函数的综合应用(2)

合集下载

函数的单调性和奇偶性的综合应用

函数的单调性和奇偶性的综合应用

函数的单调性和奇偶性的综合应用对称有点对称和轴对称:数的图像关奇函于原点成点对称,偶函数的图像关于y 轴成轴对称图形。

1、函数的单调性:应用:若()y f x =是增函数,12()()f x f x > ⇒ 1x2x应用:若()y f x =是减函数,12()()f x f x > ⇒ 1x 2x相关练习:若()y f x =是R 上的减函数,则(1)f 2(22)f a a ++2、熟悉常见的函数的单调性:y kx b =+、ky x=、2y ax bx c =++相关练习:若()f x ax =,()bg x x=-在(,0)-∞上都是减函数,则2()f x ax bx =+在(0,)+∞上是 函数(增、减)3、函数的奇偶性:定义域关于原点对称,()()f x f x -= ⇒ ()f x 是偶函数定义域关于原点对称,()()f x f x -=- ⇒ ()f x 是奇函数(当然,对于一般的函数,都没有恰好()()f x f x -=±,所以大部分函数都不具有奇偶性)相关练习:(1)已知函数21()4f x ax bx a b=+++是定义在[1,2]a a -上的奇函数,且(1)5f =,求a 、b(2)若2()(2)(1)3f x K x K x =-+-+是偶函数,则()f x 的递减区间是 。

(3)若函数()f x 是定义在R 上的奇函数,则(0)f = 。

(4)函数()y f x =的奇偶性如下:画出函数在另一半区间的大致图像O点对称:对称中心O 轴对称:偶函数奇函数奇函数奇函数4、单调性和奇偶性的综合应用 【类型1 转换区间】相关练习:(1)根据函数的图像说明,若偶函数()y f x =在(,0)-∞上是减函数,则()f x 在(0,)+∞上是 函数(增、减)(2) 已知()f x 为奇函数,当0x >时,()(1)f x x x =-,则当0x <时,()x =(3)R 上的偶函数在(0,)+∞上是减函数,3()4f - 2(1)f a a -+ (4)设()f x 为定义在((,)-∞+∞上的偶函数,且()f x 在[0,)+∞为增函数,则(2)f -、()f π-、 (3)f 的大小顺序是( ) A. ()(3)(2)f f f π->>- B. ()(2)(3)f f f π->-> C. ()(3)(2)f f f π-<<- D. ()(2)(3)f f f π-<-<(5)如果奇函数()f x 在区间[3,7]上的最小值是5,那么()f x 在区间[7,3]--上( )A. 最小值是5B. 最小值是-5C. 最大值是-5D. 最大值是5(6)如果偶函数()f x 在[3,7]上是增函数,且最小值是-5那么()f x 在[7,3]--上是( ) A. 增函数且最小值为-5B. 增函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5(7) 已知函数()f x 是定义在R 上的偶函数,且在(,0)-∞上()f x 是单调增函数,那么当10x <,20x >且120x x +<时,有( )A. 12()()f x f x ->-B. 12()()f x f x -<-C. 12()()f x f x -=-D. 不确定(8)如果()f x 是奇函数,而且在开区间(,0)-∞上是增函数,又(2)0f =,那么()0x f x ⋅< 的解是( )A. 20x -<<或02x <<B. 20x -<<或2x >C. 2x <-或02x <<D. 3x <-或3x >(9) 已知函数()f x 为偶函数,x R ∈,当0x <时,()f x 单调递增,对于10x <,20x >,有12||||x x <,则( )A.12()()f x f x ->- B. 12()()f x f x -<- C. 12()()f x f x -=- D. 12|()||()|f x f x -<-5、单调性和奇偶性的综合应用 【类型2 利用单调性解不等式】相关练习:(1)已知()y f x =是(3,3)-上的减函数,解不等式(3)(2)f x f x +>-(2)定义在(1,1)-上的奇函数()f x 是减函数,且满足条件(1)(12)0f a f a -+-<,求a 的取值范围。

人教版九年级数学下册作业课件 第二十六章 反比例函数 专题课堂(二) 反比例函数的综合应用

人教版九年级数学下册作业课件 第二十六章 反比例函数 专题课堂(二) 反比例函数的综合应用

n=-2,
得 b=6,
∴直线 AC 的解析式为:y=-2x+6
二、反比例函数与二次函数的综合应用
【例 2】(2022·绥化)已知二次函数 y=ax2+bx+c 的部分函数图象如图所示,则一
次函数
y=ax+b2-4ac
与反比例函数
4a+2b+c y= x
在同一平面直角坐标系中的图象
大致是( B )
[对应训练] 4.抛物线 y=ax2+bx+c(a<0)与双曲线 y=kx 相交于点 A,B,且抛物线经过坐 标原点,点 A 的坐标为(-2,2),点 B 在第四象限内,过点 B 作直线 BC∥x 轴,点 C 为直线与抛物线的另一交点,已知直线 BC 与 x 轴之间的距离是点 B 到 y 轴的距离 的 4 倍.记抛物线顶点为 E. (1)求双曲线和抛物线的解析式; (2)计算△ABC 与△ABE 的面积.
b=-4,
的解析式为 y=-x-4 (2)如图,过点 B 作 BM⊥OP,垂足为 M,由题意可知,
OM=1,BM=3,AC=1,MC=OC-OM=3-1=2,∴S 四边形 ABOC=S△BOM+S 梯 形 ACMB=32 +12 (1+3)×2=121
[对应训练] 1.一次函数 y=kx+b(k≠0)与反比例函数 y=kx (k≠0)在同一平面直角坐标系上的 大致图象如图所示,则 k,b 的取值范围是( C ) A.k>0,b>0 B.k<0,b>0 C.k<0,b<0 D.k>0,b<0
解:(1)由点 A(-2,2)在双曲线上得双曲线的解析式为 y=-4x ,设点 B 的坐标为
(m,-4m)且 m>0,代入 y=-4x ,得 m=1,∴B(1,-4),由题意知 c=0,把 A,B
4a-2b=2,

第4讲 第2课时 利用导数解决不等式恒(能)成立问题

第4讲 第2课时 利用导数解决不等式恒(能)成立问题

求解不等式恒成立问题的方法 (1)构造函数分类讨论:遇到 f(x)≥g(x)型的不等式恒成立问题时,一般 采用作差法,构造“左减右”的函数 h(x)=f(x)-g(x)或“右减左”的函数 u(x)=g(x)-f(x),进而只需满足 h(x)min≥0 或 u(x)max≤0,将比较法的思想融 入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对 参数进行分类讨论. (2)分离函数法:分离函数法的主要思想是将不等式变形成一个一端是 参数 a,另一端是变量表达式 v(x)的不等式后,若 a≥v(x)在 x∈D 上恒成立, 则 a≥v(x)max;若 a≤v(x)在 x∈D 上恒成立,则 a≤v(x)min.
第四章 导数及其应用
第4讲 导数与函数的综合应用 第2课时 利用导数解决不等式恒(能)
成立问题
1
PART ONE
核心考向突破
考向一 恒成立问题
例 1 (2020·新高考卷Ⅰ节选)已知函数 f(x)=aex-1-ln x+ln a.若 f(x)≥1,求 a 的取值范围.
解 解法一:∵f(x)=aex-1-ln x+ln a, ∴f′(x)=aex-1-1x,且 a>0. 设 g(x)=f′(x),则 g′(x)=aex-1+x12>0, ∴g(x)在(0,+∞)上单调递增,即 f′(x)在(0,+∞)上单调递增,

(2)对于任意的 s,t∈[12,2],都有 f(s)≥g(t)成立,等价于在[12,2]上, 函数 f(x)min≥g(x)max.
由(1)可知在[12,2]上,g(x)的最大值为 g(2)=1. 在12,2 上,f(x)=ax+xln x≥1 恒成立等价于 a≥x-x2ln x 恒成立. 设 h(x)=x-x2ln x,则 h′(x)=1-2xln x-x, 令 φ(x)=1-2xln x-x,φ′(x)=-(2ln x+3),当 x∈[12,2]时,φ′(x)<0,

函数性质的八大题型综合应用(解析版)-高中数学

函数性质的八大题型综合应用(解析版)-高中数学

函数性质的八大题型综合应用题型梳理【题型1函数的单调性的综合应用】【题型2函数的最值问题】【题型3函数的奇偶性的综合应用】【题型4函数的对称性的应用】【题型5对称性与周期性的综合应用】【题型6类周期函数】【题型7抽象函数的性质】【题型8函数性质的综合应用】命题规律从近几年的高考情况来看,本节是高考的一个热点内容,函数的单调性、奇偶性、对称性与周期性是高考的必考内容,重点关注单调性、奇偶性结合在一起,与函数图象、函数零点和不等式相结合进行考查,解题时要充分运用转化思想和数形结合思想,灵活求解.对于选择题和填空题部分,重点考查基本初等函数的单调性、奇偶性,主要考察方向是:判断函数单调性及求最值、解不等式、求参数范围等,难度较小;对于解答题部分,一般与导数相结合,考查难度较大.知识梳理【知识点1函数的单调性与最值的求解方法】1.求函数的单调区间求函数的单调区间,应先求定义域,在定义域内求单调区间.2.函数单调性的判断(1)函数单调性的判断方法:①定义法;②图象法;③利用已知函数的单调性;④导数法.(2)函数y=f(g(x))的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.(3)函数单调性的几条常用结论:①若f(x)是增函数,则-f(x)为减函数;若f(x)是减函数,则-f(x)为增函数;②若f(x)和g(x)均为增(或减)函数,则在f(x)和g(x)的公共定义域上f(x)+g(x)为增(或减)函数;③若f(x)>0且f(x)为增函数,则函数f(x)为增函数,1f(x)为减函数;④若f(x)>0且f(x)为减函数,则函数f(x)为减函数,1f(x)为增函数.3.求函数最值的三种基本方法:(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.4.复杂函数求最值:对于较复杂函数,可运用导数,求出在给定区间上的极值,最后结合端点值,求出最值.【知识点2函数的奇偶性及其应用】1.函数奇偶性的判断判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.(3)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如f(x)+g(x),f(x)-g(x),f(x)×g(x),f(x)÷g(x).对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(4)复合函数y=f[g(x)]的奇偶性原则:内偶则偶,两奇为奇.(5)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).2.函数奇偶性的应用(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.【知识点3函数的周期性与对称性常用结论】1.函数的周期性常用结论(a是不为0的常数)(1)若f(x+a)=f(x),则T=a;(2)若f(x+a)=f(x-a),则T=2a;(3)若f(x+a)=-f(x),则T=2a;(4)若f(x+a)=f(1x),则T=2a;(5)若f(x+a)=f(1x),则T=2a;(6)若f(x+a)=f(x+b),则T=|a-b|(a≠b);2.对称性的三个常用结论(1)若函数f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数f(x)满足f(a+x)=-f(b-x),则y=f(x)的图象关于点a+b2,0对称.(3)若函数f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点a+b2,c 2对称.3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).举一反三【题型1函数的单调性的综合应用】1(2023·广东深圳·统考模拟预测)已知函数f x 的定义域为R,若对∀x∈R都有f3+x= f1-x,且f x 在2,+∞上单调递减,则f1 ,f2 与f4 的大小关系是()A.f4 <f1 <f2B.f2 <f1 <f4C.f1 <f2 <f4D.f4 <f2 <f1【解题思路】由f3+x=f1-x,得到f1 =f3 ,利用单调性即可判断大小关系,即可求解.【解答过程】因为对∀x∈R都有f3+x=f1-x,所以f1 =f3-2=f[1-(-2)]=f3 又因为f x 在2,+∞上单调递减,且2<3<4,所以f4 <f3 <f2 ,即f4 <f1 <f2 .故选:A.【变式训练】1(2023·山西朔州·怀仁市第一中学校校考二模)定义在R上的函数f(x)满足f2-x=f x ,且当x ≥1时,f (x )单调递增,则不等式f 2-x ≥f (x +1)的解集为()A.12,+∞ B.0,12C.-∞,-12D.-∞,12【解题思路】根据函数的对称性和单调性即可.【解答过程】由f 2-x =f (x ),得f (x )的对称轴方程为x =1,故2-x -1 ≥x +1 -1 ,即(1-x )2≥x 2,解得x ≤12.故选:D .2(2023上·江西鹰潭·高三校考阶段练习)已知函数f x =-x 2+2ax +4,x ≤1,1x,x >1是-12,+∞ 上的减函数,则a 的取值范围是()A.-1,-12B.-∞,-1C.-1,-12D.-∞,-1【解题思路】首先分析知,x >1,函数单调递减,则x ≤1也应为减函数,同时注意分界点处的纵坐标大小关系即可列出不等式组,解出即可.【解答过程】显然当x >1时,f x =1x为单调减函数,f x <f 1 =1当x ≤1时,f x =-x 2+2ax +4,则对称轴为x =-2a2×-1=a ,f 1 =2a +3若f x 是-12,+∞上减函数,则a ≤-122a +3≥1解得a ∈-1,-12 ,故选:A .3(2023·四川绵阳·统考三模)设函数f x 为x -1与x 2-2ax +a +3中较大的数,若存在x 使得f x ≤0成立,则实数a 的取值范围为()A.-43,-1 ∪1,4 B.-∞,-43∪4,+∞ C.-∞,1-132∪1+132,4D.-1,1【解题思路】根据绝对值函数的图像和二次函数讨论对称轴判定函数的图像即可求解.【解答过程】因为f x =max x -1,x 2-2ax +a +3 ,所以f x 代表x -1与x 2-2ax +a +3两个函数中的较大者,不妨假设g (x )=|x |-1,h (x )=x 2-2ax +a +3g (x )的函数图像如下图所示:h(x)=x2-2ax+a+3是二次函数,开口向上,对称轴为直线x=a,①当a<-1时,h(x)=x2-2ax+a+3在-1,1上是增函数,需要h(-1)=(-1)2-2a(-1)+a+3=3a+4≤0即a≤-4 3,则存在x使得f x ≤0成立,故a≤-4 3;②当-1≤a≤1时,h(x)=x2-2ax+a+3在-1,1上是先减后增函数,需要h(x)min=h(a)=a2-2a⋅a+a+3=-a2+a+3≤0,即a2-a-3≥0,解得a≥1+132或a≤1-132,又1+132>1,1-132<-1故-1≤a≤1时无解;③当a>1时,h(x)=x2-2ax+a+3在-1,1上是减函数,需要h(1)=12-2a+a+3=-a+4≤0即a≥4,则存在x使得f x ≤0成立,故a≥4.综上所述,a的取值范围为-∞,-4 3∪4,+∞.故选:B.【题型2函数的最值问题】1(2023·江西九江·校考模拟预测)若0<x<6,则6x-x2有()A.最小值3B.最大值3C.最小值9D.最大值9【解题思路】根据二次函数的性质进行求解即可.【解答过程】令y =6x -x 2=-(x -3)2+9,对称轴为x =3,开口向下,因为0<x <6,所以当x =3时,6x -x 2有最大值9,没有最小值,故选:D .【变式训练】1(2023·全国·校联考三模)已知函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,则实数b的取值范围是()A.-∞,-4B.9,+∞C.-4,9D.-92,9【解题思路】由已知可得当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立,通过分离变量,结合函数性质可求b 的取值范围【解答过程】因为f 1 =-3,函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,所以对∀x ∈-1,1 ,f x ≥-3恒成立,所以bx -b +3 x 3≥-3恒成立,即bx 1-x 2 ≥-31-x 3 恒成立,当x =1时,b ∈R ,当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立.当x =0或x =-1时,不等式显然成立;当0<x <1时,b ≥-3x 2+x +1 x 1+x =-31+1x 2+x,因为x 2+x ∈0,2 ,所以1x 2+x ∈12,+∞ ,1+1x 2+x ∈32,+∞ ,-31+1x 2+x∈-∞,-92 ,所以b ≥-92;当-1<x <0时,b ≤-31+1x 2+x,因为x 2+x ∈-14,0 ,所以1x 2+x ∈-∞,-4 ,1+1x 2+x ∈-∞,-3 ,-31+1x 2+x∈9,+∞ ,所以b ≤9.综上可得,实数b 的取值范围是-92,9.故选:D .2(2023上·广东广州·高一校考阶段练习)定义一种运算min a ,b =a ,a ≤bb ,a >b,设f x =min 4+2x -x 2,x -t (t 为常数,且x ∈[-3,3],则使函数f x 的最大值为4的t 的值可以是()A.-2或4B.6C.4或6D.-4【解题思路】根据定义,先计算y=4+2x-x2在x∈-3,3上的最大值,然后利用条件函数f(x)最大值为4,确定t的取值即可.【解答过程】y=4+2x-x2=-x-12+5在x∈-3,3上的最大值为5,所以由4+2x-x2=4,解得x=2或x=0,所以x∈0,2时,y=4+2x-x2>4,所以要使函数f(x)最大值为4,则根据定义可知,当t≤1时,即x=2时,2-t=4,此时解得t=-2,符合题意;当t>1时,即x=0时,0-t=4,此时解得t=4,符合题意;故t=-2或4.故选:A.3(2023·广东惠州·统考一模)若函数f x 的定义域为D,如果对D中的任意一个x,都有f x > 0,-x∈D,且f-xf x =1,则称函数f x 为“类奇函数”.若某函数g x 是“类奇函数”,则下列命题中,错误的是()A.若0在g x 定义域中,则g0 =1B.若g x max=g4 =4,则g x min=g-4=1 4C.若g x 在0,+∞上单调递增,则g x 在-∞,0上单调递减D.若g x 定义域为R,且函数h x 也是定义域为R的“类奇函数”,则函数G x =g x h x 也是“类奇函数”【解题思路】对A,根据“类奇函数”的定义,代入x=0求解即可;对B,根据题意可得g-x=1g x,再结合函数的单调性判断即可;对C,根据g-x=1g x,结合正负分数的单调性判断即可;对D,根据“类奇函数”的定义,推导G x G-x=1判断即可.【解答过程】对于A,由函数g x 是“类奇函数”,所以g x g-x=1,且g x >0,所以当x=0时,g0 g-0=1,即g0 =1,故A正确;对于B,由g x g-x=1,即g-x=1g x,g-x随g x 的增大而减小,若g(x)max=g4 =4,则g(x)min=g-4=14成立,故B正确;对于C,由g x 在0,+∞上单调递增,所以g-x=1g x,在x∈0,+∞上单调递减,设t=-x∈-∞,0 ,∴g t 在t ∈-∞,0 上单调递增,即g x 在x ∈-∞,0 上单调递增,故C 错误;对于D ,由g x g -x =1,h x h -x =1,所以G x G -x =g x g -x h x h -x =1,所以函数G x =g x h x 也是“类奇函数”,所以D 正确;故选:C .【题型3 函数的奇偶性的综合应用】1(2023·广东·东莞市校联考一模)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=ax +1,若f (-2)=5,则不等式f (x )>12的解集为()A.-∞,-12 ∪0,16B.-12,0 ∪0,16C.-∞,-12 ∪16,+∞ D.-12,0 ∪16,+∞ 【解题思路】根据条件可求得x >0时f (x )的解析式,根据函数为奇函数继而可求得当x <0时f (x )的解析式,分情况解出不等式即可.【解答过程】因为函数f (x )是定义在R 上的奇函数,所以f (-2)=-f (2)=5,则f (2)=-5,则2a +1=-5,所以a =-3,则当x >0时,f (x )=-3x +1,当x <0时,-x >0,则f (x )=-f (-x )=-[-3×(-x )+1]=-3x -1,则当x >0时,不等式f (x )>12为-3x +1>12,解得0<x <16,当x <0时,不等式f (x )>12为-3x -1>12,解得x <-12,故不等式的解集为-∞,-12 ∪0,16,故选:A .【变式训练】1(2023·全国·模拟预测)已知函数f (x ),g (x )的定义域均为R ,f (3x +1)为奇函数,g (x +2)为偶函数,f (x +1)+g (1-x )=2,f (0)=-12,则102k =1 g (k )=()A.-51B.52C.4152D.4092【解题思路】由题意,根据函数奇偶性可得f (x )的图象关于点(1,0)中心对称、g (x )的图象关于点(1,2)中心对称,进而可知g (x )是以4为周期的周期函数.求出g (1),g (2),g (3),g (4),结合周期即可求解.【解答过程】因为f (3x +1)为奇函数,所以f (x +1)为奇函数,所以f (x +1)=-f (-x +1),f (x )的图象关于点(1,0)中心对称,f (1)=0.因为g (x +2)为偶函数,所以g (x +2)=g (-x +2),g (x )的图象关于直线x =2对称.由f (x +1)+g (1-x )=2,得f (-x +1)+g (1+x )=2,则-f (x +1)+g (1+x )=2,所以g (x +1)+g (1-x )=4,g (x )+g (2-x )=4,所以g (x )的图象关于点(1,2)中心对称.因为g (x )的图象关于x =2轴对称,所以g (x )+g (2+x )=4,g (x +2)+g (x +4)=4,所以g (x +4)=g (x ),即g (x )是以4为周期的周期函数.因为f (1)=0,f (0)=-12,所以g (1)=2,g (2)=52,g (3)=g (1)=2,g (4)=g (0)=4-g (2)=32,所以102k =1g (k )=25×2+52+2+32 +2+52=4092.故选:D .2(2023·安徽亳州·蒙城第一中学校联考模拟预测)已知函数f x 是定义在R 上的偶函数,函数g x 是定义在R 上的奇函数,且f x ,g x 在0,+∞ 上单调递减,则()A.f f 2 >f f 3B.f g 2 <f g 3C.g g 2 >g g 3D.g f 2 <g f 3【解题思路】利用函数的单调性以及函数的奇偶性,判断各选项的正负即可.【解答过程】因为f x ,g x 在0,+∞ 上单调递减,f x 是偶函数,g x 是奇函数,所以g x 在R 上单调递减,f x 在-∞,0 上单调递增,对于A ,f 2 >f 3 ,但无法判断f 2 ,f 3 的正负,故A 不正确;对于B ,g 2 >g 3 ,但无法判断g 2 ,g 3 的正负,故B 不正确;对于C ,g 2 >g 3 ,g x 在R 上单调递减,所以g g 2 <g g 3 ,故C 不正确;对于D ,f 2 >f 3 ,g x 在R 上单调递减,g f 2 <g f 3 ,故D 正确.故选:D .3(2023·江西吉安·江西省遂川中学校考一模)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R有f (x 1+x 2)=f (x 1)+f (x 2)-2016,且x >0时,f (x )>2016,记f (x )在[-2017,2017]上的最大值和最小值为M ,N ,则M +N 的值为()A.2016B.2017C.4032D.4034【解题思路】先计算得到f (0)=2016,再构造函数g (x )=f (x )-2016,判断g (x )的奇偶性得出结论.【解答过程】解:令x 1=x 2=0得f (0)=2f (0)-2016,∴f (0)=2016,令x 1=-x 2得f (0)=f (-x 2)+f (x 2)-2016=2016,∴f (-x 2)+f (x 2)=4032,令g(x)=f(x)-2016,则g max(x)=M-2016,g min(x)=N-2016,∵g(-x)+g(x)=f(-x)+f(x)-4032=0,∴g(x)是奇函数,∴g max(x)+g min(x)=0,即M-2016+N-2016=0,∴M+N=4032.故选:C.【题型4函数的对称性的应用】1(2023·江西赣州·统考二模)已知函数f(x)的图像既关于点(-1,1)对称,又关于直线y=x对称,且当x∈[-1,0]时,f(x)=x2,则f174=()A.-194B.-92C.-72D.-174【解题思路】用Γ表示函数y=f x 的图像,设x0,y0∈Γ,根据中心对称性与轴对称性,得到4+y0,-4+x0∈Γ,令4+y0=174,求出y0,即可求出x0,即可得解.【解答过程】用Γ表示函数y=f x 的图像,对任意的x0∈-1,0,令y0=x20,则x0,y0∈Γ,且y0∈0,1,又函数f(x)的图像既关于点(-1,1)对称,且关于直线y=x对称,所以y0,x0∈Γ,则-2-y0,2-x0∈Γ,则2-x0,-y0-2∈Γ,则-4+x0,4+y0∈Γ,则4+y0,-4+x0∈Γ,令4+y0=174,即y0=14,此时x0=-12或x0=12(舍去),此时-4+x0=-4+-1 2=-92,即174,-92∈Γ,因此f174 =-92.故选:B.【变式训练】1(2023·四川绵阳·绵阳中学校考一模)若函数y=f x 满足f a+x+f(a-x)=2b,则说y=f x 的图象关于点a,b对称,则函数f(x)=xx+1+x+1x+2+x+2x+3+...+x+2021x+2022+x+2022x+2023的对称中心是()A.(-1011,2022)B.1011,2022C.(-1012,2023)D.1012,2023【解题思路】求出定义域,由定义域的对称中心,猜想a=-1012,计算出f(-1012+x)+f(-1012-x) =4046,从而求出对称中心.【解答过程】函数定义域为{x|x≠-1,x≠-2...,...x≠-2022,x≠-2023},定义域的对称中心为(-1012,0),所以可猜a=-1012,则f(-1012+x)=-1012+x-1011+x+-1011+x-1010+x+-1010+x-1009+x+...+1009+xx+1010+1010+x1011+x,f(-1012-x)=-1012-x-1011-x +-1011-x-1010-x+-1010-x-1009-x+...+1009-x1010-x+1010-x1011-x=1012+x 1011+x +1011+x1010+x+1010+x1009+x+...+1009-x1010-x+1010-x1011-x,故f(-1012+x)+f(-1012-x)=1010+x1011+x +1012+x 1011+x+1009+xx+1010+1011+x 1010+x⋯+-1012+x-1011+x +1010-x 1011-x=2×2023=4046所以y=f x 的对称中心为(-1012,2023),故选:C.2(2023·四川南充·四川省南充高级中学校考三模)函数f x 和g x 的定义域均为R,且y=f3+3x为偶函数,y=g x+3+2为奇函数,对∀x∈R,均有f x +g x =x2+1,则f7 g7 = ()A.615B.616C.1176D.2058【解题思路】由题意可以推出f x =f6-x,g x =-4-g6-x,再结合f x +g x =x2+1可得函数方程组,解出函数方程组后再代入求值即可.【解答过程】由函数f3+3x为偶函数,则f3+3x=f3-3x,即函数f x 关于直线x=3对称,故f x =f6-x;由函数g x+3+2为奇函数,则g x+3+2=-g-x+3-2,整理可得g x+3+g-x+3=-4,即函数g x 关于3,-2对称,故g x =-4-g6-x;由f x +g x =x2+1,可得f6-x+g6-x=(6-x)2+1,所以f x -4-g x =(6-x)2+1,故f x +g x =x2+1f x -4-g x =(6-x)2+1 ,解得f x =x2-6x+21,g x =6x-20,所以f7 =72-6×7+21=28,g7 =6×7-20=22,所以f7 g7 =28×22=616.故选:B.3(2023·甘肃张掖·高台县校考模拟预测)已知函数f(x)的定义域为R,f x-1的图象关于点(1,0)对称,f3 =0,且对任意的x1,x2∈-∞,0,x1≠x2,满足f x2-f x1x2-x1<0,则不等式x-1f x+1≥0的解集为()A.-∞,1∪2,+∞B.-4,-1∪0,1C.-4,-1∪1,2D.-4,-1∪2,+∞【解题思路】首先根据f(x-1)的图象关于点(1,0)对称,得出(x)是定义在R上的奇函数,由对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,得出f(x)在(-∞,0)上单调递减,然后根据奇函数的对称性和单调性的性质,求解即可.【解答过程】∵f(x-1)的图象关于点(1,0)对称,∴f(x)的图象关于点(0,0)对称,∴f(x)是定义在R 上的奇函数,∵对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,∴f(x)在(-∞,0)上单调递减,所以f(x)在(0,+∞)上也单调递减,又f3 =0所以f-3=0,且f0 =0,所以当x∈-∞,-3∪0,3时,f x >0;当x∈-3,0∪3,+∞时,f x <0,所以由x-1f x+1≥0可得x-1<0,-3≤x+1≤0或x-1>0,0≤x+1≤3或x-1=0,解得-4≤x≤-1或1≤x≤2,即不等式x-1f x+1≥0的解集为-4,-1∪1,2.故选:C.【题型5对称性与周期性的综合应用】1(2023·四川宜宾·统考一模)已知函数f x ,g x 的定义域为R,g x 的图像关于x=1对称,且g2x+2为奇函数,g1 =1,f x =g3-x+1,则下列说法正确的个数为()①g(-3)=g(5);②g(2024)=0;③f(2)+f(4)=-4;④2024n=1f(n)=2024.A.1B.2C.3D.4【解题思路】根据奇函数定义得到g-2x+2=-g2x+2,进而得到g x 的对称中心为,再根据对称轴求出周期,通过赋值得到答案.【解答过程】因为g2x+2为奇函数,所以g-2x+2=-g2x+2,则g-x+2=-g x+2,所以g x 对称中心为2,0,又因为g x 的图像关于x=1对称,则g-x+2=g x ,所以-g x+2=g x ,则g x+4=-g x+2=g x ,所以g x 的周期T=4,①g-3=g-3+8=g5 ,所以①正确;②因为g1 =1,g-x+2=g x ,g x 对称中心为2,0,所以g0 =g2 =0,所以g(2024)=g0 =0,所以②正确;③因为f x =g3-x+1,所以f2 =g1 +1=2,因为-g x+2=g x ,所以g-1=-g1 ,则f4 =g-1+1=-g1 +1=0,所以f(2)+f(4)=2,所以③错误;④因为f x =g 3-x +1且g x 周期T =4,所以f x +4 =g 3-x -4 +1=g 3-x +1=f x ,则f x 的周期为T =4,因为f 1 =g 2 +1=1,f 2 =2,f 3 =g 0 +1=1,f 4 =0,所以f 1 +f 2 +f 3 +f 4 =4,所以2024n =1 f (n )=506f 1 +f 2 +f 3 +f 4 =4 =506×4=2024,所以④正确.故选:C .【变式训练】1(2023·北京大兴·校考三模)已知函数f x 对任意x ∈R 都有f x +2 =-f x ,且f -x =-f x ,当x ∈-1,1 时,f x =x 3.则下列结论正确的是()A.函数y =f x 的图象关于点k ,0 k ∈Z 对称B.函数y =f x 的图象关于直线x =2k k ∈Z 对称C.当x ∈2,3 时,f x =x -2 3D.函数y =f x 的最小正周期为2【解题思路】根据f x +2 =-f x 得到f x +2 =f x -2 ,所以f x 的周期为4,根据f -x =-f x 得到f x 关于x =-1对称,画出f x 的图象,从而数形结合得到AB 错误;再根据f x =-f x -2 求出x ∈2,3 时函数解析式;D 选项,根据y =f x 的最小正周期,得到y =f x 的最小正周期.【解答过程】因为f x +2 =-f x ,所以f x =-f x -2 ,故f x +2 =f x -2 ,所以f x 的周期为4,又f -x =-f x ,所以f -x =f x -2 ,故f x 关于x =-1对称,又x ∈-1,1 时,f x =x 3,故画出f x 的图象如下:A 选项,函数y =f x 的图象关于点1,0 不中心对称,故A 错误;B 选项,函数y =f x 的图象不关于直线x =2对称,B 错误;C 选项,当x ∈2,3 时,x -2∈0,1 ,则f x =-f x -2 =-x -2 3,C 错误;D 选项,由图象可知y =f x 的最小正周期为4,又f x +2 =-f x =f x ,故y =f x 的最小正周期为2,D 正确.故选:D .2(2023·四川绵阳·绵阳校考模拟预测)已知函数f x 的定义域为R ,f 1 =0,且f 0 ≠0,∀x ,y∈R 都有f x +y +f x -y =2f x f y ,则下列说法正确的命题是()①f 0 =1;②∀x ∈R ,f -x +f x =0;③f x 关于点1,0 对称;④2023i =1 f (i )=-1A.①②B.②③C.①②④D.①③④【解题思路】利用特殊值法,结合函数的奇偶性、对称性和周期性进行求解即可.【解答过程】对于①,由于∀x ,y ∈R 都有f x +y +f x -y =2f x f y ,所以令x =y =0,则f 0 +f 0 =2f 0 f 0 ,即f 0 =f 20 ,因为f 0 ≠0,所以f 0 =1,所以①正确,对于②,令x =0,则f y +f -y =2f 0 f y =2f y ,所以f y =f -y ,即f x =f -x ,所以∀x ∈R ,f -x -f x =0,所以②错误,对于③,令x =1,则f 1+y +f 1-y =2f 1 f y =0,所以f 1+y =-f 1-y ,即f 1+x =-f 1-x ,所以f x 关于点1,0 对称,所以③正确,对于④,因为f 1+x =-f 1-x ,所以f 2+x =-f -x ,因为f x =f -x ,所以f 2+x =-f x ,所以f 4+x =-f 2+x ,所以f 4+x =f x ,所以f x 的周期为4,在f x +y +f x -y =2f x f y 中,令x =y =1,则f 2 +f 0 =2f 1 f 1 =0,因为f 0 =1,所以f (2)=-1,f (3)=f (-1)=f (1)=0,f (4)=f (0)=1,所以f (1)+f (2)+f (3)+f (4)=0+(-1)+0+1=0,所以2023i =1 f (i )=505×f (1)+f (2)+f (3)+f (4) +f (1)+f (2)+f (3)=-1,所以④正确,故选:D .3(2023·安徽合肥·合肥一中校考模拟预测)已知函数f x 与g (x )的定义域均为R ,f (x +1)为偶函数,且f (3-x )+g (x )=1,f (x )-g (1-x )=1,则下面判断错误的是()A.f x 的图象关于点(2,1)中心对称B.f x 与g x 均为周期为4的周期函数C.2022i =1f (i )=2022D.2023i =0g (i )=0【解题思路】由f (x +1)为偶函数可得函数关于直线x =1轴对称,结合f (3-x )+g (x )=1和f (x )-g (1-x )=1可得f x 的周期为4,继而得到g x 的周期也为4,接着利用对称和周期算出对应的值即可判断选项【解答过程】因为f x +1 为偶函数,所以f x +1 =f -x +1 ①,所以f x 的图象关于直线x =1轴对称,因为f x -g 1-x =1等价于f 1-x -g x =1②,又f 3-x +g x =1③,②+③得f 1-x +f 3-x =2④,即f 1+x +f 3+x =2,即f 2+x =2-f x ,所以f 4+x =2-f 2+x =f x ,故f x 的周期为4,又g x =1-f 3-x ,所以g x 的周期也为4,故选项B 正确,①代入④得f 1+x +f 3-x =2,故f x 的图象关于点2,1 中心对称,且f 2 =1,故选项A 正确,由f 2+x =2-f x ,f 2 =1可得f 0 =1,f 4 =1,且f 1 +f 3 =2,故f 1 +f 2 +f 3 +f 4 =4,故2022i =1 f (i )=505×4+f (1)+f (2)=2021+f (1),因为f 1 与f 3 值不确定,故选项C 错误,因为f 3-x +g x =1,所以g 1 =0,g 3 =0,g 0 =1-f 3 ,g 2 =1-f 1 ,所以g 0 +g 2 =2-f 1 +f 3 =0,故g 0 +g 1 +g 2 +g 3 =0,故2023i =0 g (i )=506×0=0,所以选项D 正确,故选:C .【题型6 类周期函数】1(2023·安徽合肥·合肥一六八中学校考模拟预测)定义在R 上的函数f x 满足f x +1 =12f x ,且当x ∈0,1 时,f x =1-2x -1 .当x ∈m ,+∞ 时,f x ≤332,则m 的最小值为()A.278B.298C.134D.154【解题思路】根据已知计算出f x =12n 1-2x -2n +1 ≤12n ,画出图象,计算f x =332,解得x =298,从而求出m 的最小值.【解答过程】由题意得,当x ∈1,2 时,故f x =12f x -1 =121-2x -3 ,当x ∈2,3 时,故f x =12f x -1 =141-2x -5 ⋯,可得在区间n ,n +1 n ∈Z 上,f x =12n 1-2x -2n +1 ≤12n ,所以当n ≥4时,f x ≤332,作函数y =f x 的图象,如图所示,当x ∈72,4 时,由f x =181-2x -7 =332,2x -7 =14,x =298,则m ≥298,所以m 的最小值为298故选:B .【变式训练】1(2023上·湖南长沙·高三校考阶段练习)定义域为R 的函数f x 满足f x +2 =2f x -1,当x∈0,2 时,f x =x 2-x ,x ∈0,1 1x,x ∈1,2.若x ∈0,4 时,t 2-7t 2≤f x ≤3-t 恒成立,则实数t 的取值范围是()A.1,2B.1,52C.12,2D.2,52【解题思路】由f (x +2)=2f (x )-1,求出x ∈(2,3),以及x ∈[3,4]的函数的解析式,分别求出(0,4]内的四段的最小值和最大值,注意运用二次函数的最值和函数的单调性,再由t 2-7t2≤f x ≤3-t 恒成立即为t 2-7t2≤f x min ,f x max ≤3-t ,解不等式即可得到所求范围【解答过程】当x ∈(2,3),则x -2∈(0,1),则f (x )=2f (x -2)-1=2(x -2)2-2(x -2)-1,即为f (x )=2x 2-10x +11,当x ∈[3,4],则x -2∈[1,2],则f (x )=2f (x -2)-1=2x -2-1.当x ∈(0,1)时,当x =12时,f (x )取得最小值,且为-14;当x ∈[1,2]时,当x =2时,f (x )取得最小值,且为12;当x ∈(2,3)时,当x =52时,f (x )取得最小值,且为-32;当x ∈[3,4]时,当x =4时,f (x )取得最小值,且为0.综上可得,f (x )在(0,4]的最小值为-32.若x ∈(0,4]时, t 2-7t2≤f x min 恒成立,则有t 2-7t 2≤-32.解得12≤t ≤3.当x ∈(0,2)时,f (x )的最大值为1,当x ∈(2,3)时,f (x )∈-32,-1 ,当x ∈[3,4]时,f (x )∈[0,1],即有在(0,4]上f (x )的最大值为1.由f x max ≤3-t ,即为1≤3-t ,解得t ≤2,综上,即有实数t 的取值范围是12,2.故选:C .2(2022·四川内江·校联考二模)定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,若x ∈[-4,-2]时,f (x )≥1183t-t 恒成立,则实数t 的取值范围是()A.-∞,-1 ∪0,3B.-∞,-3 ∪0,3C.-1,0 ∪3,+∞D.-3,0 ∪3,+∞【解题思路】根据题意首先得得到函数的具体表达式,由x ∈[-4,-2],所以x +4∈[0,2],所以f (x +4)=x 2+6x +8,再由f (x +4)=3f (x +2)=9f (x )可得出f (x )的表达式,在根据函数思维求出f (x )最小值解不等式即可.【解答过程】因为x ∈[-4,-2],所以x +4∈[0,2],因为x ∈[0,2]时,f x =x 2-2x ,所以f x +4 =(x +4)2-2(x +4)=x 2+6x +8,因为函数f x 满足f x +2 =3f x ,所以f x +4 =3f x +2 =9f x ,所以f x =19f x +4 =19x 2+6x +8 ,x ∈[-4,-2],又因为x ∈[-4,-2],f x ≥1183t-t 恒成立,故1183t -t ≤f x min =-19,解不等式可得t ≥3或-1≤t <0.故选C .3(2023上·浙江台州·高一校联考期中)设函数f x 的定义域为R ,满足f x =2f x -2 ,且当x∈0,2 时,f x =x 2-x .若对任意x ∈-∞,m ,都有f x ≤3,则m 的取值范围是()A.-∞,52B.-∞,72C.-∞,92D.-∞,112【解题思路】根据给定条件分段求解析式及对应函数值集合,再利用数形结合即得.【解答过程】因为函数f x 的定义域为R ,满足f x =2f x -2 ,且当x ∈0,2 时,f x =x 2-x =-x -1 2+1∈0,1 ,当x ∈(2,4],时,x -2∈(0,2],则f (x )=2f (x -2)=2x -2 2-x -2 =-2x -3 2+2∈0,2 ,当x ∈(4,6],时,x -4∈(0,2],则f (x )=4f (x -2)=4x -2-2 4-x -2 =-4x -5 2+4∈0.4 ,当x ∈(-2,0],时,x +2∈(0,2],则f (x )=12f (x +2)=12(x +2)-x =-12x +1 2+12∈0,12,作出函数f x 的大致图象,对任意x ∈-∞,m ,都有f x ≤3,设m 的最大值为t ,则f t =3,所以-4t -5 2+4=3,解得t =92或t =112,结合图象知m 的最大值为92,即m 的取值范围是-∞,92.故选:C .【题型7 抽象函数的性质】1(2023·新疆乌鲁木齐·统考二模)已知f x ,g x 都是定义在R 上的函数,对任意x ,y 满足f x -y=f x g y -g x f y ,且f -2 =f 1 ≠0,则下列说法正确的是()A.f 0 =1B.函数g 2x +1 的图象关于点1,0 对称C.g 1 +g -1 =0D.若f 1 =1,则2023n =1 f n =1【解题思路】利用赋值法结合题目给定的条件可判断AC ,取f x =sin2π3x ,g x =cos 2π3x 可判断B ,对于D ,通过观察选项可以推断f x 很可能是周期函数,结合f x g y ,g x f y 的特殊性及一些已经证明的结论,想到令y =-1和y =1时可构建出两个式子,两式相加即可得出f x +1 +f x -1 =-f x ,进一步得出f x 是周期函数,从而可求2023n =1 f n 的值.【解答过程】解:对于A ,令x =y =0,代入已知等式得f 0 =f 0 g 0 -g 0 f 0 =0,得f 0 =0,故A 错误;对于B ,取f x =sin 2π3x ,g x =cos 2π3x ,满足f x -y =f x g y -g x f y 及f -2 =f 1 ≠0,因为g 3 =cos2π=1≠0,所以g x 的图象不关于点3,0 对称,所以函数g 2x +1 的图象不关于点1,0 对称,故B 错误;对于C ,令y =0,x =1,代入已知等式得f 1 =f 1 g 0 -g 1 f 0 ,可得f 1 1-g 0 =-g 1 f 0 =0,结合f 1 ≠0得1-g 0 =0,g 0 =1,再令x =0,代入已知等式得f -y =f 0 g y -g 0 f y ,将f 0 =0,g 0 =1代入上式,得f -y =-f y ,所以函数f x 为奇函数.令x =1,y =-1,代入已知等式,得f 2 =f 1 g -1 -g 1 f -1 ,因为f -1 =-f 1 ,所以f 2 =f 1 g -1 +g 1 ,又因为f 2 =-f -2 =-f 1 ,所以-f 1 =f 1 g -1 +g 1 ,因为f 1 ≠0,所以g 1 +g -1 =-1,故C 错误;对于D ,分别令y =-1和y =1,代入已知等式,得以下两个等式:f x +1 =f x g -1 -g x f -1 ,f x -1 =f x g 1 -g x f 1 ,两式相加易得f x +1 +f x -1 =-f x ,所以有f x +2 +f x =-f x +1 ,即:f x =-f x +1 -f x +2 ,有:-f x +f x =f x +1 +f x -1 -f x +1 -f x +2 =0,即:f x -1 =f x +2 ,所以f x 为周期函数,且周期为3,因为f 1 =1,所以f -2 =1,所以f 2 =-f -2 =-1,f 3 =f 0 =0,所以f 1 +f 2 +f 3 =0,所以2023n =1 f n =1=f 1 +f 2 +f 3 +⋯+f 2023 =f 2023 =f 1 =1,故D 正确.故选:D .【变式训练】1(2023·福建宁德·福鼎市校考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x f y ,则下列说法正确的个数是()①f 0 =0;②fx 必为奇函数;③f x +f 0 ≥0;④若f (1)=12,则2023n =1f (n )=12.A.1B.2C.3D.4【解题思路】利用赋值法可判断①;利用赋值法结合函数奇偶性定义判断②;赋值,令y =x ,得出f 2x+f0 ≥0,变量代换可判断③;利用赋值法求出f(n)部分函数值,推出其值具有周期性,由此可计算2023n=1f(n),判断④,即可得答案.【解答过程】令x=y=0,则由f x+y+f x-y=2f x f y 可得2f0 =2f20 ,故f(0)=0或f0 =1,故①错误;当f(0)=0时,令y=0,则f(x)+f(x)=2f(x)f(0)=0,则f(x)=0,故f (x)=0,函数f (x)既是奇函数又是偶函数;当f(0)=1时,令x=0,则f(y)+f(-y)=2f(0)f(y),所以f-y=f y ,则-f (-y)=f (y),即f (-y)=-f (y),则f (x)为奇函数,综合以上可知f (x)必为奇函数,②正确;令y=x,则f2x+f0 =2f2x ,故f2x+f0 ≥0.由于x∈R,令t=2x,t∈R,即f t +f0 ≥0,即有f x +f0 ≥0,故③正确;对于D,若f1 =12,令x=1,y=0,则f1 +f1 =2f1 f0 ,则f(0)=1,令x=y=1,则f2 +f0 =2f21 ,即f2 +1=12,∴f2 =-12,令x=2,y=1,则f3 +f1 =2f2 f1 ,即f3 +12=-12,∴f(3)=-1,令x=3,y=1,则f4 +f2 =2f3 f1 ,即f4 -12=-1,∴f(4)=-12,令x=4,y=1,则f5 +f3 =2f4 f1 ,即f5 -1=-12,∴f(5)=12,令x=5,y=1,则f6 +f4 =2f5 f1 ,即f6 -12=12,∴f(6)=1,令x=6,y=1,则f7 +f5 =2f6 f1 ,即f7 +12=1,∴f(7)=12,令x=7,y=1,则f8 +f6 =2f7 f1 ,即f8 +1=12,∴f(8)=-12,⋯⋯,由此可得f(n),n∈N*的值有周期性,且6个为一周期,且f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,故2023n=1f n =337×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)=12,故④正确,即正确的是②③④,故选:C.2(2023·河南·校联考模拟预测)已知函数f x 对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,且当x<0时,f(x)>0.(1)求f(0)的值;(2)判断f x 的单调性,并证明;(3)解关于x的不等式:f x2-(a+2)x+f(a+y)+f(a-y)>0.【解题思路】(1)根据题意,令x=0,y=0,即可求得f(0)=0;(2)令x=0,得到f(-y)=-f(y),所以f x 为奇函数,在结合题意和函数单调性的定义和判定方法,即可求解;(3)化简不等式为f x2-(a+2)x>f(-2a),结合函数f x 的单调性,把不等式转化为x2-(a+2)x <-2a,结合一元二次不等式的解法,即可求解.【解答过程】(1)解:因为函数f(x)对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,令x=0,y=0,则f(0)+f(0)=f(0),所以f(0)=0.(2)解:函数f x 为R上的减函数.证明:令x=0,则f(-y)+f(y)=f(0)=0,所以f(-y)=-f(y),故f x 为奇函数.任取x1,x2∈R,且x1<x2,则x1-x2<0,因为当x<0时,f(x)>0,所以f x1-x2>0,所以f x1-f x2=f x1+f-x2=fx1-x22+x1+x22+f x1-x22-x1+x22=f x1-x2>0,即f x1>f x2,所以f x 是R上的减函数.(3)解:根据题意,可得f x2-(a+2)x>-[f(a+y)+f(a-y)]=-f(2a)=f(-2a),由(2)知f x 在R上单调递减,所以x2-(a+2)x<-2a,即x2-(a+2)x+2a<0,可得(x-2)(x-a)<0,当a>2时,原不等式的解集为(2,a);当a=2时,原不等式的解集为∅;当a<2时,原不等式的解集为(a,2).3(2023上·广东东莞·高一校联考期中)已知函数f x 对任意实数x,y恒有f x+y=f x +f y ,当x>0时,f x <0,且f1 =-2.(1)判断f x 的奇偶性;(2)判断函数单调性,求f x 在区间-3,3上的最大值;(3)若f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,求实数m的取值范围.【解题思路】(1)令x=y=0,求得f0 =0,再令y=-x,从而得f-x=-f x ,从而证明求解. (2)设x1,x2∈R且x1<x2,结合条件用单调性的定义证明函数f x 的单调性,然后利用单调性求解区间-3,3上的最大值.(3)根据函数f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,说明f x 的最大值2小于右边,因此先将右边看作a的函数,解不等式组,即可得出m的取值范围.【解答过程】(1)f x 为奇函数,证明如下:令x=y=0,则f0+0=2f0 ,所以f0 =0,令y=-x,则f x-x=f x +f-x=f0 =0,所以:f-x=-f x 对任意x∈R恒成立,所以函数f x 为奇函数.(2)f x 在R上是减函数,证明如下:任取x1,x2∈R且x1<x2,则x2-x1>0f x2-f x1=f x2+f-x1=f x2-x1<0,所以f x2<f x1,所以f x 在R上为减函数.当x∈-3,3时,f x 单调递减,所以当x=-3时,f x 有最大值为f-3,因为f3 =f2 +f1 =3f1 =-2×3=-6,所以f-3=-f3 =6,故f x 在区间-3,3上的最大值为6.(3)由(2)知f x 在区间-1,1上单调递减,所以f x ≤f-1=-f1 =2,因为f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,即m2-2am>0对任意a∈-1,1恒成立,令g a =-2am+m2,则g-1>0g1 >0,即2m+m2>0-2m+m2>0,解得:m>2或m<-2.故m的取值范围为-∞,-2∪2,+∞.【题型8函数性质的综合应用】1(2023上·河北石家庄·高一校考阶段练习)已知函数f(x)=a x,g(x)=b⋅a-x+x,a>0且a≠1,若f(1)+g(1)=52,f(1)-g(1)=32,设h(x)=f(x)+g(x),x∈[-4,4].(1)求函数h(x)的解析式并判断其奇偶性;(2)判断函数h(x)的单调性(不需证明),并求不等式h(2x+1)+h(2x-1)≥0的解集.【解题思路】(1)由f(1)+g(1)=52、f(1)-g(1)=32代入可解出a、b,得到h(x),再计算h(x)与h(-x)的关系即可得到奇偶性;(2)分别判断h(x)中每一部分的单调性可得h(x)的单调性,结合函数的单调性与奇偶性解决该不等式即可得.【解答过程】(1)由f(1)+g(1)=52,f(1)-g(1)=32,即有a+ba+1=52a-ba-1=32,解得a=2b=-1,即f(x)=2x,g(x)=-2-x+x,则h(x)=2x-2-x+x,其定义域为R,h (-x )=2-x -2x -x =-2x -2-x +x =-h (x ),故h (x )为奇函数.(2)h (x )=2x -2-x +x ,由2x 在R 上单调递增,-2-x 在R 上单调递增,x 在R 上单调递增,故h (x )在R 上单调递增,由h (2x +1)+h (2x -1)≥0,且h (x )为奇函数,即有h (2x +1)≥-h (2x -1)=h 1-2x ,即有2x +1≥1-2x ,解得x ≥0,故该不等式的解集为x x ≥0 .【变式训练】1(2023上·上海·高一校考期中)已知定义在全体实数上的函数f x 满足:①f x 是偶函数;②f x 不是常值函数;③对于任何实数x 、y ,都有f x +y =f x f y -f 1-x f 1-y .(1)求f 1 和f 0 的值;(2)证明:对于任何实数x ,都有f x +4 =f x ;(3)若f x 还满足对0<x <1有f x >0,求f 13+f 23 +⋯+f 20263 的值.【解题思路】(1)取x =1,y =0代入计算得到f 1 =0,取y =0得到f x =f x f 0 ,得到答案.(2)取y =1,结合函数为偶函数得到f x +2 =-f x ,变换得到f x +4 =f x ,得到证明.(3)根据函数的周期性和奇偶性计算f 13 +f 23 +⋯+f 123 =0,取x =y =13和取x =13,y =-13得到f 13 =32,根据周期性得到f 13 +f 23 +⋯+f 20263=-f 13 -1,计算得到答案.【解答过程】(1)f x +y =f x f y -f 1-x f 1-y取x =1,y =0得到f 1 =f 1 f 0 -f 0 f 1 =0,即f 1 =0;取y =0得到f x =f x f 0 -f 1-x f 1 =f x f 0 ,f x 不是常值函数,故f 0 =1;(2)f x +y =f x f y -f 1-x f 1-y ,取y =1得到f x +1 =f x f 1 -f 1-x f 0 =-f 1-x ,f x 是偶函数,故f x +1 =-f x -1 ,即f x +2 =-f x ,f x +4 =-f x +2 =f x .(3)f x +2 +f x =0,f x 为偶函数,取x =-13,则f 53 +f -13 =0,即f 53 +f 13 =0;取x =-23,则f 43 +f -23 =0,即f 43 +f 23=0;故f 73+f 83 +f 103 +f 113 =-f 13 -f 23 -f 43 -f 53 =0,f 2 =-f 0 =-1,f 3 =f -1 =f 1 =0,f 4 =f 0 =1,故f 13+f 23 +⋯+f 123 =0,取x =y =13得到f 23 =f 213 -f 223,取x =13,y =-13得到f 0 =f 213 -f 23 f 43 =f 213 +f 223=1,f 13 >0,f 23 >0,解得f 13 =32,f 13+f 23 +⋯+f 20263 =-f 113 -f 123 =-f 13 -1=-32-1.2(2023下·山西运城·高二统考期末)已知f x =e x -1+e 1-x +x 2-2x +a ,(1)证明:f x 关于x =1对称;(2)若f x 的最小值为3(i )求a ;(ii )不等式f m e x +e -x +1 >f e x -e -x 恒成立,求m 的取值范围【解题思路】(1)代入验证f (x )=f (2-x )即可求解,(2)利用单调性的定义证明函数的单调性,即可结合对称性求解a =2,分离参数,将恒成立问题转化为m >e x -e -x -1e x +e -xmax ,构造函数F (x )=e x -e -x -1e x +e-x ,结合不等式的性质即可求解最值.【解答过程】(1)证明:因为f x =e x -1+e 1-x +x 2-2x +a ,所以f (2-x )=e 2-x -1+e1-(2-x )+(2-x )2-2(2-x )+a =e 1-x +e x -1+x 2-2x +a ,所以f (x )=f (2-x ),所以f (x )关于x =1对称.(2)(ⅰ)任取x 1,x 2∈(1,+∞),且x 1<x 2f x 1 -f x 2 =e x 1-1+e1-x 1+x 21-2x 1-ex 2-1+e1-x 2+x 22-2x 2=e x 1-1-ex 2-1+e1-x 1-e1-x 2+x 21-x 22 -2x 1-x 2=(ex 1-1-ex 2-1)(e x 1-1e x 2-1-1)ex 1-1ex 2-1+(x 1-x 2)(x 1+x 2-2)∵1<x 1<x 2,∴0<x 1-1<x 2-1,∴e x 1-1>1,ex 2-1>1,ex 1-1-ex 2-1<0,ex 1-1e x 2-1-1>0,x 1-x 2<0,x 1+x 2-2>0,∴f (x 1)<f (x 2),所以f (x )在1,+∞ 上单调递增,又f (x )关于x =1对称,则在-∞,1 上单调递减.所以f (x )min =f (1)=1+a =3,所以a =2.(单调性也可以用单调性的性质、复合函数的单调性判断、导数证明)(ⅱ)不等式f (m (e x +e -x )+1)>f (e x -e -x )恒成立等价于(m (e x +e -x )+1)-1 >e x -e -x -1 恒成立, 即m >ex-e -x -1 e x +e -x =e x -e -x -1e x +e -x恒成立,即m >e x -e -x -1e x +e -xmax令F (x )=e x -e -x -1e x +e -x ,则F (x )=e 2x -e x -1e 2x +1=1-e x +2e 2x +1,令e x +2=n ,n ∈2,+∞ ,则e x =n -2则g n =1-n n 2-4n +5=1-1n -4+5n,因为n ∈2,+∞ ,n -4+5n ≥25-4,n =5取等号,则g n ∈-52,1,所以g n ∈0,52,所以m >52,即m ∈-∞,-52 ∪52,+∞ .3(2023下·广东·高一统考期末)已知函数y =φx 的图象关于点P a ,b 成中心对称图形的充要条件是φa +x +φa -x =2b .给定函数f x =x -6x +1及其图象的对称中心为-1,c .(1)求c 的值;(2)判断f x 在区间0,+∞ 上的单调性并用定义法证明;(3)已知函数g x 的图象关于点1,1 对称,且当x ∈0,1 时,g x =x 2-mx +m .若对任意x 1∈0,2 ,总存在x 2∈1,5 ,使得g x 1 =f x 2 ,求实数m 的取值范围.【解题思路】(1)根据函数的对称性得到关于c 的方程,解出即可求出函数的对称中心;(2)利用函数单调性的定义即可判断函数f (x )单增,(3)问题转化为g (x )在[0,2]上的值域A ⊆[-2,4],通过讨论m 的范围,得到关于m 的不等式组,解出即可.【解答过程】(1)由于f (x )的图象的对称中心为-1,c ,则f (-1+x )+f (-1-x )=2c ,即(x -1)-6x -1+1+(-x -1)-6-x -1+1=2c ,整理得-2=2c ,解得:c =-1,故f (x )的对称中心为(-1,-1);(2)函数f (x )在(0,+∞)递增;设0<x 1<x 2,则f x 1 -f x 2 =x 1-6x 1+1-x 2+6x 2+1=x 1-x 2 +6x 1-x 2 x 2+1 x 1+1=x 1-x 2 1+6x 2+1 x 1+1,由于0<x 1<x 2,所以x 1-x 2<0, 6x 2+1 x 1+1>0,所以f x 1 -f x 2 <0⇒f x 1 <f x 2 ,故函数f (x )在(0,+∞)递增;。

简谈二次函数的综合应用

简谈二次函数的综合应用

() 1 当每吨售价为 20元时, 4 计算此时的月销 售量 ;
() 2 求出 Y与 的函数关系式( 不要求写 出
所 以 当月利 润最 大 时 , 月销 售 额不 是 最 大 , 小 静 故 说 的不 对.
说明 这是二次 函数 的性质在实际问题中的
第 6期
周增 强 : 简谈 二 次 函 数 的 综 合 应 用
简 谈 二 次
●周增 强
函 数 的 综 合 应 用
( 苏步青学校 浙江平阳 350 ) 244
二次 函数是初中数学教学的重要 内容之一。 作 为最基本 的初等 函数 , 二次 函数内容广泛 , 颇受命 题者青睐 各地中考试题 中二次函数 的考题 , 既有 解析式、 值域与最值 等基本 内容 , 也有通过 与二次
的取值范围) ; () 3 该经销店要获得最大月利 润, 售价应定为 每吨 多少元 ? () 4 小静说 : 当月利润最大时 , “ 月销售额也最 大”你认为对吗?请说明理 由. , 解 () 1 由题 意得 , 月销 售量 为 4 5+(6 2 0 2 0— 4 )X7 5÷1 6 ( ) . 0= 0 吨 . () 2 根据 题 意得
方程 、 二次不等式 的联系而变化 出各种各样的代数 问题 ; 还有大量的从 图像角度、 结合坐标系衍 生而 成的数形结合 问题. 这类问题综合性强、 难度大 , 往 往 以压 轴 题 的形式 出现. 文将通 过一 些 中考 试题 本
和模拟题对二次函数综合应用进行分类说明.
1 实际应 用题
・2 ・ 7
应用. 解这类题型 的重 点是列 出二次 函数 的关 系 式 , 后运 用 二 次 函数 的性 质解 题. 然 2 动 点 运动 问题

《函数的应用(二)》示范公开课教学设计

《函数的应用(二)》示范公开课教学设计

《函数的应用(二)》教学设计◆教学目标1.通过实例了解指数函数、对数函数、幂函数在复利计算、增长率等实际问题中的应用,进一步培养数学建模能力;2.在解决相关问题的过程中,巩固指对幂运算,提升数学运算的核心素养;3.通过实际问题的解决,逐步培养分析问题、解决问题的能力,渗透德育教育.◆教学重难点◆教学重点:能够运用指数函数、对数函数、幂函数解决某些简单的实际应用问题.教学难点:根据实际问题建立相应的数学模型.◆课前准备PPT课件.◆教学过程一、整体概览问题1:阅读课本第42-44页,回答下列问题:(1)本节将要研究哪类问题?(2)本节要研究的问题在数学中的地位是怎样的?师生活动:学生带着问题阅读课本,老师指导学生概括总结本节的内容.预设的答案:本节课要学的内容是函数的应用(二),主要讨论的是指数函数、对数函数和幂函数的应用,类似的内容能加深学生对所学函数知识的理解,同时能提高学生利用所学知识解决实际问题的能力,在学习本节知识之前,可引导学生回顾一下有关内容,如指数函数、对数函数、幂函数的单调性等.设计意图:通过本节课内容的预习,让学生明晰下一阶段的学习目标,初步搭建学习内容的框架.二、问题导入引语:因为生活中很多量与量的关系都可以归结为指数关系,因此指数函数、对数函数和幂函数有着广泛的应用.下面举例说明.(板书:函数的应用(二))【新知探究】问题2:复利计息与“70原则”复利计息,俗称“利滚利”,是把前一期的本金和利息加在一起,作为下一期的本金进行计息的一种方式.所谓“70原则”,是指在复利计息的情况下,本息和翻倍的一种简算方思考与讨论:①复利问题中涉及到哪些变量?这些变量之间有什么数量关系?②“70原则”研究的问题中,所需满足的数量关系是什么?所需求解的变量是什么?③如何说明“70原则”包含的数学道理?师生活动:学生尝试自己得出问题的结果.并思考运用的是何种函数模型.预设的答案:①本金、利率、存期、本息和,本息和=本金×(1+利率)存期.②设本金为a元,每期利率为r,存期为x*f x元,则x∈N,到期的本息和为()()=+.()(1)xf x a r设计意图:银行利率问题是我们身边最常见的一种经济指数模型,银行计息在存款与贷款中必不可少.通过这一例子,可以让学生初步认识到指数函数在利息计算中的应用,体现到用所学知识解决表面看起来很深奥的问题,为今后研究借贷计息作一铺垫.例 1 有些银行存款是按复利的方式和计算利息的,即把前一期的利息与本金加在一起作为本金,再计算下一期的利息,假设最开始本金为a元,每期的利率为r,存x期后本息和为f(x)元.(1)写出f(x)的解析式;(2)至少要经过多少期后,本息和才能不小于本金的2倍?解:(1)不难看出,f(1)=a+ar=a(1+r),f(2)=a(1+r)+a(1+r)r=a(1+r)2f(3)=a(1+r)2+a(1+r)2r=a(1+r)3......因此f (x )=a (1+r )x ,x ∈N*.(2)由f (x )≥2a ,由此可解得 x ≥ln2ln 1r +()设不小于ln2ln 1r +()的最小整数为0x ,则至少要经过0x 期后,本息和才能不小于本金的2倍.由例1的(2)可以得到银行业中经常使用“70原则”:因为ln2≈0.69315,而且当r 比较小时,ln (1+r )≈r ,所以ln20.6931570ln 1100r r r≈≈+() 即利率为r 时,本息和大约要70100r期才能“倍增”(即为原来的2倍).例如,当年利率为5%时,约要经过14年,本息和才能“倍增”问题3: 年均下降率与节能减排问题按照《国务院关于印发“十三五”节能减排综合工作方案的通知》(国发[2016]74号)的要求,到2020年,全国二氧化硫排放总量要控制在1580万吨以内,要比2015年下降15%. 师生活动:①2015年二氧化硫排放总量的最大值是多少万吨?(精确到1万吨) ②年均下降率是指一定年限内,平均每年下降的速度.请问在“十三五”期间,全国每年二氧化硫排放的年均下降率是多少?(精确到0.001)③如果2016~2019这四年的年均下降率均为3%,那么2020年的年均下降率应为多少?(精确到0.001)④2019年全国二氧化硫排放总量应控制在多少万吨以内?(精确到1万吨)预设的答案:一般地,若记2015年之后的第x (0,1,2,3,4,5)x =年二氧化硫排放总量的最大值为()f x 万吨,则()(0)(1)x f x f r =⋅-.设计意图:节能减排,节约能源,保护环境,这是当前国家一项重要的工作举措.随着现代社会物质生活条件的提高,各种能源消耗也增大不少,而我们往往忽视能源的减少还会带来环境的恶化,危害人们的生活乃至生命.本例意图是给学生渗透一种节能环保的意识. 例3 已知某地区第一年的经济增长率为a (a ∈[0,1]且a 为常数),第二年的经济增长率为x (x ≥0),这两年的平均经济增长率为y ,写出y 与x 的关系,并求y 的最小值.师生活动:学生充分思考后,写出并有老师给出答案.预设的答案:解:根据题意有 (1+a )(1+x )=(1+y )2,从而有y =0,1)1)(1(≥-++x x a显然,上述函数是增函数,因此x =0时,y 1.设计意图:平均增长率是学生不太熟悉的,讲解时要重点解释为什么(1+a )(1+x )=(1+y )2, 问题4:声强等级与噪声污染人们通常以分贝(符号是dB )为单位来表示声音强度的等级,其中0dB 是人能听到的等级最低的声音.一般地,声强级()f x 是指该处的声强x (单位:瓦/米2)与参考声强的比值的常用对数再乘以10,参考声强是12110-⨯瓦/米2,即:师生活动:①人能听到的等级最低的声音的强度是多少?②为了防止噪音,我国著名声学家马大猷教授曾总结和研究了国内外现有各类噪音的危害和标准,提出了三条建议:(1)为了保护人们的听力和身体健康,噪音的允许值在 75~90 dB .(2)保障交谈和通讯联络,环境噪音的允许值在 45~60 dB .(3)对于睡眠时间建议在 35~50 dB .请你计算,90dB 、60dB 、50dB 的声音强度之比.预设的答案强度:310-瓦/米2、610-瓦/米2、710-瓦/米2,它们的比值为10000:10:1.嘈杂的马路声音等级为90dB ,其声音强度至少是正常交谈的1000倍,是睡眠的10000倍.人不宜长时间呆在嘈杂的环境之中.设计意图:噪声污染属于感觉公害,对人、动物、仪器仪表以及建筑物均构成危害,其危害程度主要取决于噪声的频率、强度及暴露时间.防止噪音,不制造噪音,这需要大家共同行动.通过这个例子渗透另一种环保意识,甚至激发有志者投身研究如何防止和利用噪音.生活中类似的应用还有很多,如地震的级别.练习:教科书第44页习题A1,2题.师生活动:学生做练习,教师根据学生练习情况给予反馈.【课堂小结】1.板书设计:4.6函数的应用(二)1.复利计息与“70原则”例12.年均下降率与节能减排问题例23.声强等级与噪声污染例3练习与作业:教科书第44页习题A3,4题;教科书第45页习题B 1,2题.2.总结概括:问题:(1)本节课我们学习了哪些常见的数学模型?2. 应用函数解决实际问题的一般步骤有哪些?其关键环节是什么?师生活动:学生尝试总结,老师适当补充.预设的答案:(1)指数函数模型:f(x)=ab x+c(a、b、c为常数,a≠0,b>0,b≠1);对数函数模型:f(x)=m log a x+n(m、n、a为常数,a>0,a≠1);幂函数模型:f(x)=ax n+b(a、b、n为常数,a≠0,n≠1);(2)第一步:阅读、理解;第二步:建立数学模型,把应用问题转化为数学问题;第三步:解答数学模型,求得结果;第四步:把数学结果转译成具体问题的结论,做出解答.而这四步中,最为关键的是把第二步处理好.只要把数学模型建立妥当,所有的问题即可在此基础上迎刃而解.但是,很多同学在建模过程中忽视了一些细节,导致“满盘皆输”. 设计意图:通过梳理本节课的内容,能让学生更加明确函数的应用,随着新课标的实施,指数、对数函数模型将会起到越来越重要的作用,在高考的舞台上将会扮演愈来愈重要的角色. 布置作业:教科书第45页习题B 3,4题.【目标检测】1.有一个受到污染的湖泊,其湖水的体积为V 立方米,每天流出湖泊的水量等于流入湖泊的水量,都为r 立方米.现假设下雨和蒸发正好平衡,且污染物质与湖水能很好地混合.用g (t )表示某一时刻t 每立方米湖水所含污染物质的克数,我们称其为在时刻t 时的湖水污染质量分数.已知目前污染源以每天p 克的污染物质污染湖水,湖水污染质量分数满足关系式g (t )=p r +[g (0)-p r ]e -r vt (p ≥0),其中g (0)是湖水污染的初始质量分数. (1)当湖水污染质量分数为常数时,求湖水污染的初始质量分数;(2)求证:当g (0)<p r时,湖泊的污染程度将越来越严重; (3)如果政府加大治污力度,使得湖泊的所有污染停止,那么需要经过多少天才能使湖水的污染水平下降到开始时(即污染停时)污染水平的5%?(1)解 设0≤t 1<t 2,∵g (t )为常数,∴g (t 1)=g (t 2),即[g (0)-p r ]·[e -r v t 1-e -r vt 2]=0, ∴g (0)=p r. (2)证明 设0≤t 1<t 2,则g (t 1)-g (t 2)=[g (0)-p r ]·[e -r v t 1-e -r vt 2] =[g (0)-p r ]·2112r r e t e t v v r e t t v-+, ∵g (0)-p r<0,t 1<t 2, ∴g (t 1)-g (t 2)<0,∴g (t 1)<g (t 2).在湖泊污染质量分数随时间变化而增加,污染越来越严重.(3)解 污染源停止,即p =0,此时g (t )=g (0)·e -r vt . 设要经过t 天能使湖水的污染水平下降到开始时污染水平的5%.即g (t )=5%·g (0),即有5%·g (0)=g (0)·e -r vt . 由实际意义知g (0)≠0,∴120=e -r vt . ∴t =v r ln 20(天),即需要v rln 20天时间. 点评 高考数学试题中联系生活实际和生产实际的应用问题,其创意新颖,设问角度独特,解题方法灵活,一般文字叙述长,数量关系分散且难以把握.解决此类问题关键要认真审题,确切理解题意,进行科学的抽象概括,将实际问题归纳为相应的数学问题,然后利用函数、方程、不等式等有关知识解答.设计意图:高考数学试题中联系生活实际和生产实际的应用问题,其创意新颖,设问角度独特,解题方法灵活,一般文字叙述长,数量关系分散且难以把握.解决此类问题关键要认真审题,确切理解题意,进行科学的抽象概括,将实际问题归纳为相应的数学问题,然后利用函数、方程、不等式等有关知识解答.。

09 第二章 第三节 第2课时 函数性质的综合应用

09 第二章 第三节 第2课时 函数性质的综合应用

第2课时 函数性质的综合应用
核心考点 提升“四能”
课时质量评价
已知函数的周期性、奇偶性求函数值,常利用奇偶性及周期性进行变换,将所 有函数值的自变量转化到已知解析式的区间内,把未知区间上的函数性质转化 为已知区间上的函数性质求解.
第2课时 函数性质的综合应用
核心考点 提升“四能”
课时质量评价
1.设f (x)是定义在R上的周期为2的偶函数,已知当x∈[2,3]时,f (x)=x,则当
调性,可知函数f (t)是R上的增函数,即函数f (x)是R上的增函数,所以2x-1<-
1,解得x<0,所以f (2x-1)<-2的解集为{x|x<0}.故选D.
第2课时 函数性质的综合应用
核心考点 提升“四能”
课时质量评价
[变式] 若本例(1)条件中“奇函数”变为“偶函数”,则不等式xf (x-1)≥0的 解集为________. [-1,0]∪[3,+∞) 解析:由题意知f (-2)=f (2)=0.当x>0时,由xf (x- 1)≥0,得f (x-1)≥f (2).又偶函数f (x)在(0,+∞)上单调递增,所以|x-1|≥2, 解得x≥3或x≤-1,所以x≥3.当x<0时,由xf (x-1)≥0,得f (x-1)≤f (-2),所 以x-1≥-2,解得x≥-1,所以-1≤x<0.当x=0时显然成立.综上,满足xf (x -1)≥0的x的取值范围是[-1,0]∪[3,+∞).
<f
2 023 2
C.f (2 022)<f
2 023 2
<f
2 024 3
D.f
2 023 2
<f
2 024 3
<f (2 022)

函数的性质综合应用

函数的性质综合应用

②两个偶函数的和函数、积函数是偶函数
③一个奇函数,一个偶函数和积函数是奇函数 4、若奇函数f(x)在x=0处有定义,则f(0)=0
5、奇函数图象关于原点对称,偶函数图象关于y轴对称
(三)奇偶性式子的变形 f ( x) f ( x) f ( x) f ( x) 0 f ( x) 1( f ( x) 0) f ( x)
5、f ( x) a x a x (a 0, 且a 1)在定义域上是奇函数 6、f ( x y ) f ( x) f ( y )(a 0, 且a 1)在定义域上是奇函数
周期性
(1)定义 设函数y f ( x), x D如果存在非零常数T ,使得对任何x D都有f ( x T ) f ( x), 则称函数y f ( x)为周期函数 T 为的一个周期,所有周期中最小的正数,称为最小正周期,简称周期。
变式:设函数f ( x)对任意实数满足f (2 x) f (2 x),f (7 x) f (7-x)且f (0) 0, 判断函数f ( x)图象在区间上 -30, 30 与x轴至少有多少个交点.
解:由题设知函数f ( x)图象关于直线x 2和x 7对称,又由函数的性质得 是以10为周期的函数.在一个周期区间 0, 10 内 f (0) 0, f (4) f (2 2) f (2 2) f (0) 0且f ( x)不能恒为零, 故图象与x轴至少有2个交点 而区间 30,30 上有6个周期,故在闭区间-30, 30 上f ( x)图象与x轴至少有13个交点.
C. f ( x) x cos x D . f ( x) x( x
例3.已知函数f ( x)

2

函数的综合应用

函数的综合应用

函数的综合应用一.函数综合问题1.函数内容本身的相互综合,包括概念、性质、图象及几种基本初等函数的综合问题 2.函数与方程、不等式的综合问题 3.函数与数列、三角的综合问题 4.函数与几何的综合问题5.函数在实际应用(上一节)的综合问题二、举例剖析 函数的性质综合例1.已知奇函数)(x f 满足)18(log ,2)(,)1,0(),()2(21f x f x x f x f x则时且=∈-=+的值为 。

解:())4()2()()2(+=+-=∴-=+x f x f x f x f x f892)89(log )89log ()98(log )18log 4()18log ()18(log 89log 22222212-=-=-=-==-=-=f f f f f f例2.已知定义在R 上的函数 满足: (1)求证: ,且当x<0时,(2)求证在R 上是减函数函数与几何例3.若f (x )是R 上的减函数,且f (x )的图象经过点)3,0(A 和)1,3(-B ,则不等式21)1(<-+x f 的解集 (-1,2) 。

函数与方程、不等式函数与数列例4.设函数)(1log 2*∈=N n xy n(1)n=1,2,3……时,把已知函数的图象和直线y=1的交点横坐标依次记为a 1,a 2,a 3,…a n , …,求证:a 1+a 2+a 3+a n <1;(2)对于每一个n 值,设A n ,B n 为已知函数图象上与x 轴距离为1的两点,求证:n 取任意一个正整数时,以A n B n 为直径的圆都与一条定直线相切,求出这条定直线和切点坐标.)(x f ,1)(0,0),()()(<<>•=+x f x n f m f n m f 时且)(x f )(x f解:(1)原函数化为n n n a a x x n y y x n y 21,)21(,log 11,log 12==⎪⎩⎪⎨⎧-==-=即得则1211211)211(21321<-=--=++++∴n n an a a a (2) 以A n,B n 为曲线上的点且与x 轴距离为1,则n n n n n n n n n n B A B A 2122)22(),1,2(),1,2(22+=+-=---,又A n,B n 的中点C 到y 轴的距离为n n n n B A 21222=+-,所以,以C 为圆心,以n n B A 为直线的圆与y 轴相切,故定直线为x=0,且切点为(0,0). 三.小结1.函数的概念、性质及几种基本初等函数的综合问题。

二次函数的应用的综合应用题

二次函数的应用的综合应用题

二次函数的应用的综合应用题某公司制造商品并销售,该公司的成本和收入可以用二次函数来建模。

已知该公司的成本函数为C(x) = 0.2x^2 + 800x + 10000(其中x表示产量,C(x)表示成本),收入函数为R(x) = -0.3x^2 + 1000x(其中x 表示产量,R(x)表示收入)。

现在我们要针对该模型进行一系列综合应用题的分析和求解。

1. 确定最小产量以确保盈利。

首先,我们需要确定最小产量以确保公司盈利。

公司的盈利可以通过收入减去成本来计算。

盈利函数P(x)可以表示为:P(x) = R(x) - C(x)= (-0.3x^2 + 1000x) - (0.2x^2 + 800x + 10000)= -0.5x^2 + 200x - 10000为了确保公司盈利,盈利函数P(x)需要大于零。

因此,我们可以求解以下不等式来确定最小产量:-0.5x^2 + 200x - 10000 > 0对该不等式进行求解,我们可以得到x的取值范围。

在此范围内,最小的整数值将是确保公司盈利的最小产量。

2. 确定最大产量以达到最大盈利。

要确定最大产量以达到最大盈利,我们需要计算盈利函数P(x)的顶点。

顶点对应于盈利函数的最大值,表示最大的盈利。

盈利函数P(x)是一个二次函数,二次函数的顶点可以通过以下公式计算:x = -b / (2a)对于盈利函数P(x)来说,a=-0.5,b=200。

代入上述公式,我们可以计算得到最大盈利对应的产量x。

3. 计算最大盈利。

在确定最大产量之后,我们可以将该产量代入盈利函数P(x)中,计算得到最大盈利的具体金额。

P(x) = -0.5x^2 + 200x - 10000将最大产量代入上述公式,即可得到最大盈利。

4. 讨论产量对盈利的影响。

通过对盈利函数P(x)的分析,我们可以观察到产量x对盈利的影响。

当产量增加时,盈利也随之增加,但增加的幅度可能会递减。

这是因为盈利函数P(x)是一个二次函数,它的图像是一个开口向下的抛物线。

函数的综合应用

函数的综合应用

函数的综合应用在数学中,函数是连接自变量和因变量的一种关系。

它在数学和其他领域中有着广泛的应用。

本文将探讨函数的综合应用,包括优化问题、模型建立以及实际应用。

一、函数的优化问题函数的优化是指找到函数取得最大值或最小值的过程。

这在很多实际问题中是非常有用的。

例如,假设我们要将一块矩形土地分为两个相等的部分,以便最大限度地减少围墙的长度。

我们可以使用函数来建模这个问题。

首先,我们需要定义一个函数来表示围墙的长度。

假设土地的长度为L,宽度为W,则围墙的长度为2L + 2W。

我们可以定义函数f(x) =2x + 2(L - x),其中x表示土地的一部分的长度。

通过对函数进行求导,我们可以找到函数的最小值点,即土地长度的一半。

这意味着,我们应该将土地平均分成长度为L/2的两部分,以最小化围墙的长度。

二、函数模型的建立函数的建模是将实际问题转化为数学表达式或方程组的过程。

通过建立模型,我们可以更好地理解问题,并找到解决方案。

例如,假设我们要建立一个模型来优化电子产品的价格和销量之间的关系。

首先,我们需要确定价格和销量之间的函数关系。

假设P表示产品的价格,Q表示销量,则P和Q之间存在一种负相关的关系。

我们可以假设这个关系为P = f(Q),其中f(Q)是一个关于销量的函数。

通过数据分析和拟合曲线,我们可以找到使得P最大化或最小化的函数关系。

三、函数的实际应用函数的实际应用非常广泛,可以涵盖各个领域。

例如,在物理学中,我们可以使用函数来描述物体的运动轨迹;在经济学中,我们可以使用函数来分析产量与成本之间的关系;在生物学中,我们可以使用函数来研究生物体的生长模式等。

总结函数的综合应用在数学和其他领域中都有着重要的地位。

通过函数的优化问题、模型的建立以及实际应用,我们可以更好地理解和解决实际问题。

无论是求函数的最值,还是建立数学模型,函数的应用都可以帮助我们更好地理解和解决实际问题。

因此,对于函数的综合应用,我们应当持续学习和深入研究,以便更好地应用于实践中。

中考专题复习课时21.函数的综合应用(2)

中考专题复习课时21.函数的综合应用(2)

课时21.函数的综合应用(2)【课前热身】1.如图是某种蜡烛在燃烧过程中高度与时间之间关系的图像,由图像解答下列问题:⑴此蜡烛燃烧1小时后,高度为 cm;经过小时燃烧完毕;⑵这个蜡烛在燃烧过程中高度与时间之间关系的解析式是.2. 如图,已知∆ABC中,BC=8,BC上的高h=4,D为BC上一点,EF BC//,交AB于点E,交AC于点F(EF不过A、B),设E到BC的距离为x,则∆DEF 的面积y关于x的函数的图像大致为()3. 某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个.根据销售经验,售价每提高1元,销售量相应减少10个.⑴假设销售单价提高x元,那么销售每个篮球所获得的利润是___________元;这种篮球每月的销售量是___________个.(用含x的代数式表示)⑵当篮球的售价应定为元时,每月销售这种篮球的最大利润,此时最大利润是元.【考点链接】1.二次函数cbxaxy++=2通过配方可得224()24b ac by a xa a-=++,⑴当0a>时,抛物线开口向,有最(填“高”或“低”)点, 当x=时,y有最(“大”或“小”)值是;⑵ 当0a<时,抛物线开口向,有最(填“高”或“低”)点, 当x=时,y有最(“大”或“小”)值是.2. 每件商品的利润P = -;商品的总利润Q = × .【典例精析】例 1 近年来,“宝胜”集团根据市场变化情况,采用灵活多样的营销策略,产值、利税逐年大幅度增长.第六销售公司2004年销售某型号电缆线达数万米,这得益于他们较好地把握了电缆售价与销售数量之间的关系.经市场调研,他们发现:这种电缆线一天的销量y(米)与售价x(元/米)之间存在着如图所示的一次函数关系,且40≤x≤70.(1) 根据图象,求y与x之间的函数解析式;(2) 设该销售公司一天销售这种型号电缆线的收入为w元.①试用含x的代数式表示w;②试问当售价定为每米多少元时,该销售公司一天销售该型号电缆的收x x B F AC D E x G 入最高?最高是多少元?例2随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,如图(1)所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元) ⑴ 分别求出利润1y 与2y 关于投资量x 的函数关系式;⑵ 如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?(1) (2)【中考演练】1. 如图所示,在直角梯形ABCD 中,∠A =∠D =90°,截取AE =BF =DG =x.已知AB =6,CD =3,AD =4;求四边形CGEF 的面积S 关于x 的函数表达式和x 的取值范围.2. 某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.(1) 请分别求出上述的正比例函数表达式与二次函数表达式;(2) 如果企业同时对A 、B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.3. 如图,已知矩形OABC 的长OA OC =1,将△AOC 沿AC 翻折得△APC.(1)填空:∠PCB = 度,P 点坐标为 ;(2)若P 、A 两点在抛物线y =-43x 2+bx +c 上,求b 、c 的值,并说明点C 在此抛物线上;﹡(3)在(2)中的抛物线CP 段(不包括C ,P 点)上,是否存在一点M ,使得四边形MCAP 的面积最大?若存在,求出这个最大值及此时M 点的坐标;若不存在,请说明理由.。

北师版高中数学必修第一册精品课件 第2章 函数 习题课——函数性质的综合应用

北师版高中数学必修第一册精品课件 第2章 函数 习题课——函数性质的综合应用
在关于原点对称的区间上的单调性相同,偶函数又在关于原
点对称的区间上的单调性相反.
2.奇函数在关于原点对称的区间上的单调性相同;偶函数在
关于原点对称的区间上的单调性相反.
3.已知奇函数f(x)在区间[0,+∞)内单调递增,则满足f(x)<f(1)的
x的取值范围是(
)
A.(-∞,1) B.(-∞,-1)
x1,x2(x1<x2),然后向已知区间上转化,利用题设条件,最后运用
函数单调性的定义解决问题.
【变式训练2】 若定义在R上的函数f(x)对任意x1,x2∈R,都有
f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1.求证:
(1)y=f(x)-1为奇函数;
(2)f(x)是R上的增函数.
【例1】 已知定义在区间(-1,1)内的奇函数f(x)为减函数,且
f(1-a)+f(1-2a)>0,求实数a的取值范围.
解:由f(x)是定义在区间(-1,1)内的奇函数,且f(1-a)+f(1-2a)>0,
得f(1-a)>-f(1-2a)=f(2a-1).
因为f(x)在定义域上为减函数,
- < - < ,
习题课——函数性质的综合应用
自主预习·新知导学
合作探究·释疑解惑
规 范 解 答
随 堂 练 习
课标定位
素养阐释
1.掌握函数奇偶性与单调性的关系,能够运用这
种关系解决相关问题.
2.掌握抽象函数奇偶性与单调性的判断方法.
3.掌握函数奇偶性与单调性的综合应用.
4.感受数学抽象的过程,提高逻辑推理能力与数
的取值范围为(-2,2).

2021年高一上学期期末重难点综合复习专题7:函数的应用(二)综合专练含解析

2021年高一上学期期末重难点综合复习专题7:函数的应用(二)综合专练含解析

数 m 的取值范围是 ___________.
三、解答题
21. 已知函数 y = x2 + a - 3 x - 3a. (1)关于 x 的方程 y = 0 有一个正根和一个负根,求实数 a 的取值范围; (2)∀ x ∈ R,有 y > -41 恒成立,求实数 a 的取值范围; (3)解关于 x 的不等式 y < 0.
f(x) 的一对 “ 黄金点对 ”(注:点对 [A,B] 与 [B,A] 可看作同一对 “ 黄金点对 ”)已知函数
2x + 9,x < 0
f(x) = -x2 + 4x,0 ≤ x ≤ 4 ,则此函数的 “ 黄金点对 ” 有(

x2 - 12x + 32,x > 4
A. 0 对
B. 1 对
C. 2 对
故选:A
lgx ,0 < x ≤ 10
2. 函数 f(x) = -21 x + 6,x > 10 ,若 f(a)= f(b)= f(c)且 a,b,c 互不相等,则 abc 的取值范
围是(

A(. 1,10)
B(. 10,12)
C(. 5,6)
D(. 20,24)
【标准答案】B 【思路点拨】先画出分段函数的图象,根据图象确定字母 a、b、c 的取值范围,再利用函数解 析式证明 ab = 1,最后数形结合写出其取值范围即可 【精准解析】
15. 关于 x 方程 2ax2 - x - 1 = 0 在 0 < x < 1 内恰有一解,则 a 的取值范围 _______
16. 已知 f(x) = x -a 1 ,x ≤ 0 ,若关于 x 的方程 f[ f(x)] = 0 仅有一解,则 a 的取值范围是 ___ lgx,x > 0

函数性质的综合应用

函数性质的综合应用
必修一函数性质的综合应用
课型:习题课课时:1
1.学习目标:1.熟练掌握函数的单调性,奇偶性的定义,灵活判断或证明函数的单调性奇偶性2.掌握抽象函数性.
教学重点:函数单调性和奇偶性及最值的研究
教学难点:抽象函数问总结规律方法;针对自学及合作探究找出的疑惑点,课上小组讨论交流,答疑解惑;带“☆”符号的题目为选做题。
求证:(1)
(2) 是偶函数
拓展提升:设 是定义在 上的函数,对任意 ,恒有
(1)求 的值;
(2)求证: 为奇函数;
(3)若 ,试用a表示
(4)若函数 是 上的曾函数,已知 ,且 ,求 的取值范围.
预习案、探究案
探究点一:函数性质的综合应用(重点)
例1:已知函数 是定义在 上的奇函数,且
(1)求函数 的解析式
(2)求证:函数 在 上是增函数
(3)解不等式
拓展提升:已知函数
(1)当 时,求函数 的最小值.
(2)若对任意 恒成立,试求实数a的取值范围.
探究点二:相关抽象函数的问题(难点)
例2:定义在 上的函数分 ,对任意的 ,恒有 ,且
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时21.函数的综合应用(2)
【课前热身】
1.(甘肃)如图是某种蜡烛在燃烧过程中高度与 时间之间关系的图像,由图像解答下列问题:
⑴ 此蜡烛燃烧1小时后,高度为 cm ;
经过 小时燃烧完毕;
⑵ 这个蜡烛在燃烧过程中高度与时间之间关系
的解析式是 . 2. 如图,已知∆ABC 中,BC=8,BC 上的高h =4,D 为BC 上一点,EF BC //,交AB 于点E ,交AC 于点F (EF 不过A 、B ),设E 到BC 的距离为x ,则∆D E F 的面积y 关于x 的函数的图像大致为( )
3.(贵阳) 某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500 个.根据销售经验,售价每提高1元,销售量相应减少10个.
⑴ 假设销售单价提高x 元,那么销售每个篮球所获得的利润是___________元;这种篮球每月的销售量是___________个.(用含x 的代数式表示)
⑵ 当篮球的售价应定为 元时,每月销售这种篮球的最大利润,此时最大利润是 元.
【考点链接】
1.二次函数c bx ax y ++=2通过配方可得2
24()24b ac b y a x a a -=++, ⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当
x = 时,y 有最 (“大”或“小”)值是 ;
⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当 x = 时,y 有最 (“大”或“小”)值是 .
2. 每件商品的利润P = - ;商品的总利润Q = × .
【典例精析】
例1 近年来,“宝胜”集团根据市场变化情况,采用灵活多样的营销策略,产值、利税逐
年大幅度增长.第六销售公司2004年销售某型号电缆线达数万米,这得益于他们较好地把握了电缆售价与销售数量之间的关系.经市场调研,他们发现:这种电缆线一天的销量y (米)与售价x (元/米)之间存在着如图所示的一次函数关系,且40≤x ≤70.
(1) 根据图象,求y与x之间的函数解析式;
(2) 设该销售公司一天销售这种型号电缆线的收入为w元.
① 试用含x 的代数式表示w;
② 试问当售价定为每米多少元时,该销售公司一天销售该型号电缆的收入最高?最高是多少元?
x x B F A C D E x G
例2 (南宁)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林
专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,如图(1)所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图
(2)所示(注:利润与投资量的单位:万元)
⑴ 分别求出利润1y 与2y 关于投资量x 的函数关系式;
⑵ 如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?
(1) (2)
【中考演练】
1. 如图所示,在直角梯形ABCD 中,∠A =∠D =90°,截取AE =BF =DG =x.已知AB =6,CD =3,AD =4;求四边形CGEF 的面积S 关于x 的函数表达式和x 的取值范围.
2. (沈阳) 某企业信息部进行市场调研发现:
信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在
正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元;
信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在
二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;
当投资4万元,可获利润3.2万元.
(1) 请分别求出上述的正比例函数表达式与二次函数表达式;
(2) 如果企业同时对A 、B 两种产品共投资10万元,请你设计一个能获得最大
利润的投资方案,并求出按此方案能获得的最大利润是多少.
3. 如图,已知矩形OABC 的长OA ,宽OC =1,将△AOC 沿AC 翻折得△APC.
(1)填空:∠PCB = 度,P 点坐标为 ;
(2)若P 、A 两点在抛物线y =-43
x 2+bx +c 上,求b 、c 的值,并说明点C 在此抛物线上;
﹡(3)在(2)中的抛物线CP 段(不包括C ,P 点)上,是否存在一点M ,使得四边形
MCAP 的面积最大?若存在,求出这个最大值及此时M 点的坐标;若不存在,请说明理由.。

相关文档
最新文档