把下列各数填入相应的集合内,432,-39,3.1415,10,0.6,0,3125-, 3π,4916 ,0.01001000100001……(1)有理数集合:{ …}(2)无理数集合:{ …}(3)整数集合: { …}(4)正实数集合:{ …}2.数14、32、2π中,无理数有( ). (A )0个 (B )1个 (C )2个 (D )3个 3.(1)把下列各数填入相应的集合内:-7,0.32,13, 8,3216,- 2π. 有理数集合:{ …};无理数集合:{ …};(2)213、38-、0、27、3π、5.0、3.14159、-0.020XX0002 0.12121121112… (1)有理数集合{ }(2)无理数集合{ }(3)正实数集合{ }(4)负实数集合{ }三、自我测试1、把下列各数填在相应的集合里:31, 3.1 ,02021020XX2…,2,-π,38,36,325,2π。

七年级数学下册 6 实数教案 (新版)新人教版

七年级数学下册 6 实数教案 (新版)新人教版

第六章实数1.理解算术平方根、平方根、立方根等概念及其有关概念的意义,并会用根号表示它们.2.会求平方根、算术平方根和立方根.3.理解有理数、无理数以及实数的概念,知道这些数和数轴上的点的对应关系.4.会进行实数的运算.1.抓住新旧知识的联系,灵活运用乘方、开方、有理数的知识,实现知识的迁移,并使新旧知识融会贯通.2.深刻理解并掌握类比的方法,并针对所学的知识启发学生深入思考,交流、探讨,将知识学深、学透、学活.3.重视对数学思想方法的掌握与运用,达到优化解题思路、简化解题过程的目的.培养认真观察、仔细思考的学习习惯,培养从生活中发现、解决数学问题的意识.本章教材在初中数学中具有重要的地位,本章知识是有理数到实数的扩展,是进行其他学习的理论基础和运算基础(如一元二次方程、解三角形、函数、分式等),几乎贯穿了整个数学体系之中.本章主要学习了算术平方根、平方根、立方根的概念,无理数和实数的概念及实数的运算.教材从典型的实际问题入手,首先介绍算术平方根,给出算术平方根的概念和符号表示.在学习算术平方根的基础上学习平方根,利用乘方与开方互为逆运算的特点探讨数的平方根的特征.类比平方根学习立方根,探讨立方根的特征,最后学习无理数及实数的运算.【重点】1.算术平方根、平方根、立方根、实数的概念.2.会求某些非负数的平方根及某些数的立方根.3.知道实数与数轴上的点一一对应,并能进行实数的运算.【难点】求非负数的平方根、算术平方根及算术平方根与平方根的区别与联系.1.关于平方根与算术平方根的学习.(1)通过让学生计算两个不为零的互为相反数的数的平方是同一个正数,总结出“一个正数有两个平方根,它们互为相反数”的性质,加深感性认识.(2)帮助学生正确认识算术平方根的两个非负性:一是被开方数的非负性,即只有非负数才有算术平方根(在中a≥0);二是算术平方根本身的非负性,即一个非负数的算术平方根是一个非负数(≥0,a≥0).2.关于立方根的学习.(1)引导学生运用类比平方根的方法来学习立方根的概念、性质、求法,并启发学生与平方根的相应结论进行联系、比较,弄清两者的区别与联系,并适当分析结论不同的原因.(2)要引导学生注意转化思想,将求负数的立方根问题转化为求正数的立方根问题.3.关于无理数与实数的学习.(1)引导学生复习有关有理数的知识,让学生了解有理数包括有限小数和无限循环小数,为学习无理数做好准备.引导学生用数轴上的点来表示有理数、无理数,将所学知识联系起来,使学生了解无理数的存在性.(2)引导学生分清“无限不循环小数”与“无限循环小数”的区别,理解无限循环小数可化成分数,它是有理数;而无限不循环小数不能化成分数,它是无理数,从而启发学生总结有理数和无理数的区别在于是否能够分数化,真正分清有理数和无理数.(3)要引导学生明确有理数的运算法则、运算律同样适用于无理数和实数,使学生能够按照有理数的运算法则、运算律进行无理数和实数的运算.6.1平方根3课时6.2立方根1课时6.3实数3课时单元概括整合1课时6.1平方根1.理解算术平方根的概念,领会乘方与开方的关系.2.会用计算器求一个数的算术平方根,理解被开方数与算术平方根大小的关系.3.会用“夹值法”求一个数算术平方根的近似值.4.掌握平方根的概念,明确平方根和算术平方根之间的区别和联系.1.通过平方根的学习,建立初步的数感和符号感,为学习实数做准备.2.通过求算术平方根的近似值,培养学生勇于探索的精神.1.通过探索活动培养学生克服困难的精神.2.通过解决生活中的实际问题,帮助学生体验数学与生活的紧密联系.3.培养学生从多方面、多角度分析问题、解决问题的思想意识,养成综合分析问题的习惯.【重点】1.平方根的概念和算术平方根.2.夹值法估计一个(无理)数的大小.【难点】1.用夹值法估计一个(无理)数的大小.2.平方根和算术平方根的区别和联系.第课时1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.1.通过解决实际生活中的问题,让学生体验数学与生活实际是紧密联系着的.2.通过探究活动培养学生动手能力,锻炼学生克服困难的意志,建立自信心,提高学习热情.【重点】算术平方根的概念.【难点】根据算术平方根的概念正确求出非负数的算术平方根.【教师准备】教材章前图的投影图片.【学生准备】复习平方的概念.导入一:同学们,你们知道宇宙飞船离开地球进入轨道正常运行的速度在什么范围内吗?这时它的速度要大于第一宇宙速度v1(米/秒)而小于第二宇宙速度v2(米/秒).v1,v2的大小满足=gR,=2gR.其中,g是物理中的一个常量,R是地球的半径.怎样求v1,v2呢?即使给出g,R的对应值,利用我们已学过的知识,也很难求出.这就要用到平方根的概念,也就是本章的主要学习内容.[设计意图]借助于教材章前图的内容,使学生认识到生活中的一些问题需要用新的知识去解决,进而增强学生的学习欲望和进取精神.导入二:学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?你一定会算出边长应取5 dm.说一说你是怎样算出来的.因为S=25 dm2,所以这个正方形画布的边长应取5 dm.上面的计算过程,就是求一个数是由什么数的平方得来的.本课时我们就要学习相关的内容.[设计意图]用教材的问题作为导入材料,能够和学生的课前预习活动对接,可以提高学生的预习效果.导入三:丽丽家新购的一套住房,客厅是长与宽之比为5∶2的长方形,面积为40 m2,求这间客厅的长与宽各为多少.要求客厅的长与宽,依题意可设客厅的长与宽分别是5x m,2x m,可得2x·5x=40,即x2=4,那么怎样才能由x2=4求x呢?[设计意图]从学生能够理解的生活事例入手,帮助学生感受引入平方根概念的必要性.[过渡语](针对导入二)如果小鸥想要裁出的正方形画布面积分别是下表中的数字,怎样求这个正方形的边长呢?1.算术平方根.思路一填写表格后回答问题.正方形的面积/dm2191636正方形的边长/dm1346(1)写出表格中正方形边长的计算过程.(2)上述过程可以概括成怎样的问题?(3)怎样用数学语言描述这个运算过程?(这个运算过程是什么呢?)问题提示:(1)12=1,32=9,42=16,62=36,=.(2)已知一个正数的平方,求这个正数的问题.(3)例如,已知一个正数的平方为a,求这个正数x问题.(可以用不同的字母表示)[设计意图]第(1)问意在复习平方的知识,为学习平方根知识做准备.第(2)问是从平方根的角度帮助学生思考.第(3)问是进一步引导学生通过抽象思维去理解平方根.归纳总结:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.思路二学生阅读教材第40页例1前的内容,回答问题.(1)什么是算术平方根?一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.(2)算术平方根怎么表示?a的算术平方根记为,读作“根号a”,a叫做被开方数.(3)0的算术平方根是多少?0的算术平方根是0.处理方式:学生阅读教材后交流;老师指定部分学生总结问题;总结平方根相关概念.强调:书写时根号一定要把被开方数盖住.讨论:为什么0的算术平方根是0?2.例题讲解.求下列各数的算术平方根.(1)100;(2);(3)0.0001.〔解析〕本题三个数的共同特点是都是正数,符合算术平方根的前提条件.无论是正整数、正分数还是正小数,都有自己的算术平方根.求算术平方根不仅要明确算术平方根的含义,更要习惯用数学方式表达算术平方根的求解过程.解:(1)因为102=100,所以100的算术平方根是10,即=10.(2)因为=,所以的算术平方根是,即=.(3)因为0.012=0.0001,所以0.0001的算术平方根是0.01,即=0.01.追问:从上面的例题中,你发现被开方数和算术平方根之间有什么关系?提示:被开方数越大,对应的算术平方根越大,这个结论对所有的正数都成立.[过渡语]根据例1中的被开方数,我们都能猜到这个数是哪个数的平方,那么怎么求类似7,8,9这些数的算术平方根呢?(补充)求下列各数的算术平方根.(1)36;(2)0.09;(3);(4)(-4)2;(5)0;(6)10.〔解析〕算术平方根的求法:一个正数的算术平方根就是要找一个正数,使它的平方等于这个数.解:(1)因为62=36,所以36的算术平方根是6,即=6.(2)因为0.32=0.09,所以0.09的算术平方根是0.3,即=0.3.(3)因为=,所以的算术平方根是,即 =.(4)因为42=(-4)2=16,所以(-4)2的算术平方根是4,即=4.(5)0的算术平方根是0,=0.(6)10的算术平方根是.[知识拓展]求一个数的算术平方根与求一个正数的平方恰好是互逆的过程,因此,求一个数的算术平方根实际上可以转化为求一个数的平方的逆运算,只不过只有正数和0才有算术平方根,负数没有算术平方根.1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.a的算术平方根记为,读作“根号a”,a叫做被开方数.3.规定:0的算术平方根是0.1.9的算术平方根为()A.3B.±3C.-3D.81解析:因为32=9,所以9的算术平方根为3.故选A.2.下列说法正确的是()A.5是25的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根解析:如果x2=a(x>0),则这个正数x是a的算术平方根,由此判断各选项.A.=5,故选项正确;B.=4,所以16的算术平方根是4,故选项错误;C.=6,故选项错误;D.=0.1,故选项错误.故选A.3.一个数的算术平方根是它本身,这个数是()A.1B.-1C.0D.1或0解析:根据算术平方根的定义:一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根.若一个数的算术平方根是它本身,可以知道这个数是0或1.故选D.4.100的算术平方根是,0.36的算术平方根是.解析:本题求100和0.36的算术平方根,就是求哪个正数的平方等于100或0.36,由此即可解决问题.因为102=100,所以100的算术平方根为10,因为0.62=0.36,所以0.36的算术平方根为0.6.答案:100.6第1课时1.算术平方根定义符号表示0的算术平方根2.例题讲解例1例2一、教材作业【必做题】教材第41页练习第1,2题.【选做题】教材第47页习题6.1第1题.二、课后作业【基础巩固】1.一个数只要存在算术平方根,那么这个数()A.只有一个并且是正数B.一定小于这个数的算术平方根C.必是一个非负数D.不可能等于这个数的算术平方根2.49的算术平方根的相反数是()A.7B.-7C.±7D.±3.下列命题中正确的有()①1的算术平方根是1;②(-1)2的算术平方根是-1;③-4没有算术平方根;④一个数的算术平方根是它本身,这个数只能是零.A.1个B.2个C.3个D.4个4.求下列各数的算术平方根.(1)0.49;(2);(3).5.求下列各式的值.(1)-;(2);(3).【能力提升】6.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a2的算术平方根是a;④(π-4)2的算术平方根是π-4;⑤算术平方根不可能是负数.其中不正确的有()A.5个B.4个C.3个D.2个7.一个数的算术平方根为a,则比这个数大5的数是()A.a+5B.a-5C.a2+5D.a2-58.下列运算正确的是()A.=9B.|-3|=-3C.-=-3D.-32=99.(±4)2的算术平方根是,的算术平方根是.10.已知+(b+2)2=0,那么a+b的值为.11.计算.(1);(2)-;(3)++-.【拓展探究】12.已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求a+2b的算术平方根.13.计算下列题目:=,=,=,=,=,=,=.根据计算结果回答下列问题.(1)一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算=.【答案与解析】1.C(解析:因为任何数的平方都不可能为负,都是非负数,所以负数没有算术平方根,只有正数或0才有算术平方根,所以本题应选C.)2.B(解析:49的算术平方根是7,其相反数是-7.故选B.)3.B(解析:根据算术平方根的定义可知:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,结合命题与定理的定义可得答案.①1的算术平方根是1,故此项正确;②(-1)2=1,1的算术平方根是1,故此项错误;③因为-4<0,所以-4没有算术平方根,故此项正确;④一个数的算术平方根是它本身,这个数是0或1,故此项错误.所以正确的有2个.故选B.)4.解:(1)=0.7. (2)=. (3)=.5.解:(1)-=-0.1. (2)=5. (3)=10-3.6.B(解析:根据算术平方根的定义依次分析各小题即可.①负数没有算术平方根;②0的算术平方根是0;③当a<0时,a2的算术平方根是-a;④(π-4)2的算术平方根是4-π,故错误;⑤算术平方根不可能是负数,正确.故选B.)7.C(解析:首先根据算术平方根的定义求出这个数,然后利用已知条件即可求解.因为一个数的算术平方根为a,所以这个数为a2,所以比这个数大5的数是a2+5.故选C.)8.C(解析:A.是求9的算术平方根,所以是3,故选项错误;B.负数的绝对值是正数,结果是3,故选项错误;C.-=-3,故选项正确;D.-32=-9,故选项错误.故选C.)9.4(解析:因为(±4)2=16,42=16,所以(±4)2的算术平方根是4.因为62=36,所以=6,所以的算术平方根是.)10.0(解析:根据非负数的意义:如果两个非负数的和等于0,那么这两个数都为0可知a-2=0,b+2=0,a=2,b=-2,则a+b=2-2=0.)11.解:(1)===5. (2)-=-=-9. (3)++-=++-=1+=.12.解:因为2a-1的算术平方根是3,3a+b-1的算术平方根是4,所以2a-1=9,3a+b-1=16,解得a=5,b=2,所以a+2b=9,所以a+2b的算术平方根是3.13.解:30.760.280(1)不一定等于a,=|a|=(2)π-3.14借助于平方知识,通过逆向思维的类比方式,学生比较好地理解了算术平方根的定义,同时注重强调了对0的算术平方根的理解.学生根据先前的平方知识,会意识到一个正数的平方根会有两个.这就需要特别强调算术平方根定义当中的“一个正数”的限制.在课时的教学过程中,对这点没有做出特别的强调.课前做好平方知识的复习,为学习平方根做准备.引入算术平方根的知识,要借助具体的生活情境,这样才能加深对引入平方根知识必要性的认识.注意引导学生发现被开方数与对应的算术平方根之间的关系.练习(教材第41页)1.提示:(1)0.05. (2)9. (3)3.2.提示:(1)1. (2). (3)2.求下列各式的值.(1);(2) ;(3);(4).〔解析〕(1)就是求484的算术平方根.(2) 就是求12的算术平方根.(3)就是求20.25的算术平方根.(4)8×9×10×11+1=7921,就是求7921的算术平方根.解:(1)因为222=484,所以=22.(2)因为==12,所以 =.(3)因为4.52=20.25,所以=4.5.(4)因为8×9×10×11+1=7921,892=7921,所以=89.第课时1.会用计算器求一个数的算术平方根.2.理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.3.能用夹值法求一个数的算术平方根的近似值.通过求一个数的算术平方根的近似值,初步了解数的无限不循环性,理解用近似值表示无限不循环小数的实际意义.通过计算近似值,比较两个算术平方根的大小,培养学生的细心探求精神.【重点】计算算术平方根的两种方法;理解无限不循环小数.【难点】夹值法及估计一个数(无理数)的大小.【教师准备】教材图6.1-1的投影图片.【学生准备】1.复习算术平方根的相关知识.2.计算器.导入一:能否用两个面积为1 dm2的小正方形拼成一个面积为2 dm2的大正方形?如图所示,把两个小正方形分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2 dm2的大正方形.你知道这个大正方形的边长是多少吗?设大正方形的边长为x dm,则x2=2,由算术平方根的意义可知x=.所以大正方形的边长是 dm.问题:到底有多大呢?导入二:3.1415926…,看到这个数字大家一定会想到圆周率吧.圆的周长和直径的比是一个无限不循环小数,除此之外,像,等是不是无限不循环小数呢?[过渡语]-到底有多大呢?我们一起来探索下吧.1.探索的大小.师:因为12=1,22=4,所以1<<2.这里我们只是粗略地知道了的大小,还不是很精确,这就需要我们继续探索下去.怎么继续下去呢?大家想个办法吧.生:取一个大于1且小于2的数试一试.师:从1.1到1.9这些数字我们怎么选呢?生:通过估算和计算,我们发现1.42=1.96,1.52=2.25,所以1.4<<1.5.师:用刚才的办法还能继续探索下去吗?生:因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415……师:我们可以如此进行下去,会得到的更精确的近似值.但我们无论进行多少次探索,都不会有一个最终的数值,可见=1.41421356237…,它是一个无限不循环小数.实际上,许多正有理数的算术平方根(例如,,等)都是无限不循环小数.2.用计算器求算术平方根.[过渡语]像前面探索一个数的算术平方根的方法无疑是繁琐的,我们通过计算器可以很轻松地解决求算术平方根的问题.大多数计算器都有键,用它可以求出一个正有理数的算术平方根(或其近似值).(教材例2)用计算器求下列各式的值.(1);(2)(精确到0.001).〔解析〕正确选择计算器上的功能键是关键,对算术平方根的值要根据要求或需要进行取舍.同时需要注意计算器上显示的数值是一个近似值.解:(1)依次按键3136=,显示:56.所以=56.(2)依次按键2=,:1.414213562.所以≈1.414.[过渡语]计算器为人们进行复杂的计算提供了巨大的方便,比如我们来看引言中提出的问题.由=gR,=2gR,得v1=,v2=,其中g≈9.8,R≈6.4×106.用计算器求v1和v2(用科学记数法把结果写成a×10n的形式,其中a保留小数点后一位),得v1=≈7.9×103,v2=≈1.1×104.因此,第一宇宙速度v1大约是7.9×103 m/s,第二宇宙速度v2大约是1.1×104 m/s.3.用计算器探究.(1)利用计算器计算下表中的各式,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?…………(2)用计算器计算(精确到0.001),并利用你在(1)中发现的规律说出,,的近似值,你能根据的值说出的值是多少吗?问题提示:(1)如下表所示:………0.250.792.57.92579250…从表中可以发现:被开方数的小数点每向右(或向左)移动两位,开方后的结果向相同的方向移动一位.(2)因为≈1.732,≈0.1732,≈17.32,≈173.2,根据的值不能说出是多少.4.估计算术平方根的值解决问题.[过渡语]在生活中,我们经常遇到估计一个数的大小的问题.请看下面的例子.(教材例3)小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?〔解析〕本题的核心是能否按照要求裁出一个长宽比为3∶2、面积为300 cm2的长方形,通过列方程的办法可以计算出满足这样条件的长方形的长和宽,再与正方形的边长做对比,就可以得出相应的结论.解:设长方形纸片的长为3x cm,宽为2x cm,根据边长与面积的关系得:3x·2x=300,6x2=300x2=50,x=.因此长方形纸片的长为3 cm.因为50>49,所以>7.由上可知3>21,即长方形纸片的长应该大于21 cm.因为=20,所以正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.答:不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.【思考】如果一个数的平方等于19,这个数是多少?[知识拓展]确定x2=a(a≥0)中正数x的近似值的方法:1.确定正数x的整数部分.根据平方的定义,把x夹在两个连续的正整数之间,确定其整数部分.2.确定x的小数部分十分位上的数字.将这两个整数平方和的平均数与x比较,预测十分位上数字的取值范围,也可以采用试验的方法进行估计.在求某些数的算术平方根时,当有些数据比较大或不易求出时,便可以利用计算器求算术平方根,用计算器上的“”键.一般先按“”键,然后再输入数据,再按“=”键即可.在没有计算器或不允许用计算器的情况下,可进行估算,我们通常取与被开方数相近的两个完全平方数的算术平方根相比较.1.我们可以利用计算器求一个正数a的算术平方根,其操作方法是按顺序进行按键输入:a = ,16,4,则他按键1600,显示结果应为.解析:根据被开方数扩大到原来的100倍,算术平方根扩大到原来的10倍直接解答即可.故填40.2.已知a,b为两个连续的整数,且a<<b,则a+b=.解析:因为<<,所以3<<4,因为a<<b,所以a=3,b=4,所以a+b=3+4=7.故填7.3.用计算器求下列各式的值(结果保留4个有效数字).(1);(2);(3).解:(1)依次按键734,显示27.09243437,所以≈27.09.(2)依次按键0.012345,显示0.111108055,所以≈0.1111.(3)依次按键5,显示2.236067977,所以≈2.236.4.小川的房间地面面积为17.6 m2,房间地面恰好由110块相同的正方形铺成,每块地砖的边长是多少米?解:设每块地砖的边长是x m,则110x2=17.6,x2=0.16,所以x=0.4.答:每块地砖的边长是0.4 m.第2课时1.探索的大小2.用计算器求算术平方根例13.用计算器探究4.估计算术平方根的值解决问题例2一、教材作业【必做题】教材第44页练习第1,2题.【选做题】教材47页习题6.1第6题.二、课后作业【基础巩固】1.若m=-4,则估计m的值所在的范围是()A.1<m<2B.2<m<3C.3<m<4D.4<m<52.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间3.用计算器计算:-3.142≈.(结果保留三个有效数字)4.小杰卧室地板的总面积为16平方米,恰好由64块正方形的地板砖铺成,求每块地板砖的边长.5.圆的面积S(cm2)与半径r(cm)之间的关系式为S=πr2,现要制作一块面积为49π cm2的圆形零件,此零件的半径应为多少厘米?【能力提升】6.如图所示,方格图中小正方形的边长为1,将方格中阴影部分图形剪下来,再把剪下的部分重新剪拼成一个正方形,那么所拼成的这个正方形的边长为()A. B.2 C. D.7.用计算器估算:若2.6456<<2.6459,则a的整数值是.8.如果的整数部分为a,小数部分为b,那么a-b=.9.学校组织集邮展览,某同学用30枚长3 cm,宽2.5 cm的邮票恰好拼成了一个正方形,你能求出这个正方形的边长吗?【拓展探究】10.请你观察、思考下列计算过程:因为112=121,所以=11,同样因为1112=12321,所以=111,由此猜想=.11.用计算器求下列各数的算术平方根(保留四个有效数字),并观察这些数的算术平方根有什么规律.(1)78000,780,7.8,0.078,0.00078.(2)0.00065,0.065,6.5,650,65000.【答案与解析】1.B(解析:先估算出在哪两个整数之间,即可得到结果.因为6=<<=7,所以2<-4<3,故选B.)2.B(解析:根据正方形的面积先求出正方形的边长,然后估算即可得出答案.设正方形的边长为x,因为正方形面积是15,所以x2=15,故x=.因为9<15<16,所以3<<4.故选B.)3.0.464(解析:首先利用计算器求出13的算术平方根,然后即可求出结果.-3.142≈3.6056-3.142=0.4636≈0.464.)4.解:每块地板砖的面积=平方米,所以每块地板砖的边长==(米).5.解:设此零件的半径为r cm,由题意得49π=πr2,解得r=7.所以此零件的半径为7 cm.6.C(解析:根据题意可得,所拼成的正方形的面积是5,所以正方形的边长是.故选C.)7.7(解析:因为2.6456=,2.6459=,所以a的整数值是7.)8.4-(解析:先求出的范围,即可求出a,b的值,再代入求出即可.因为2<<3,所以的整数部分为a=2,小数部分是b=-2,所以a-b=2-(-2)=4-,故答案为4-.)9.解:一枚邮票的面积为3×2.5=7.5(cm2),30枚邮票的总面积为7.5×30=225(cm2),则正方形的边长为15 cm.10.111111111(解析:因为112=121,所以=11.同样1112=12321,所以=111,…,由此猜想=111111111.)11.解:(1)≈279.3,≈27.93,≈2.793,≈0.2793,≈0.02793. (2)≈0.02550,≈0.2550,≈2.550,≈25.50,≈255.0.规律是:被开方数的小数点向左(右)移动两位,则其算术平方根的小数点就向左(右)移动一位.用“夹值法”探索根式的近似值,其教学过程中蕴含着多种教学目的,如帮助学生深入领会无限不循环小数,为以后得出无理数和实数的概念做准备,同时也可以培养学生勇于探索的精神.本课时在教学的过程中,通过情境引入、师生研讨等方式较好地落实了课程教学目标.在探索近似值的过程中,最初没有让学生利用计算器进行探索,课堂上浪费了一定时间,在利用计算器进行探索的时候,忽略了学生使用计算器的差异.在利用计算器进行近似值探索的时候,可以让学生自己总结一些数的算术平方根的性质.在探索规律的过程中,学生不易直接发现小数点变化的规律,应该进行一定的提示.关注学生对计算器的正确使用,并强调计算器的显示结果只是算术平方根的一个近似值.练习(教材第44页)1.提示:(1)37. (2)10.06. (3)2.24.。

新人教版七年级下数学第六章实数导学案

新人教版七年级下数学第六章实数导学案

新人教版七年级下数学第六章实数导学案研究目标:1.了解算术平方根的概念和形成过程。

2.能够求某些正数(完全平方数)的算术平方根并用符号表示。

自主研究:XXX要裁剪一块面积为25平方分米的正方形画布,他想知道这块正方形画布的边长应该取多少分米?请计算并回答。

合作探究:引入新的运算,当一个正数的平方等于a时,我们称这个正数为a的算术平方根。

为了方便书写,我们把a的算术平方根记作a(板书:a的算术平方根记作a)。

例题精讲:计算以下数的算术平方根:1) 0.00012) 1课堂小结:本节课我们研究了算术平方根的概念和求解方法。

我们需要注意解题格式,并且要掌握完全平方数的算术平方根。

过关检测:1.填空:1) 因为8²=64,所以64的算术平方根是8,即64=8²。

2) 因为0.5²=0.25,所以0.25的算术平方根是0.5,即0.25=0.5²。

3) 因为49²=2401,所以2401的算术平方根是49,即√2401=49.2.求下列各式的值:1) 92) 13) 0.14) 35) √9=3.跟踪练:请填空并记住下列各式:121=11²,144=12²,169=13²,196=14²,225=15²。

1.256=16²,289=17²,324=18²,361=19²。

学生应该记住这些数字,老师可以利用卡片进行检查,并要求学生课后记熟。

2.XXX认为,因为(-4)²=16,所以16的算术平方根是-4.这种看法是错误的,因为算术平方根必须是非负数,即不能是负数。

3.若x-4与4-y互为相反数,则xy的算术平方根为2.4.若y=3x-9+9-3x+1,则x的算术平方根为1.5.(-16)²的算术平方根的相反数是4.6.根号符号叫做根号,a叫做被开方数,a的算术平方根表示为√a。

新人教版七年级下册第六章实数全章教案

新人教版七年级下册第六章实数全章教案

新人教版七年级下册第六章实数全章教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN6.1.1平方根(第一课时)】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。

情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。

教学重点:算术平方根的概念和求法。

教学难点:算术平方根的求法。

一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。

接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,接下来教师可以引导性地提问:上面的问题它们有共同点吗它们的本质是什么呢这个问题学生可能总结不出来,教师需加以引导。

上面的问题,实际上是已知一个正数的平方,求这个正数的问题。

2.归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。

⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。

三、应用:例1、 求下列各数的算术平方根: ⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。

由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算术平方根吗任意一个负数有算术平方根吗归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。

七年级数学下册6实数教案新版新人教版

七年级数学下册6实数教案新版新人教版

第六章实数6.1平方根(1)掌握平方根的定义,会求平方根.重点平方根的概念及其符号表示.难点理解平方根的概念.一、创设情境,引入新课问题 学校要举行美术作品比赛,小鸥很高兴.想裁出一块面积为25 dm 2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?师:∵52=25,∴这个正方形画框的边长应取5 dm . 二、讲授新课师:请同学们填表:师:上面的问题,实际上是已知一个正数的平方,求这个正数的问题.师:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.记作a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0. 师:我们一起来做题. 展示课件:【例】 求下列各数的算术平方根:(1)100; (2)4964; (3)0.0001.学生活动:尝试独立完成.教师活动:巡视、指导,派一生上黑板板演. 师生共同完成.解:(1)∵102=100,∴100的算术平方根是10. 即100=10.(2)∵(78)2=4964,∴4964的算术平方根是78,即4964=78.(3)∵0.012=0.0001,∴0.0001的算术平方根是0.01,即0.0001=0.01.三、随堂练习课本第41页练习.四、课堂小结本节课你学到了哪些知识?与同伴交流.师生共同归纳算术平方根的定义及其表示方法.教师首先利用例子提出问题:请你说出上面等式右边各数的平方根,通过学生动脑动口加深对算术平方根概念的初步理解;然后在上面叙述的基础上提出算术平方根概念的符号表示方法,同时用练习巩固所学新知,由量变到质变,使学生能牢固掌握本节内容.6.1平方根(2)能用夹值法求一个数的算术平方根的近似值,会用计算器.重点夹值法估计一个数的算术平方根的大小.难点夹值法估计一个数的算术平方根的大小.一、创设情境,引入新课师:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?运用多媒体,展示课件:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?学生活动:小组合作操作、观察、交流.二、讲授新课师:将两个小正方形沿对角线剪开,得到几个直角三角形?生:4个.师:大正方形的面积多大?生:面积为2的大正方形.师:这个大正方形的边长如何求?学生活动:尝试独立完成.教师活动:启发,适时点拨.师生共同归纳:设大正方形的边长为x,则x2=2,由算术平方根的意义可知:x= 2. ∴大正方形的边长为 2.师:小正方形的对角线的长为多少?生:对角线长为 2.师:很好,2有多大呢?学生活动:小组合作交流.教师活动:适时启发,点拨.师生共同归纳:∵12=1,22=4,∴1<2<2.∵1.42=1.96,1.52=2.25,∴1.4<2<1.5.∵1.412=1.9881,1.422=2.0164,∴1.41<2<1.42.∵1.4142=1.999396,1.4152=2.002225,∴1.414<2<1.415.……如此进行下去,可以得到2的更精确的近似值.其实,2=1.41421356……它是一个无限不循环小数,无限不循环小数是指小数位数无限,且小数部分不循环的小数.师:你能举出几个例子吗?生:能,如:3、5、7等.师:如何用计算器求出一个正有理数的算术平方根(或其近似值).学生活动:尝试独立完成例2.师:请同学们用计算器求出引言中的第一宇宙速度、第二宇宙速度.学生活动:用计算器小组合作完成.第一宇宙速度:v1≈7.9×103m/s;第二宇宙速度:v2≈1.1×104m/s.展示课件:1.利用计算器计算,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?师:你能说出其中的规律吗?学生活动:小组讨论交流.师生共同归纳:求算术平方根时,被开方数的小数点要两位两位地移动,当被开方数向左(右)每移动两位时,它的算术平方根相应地向左(右)移动一位.新知应用:师:我们一起来做题:展示课件.运用多媒体:【例】小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?解:设长方形纸片的长为3x cm,宽为2x cm.根据边长与面积的关系得3x·2x=300,6x2=300,x2=50,x=50.因此长方形纸片的长为350 cm.因为50>49,所以50>7.由上可知350>21,即长方形纸片的长应该大于21 cm.因为400=20,所以正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.【答】不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.三、随堂练习课本第44页练习.四、课堂小结通过本节课的学习,你有哪些收获?与同伴交流.1.使每个学生都参与用计算器求一个正有理数的算术平方根,由于有的同学没有带计算器,所以没有很好地理解所学的知识.2.平方根移动的规律,须让学生通过查表、探索、发现、总结,最好是自己找出其中所蕴含的规律.6.1平方根(3)数的开方意义、平方根的意义、平方根的表示法.重点平方根.难点正确理解平方根的意义.一、创设情境,引入新课师:如果一个数的平方等于9,这个数是多少?学生思考、讨论.生:3.师:除此之外,还有没有别的数的平方也等于9呢?生:-3.师:所以,若一个数的平方等于9,这个数是3或-3.二、讲授新课师:请同学们填表.展示课件:如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.用字母表示为:如果x2=a,则x叫做a的平方根.例:3和-3是9的平方根,简记为±3是9的平方根.求一个数a的平方根的运算,叫做开平方.师:请同学们看图.展示课件:师:平方与开平方有何联系? 生:平方与开平方互为逆运算.师:我们可以根据这种运算关系,来求一个数的平方根.请同学们做题: 【例】 求下列各数的平方根: (1)100;(2)916;(3)0.25.解:(1)因为(±10)2=100,所以100的平方根是±10; (2)因为(±34)2=916,所以916的平方根是±34;(3)因为(±0.5)2=0.25,所以0.25的平方根是±0.5.师:正数、负数、0的平方根有何特点? 生讨论、交流. 师生共同分析:正数的平方根有两个,它们互为相反数,正的平方根是这个数的算术平方根. ∵负数的平方是正数,∴在我们所认识的数中,任何一个数的平方都不会是负数. ∴负数没有平方根. ∵02=0,∴0的平方根是0.归纳:①正数有两个平方根,它们互为相反数; ②负数没有平方根; ③0的平方根是0.师:正数a 的平方根表示为±a ,读作“正、负根号a ”. 如:±9=±3,±25=±5.师:a 只有当a ≥0时有意义,a <0时无意义,为什么? 生:负数没有平方根. 师:请大家做题. 求下列各式的值:(1)144;(2)-0.81;(3)±121196. 学生活动:尝试独立完成,一生上黑板板演. 教师活动:巡视、指导、纠正. 师生共同完成:(1)∵122=144,∴144=12.(2)∵0.92=0.81,∴-0.81=-0.9. (3)∵(±1114)2=121196,∴±121196=±1114. 三、随堂练习课本第46页、第47页第1、2、3、4题. 四、课堂小结通过本节课的学习,你有哪些收获?请与同伴交流.1.提供足够的时间,让学生理解平方根的意义.掌握正数、0、负数的平方根的特点. 2.多提供适量的有代表性的习题,随堂练习. 3.易出错的题目随堂订正.6.2 立方根掌握立方根的定义;正数、负数、0的立方根的特点;用计算器求立方根.重点掌握立方根的定义.难点运用所学知识解决问题.一、创设情境,引入新课要制作一种容积为27 m 3的正方体形状的包装箱,这种包装箱的边长应该是多少? 师:设这种包装箱的边长为x m ,则 x 3=27这就是要求一个数,使它的立方等于27. ∵33=27, ∴x =3.即这种包装箱的边长为3 m .师:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.即:如果x 3=a ,那么x 叫做a 的立方根. ∵33=27,∴3是27的立方根. 师:什么是开立方?生:求一个数的立方根的运算,叫做开立方.师:正如开平方与平方互为逆运算一样,开立方与立方也互为逆运算,据此我们可以求一个数的立方根.师:请看大屏幕.根据立方根的意义填空,看看正数、0和负数的立方根各有什么特点? ∵23=8,∴8的立方根是(2);∵(0. 5)3=0. 125,∴0.125的立方根是(0.5);∵(0)3=0,∴0的立方根是(0);∵(-2)3=-8,∴-8的立方根是(-2);∵(-23)3=-827,∴-827的立方根是(-23).师生共同归纳:正数的立方根是正数. 负数的立方根是负数. 0的立方根是0.师:你能说说数的平方根与数的立方根有什么不同吗? 生:每一个数均有一个立方根,而负数没有平方根.师:一个数a的立方根表示法:3a,读作“三次根号a”.其中a是被开方数,3是根指数.如38表示8的立方根,即38=2.3-8表示-8的立方根,即3-8=-2.3a中的根指数3不能省略.注:算术平方根的符号a,实际上省略了2a中的根指数2,因此a也可读作“二次根号a”.师:请同学们填空:∵3-8=________,-38=________.∴3-8________-38.∵3-27=________,-327=________.∴3-27________-327.一般地,3-a________-3a.师:请同学们做题:【例】求下列各式的值:(1)364;(2)-318;(3)3-2764.解:(1)364=4;(2)-318=-12;(3)3-2764=-34.其实,很多有理数的立方根是无限不循环小数.如32、33等都是无限不循环小数,可以用有理数、近似数表示它们.师:请同学们用计算器求出一个数的立方根.学生活动:用计算器求一些数的立方根.师:请同学们观看大屏幕.用计算器计算…,30.000216,30.216,3216,3216000,…,你能发现什么规律?用计算器计算3100(精确到0.001),并利用你发现的规律求30.1,30.0001,3100000的近似值.师:同学们发现了什么规律?学生讨论、交流并发言.师生共同归纳:被开方数的小数点向左(右)每移动三位,其立方根的小数点相应地向左(右)移动一位.二、随堂练习课本第51页练习.三、课堂小结通过本节课的学习,你有哪些收获?请与同伴交流.教学设计着重于把立方根与开立方进行类比教学,注重概念的形成过程,让学生在新概念的形成过程中,逐步理解新概念,通过设置问题,组织思考讨论来帮助学生理解立方根和开立方的概念.让学生通过实例和抽象类比来理解立方根与平方根概念的联系与区别.6.3实数第1课时实数了解无理数和实数的意义,会对实数进行分类,了解实数的绝对值和相反数的意义.重点理解实数的概念.难点运用所学知识解决问题.一、创设情境,引入新课师:请同学们使用计算器,把下列有理数写成小数的形式,你有什么发现? 3,-35,478,911,1190,59生1:3=3.0 -35=-0.6 478=5.875911=0.81 1190=0.12 59=0.5 生2:这些有理数都可以写成有限小数或者无限循环小数. 二、讲授新课 师:很好,其实,任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.师:很多数的平方根和立方根都是无限不循环小数,无限不循环小数叫做无理数.例如:2、-5、32、33等都是无理数.π=3. 14159265……也是无理数.师:有理数和无理数统称实数.实数⎩⎪⎨⎪⎧有理数 有限小数或无限循环小数无理数 无限不循环小数师:像有理数一样,无理数也有正负之分.无理数⎩⎨⎧正无理数 2,33,π,……负无理数 -2,-33,-π,……师:由于非0有理数和无理数都有正、负之分,所以实数可以这样分类:实数⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧正有理数正无理数0负实数⎩⎪⎨⎪⎧负有理数负无理数师:每个有理数都可以用数轴上的点来表示,无理数也可以用数轴上的点来表示.请大家观看大屏幕: 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?师:从图中可以看出,OO ′的长是多少? 生1:这个圆的周长为π. 师:O ′的坐标是多少? 生2:O ′的坐标是π.师:所以无理数π可以用数轴上的点表示出来. 师:如何在数轴上表示±2呢? 学生活动:小组合作交流.教师活动:巡视、检查,适时点拨. 师生共同完成:归纳:每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.师:实数与数轴上的点有何关系?师:实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示.反过来,数轴上的每一个点都表示一个实数.师:平面直角坐标系中的点与有序实数对之间也是一一对应的.右边的点表示的实数总比左边的点表示的实数大,当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合实数.师:请同学们做题:2的相反数是________,-π的相反数是________,0的相反数是________,|2|=________,|-π|=________,|0|=________.师:同学们有什么发现?生:与有理数一样.师生共同归纳:数a的相反数是-a(a表示任意一个实数).一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.【例】(1)分别写出-6,π-3.14的相反数;(2)指出-5,1-33分别是什么数的相反数;(3)求3-64的绝对值;(4)已知一个数的绝对值是3,求这个数.解:(1)因为-(-6)=6,-(π-3.14)=3.14-π,所以,-6,π-3.14的相反数分别为6,3.14-π.(2)因为-(5)=-5,-(33-1)=1-33,所以,-5,1-33分别是5,33-1的相反数.(3)因为3-64=-364=-4,所以|3-64|=|-4|=4.(4)因为|3|=3,|-3|=3,所以绝对值为3的数是3或- 3.三、随堂练习课本第56页第1、2、3题.四、课堂小结通过本节课的学习,同学们有哪些收获?请与同伴交流.本节课通过对无理数的学习,使学生对数的认识又提升到一个新的层次.通过举一些数让学生对其进行分类,即按有理数和无理数归类,使他们对这两类数进行区分,更深入地认识这两类数的区别.第2课时实数的运算法则实数的运算法则.重点掌握实数的运算法则.难点实数运算法则的正确应用.一、创设情境,引入新课师:有理数的运算法则是什么?生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.二、讲授新课师:很好.有理数运算法则仍适用于实数,请大家看几个题目:展示课件:【例1】计算下列各式的值:(1)(3+2)-2;(2)33+2 3.学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.教师活动:巡视、指导.师生共同完成:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0= 3(2)33+2 3=(3+2) 3 分配律=5 3师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例2】计算(结果保留小数点后两位):(1)5+π;(2)3· 2.学生尝试独立计算,一学生上黑板板演.教师巡视、纠正.师生共同完成:(1)5+π≈2.236+3.142≈5.38(2)3· 2≈1.732×1.414≈2.45三、随堂练习课本第56页第4题,第57页第4、5、6题.四、课堂小结通过本节课的学习,你有哪些收获?首先通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并经历实数的运算、化简;让学生根据实例进行探索,通过学生互相交流合作,得出两个化简的公式,培养他们的合作精神和探索能力,也让他们获得成功的体验,充分调动、发挥学生主动性的多样化学习方式,促进学生在老师指导下主动地、富有个性地学习.。

七年级数学下册第六章实数数学活动导学案新版新人教版

七年级数学下册第六章实数数学活动导学案新版新人教版

数学活动——求完全立方数的立方根一、导学1.导入课题:我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上一道智力题:一个数是59319,希望求它的立方根.华罗庚脱口而出:39.你知道华罗庚是怎样迅速准确地计算出来的吗?这节课我们就来研究这个问题.2.学习目标:(1)会求完全立方数的立方根.(2)勤于动脑,善于归纳,学习领会那些常见计算技巧,提高运算能力.3.学习重、难点:求完全立方数的立方根的方法和步骤.4.自学指导:(1)自学内容:课本P59活动2.(2)自学时间:8分钟.(3)自学要求:按课本中问题的指引,个个击破,然后归纳总结.(4)自学提纲:①∵103=1000,1003=1000000并且1000<59319<1000000,∴10<100,∴是两位数②13=1,23=8,33=27,43=64,53=125,63=216,73=343,83=512,93=729,103=1000,分析它们的个位数的特点,可知9.③把59319的后三位数319划去得59,∵27<59<64,∴确定出是3,即=39.④已知19683,110592都是完全立方数,按上面的方法求得:=27,=48⑤你能归纳出求完全立方数的立方根的一般步骤吗?⑥你能依照上面的方法求完全平方数1369,6724的算术平方根吗?答案:37;82.二、自学同学们可结合自学指导进行自主学习.三、助学1.师助生(1)明了学情:教师深入课堂,了解学生的自学进度和存在的问题.(2)差异指导:根据学情进行相应指导.2.生助生:小组内相互交流,订正纠错,互帮互学.四、强化1.各小组展示各自的学习成果,归纳出求完全立方数的立方根的一般步骤.2.如果a>b,那么.如求:∵13=1,23=8而1<5<8,∴1<<2.∵1.73=4.913,1.83=5.832而4.913<5<5.832,∴1.7< 1.8,∵1.703=4.913,1.713=5.000211而4.913<5<5.000211,∴1.70< 1.71.…如此进行下去,可以得到.五、评价1.学生的自我评价:回顾整个活动过程,反思自己有哪些收获和不足.2.教师对学生的评价:(1)表现性评价:教师根据本活动中学生的表现:是否积极参与活动,是否有独到的发现(利用这种方法能否求立方根是三位或三位以上的数,能否把这种方法迁移用来求完全平方数的平方根等),以及学习效果如何等予以评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在本节课教学过程中,通过教学活动2,调动了学生的积极性,引导学生观察思考,逐步质疑,逐渐由旧知归纳出新知,既培养学生的动手能力,又为实数学习打下基础.(时间:12分钟满分:100分)一、基础巩固(60分)1.(15分)已知4096,39304,140608都是完全立方数,不用计算器求4096=16,39304=34,140608=52.2.(15分)已知 4.12 1.603,41.23.454,4127.441,则0.412 0.7441,41200=34.54.3.(154.12=2.03041.2 6.4190.412=0.6419,41200 203.0.4.(15分)已知2304,7225,151292304=48,7225=85,15129=123.二、综合运用(20分)5.求100.01).解:∵23=8,33=27,而8<10<27,∴2<10∵2.13=9.261,2.23=10.648,而9.261<10<10.648,∴10∵2.153=9.938375,2.163=10.077696,而9.938375<10<10.077696,∴∵2.1543=9.993948,2.1553=10.007874,而2.1543更接近10.∴ 2.15.三、拓展延伸(20分)6.从图书、网络等方面搜集一些巧算立方根或平方根的资料,与同学们分享一下.。

新人教版七年级下册第六章实数全章教案

新人教版七年级下册第六章实数全章教案

新人教版七年级下册第六章实数全章教案案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

(实用)最新人教版七年级 第六章《实数》整章教案(绝对精品)

(实用)最新人教版七年级 第六章《实数》整章教案(绝对精品)

6.1平方根(第1课时)邓伶亚赤壁市实验中学一、内容和内容解析1.内容《义务教育课程标准实验教科书——数学》(人教版)七年级下册第六章《实数》第一节第一课时的知识,主要介绍算术平方根的概念、表示方法和求法,以及用夹逼法估计2的大致范围.2.内容解析教材的地位和作用:第一,教科书先介绍算术平方根,让学生看到算术平方根与实际的联系,在学习算术平方根的基础上再学习平方根.算术平方根与之前学的平方运算存在互逆关系,也是下节课学习平方根的前提,具有承上启下的作用.第二,2是历史上人们发现的第一个无理数,引发了数学危机,也促使数系从有理数扩充到无理数。

教科书采用夹逼的方法,利用2的一系列不足近似值和过剩近似值来估计它的大小,进而给出2是无限不循环小数的结论,并指出53,等也是无限不循环小数,为后面学习无理数概念打下基础.第三,会用根号表示非负数的算术平方根,了解算术平方根的非负性,为以后学习二次根式做出了铺垫,提供知识积累.对本节课教学有利因素是:七年级学生会做加减乘除以及乘方运算了,但还是会发现一些生活中常见的数学问题(比如知道正方形面积求边长这一类的问题)没办法用这些计算方法解决,内心渴望新的计算方法出现,本节课的学习将实现他们内心的期盼.本节课教学不利因素是:第一、乘方运算是已知底数和指数,求幂,开方运算是已知幂和指数,求底数。

因为涉及到三个量的关系,与学过的互逆运算(加法和减法、乘法和除法)相比关系更为复杂,造成学生理解的困难.第二、对一个正数,开平方运算可以得到一正一负两个平方根,正的那个叫算术平方根.而教科书是从解决实际问题的需要出发,把算术平方根的学习放在平方根前面.对算术平方根是非负的理解,学生会有些困难.第三,对于可以表示成有理数的平方的数,由于它们的算术平方根都是有理数,所以学生容易把握这些算术平方根的大小.但是对于像2这样不能表示成一个有理数的平方的数,它的算术平方根到底有多大,对学生来说是一个新问题.基于以上分析,可以确定本节课的重点是:了解算术平方根的意义和性质.二、目标和目标解析1.目标(1)通过实际问题生成算术平方根的概念,了解平方与开平方互为逆运算,会用符号表示数的算术平方根.(2)通过互动游戏,巩固算术平方根的概念,并归纳出算术平方根的性质.(3)通过探究2的大小,了解2是无限不循环小数.2.目标解析目标(1)解析:学生经历由实际问题逐步抽象为数学问题的过程,建立初步的数感和符号感,发展抽象思维;在探索算术平方根概念的过程中,经历由具体到抽象、由特殊到一般的数学思想过程;通过对实际生活中问题的解决,体验数学来源于生活.目标(2)解析:学生在积极参与游戏的过程中,巩固算术平方根的概念;在师生问答互动的过程中,辨析概念,培养学生的推理、归纳能力.目标(3)解析:通过探究2的大小,培养估算意识,了解两个方向无限逼近的数学思想。

【最新】人教版七年级数学下册第六章《实数》学案

【最新】人教版七年级数学下册第六章《实数》学案

新人教版七年级数学下册第六章《实数》学案感知目标学习目标知识与能力:了解无理数和实数的概念,知道实数和数轴上的点一一对应,;了解实数的运算法则及运算律,会进行实数的运算,过程与方法:能估算无理数的大小,会用计算器进行实数的运算情感态度与价值观:发展学生的数感重点难点教学重点:实数的意义和实数的分类;实数的运算法则及运算律教学难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算教学过程教师活动学生活动复备标注时间分配启动课堂预习复习反馈情境导入探究使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 ,35-,478,911,119,59探求新知一、无理数概念我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即3 3.0=,30.65-=-,475.8758=,90.8111=&&,111.29=&,50.59=&观察通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数, 3.14159265π=L也是无理数结论有理数和无理数统称为实数⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数实数也可以这样分类:学生归纳任何一个有理数都可以写成有限小数或无限循环小数的形式。

反过来,任何有限小数或无限循环小数也都是有理数试一试把实数分类像有理数一样,无理数也有正负之分。

例如2,33,π是正无理数,2-,33-,π-是负无理数。

由于非0有理数和无理数都有正负之分当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数 我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢? 探究 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少? 2、 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示 的实数大 轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数总结 1、事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗? 总结 数a 的相反数是a -,这里a 表示任意一个实数。

新人教版七年级下册第六章《实数》全章教案(共8份)

新人教版七年级下册第六章《实数》全章教案(共8份)

(总第十三课时)6.1平方根(1)
教学过程设计
(总第十四课时)6.1平方根(2)
教学过程设计
问:拼成的这个面积为2dm的大正方形的边长应该是多
3136
56.

1.41421356
2.
应用规律
(总第十五课时)6.1平方根(3)
教学过程设计
问:前四个是什么运算?后面的又是什么运算?
教师板书:求一个数A的平方根的运算,叫开平方,叫被开方数.。

问题(五)
(总第十六课时)6.2立方根(1)
教学过程设计
(总第十七课时)6.2立方根(2)
教学过程设计
(总第十八课时)6.3实数(1)
教学过程设计
探究实数与数轴上的点一一对应关系。

我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢?
如图所示,直径为1个单位长度的圆从原点沿数轴向
总结: 1.事实上,当从有理数扩充到实数以后,
与数轴上的点就是一一对应的,即每一个实数都可以
怎样表示无理数
(总第十九课时)6.3实数(2)
教学过程设计
(总第二十课时)第六章小结与复习
教学过程设计。

实数(七年级数学下册第六章全章导学案)

实数(七年级数学下册第六章全章导学案)

第6章 实数6.1平方根(1)【学习目标】1.了解数的算术平方根的定义,会用根号表示一个数的算术平方根,并理解算术平方根的双重非负性2.能利用算术平方根的定义求一个非负数的算术平方根【学习重点】了解算术平方根的概念、性质、会用根号表示一个正数的算术平方根 【学习难点】理解算术平方根的双重非负性 [探究研讨]【活动1】学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为252dm 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?自学教材,回答问题:1. 一般地,如果一个___ 数x 的平方等于a ,即2x =a ,那么这个______叫做a 的_________.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.规定:______的算术平方根是0. 记作0=2.由以上定义可知如果2x =a ,那么x 就叫a 的算术平方根吗?判断下列语句是否正确? ①5是25的算术平方根( ) ②-6是36的算术平方根( )③0.01是0.1的算术平方根( ) ④-5是-25的算术平方根( )3.3的算术平方根可表示为 ,4的算术平方根可表示为 ,你还能表示出那些数的算术平方根?写在下面,和同座交流一下4.试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.【活动2】例:求下列各数的算术平方根: (1)100;(2) 6449;(3) 0.0001 ;⑷ 0;[跟踪训练]1、 1.非负数a 的算术平方根表示为___,225的算术平方根是____,0.64-的算术平方根____,0的算术平方根是____2.41的算术平方根是( ) A .161 B .81 C .21 D .21±3.若x 是49的算术平方根,则x =( )A. 7B. -7C. 49D.-494.小明房间的面积为10.8米2,房间地面恰好由120块相同的正方形地砖铺成,每块地砖的边长是 .[变式训练]想一想:下列式子表示什么意思?你能求出它们的值吗?[跟踪训练]____,_____===_____,3.7=,则x 的算术平方根是( )【活动3】思考:-4有算术算术平方根吗?为什么?总结:1.正数有 的算术平方根 0的算术平方根是 负数 2.对于a :a 0[跟踪训练]1.下列哪些数有算术平方根? 0.03, -161, π, 0, (-3)2,(-1)3具有双重非负性2.下列各式中无意义的是( ) A .7-B .7 C.7- D .()27--3. 下列运算正确的是( )A .33-=B .33-=-C=D3=-4.若下列各式有意义,在后面的横线上写出x 的取值范围:⑵x -5 5.若20a -=,则a= ,b= ,2a b -= .[提升能力]1.一个自然数的算术平方根为a ,那么与这个自然数相邻的下一个自然数的算术平方根是_______2.一个正方形的面积扩大为原来的4倍,它的边长变为原来的 倍,面积扩大为原来的9倍,它的边长变为原来的 倍,面积扩大为原来的n 倍,它的边长变为原来的 倍.3.那么,b a -有意义吗?4.要使代数式3x 的取值范围是( ) A. 2x ≠ B. 2x ≥ C. 2x > D. 2x ≤ 5.若()2130x y -++=,求,,x y z 的值。

新人教版七年级下册第六章实数教案

新人教版七年级下册第六章实数教案

第六章实数6.1.1平方根第一课时【教学目标】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;教学重点:算术平方根的概念和求法。

教学难点:算术平方根的求法。

教学方法: 自主探究、启发引导、小组合作【教学过程】一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF 于面积,求出正方形画布的边长为dm 5。

接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。

上面的问题,实际上是已知一个正数的平方,求这个正数的问题。

2.归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x2=a 那么这个正数x 叫做a 的算术平方根。

⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a叫做被开方数。

三、应用:AHA12GAGGAGAGGAFFFFAFAF求下列各数的算术平方根:⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0解:⑴因为,100102=所以100的算术平方根是10,即10100=; ⑵因为6449)87(2=,所以6449的算术平方根是87,即876449=;AHA12GAGGAGAGGAFFFFAFAF⑶因为916)34(,9169712==,所以971的算术平方根是34,即34916971==;⑷因为0001.001.02=,所以0001.0的算术平方根是01.0,即01.00001.0=;⑸因为002=,所以0的算术平方根是0,即00=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1算术平方根导学案(第1课时)(总1课时)姓名 组号 学号 组长评语: 一.由课题预示学习目标;1.本节课我想知道 和 2.会求一个数的 3.会用“”表示一个数的平方根及算术平方根二.温故知新( )2=16, ( )2=25,( )2=49,( )2=81, 三、情境引入学校要举行美术作品比赛,扎西很高兴.他想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米? ∵( )2=25 ∴正方形的边长为 四.探究新知1. (自主完成下表)这个实例中的问题、填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题.通过解决这个问题,我们就有了算术平方根的概念. 正数3的平方等于9,我们把正数3叫做9的算术平方根..正数4的平方等于16,我们把正数4叫做16的算术平方根,16叫4的 . 说说6和36这两个数之间的关系?说说1和1这两个数呢? 同桌之间互相说一说5和25这两个数.(同桌互相说)说了这么多,同学们大概已经知道了算术平方根的意思.那么什么是算术平方根呢?还是先在小组里讨论讨论,说说自己的看法.2.归纳出算术平方根的定义:如果一个正数X的平方等于a ,那么这个正数X叫做a的如果一个正数的平方等于a ,那么这个正数叫做a 的算术平方根.为了书写方便,我们把a(指准上图)看到没有?这根钓鱼杆似的符号叫做根号,a 表示a 的算术平方根.3.如(±3)2=9,则我们就说±3叫9的平方根,也就是一个正数有两个平方根它们的绝对值符号 ,其中正的平方根称为 根,我们把a .被开方数a4.由上面的学习思考并回答下面问题.(1)0的平方根是(2)负数有没有平方根和算术平方根?答; 理由是 五.新知运用.1、 求下列各数的算术平方根: (1)4964; (2)0.0001. (要注意解题格式,解题格式要与课本第40页上的相同) 精练 2、填空:(1)因为_____2=64,所以64的算术平方根是______=______;(2)因为_____2=0.25,所以0.25的算术平方根是______=______;(3)因为_____2=1649,所以1649的算术平方根是____________.3、求下列各式的值:______;______;=______;______;=______;=______.4、根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:_______,_______,_______,=_______,_______,_______,_______,_______,_______.(学生记住没有,教师可以利用卡片进行检查,并要求学生课后记熟)5、辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么? 、六、我的收获1.本节我学习的新知识点①, ,②. ③ 2.易混的知识点.①平方根与 ②零的平方根是 ,而负数 . 3.本节学习一个新运算符号就是求一个正数的平方根或算术平方根的运算符号为 4.求121和169的算术平方根用运算符号表示为:6.1算术平方根(2)2的值是多少 (总2课时)姓名 组号 学号 组长评语一、根据课题预示学习目标1.3,5等的值 2.会用计算器求 . 3.明确一些正数的平方根是一个无限不循环的小数 二,温故知新1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的_______________,记作_______.2.填空:(1)因为_____2=36,所以36的算术平方根是____________;(2)因为(____)2=964,所以964的算术平方根是____________;(3)因为_____2=0.81,所以0.81的算术平方根是_______=_____;(4)因为_____2=0.572,所以0.572的算术平方根是____________.(5)144= , 196= ,23.1= ,()22= ,()25=(6)7是 平方根;11是 的平方根;8是 的平方根;7是 的平方根 三.探究新知1.这个正方形的面积等于4,它的边长等于多少? (用算术平方根来说这个正方形边长和面积的关系)2.这个正方形的面积等于1,它的边长等于多少?3.正方形的面积等于2,它的边长等于什么?因为边长等于面积的算术平方根,所以边长等于4.=21 (请阅读教材42-44页解决)=21的值在1和 之间.②计算1.12= 1.22= .1.32= , 1.42= ,1.52= .仿照这在估算1.412等.学习例3的内容,注意50与7是怎样比较的. 四、新知运用1、 求下列各式的值:(1)225; (2)62500.(3)36 (4)254 (6)49.0面积=4面积=1面积=22、填空: (1)面积为9(2)面积为1004、比较下列各组数的大小。

(1)140与12 (2)215—与0.5(3)8与10 (4)21-5与15,已知X>0求下列各式中的X的值 ① X2=49 ②X2=121③X2 =1.69④ X2=456、拓展题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:= ,= ,= ,= .7.运用上表的规律直接写出结果 已知2.144.1=①.0144.0= ②.=144 ③=14400 六.课后感我的收获 我的困惑1. 1 2. 2. 3. 3.6.1平方根导学案(3)求一个正数的平方根(总3课时)姓名 组号 学号 组长评语 一.温故知新1、填空:如果一个正数的平方等于a ,那么这个 叫做a 的算术平方根,a 的算术平方根记作 . 符号“”读作 .它是求 的运算符号.2、 (面积为16= ;3、指出下式算式的意义① 64表示 ②6表示4.当 X2=16 则X=二.由课题预示学习目标1.本节课我想知道 2.会求一个正数的 三.探究新知 (一) 学前指导;1.学习课本要注意抓住的知识点:①平方根或二次方根定义 ②什么叫开平方 ③正数平方根,零的平方根,负数的平方根各有什么性质.④求一个正数的平方根的步骤.2.请同学们开始学习课本44页下至46内容(用时8分钟) (二)学后盘点:1.如果数X的平方等于a,那么 叫做 的平方根. 2.一个数的平方根也叫这个数的3.正数的平方根有 个它们互为 ;零的平方根 ; 负数平方根不 .4.±2是 的平方根,2是 的一个正平方根也叫 的算术平方根发, -2是 的一个负的平方根.5.±25= 它表示求 平方根,而25= 它表示求-25= 它表示求 .6.求下列数的平方根(直接用根号表示能化简的化间)例如求225的平方根.解;±225=± 215±15① 196 ② 16 ③ 137.思考:±16与16与-16及16的平方根意义异同. 答: (三)归纳1.同学们大概已经明白了平方根的意思.平方根的概念与算术平方根的概念是类似的,请你仿照算术平方根的定义,用一句话概括什么是平方根?平方根定义:平方根概念与算术平方根概念只有一点点区别,哪一点点区别?是2、0的平方是0,正数的平方是正数,负数的平方还是正数,所以任何数的平方都不会等于负数.这说明什么?答:3. 正数的平方根有个它们互为;零的平方根;负数没有.四、新知运用1、求下面各数的平方根: (1)100; (2)0.25; (3)0; (4)-4;解: (1)因为(±10)2=100,所以100的平方根是+10和-10(2)(3)(4)2.填空:(1)因为()2=49,所以49的平方根是;算术平方根是(2)因为()2=0,所以0的平方根是;算术平方根是(3)因为()2=1.96,所以1.96的平方根是;算术平方根是3.判断题:对的画“√”,错的画“×”.(1)0的平方根是0 ()(5) 25的平方根是5;()(2)25的算术平方根是5;()(6)-25的平方根是-5;()(3)25的平方根是±5;()(7)5是25的一个平方根()(4)(-5)2的算术平方根是-5()(8)-5的平方是25;()4.用运算符号求下列和数的平方根和算术平方根.(1)0.16(2) 121(3)81(4)25五.课后感收获困惑1. 1.22.6.2立方根导学案(1)(总4课时)姓名组号学号组长评语一.温故知新1. 6表示的意义是,±6表示的意义是2.用运算符号求右边两数的平方根Ⅹ①49,②15.解:①,②.3.平方根的定义:4.算术平方根的定义:二.由课题预示学习目标;1.本节课臣街道2.我还想知道立方根3.会有运算符号求.三、探究新知(一) 学前指导1.会用一般语言定义立方根.2.知道开方运算与立方运算的关系.3.数的立方根的性质.4.注意开立方时根指数的3不能省略应与为“3”要把根指数3写在根号的左上角,不能写成35.请用你的认真细心的态度学习课本49页至50页内容(用时6分钟)(二)学后盘点1、立方根的概念:如果一个数的立方等于a,这个数就叫做a的 .(也叫做数a的).换句话说,如果 ,那么x叫做a的立方根或三次方根. 记作: .读作“”,其中a是,3是,且根指数3 省略(填能或不能),否则与平方根混淆.2、开立方:求一个数的的运算叫做开立方,与开立方互为逆运算3. 数的立方根的性质①正数的立方根是②负的立方根是③零的立方根是4.平方根与立方根有什么不同?四.新知运用1、 求下列各式的值:(1)364; (2)327102(3)312564-2、求满足下列各式的未知数x :(1)3x 0.008= (2) x3=-64 (3) 9X2=253. 判断正误:(1)、25的立方根是 5 ;( )(2)、互为相反数的两个数,它们的立方根也互为相反数;( ) (3)、任何数的立方根只有一个;( )(4)、如果一个数的平方根与其立方根相同,则 这个数是1;( )(5)、如果一个数的立方根是这个数的本身,那么这个数一定是零;( ) (6)、一个数的立方根不是正数就是负数.( ) (7)、–64没有立方根.( )4、(1) 64的平方根是________立方根是________.(2)的立方根是________. (3) 37-是_______的立方根.(4) 若 ,则 x=_______, 若 ,则 x=________. (5) 若 , 则x 的取值范围是_____, 若有意义,则x 的取值范围是____. 5、计算:(1)38321+6、已知x-2的平方根是4±,2x y 12-+的立方根是4,求()x yx y ++的值.五、课后感:我的收获 我困惑1.立方根的定义; 2.立方根的性质: 3.开立方的运算符号为: .327()92=-x ()93=-x x x -=23x -6.2立方根与平方根导学案(2)(总5课时)姓名 组号 学号 组长评语: 一.基本知识点的回顾1. 立方根的定义: ,2.开立方就是求 的运算 3. 平方根与立方根有什么不同?4、(1) 64的平方根是________立方根是________.算术平方根是(2) 的立方根是________. (3) 37-是_______的立方根.(4) 若 ,则 x=_______, 若 , 则 x=________. (5) 若 , 则x 的取值范围是__________ 二、归纳1.求负数的立方根,可以先求出这个负数的 的立方根,再取其 ,即 2.思考:立方根是它本身的数是 ,平方根是它本身的数是 算术平方根是它本身的数是 .三、综合计算例1、 求下列各式的值: (1)3125-; (2)311102- (3)310001-;例2、求满足下列各式的未知数x : 364x 1250+= 四、练习1、完成51页练习2、求下列各数的立方根: (1)—8 (2) 6427 (3) ±125 (4) 81×9327()92=-x ()93=-x xx -=23、求下列各式的值。

相关文档
最新文档