高中数学第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念课堂导学案
§2.1 曲线与方程
建系--设点----限制条件--代入坐标--化简证明
以上步骤用一句话概括就是:建设现(限)代化. ... . .. . .
典型例题
例4.已知线段AB, B点的坐标(6,0),A点在曲线 y=x2+3上运动,求AB的中点M的轨迹方程. y 解;设AB的中点M的坐标为(x,y), y=x2+3 又设A(x1,y1),则
典型例题
例 1 已知一条直线 l 和它上方的一个点 F,点 F 到 l 的距离是 2.一条曲线也在 l 的上方,它上面的每一 点到 F 的距离减去到 l 的距离的差都是 2,建立适 当的坐标系,求这条曲线的方程.y源自.M( x, y )
B
(0 F., 2 )
0
l
x
练习
1.已知点 M 与 x 轴的距离和点 M 与点 F(0,4)的距 离相等,求点 M 的轨迹方程. 解:设点 M 的坐标为(x,y) 建立坐标系 ∵点 M 与 x 轴的距离为 y , 设点的坐标
10 8
x +6 x = 1 2 y = y1 2
x1 = 2x - 6 ∴ y1 = 2y
6
A
4
点A(x1,y1)在曲线y=x2+3上,则 y1=x1
2+3
2
M
代入,得 2y=(2x-6)2+3
整 理 ,得 AB的 中 点 的 轨 迹 方 程 为 y = 2 x - 3 +
√ √ 2.写出适合条件 P 的几何点集: √ 3.用坐标表示条件 ,列出方程 √ 4.化简方程 为最简形式; √ 5.证明(查漏除杂).
P (M ) f ( x, y ) 0
P M P ( M )
; ;
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.1
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
椭圆的定义
定义 焦点
平面内与两个定点F1,F2的_距__离__之__和__等__于__定__值___( 大于|F1F2|)的点的轨迹叫做椭圆 两个_定__点___叫做椭圆的焦点
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
4.已知椭圆的焦点在 x 轴上,且焦距为 4,P 为椭圆上一点, 且|F1F2|是|PF1|和|PF2|的等差中项.
(1)求椭圆的方程; (2)若△PF1F2 的面积为 2 3,求 P 点坐标.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: (1)由题意知,2c=4,c=2. 且|PF1|+|PF2|=2|F1F2|=8, 即 2a=8, ∴a=4. ∴b2=a2-c2=16-4=12. 又椭圆的焦点在 x 轴上, ∴椭圆的方程为1x62 +1y22 =1.
数学 选修1-1
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(3)a,b,c三个量的关系:椭圆的标准方程中,a表示椭 圆上的点M到两焦点间距离的和的一半,可借助图形帮助记 忆.a,b,c(都是正数)恰是构成一个直角三角形的三条边,a 是斜边,所以a>b,a>c,且a2=b2+c2.
数学 选修1-1
第二章 圆锥曲线与方程
新课标人教B版高中数学选修2-1第二章圆锥曲线与方程教案
第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程 2.1.2求曲线的轨迹方程一、教学目标(一)知识教学点使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.(二)能力训练点通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力.(三)学科渗透点通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.二、教材分析1.重点:求动点的轨迹方程的常用技巧与方法.(解决办法:对每种方法用例题加以说明,使学生掌握这种方法.)2.难点:作相关点法求动点的轨迹方法.(解决办法:先使学生了解相关点法的思路,再用例题进行讲解.)教具准备:与教材内容相关的资料。
教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.三、教学过程学生探究过程:(一)复习引入大家知道,平面解析几何研究的主要问题是:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质.我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.(二)几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R 或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,。
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.2.1
合作探究 课堂互动
由方程确定椭圆的性质
•
已知椭圆的方程为4x2+9y2=36.
• (1)求椭圆的顶点坐标、焦点坐标、长轴长、短轴长以及离心率;
• (2)结合椭圆的对称性,运用描点法画出这个椭圆.
[思路点拨] (1) 化为标准方程 → 求出a,b,c → 焦点位置 → 得其几何性质
(2) 将方程变形 → 列表 → 描点 → 得出图形
__ay_22+__bx_22=__1_(a_>_b_>_0_) ____
图形
范围 ___-__a_≤__x_≤__a_,__-__b_≤__y_≤__b____ -__b_≤__x≤__b_,__-_a_≤__y≤__a_
顶点
___(_±__a_,0_)_,__(0_,__±__b_)___
____(_0_,__±__a_),__(_±__b_,_0_) __
焦点的位置,这样便于直观地写出a,b的数值,进而求出c,求出椭圆的长轴和短
轴的长、离心率、焦点和顶点的坐标等几何性质.
• (2)本题在画图时,利用了椭圆的对称性,利用图形的几何性质,可以简化画 图过程,保证图形的准确性.
1.已知椭圆 x2+(m+3)y2=m(m>0)的离心率 e= 23,求 m
的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.
(2)将方程变形为 y=±23 9-x2(-3≤x≤3). 由 y=23 9-x2,在 0≤x≤3 的范围内计算出一些点的坐标(x, y),列表如下:
x0123 y 2 1.9 1.5 0 先用描点法画出椭圆在第一象限内的部分图象,再利用椭圆 的对称性画出整个椭圆.
•
(1)求椭圆的性质时,应把椭圆化为标准方程,注意分清楚
2020高中数学 第二章 圆锥曲线与方程 2. 双曲线 2..1 双曲线及其标准方程讲义 2-1
2.3。
1 双曲线及其标准方程1.双曲线(1)定义错误!平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.(2)双曲线的集合描述设点M是双曲线上任意一点,点F1,F2是双曲线的焦点,则由错误!P={M|||MF1|-|MF2||=2a,0〈2a〈|F1F2|}.2.双曲线的标准方程1.判一判(正确的打“√",错误的打“×")(1)平面内到两定点的距离的差等于非零常数(小于两定点间距离)的点的轨迹是双曲线.( )(2)在双曲线标准方程错误!-错误!=1中,a〉0,b>0且a≠b.( ) (3)双曲线的标准方程可以统一为Ax2+By2=1(其中AB 〈0).()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)若双曲线错误!-错误!=1上一点M到左焦点的距离为8,则点M 到右焦点的距离为________.(2)双曲线x2-4y2=1的焦距为________.(3)(教材改编P55T1)已知双曲线a=5,c=7,则该双曲线的标准方程为________.(4)下列方程表示焦点在y轴上的双曲线的有________(把序号填在横线上).①x2-错误!=1;②错误!+错误!=1(a<0);③y2-3x2=1;④x2cosα+y2sinα=1错误!.答案(1)4或12 (2) 5 (3)错误!-错误!=1或错误!-错误!=1(4)②③④解析(3)∵a=5,c=7,∴b=错误!=错误!=2错误!。
当焦点在x轴上时,双曲线方程为错误!-错误!=1;当焦点在y轴上时,双曲线方程为错误!-错误!=1。
探究1 双曲线标准方程的认识例1 若θ是第三象限角,则方程x2+y2sinθ=cosθ表示的曲线是()A .焦点在y 轴上的双曲线B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在x 轴上的椭圆[解析] 曲线方程可化为错误!+错误!=1,θ是第三象限角,则cos θ<0,错误!〉0,所以该曲线是焦点在y 轴上的双曲线.故选A.[答案] A拓展提升双曲线方程的认识方法将双曲线的方程化为标准方程的形式,假如双曲线的方程为错误!+y 2n=1,则当mn 〈0时,方程表示双曲线.若错误!则方程表示焦点在x 轴上的双曲线;若⎩⎪⎨⎪⎧m <0,n 〉0则方程表示焦点在y 轴上的双曲线. 【跟踪训练1】 若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( )A .焦点在x 轴上的椭圆B.焦点在y轴上的椭圆C.焦点在y轴上的双曲线D.焦点在x轴上的双曲线答案C解析原方程化为错误!-错误!=1,∵k>1,∴k2-1>0,k+1>0。
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.2.1
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(2)方法一:若焦点在 x 轴上, 设双曲线的标准方程为ax22-by22=1(a>0,b>0). 因为 M(1,1),N(-2,5)在双曲线上,
a12-b12=1, 所以-a222-5b22=1, 若焦点在 y 轴上,
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.根据下列条件,求双曲线的标准方程: (1)双曲线的中心在原点,焦点在 y 轴上,且经过点(0,2)与 ( 5,2 2); (2)c= 6,经过点(-5,2),焦点在 x 轴上.
数学 选修1-1
第二章 圆锥曲线与方程
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
双曲线的定义
定义
平面内与两个定点F1,F2的距离的_差__的__绝__对__值_ _是__常__数___的点的轨迹叫做双曲线
焦点 焦距 集合语言
_两__个__定__点__F_1,__F__2 _叫做双曲线的焦点
合作探究 课堂互动
高效测评 知能提升
1.了解双曲线的定义、几何图形和标准方程的推导过 程.
2.掌握双曲线的标准方程. 3.会利用双曲线的定义和标准方程解决简单的应用问 题.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
我海军“马鞍山”舰和“千岛湖”舰组成第四批护航编队 远赴亚丁湾,在索马里流域执行护航任务.
自主学习 新知突破
【全程复习方略】2014-2015学年高中数学 2.1.1曲线与方程课件 新人教A版选修2-1
错因剖析
将方程转化变形时漏掉阴影处,即忽略了根式应有
意义
【防范措施】 合理进行转化 将方程变形时,前后应保持等价,否则,变形后的方程表示 的曲线不是原方程代表的曲线.另外当方程中含有根式时,要注 意根式必须有意义.如本例含有根式,在化简时就容易忽视根式 必须有意义而导致错误.
(3)方程x+y-2=0是以A(2,0),B(0,2)为端点的线段的方程.
(
)
【解析】(1)错误,曲线的方程必须满足两个条件. (2)正确,根据曲线的方程和方程的曲线的概念,不满足方程 F(x,y)=0的点,显然不在曲线C上. (3)错误,以方程的解为坐标的点不一定在线段AB上,如M(-4,6) 就不在线段AB上. 答案:(1)〓 (2)√ (3)〓
【拓展类型】曲线的交点问题 【备选例题】(1)若直线x-2y-2k=0与y=x+k的交点在曲线 x2+y2=25上,则k的值是( A.1 B.-1 )
C.1或-1
2
D.以上都不对
2
(2)求直线y=x+ 3 与曲线y= 1 x2的交点.
【解析】(1)选C.联立得方程组 (-4k,-3k),代入圆的方程中. 即(-4k)2+(-3k)2=25,所以k=〒1.
【微思考】 (1)是否所有曲线都有相应的方程? 提示:不一定,有的曲线有方程,有的曲线就没有方程.如图,随 意画一条曲线,则求不出方程与之对应.
(2)怎样判断方程是曲线的方程? 提示:判断方程是否是曲线的方程,要从两个方面着手,一是检 验曲线上点的坐标是否都适合方程,二是检验以方程的解为坐 标的点是否都在曲线上.
f (x 0,y0 ) 0, (1)若P(x0,y0)为C1,C2交点,则 g(x 0,y0 ) 0.
选修2-1圆锥曲线全章节
问题1:解析几何与坐标法. 我们把借助于坐标系研究几何图形的方法叫做坐标
法. 在数学中,用坐标法研究几何图形的知识形成的学 科叫做解析几何.因此,解析几何是用代数方法研究几何 问题的一门数学学科.
问题2:平面解析几何研究的两个基本问题. (1)根据已知条件,求出表示平面曲线的方程; (2)通过曲线的方程,研究平面曲线的性质.
说明:一般情况下,化简前后方程的解集是相同的,步骤(5)可以 省略不写,如有特殊情况,可适当予以说明. 另外,也可以根据情况 省略步骤(2),直接列出曲线方程.
例2.已知一条直线l 和它上方的一个点F,点F到l 的距离是2. 一条曲线也在l 的上方,它上面的每一点到F的距离减去到l 的距离的差都是2,建立适当的坐标系,求这条曲线的方程.
x+2y-7=0. ①
我们证明方程①是线段AB的垂直平分线的方程. (1)由求方程的过程可知,垂直平分线上每一点的坐
标都是方程①的解;
(2)设点M1的坐标(x1,y1)是方程①的解,即 x1+2y1-7=0, x1=7-2y1.
点M1到A,B的距离分别是
所以 | M1A || M1B | 即点M在线段AB的垂直平分线上. 由(1)、(2)可知,方程①是线段AB的垂直平分线的方程.
例3.已知曲线C的方程为 x 4 y2,说明曲线C是什 么样的曲线,并求该曲线与y轴围成的图形的面积.
解:由 x 4 y2 ,得x2+y2=4,又x≥0, 所以方程 x 4 y2 表示的曲线是以原点为圆心,2为半径 的右半圆,从而该曲线C与y轴围成的图形是半圆, 其面积 S 1 4 2
第二章 圆锥曲线与方程
2.1 曲线与方程
1.理解曲线与方程的概念、意义.(重点、难点) 2.了解数与形结合的基本思想.(难点)
高中数学 第二章《圆锥曲线与方程》2.1圆锥曲线学案 新人教版选修2-1
第2章圆锥曲线与方程2.1 圆锥曲线二、预习指导1.预习目标(1)认识用平面截圆锥面得到的各种曲线;(2)掌握椭圆、双曲线、抛物线的定义;(3)会根据不同的已知条件,利用圆锥曲线的定义判断动点的轨迹.2.预习提纲(1)查找有关轨迹的概念,回答下列问题:①平面内到线段两端点距离相等的点的轨迹是____________;②平面内到定点的距离等于定长的点的轨迹是____________;③空间中到定点的距离等于定长的点的轨迹是____________.(2)阅读教材选修4-1的71页到78页,教材选修2-1的25页到27页写下列空格:①一个平面截一个圆锥面,改变平面的位置,可得到如下图形____________,____________,____________,____________,____________;②平面内到两个定点F1,F2的距离_____等于常数(__________)的点的轨迹叫做椭圆,两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的__________;③平面内到两个定点F1,F2的距离____________等于常数(______________)的点的轨迹叫做双曲线,两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;④平面内到一个定点F和一条定直线l(________________)的距离________的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的_________.(3)阅读课本例1,动手实践借助细绳画椭圆,结合课本27页习题2.1第3题,动手实践借助拉链画双曲线,并说明理由,以此加深对椭圆、双曲线定义的认识.3.典型例题例1 动点P(x,y)与两个定点A(-2,0)、B(2,0)构成的三角形周长为10.(1)试证:动点P在一个椭圆上运动;(2)写出这个椭圆的焦点坐标.分析:找动点P满足的条件,利用圆锥曲线的定义.解:(1)由题意得:PA+PB+AB=10,AB=4,故PA+PB=6>4.由椭圆的定义得:动点P在以A(-2,0)、B(2,0)为焦点的椭圆上运动.(2)由(1)得:这个椭圆的两个焦点坐标为A(-2,0)、B(2,0).点评:在圆锥曲线(椭圆、双曲线、抛物线)的定义中,条件都有特定的限制,如在具体问题中不加以判断,会造成错解.如本题中PA+PB=6>4是十分必要的.在椭圆的定义中,PF1+PF2等于常数,常数大于F1F2的判断是必不可少的.若常数等于F 1F 2,则轨迹是线段F 1F 2;若常数小于F 1F 2,则不表示任何图形.在双曲线的定义中,注意两个限制:一是常数小于F 1F 2,二是差的绝对值,两者缺一不可.若PF 1-PF 2是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 2为焦点的一支;若PF 2-PF 1是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 1为焦点的一支;若|PF 1-PF 2|是常数且等于F 1F 2,则点的轨迹是两条射线;若PF 1-PF 2是常数且等于F 1F 2,则点的轨迹是以F 2为端点与F 1F 2同向的射线;若PF 2-PF 1是常数且等于F 1F 2,则点的轨迹是以F 1为端点与F 1F 2反向的射线. 在抛物线的定义中,当点F 在直线l 上时,则点P 的轨迹是过点F 与直线l 垂直的直线.例2 已知圆()221:31C x y ++=和圆()222:39C x y -+=,动圆M 同时与圆C 1及圆C 2相外切,试问动圆圆心M 在怎样的曲线上运动?分析:两圆外切,则圆心距等于半径之和.解: 设动圆的半径为R ,则由动圆M 同时与圆C 1及圆C 2相外切得:1213MC R MC R =+⎧⎨=+⎩ 消去R 得:MC 2-MC 1=2,故可知动点M 到两定点C 1,C 2的距离之差是常数2.由双曲线的定义得:动圆圆心M 在双曲线的一支(左边的一支)上运动.点评:本题由于动点M 到两定点C 1,C 2的距离之差是常数,而不是差的绝对值为常数,因此其轨迹只能是双曲线的一支.这一点在应用过程中要特别注意.4.自我检测(1)已知点A (1,0)、B (-1,0),动点P 满足:PA +PB =4,则动点P 的轨迹是__ .(2)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=2,则动点M 的轨迹是 ____ ,其两个焦点分别为 .(3)已知定点A (1,0)和定直线l :x = -3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 ,其焦点为 ,准线为 .(4)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=4,则动点M 的轨迹是 _.(5)在△ABC 中,B (0,-3),C (0,3),且AB ,BC ,AC 成等差数列,试证:点A 在以B 、C 为焦点的椭圆上运动.三、课后巩固练习A 组1.用合适的选项填写下列轨迹 ( 要求只填写序号 )①直线;②圆;③椭圆;④双曲线;⑤双曲线的一支;⑥抛物线;⑦线段(1)动点P 到两定点F 1(-4,0)、F 2(4,0)的距离和是8,则动点P 的轨迹为_______; (2)已知椭圆的焦点为F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得PQ =PF 2,那么动点Q 的轨迹是_________;(3)动点P 到直线x +4=0的距离减去它到M (2,0)的距离之差等于2,则动点P 的轨迹是___________;(4)经过定圆外一定点,并且与定圆外切的动圆圆心的轨迹是__________.2.已知O (0,0)、A0)为平面内两个定点,动点P 满足:PO +PA =2,求动点P 的轨迹.3.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b ,a ,c 成等差数列,b ≥c .已知顶点B 、C 的坐标为B (-1,0),C (-1,0).试证:点A 在以B 、C 为焦点的左半椭圆上运动.4.在△ABC 中,A 为动点,(,0)(,0)(0)22a a B C a ->、为定点,且满足:1s i n s i n s i n 2C B A -=,试问动点A 在怎样的曲线上运动?B 组5.圆O 1与圆O 2的半径分别为1和2,O 1O 2=4,动圆与圆O 1内切而与圆O 2外切,则动圆圆心的轨迹是_____________________.6.已知定点A (-3,3)和定直线l :x =-3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 .7.已知圆的方程为22100x y +=,点A 的坐标为(-6,0),M 是圆O 上的任意一点,AM 的垂直平分线交OM 于点P ,试证明:点P 在以A 、O 为焦点的椭圆上运动.C 组8.已知A(0,7)、B(0,-7)、C(12,2),以C 为一个焦点作过A 、B 的椭圆,记椭圆的另一个焦点为F ,证明:点F 在以A(0,7)、B(0,-7)为焦点的双曲线的一支上运动.9.已知两个同心圆,其半径分别为R ,r (R >r ),AB 为小圆的一条定直径,求证:以大圆切线为准线,且过A 、B 两点的抛物线的焦点F 在以A 、B 为焦点的椭圆上.10.若一个动点P (x ,y )到定点F 1(-1,0),F 2(1,0)距离之和为定值m (m ≥0),试讨论点P 的轨迹.题号我们身边的圆锥曲线圆锥曲线的发现确实是一个伟大的发现.在笛卡尔直角坐标系中,这些曲线的方程是二次方程,所以圆锥曲线又叫做二次曲线.对于二次曲线的价值大概还没有人会估计得过高.在我们的实际生活中处处都有圆锥曲线.例如,我们的地球绕太阳运行的轨道是椭圆,太阳系的其他行星的运行轨道都是椭圆.这个事实是由开普勒第一定律确定的,之所以沿着椭圆轨道运动,是因为每一个行星在每一个瞬间都有不超过某一个值的速度.事实证明,假如这个速度过大了,运动就会沿着抛物线或双曲线轨道运行.相对于一个静止的物体,并按照万有引力定律受它吸引的物体运动,不可能有任何其他的轨道.因此,二次曲线实际上是以我们的宇宙为基础的.又如,如果让抛物线绕其轴旋转,就得到一个叫做旋转抛物面的曲面.在抛物面的轴上,有一个具有美妙性质的焦点,任何一条通过该点的直线由抛物面上反射出来之后,在指向上都平行于抛物面的轴.而这意味着如果把探照灯做成抛物面的形状,并且把灯泡放在焦点上,那么从抛物面上反射回来的所有光线就形成一束平行光束.这显然是一个很大的优点,因为正是这样一束光线在空间中,甚至于在离光源距离相当大的情况下,很少扩散.当然,实际上我们得不到理想的平行光束,因为灯泡不是一个点,但对于实用的目的来说,只要接近于这样的光束就够了.天文望远镜上的反射镜也是利用抛物面的形状制作的.它的作用刚好和探照灯的作用相反:探照灯的反射镜把光线反射到空间,天文望远镜的反射面则把来自宇宙的光线聚焦到自己的焦点上.只要用放大镜组瞄准这个焦点就行了,这样,我们就会得到聚焦到其光线的那个星球的信息,这比肉眼观察所能提供的信息要多得多.那条不穿过双曲线的对称轴叫做双曲线的虚轴.如果使双曲线绕这条轴旋转,那么,形成的曲面(这样的曲面称为单叶双曲面)也有许多实际用处.单叶双曲面是直纹曲面.上面有两组母直线族,各组内母线彼此不相交,而与另一组母线永远相交.正是这种性质在技术中得到了应用.例如,用直立木杆造水塔,如果把这些杆垂直地放置,那就只能得到一个很不牢固的建筑物,他会因为非常小的负荷而损坏.如果立杆时,使他们构成一个单叶双曲面(就是两组母线族),并使他们的交点处连接在一起,就会得到一个非常轻巧而又非常坚固的建筑物.许多化工厂或热电厂的冷却塔就是利用了这个原理.在尝试解决古代名题的过程中,所发现的各种美妙曲线远不限于螺线,蚌线和圆锥曲线.可是,不管找到了多少美妙的曲线,他们还是解决不了古代名题.要知道,正像我们还记得的那样,要求不只是解出这些名题,而是除了直尺和圆规外,不准利用其他任何工具.而仅仅利用这两种工具能否解决其中任何一个问题呢?这个问题该如何回答呢?如果这个答案存在的话,对这个问题给与肯定的回答,原则上显得比给与否定的回答更容易,只不过需要尝试才能找到这个答案.经过或多或少接连不断的寻找,这种题解通常可以找到.在题解不存在的情况下,事情则难办的多.这时,只停留在普通的几何直观上,几乎不可能得到所需要的答案.在这种情况下,可以对问题进行精确的代数分析,以便归结为完成某些代数方程的不可能性证明解答这个问题的不可能性.这样,就要求助于代数!2.1 圆锥曲线自我检测(1)以A,B为焦点的椭圆 (2) 以A,B为焦点的双曲线,A(-2,0)、B(2,0) (3)抛物线,A(1,0) ,l:x= -3 (4) 以A,B为端点的两条射线(5)因为AB,BC,AC成等差数列,所以AB+AC =2BC=12>BC,因此点A在以B、C为焦点的椭圆上运动.课后巩固练习A组1.(1)⑦;(2)②;(3)⑥;(4)⑤ 2.以O,A为焦点的椭圆3.证明略 4.点A在以B,C为焦点的双曲线的右支上B组5.以O1,O2为焦点的双曲线的一支 6.过点A且垂直于l的直线7.8.证明略C组9.证明略10.当m<2时,轨迹不存在;当m=2是,轨迹是以F1F2为端点的线段;当m>2时,轨迹是以F1F2为焦点的椭圆。
2021_2022高中数学第二章圆锥曲线与方程1曲线与方程2求曲线的方程3课件新人教A版选修2
2.1 曲线与方程
2.1.2 求曲线的方程
【学习要求】 1.掌握求轨迹方程时建立坐标系的一般方法,熟悉求曲线方程
的四个步骤以及利用方程研究曲线五个方面的性质. 2.掌握求轨迹方程的几种常用方法. 【学法指导】
通过建立直角坐标系得到曲线的方程,从曲线方程研究曲线的 性质和位置关系,进一步感受坐标法的作用和数形结合思想.
因为曲线在 x 轴的上方,所以 y>0. 虽然原点 O 的坐标(0,0)是这个方程的解,但不属于已知曲线, 所以曲线的方程应是 y=18x2 (x≠0). 小结 (1)求曲线方程时,建立的坐标系不同,得到的方程也 不同.
(2)求曲线轨迹方程时,一定要注意检验方程的解与曲线上点 的坐标的对应关系,对于坐标适合方程但又不在曲线上的点 应注意剔除.
例 2 讨论方程 y2=1-x2x (x≥0)的曲线性质,并画出图形. 解 (1)范围:∵y2≥0,又 x2≥0,∴1-x>0. 解得 x<1,∴0≤x<1. 又当 x=0 时,y=0,∴曲线过原点. 当 x→1 时,y2→+∞,∴y2≥0. 综上可知,曲线分布在两平行直线 x=0 和 x=1 之间.
当堂检测
1.在△ABC 中,若 B、C 的坐标分别是(-2,0)、(2,0),BC
边上的中线的长度为 5,则 A 点的轨迹方程是 ( D )
AHale Waihona Puke x2+y2=5B.x2+y2=25
C.x2+y2=5 (y≠0) D.x2+y2=25 (y≠0)
解析 BC 的中点为原点,BC 边上的中线长为 5,即 OA =5.设 A(x,y),则有 x2+y2=25 (y≠0).
知识要点
1.解析几何研究的主要问题: (1)根据已知条件,求出__表__示___曲__线__的__方__程____; (2)通过曲线的方程,研究_曲__线__的___性__质______.
湖北省荆州市沙市第五中学人教版高中数学课件 选修2-1 2-1-1曲线与方程
-1)x=0,3
【解题指南】解答本题,要注意题目中的隐含条件x-3≥0.
【解析】因为(x+y-1)( -1)=0,所以可得 x3
x y 或1者 0, -1=0,也就是x+y-1=0(x≥3)或x=4. 故方x 程3表示0 一条射线和一x 条3直线.
第二十页,编辑于星期日:十五点 四十五分。
【拓展提升】
x1
x2
1 2
,
又∵A(x1,y1),B(x2,y2)都在x直1 x线2 y=x32+. 3上,
∴y1=x1+3,y2=x2+3,∴y2-y1=x2-x1,
第二十七页,编辑于星期日:十五点 四十五分。
∴|AB|= x2 x1 2 y2 y1 2
= 2 x2 x1 2 2[ x1 x2 2 4x1x2]
1-|x|≥0即-1≤x≤1,
∴方程表示如图所示的两条线段.
第二十三页,编辑于星期日:十五点 四十五分。
类型 三 曲线的交点问题
【典型例题】
1.若直线x-2y-2k=0与y=x+k的交点在曲线x2+y2=25上,则k的值是( )
A.1
B.-1
C.1或-1
D.以上都不对
2.求直线y=x+3被抛物线y=2x2截得的线段的长度.
∴ AB (1 3 )2 (2 9 )2 5 2 .
∴所截线段的长为 2
2
2
52
.
2
x
3, 2
y3).,992,
22
第二十六页,编辑于星期日:十五点 四十五分。
方法二:设直线y=x+3与抛物线y=2x2的交点坐标为
A(x1,y1),B(x2,y2),则由方程组
高中数学知识点精讲精析 圆锥曲线与方程
2.5 圆锥曲线与方程1.曲线的方程和方程的曲线的概念:在直角坐标系中,如果某曲线C上的点与一个二元方程 f(x,y)=0的实数解满足下列关系:(1) 曲线上的点的坐标都是这个方程的解;(2) 以这个方程的解为坐标的点都在曲线上.这个方程叫做曲线的方程;这个曲线叫做方程的曲线.说明:(1)曲线的方程—反映的是图形所满足的数量关系;方程的曲线—反映的是数量关系所表示的图形.(2)“曲线上的点的坐标都是这个方程的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都符合这个条件而毫无例外.(纯粹性)(3)“以这个方程的解为坐标的点都在曲线上”,阐明符合条件的所有点都在曲线上而毫无遗漏.(完备性)由曲线的方程的定义可知:如果曲线C的方程是 f(x,y)=0,那么点P0(x0 ,y0)在曲线 C 上的充要条件是f(x0 ,y0)=02.求曲线方程的一般步骤:(1)建系:建立适当的坐标系,用 M(x,y) 表示曲线上任意一点;(2)几何列式:写出满足条件的点M的集合{M/P(M) };(3)代数方程:将M点坐标(x,y)代入几何条件,列出方程 f (x,y) =0;(4)化简:化方程为最简形式;(5)证明:验证化简过的方程所表示的曲线是否是已知点的轨迹。
圆锥曲线的综合问题包括:解析法的应用,数形结合的思想,与圆锥曲线有关的定值、最值等问题,主要沿着两条主线,即圆锥曲线科内综合与代数间的科间综合,灵活运用解析几何的常用方法,解决圆锥曲线的综合问题;通过问题的解决,进一步掌握函数与方程、等价转化、分类讨论等数学思想.4.解析几何与坐标法:我们把借助于坐标系研究几何图形的方法叫做坐标法. 在数学中,用坐标法研究几何图形的知识形成了一门叫解析几何的学科.因此,解析几何是用代数方法研究几何问题的一门数学学科.5.平面解析几何研究的主要问题:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质.6.求曲线(图形)的方程,一般有下面几个步骤:(1)建系设点:建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)列式:写出适合条件p的点M集合P={M|p(M)}(3)代换:用坐标表示条件p(M),列出方程f(x,y)=0;(4)化简:化方程f(x,y)=0为最简形式;(5)审查:说明以化简后的方程的解为坐标的点都在曲线上.说明:一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明.另外,根据情况,也可以省略步骤(2),直接列出曲线方程.7.求轨迹方程的常见方法:①直接法②定义法③代入法④参数法(1)直接法: 求轨迹方程最基本的方法, 直接通过建立x, y之间的关系, 构成 F(x, y)=0 即可.(2)定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程。
高二数学选修课件:2-1-1曲线与方程的概念
[解析]
① ②
得 2x2-11x-13=0, 13 即(2x-13)(x+1)=0,得 x1=-1,x2= . 2 将 x=-1 代入①得
人 教 B 版 数 学
第二章
圆锥曲线与方程
[例2] 求曲线2y2+3x+3=0与曲线x2+y2-4x-5=0 的公共点.
[分析] 曲线和曲线的公共点,即 的解
人 教 B 版 数 学
2y2+3x+3=0 2 x +y2-4x-5=0
因此解方法程组即可求得.
第二章
圆锥曲线与方程
2y2+3x+3=0, 由 2 2 x +y -4x-5=0,
人 教 B 版 数 学
表示两圆公切线的方程.(但应注意此圆系中不包含圆C2)
[答案] 1.方程F(x,y)=0的曲线 曲线C的方程 4.两圆公共弦所在直线
第二章
圆锥曲线与方程
人 教 B 版 数 学
第二章
圆锥曲线与方程
[例 1]
已知方程 x2+(y-1)2=10.
人 教 B 版 数 学
(1)判断点 P(1,-2),Q( 2,3)是否在此方程表示的 曲线上; m (2)若点 M( ,-m)在此方程表示的曲线上,求 m 的 2 值.
系数法求椭圆的标准方程.
第二章
圆锥曲线与方程
(3)掌握椭圆的几何性质,掌握标准方程中的a、b、c、
e的几何意义,以及a、b、c、e之间的相互关系. (4)了解双曲线的定义,并能根据双曲线定义恰当地选 择坐标系,建立及推导双曲线的标准方程. (5)会用待定系数法求双曲线标准方程中的a、b、c,
人 教 B 版 数 学
能根据条件确定双曲线的标准方程.
(6)使学生了解双曲线的几何性质,能够运用双曲线的 标准方程讨论它的几何性质,能够确定双曲线的形状特 征.
§2.1.1 曲线与方程
§2.1.1 曲线与方程
复习回顾: 复习回顾
我们研究了直线和圆的方程. 我们研究了直线和圆的方程 1.经过点 经过点P(0,b)和斜率为 的直线 的方程 和斜率为k的直线 经过点 和斜率为 的直线L的方程
y = kx +b 为____________ 2.在直角坐标系中 平分第一、三象限的 在直角坐标系中,平分第一 在直角坐标系中 平分第一、
直线方程是______________ 直线方程是 x-y=0 3.圆心为 圆心为C(a,b) ,半径为 的圆 的方程 半径为r的圆 圆心为 半径为 的圆C的方程
( x − a ) + ( y − b) = r 为_______________________.
2 2 2
为什么? 为什么?
思考? 思考?
课后作业: 金榜》素能综合检测( 课后作业:《金榜》素能综合检测(九)
练习:若命题“曲线 上的点的坐标满足方程 练习 若命题“曲线C上的点的坐标满足方程 若命题 f(x,y)=0”是正确的 则下列命题中正确的是 D) 是正确的,则下列命题中正确的是 是正确的 则下列命题中正确的是( A.方程 方程f(x,y)=0 所表示的曲线是 所表示的曲线是C 方程 B.坐标满足 f(x,y)=0 的点都在曲线 上 的点都在曲线C上 坐标满足 C.方程 方程f(x,y)=0的曲线是曲线 的一部分或是曲 的曲线是曲线C的一部分或是曲 方程 的曲线是曲线 线C D.曲线 是方程 曲线C是方程 曲线 是方程f(x,y)=0的曲线的一部分或是全 的曲线的一部分或是全 部
y
1 1 -1 0 x 1 -2 -1 0 1 2 1
y
y
x
-2 -1 0 1 2
x
⑴
高中数学第二章圆锥曲线与方程2
14/85
2.焦点在 x 轴上,顶点到焦点的距离为 4 的抛物线
的标准方程是( )
A.y2=16x
B.y2=8x
C.y2=±8x
D.y2=±16x
15/85
[解析] 由已知p2=4,∴p=8,而抛物线开口是向左 还是向右无法确定,∴抛物线方程为 y2=±16x.故选 D.
6/85
④离心率 抛物线上的点 M 到焦点的距离和它到准线的距离之 比,叫做抛物线的________,用 e 表示,由定义可知,e =1.
7/85
(2)注意三个结论 ①抛物线只有一个焦点,一个顶点,一条对称轴, 一条准线,没有中心. ②抛物线 y2=2px(p>0)上任意一点 P(x0,y0)的焦半 径为 x0+p2. ③过抛物线的焦点且垂直于抛物线对称轴的一条 弦,称为抛物线的通径,通径长为 2p.
准线 ________ ________ ________ ________
性 范围 ________ ________ ________ ________
质 轴
____ ____ x轴
____
____
y轴
顶点
O(0,0)
离心率
e=1
10/85
[答案] 1.抛物线的轴 顶点 离心率 2.Fp2,0 F-p2,0 F0,p2 F0,-p2 x= -p2 x=p2 y=-p2 y=p2 x≥0,y∈R x≤0,y∈R x∈R,y≥0 x∈R,y≤0
所以中点为 P(3,2).
39/85
方法二:设直线 y=x-1 与抛物线 y2=4x 交于点 A(x1,y1),B(x2,y2),其中点为 P(x0,y0).则 y22=4x2, y12=4x1,y22-y21=4x2-4x1,∴y2-xy21-yx21+y1=4.因为 xy22--xy11=kAB=1,y2+y1=4,y0=2,x0=y0+1=3,故中 点为 P(3,2).
人教版高中数学选修1-1 第二章《圆锥曲线与方程》师用讲解
选修1-1 第二章《圆锥曲线与方程》§2.1.1 椭圆及其标准方程【知识要点】● 椭圆的定义:到两个定点 F 1、F 2的距离之和等于定长(12F F >)的点的轨迹.● 标准方程:(1)()222210x y a b a b+=>>,22c a b =-,焦点是 F 1(-c ,0),F 2(c ,0);(2)()222210y x a b a b+=>>,22c a b =-,焦点是 F 1(0,-c ),F 2(0,c ).【例题精讲】【例 1】两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点 P 到两焦点的距离之和等于 10,写出椭圆的标准方程.【例 2】已知椭圆的两个焦点坐标分别是(0,-2)和(0,2)且过35,22⎛⎫- ⎪⎝⎭,求椭圆的标准方程.点评:题(1)根据定义求.若将焦点改为(0,-4)、(0,4)其结果如何;题(2)由学生的思考与练习,总结有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程.【例 3】判断下列方程是否表示椭圆,若是,求出 a ,b ,c 的值.【例4】已知ΔABC 的一边BC 的长为6,周长为16,求顶点A 的轨迹方程.【基础达标】1.椭圆221259x y +=上一点 P 到一个焦点的距离为 5,则 P 到另一个焦点的距离为( ) A .5 B .6 C .4 D .102.椭圆2211312x y +=上任一点 P 到两个焦点的距离的和为( ) A .26 B .24 C .2 D .2133.已知 F 1,F 2是椭圆221259x y +=的两个焦点,过 F 1的直线交椭圆于 M ,N 两点,则△MNF 2周长为( )A .10B .16C .20D .324.椭圆的两个焦点分别是F 1(-8,0)和F 2(8,0),且椭圆上一点到两个焦点距离之和为 20,则此椭圆的 标准方程为( )A .2212012x y += B .22140036x y += C .22110036x y += D .22136100x y +=5.椭圆2214x y m +=的焦距是 2,则 m 的值为( ) A .5或 3 B .8 C .5 D .166.椭圆221169x y +=的焦距是 ,焦点坐标为 . 7.焦点为(0,4)和(0,-4),且过点()533,-的椭圆方程是 .1~5 ADCCA【能力提高】8.如果方程 x 2+ky 2=2表示焦点在 y 轴上的椭圆,求实数 k 的取值范围.9.写出适合下列条件的椭圆的标准方程:(1)a=4,b =3,焦点在x 轴; (2)a =5,c =2,焦点在y 轴上.10.求到定点(2,0)与到定直线x =8的距离之比为22的动点的轨迹方程.§2.1.2 椭圆的简单几何性质(一)【知识要点】● 熟练掌握椭圆的范围,对称性,顶点,离心率等简单几何性质. ● 掌握标准方程中a ,b ,c 的几何意义,以及a ,b ,c ,e 的相互关系. ● 理解、掌握坐标法中根据曲线的方程研究曲线的几何性质的一般方法.【例题精讲】【例 1】已知椭圆的中心在坐标原点 O ,焦点在 x 轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且离心率为22,求椭圆的方程.【例 2】已知 x 轴上的一定点 A (1,0),Q 为椭圆2214x y +=上的动点,求 A Q 中点 M 的轨迹方程.【例 3】椭圆22110036x y +=上有一点 P ,它到椭圆的左焦点 F 1的距离为 8,求△PF 1F 2的面积.【例 4】设P 是椭圆()22211x y a a+=>短轴的一个端点,Q 为椭圆上的一个动点,求PQ 的最大值.【基础达标】1.已知P 是椭圆22110036x y +=上的一点,若P 到椭圆右焦点的距离是345,则P 点到椭圆左焦点的距离是( ) A .165 B .665 C .758D .778 2.若焦点在 x 轴上的椭圆2212x y m +=的离心率为12,则 m =( ) A .3 B .32 C .83 D .233.已知椭圆的中心在原点,焦点在 x 轴上,且长轴长为 12,离心率为13,则椭圆的方程是( )A .221144128x y += B .2213620x y += C .2213236x y += D .2213632x y += 4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件()1290PF PF a a a+=+>,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 5.若椭圆短轴长等于焦距的3倍,则这个椭圆的离心率为( )A .14 B .22 C .24 D .126.已知椭圆C 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆C 的离心率等于 . 7.离心率12e =,一个焦点是 F (0,-3)的椭圆标准方程为 .1~5 BBDDD【能力提高】8.求过点A(-1,-2)且与椭圆22169x y+=的两个焦点相同的椭圆标准方程.9.已知椭圆的对称轴为坐标轴,离心率23e=,短轴长为85,求椭圆的方程.10.设有一颗卫星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此卫星离地球相距m万千米和43m万千米时,经过地球和卫星的直线与椭圆的长轴夹角分别为2π和3π,求该卫星与地球的最近距离.§2.1.2 椭圆的简单几何性质(二)【知识要点】●掌握椭圆范围、对称性、顶点、离心率、准线方程等几何性质.●能利用椭圆的有关知识解决实际问题,及综合问题.【例题精讲】【例 1】已知椭圆C 的焦点F 1()22,0-和F 2()22,0,长轴长6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.【例 2】椭圆的中心为点E (-1,0),它的一个焦点为F (-3,0),且椭圆的离心率255e =,求这个椭圆的方程.【例 3】已知椭圆2212x y +=的左焦点为F ,O 为坐标原点,求过点O 、F ,并且与直线l :x =-2相切的圆的方程.【例 4】如图,把椭圆2212516x y +=的长轴 AB 分成 8等份,过每个分点作 x 轴的垂线交椭圆的上半部分于 P 1,P 2,P 3,P 4,P 5,P 6,P 7七个点,F 是椭圆的一个焦点,则123++PF P F P F +45++P F P F67+P F P F = .【基础达标】1.椭圆22110036x y +=上的点 P 到它的左焦点的距离是 12,那么点 P 到它的右焦点的距离是( ) A .15 B .12 C .10 D .82.已知椭圆()2221525x y a a +=>的两个焦点为F 1、 F 2,且|F 1F 2|=8,弦 A B 过点 F 1,则△ A BF 2的周长为( )A .10B .20C .241D .4413.椭圆221259x y +=的焦点 F 1、F 2,P 为椭圆上的一点,已知 P F 1⊥PF 2,则△ F 1PF 2的 面积为( ) A .9 B .12 C .10 D .84.椭圆221164x y +=上的点到直线 x +2y 2-=0 的最大距离是( ) A .3 B .11 C .22 D .105.如果椭圆221369x y +=的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A . x -2 y =0 B . x +2 y -4=0 C . 2x +3y -12=0 D . x +2 y -8=06.与椭圆22143x y +=具有相同的离心率且过点(2,3-)的椭圆的标准方程是 . 7.离心率53e =,一个焦点的坐标为5,03⎛⎫- ⎪⎝⎭的椭圆的标准方程是 . F1~5 DDBAD 【能力提高】8.已知椭圆22194x y+=上的点P到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,求P点坐标.9.过椭圆22194x y+=内一点D(1,0)引动弦A B,求弦A B的中点M的轨迹方程.10.椭圆221164x y+=上有两点P、Q,O是原点,若O P、OQ斜率之积为14-.求证22OP OQ+为定值.§2.2.1双曲线及其标准方程【知识要点】●掌握双曲线的定义,熟记双曲线的标准方程;●掌握双曲线标准方程的推导,会求动点轨迹方程;● 会按y 2特定条件求双曲线的标准方程; ● 理解双曲线与椭圆的联系与区别.【例题精讲】【例 1】判断下列方程是否表示双曲线,若是,求出三量 a ,b ,c 的值.【例 2】已知双曲线的焦点在y 轴上,中心在原点,且点()13,42P -、29,54P⎛⎫ ⎪⎝⎭在此双曲线上,求双曲线的标准方程.【例 3】点 A 位于双曲线()222210,0x y a b a b-=>>上, F 1,F 2是它的两个焦点,求△AF 1F 2的重心G 的轨迹方程.【例 4】已知三点 P (5,2)、 F 1(-6,0)、 F 2(6,0).(1)求以F 1、F 2为焦点且过点 P 的椭圆的标准方程;(2)设点 P 、F 1、F 2关于直线 y =x 的对称点分别为 P '、F 1'、F 2',求以F 1'、F 2'为焦点且过点P '的双曲线的标准方程.【基础达标】1.双曲线22221124x y m m-=+-的焦距是( ) A .4 B .22 C .8 D .与 m 有关2.椭圆222+134x y n =和双曲线222116x y n -=有相同的焦点,则实数 n 的值是( ) A .±5 B .±3 C .5 D .93.若0k a <<,双曲线22221x y a k b k -=-+与双曲线22221x y a b-=有( ) A .相同的虚轴 B .相同的实轴 C .相同的渐近线 D .相同的焦点4.过双曲线221169x y -=左焦点 F 1的弦 A B 长为 6,则 △ABF 2(F 2为右焦点)的周长是( ) A .28 B .22 C .14 D .125.设F 1,F 2是双曲线2214x y -=的焦点,点 P 在双曲线上,且 ∠F 1PF 2=90°,则点 P 到x 轴的距离为( )A .1B .55C .2D .5 6.到两定点F 1(-3,0)、F 2(3,0)的距离之差的绝对值等于 6的点 M 的轨迹是 .7.方程22+111x y k k=+-表示双曲线,则 k 的取值范围是 .1~5 CBDAB【能力提高】8.求与双曲线221164x y -=有公共焦点,且过点(32,2)的双曲线方程.9.如图,某农场在 P 处有一堆肥,今要把这堆肥料沿道路 P A 或 P B 送到庄稼地 A BCD 中去,已知 P A =100 m ,PB =150m ,∠APB =60°.能否在田地 A BCD 中确定一条界线,使位于界线一侧的点,沿道路 P A 送肥较近;而另一侧的点,沿道路 P B 送肥较近? 如果能,请说出这条界线是一条什么曲线,并求出其方程.10.已知点()3,0A -和()3,0B,动点C 到A 、B 两点的距离之差的绝对值为 2,点 C 的轨迹与直线 y =x -2 交于 D 、E 两点,求线段 D E 的长.§2.2.2 双曲线的简单几何性质(一)【知识要点】● 掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质. ● 掌握等轴双曲线,共轭双曲线等概念.【例题精讲】【例 1】求双曲线2214y x -=的顶点坐标、焦点坐标,实半轴长、虚半轴长和渐近线方程.【例 2】求一条渐近线方程是 3x +4y =0,一个焦点是(4,0)的双曲线标准方程,并求此双曲线的离心率.【例 3】求与双曲线221169x y -=共渐近线且过 A (33,-3)的双曲线的方程.【例 4】已知△ABC 的底边 B C 长为 12,且底边固定,顶点 A 是动点,使sin B -sin C =12sin A ,求点 A 的轨迹.【基础达标】1.下列方程中,以x ±2y =0为渐近线的双曲线方程是( )A .221164x y -= B .221416x y -= C .2212x y -= D .2212y x -= 2.已知双曲线的离心率为 2,焦点是(-4,0),(4,0),则双曲线方程为( )A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -= 3.过点(3,0)的直线 l 与双曲线 4x 2-9y 2=36只有一个公共点,则直线 l 共有( ) A .1条 B .2条 C .3条 D .4条4.方程mx 2+ny 2+mn =0(m <n <0)所表示的曲线的焦点坐标是( )A .()0m n ±-,B .()0n m ±-,C .()0m n ±-,D .()0n m ±-,5.与双曲线221916x y -=有共同的渐近线,且经过点A (-3,23)的双曲线的一个焦点到一条渐近线的距离是( )A.8 B.4 C.2 D.16.双曲线9y2-4x2=36的渐近线方程是.7.经过点M(3,-1),且对称轴在坐标轴上的等轴双曲线的标准方程是.1~5 AACBC【能力提高】8.求一条渐近线方程是3x+4y=0,一个焦点是(5,0)的双曲线标准方程,并求此双曲线的离心率.9.求以椭圆22+16416x y=的顶点为焦点,且一条渐近线的倾斜角为56π的双曲线方程.10.已知双曲线的方程是16x2-9y2=144.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小.§2.2.2 双曲线的简单几何性质(二)【例题精讲】【例 1】如果双曲线的两个焦点分别为F 1(-3,0)、F 2 (3,0),一条渐近线方程为2y x =,那么它的离心率是( )A .63B .4C .2D .3【例 2】过双曲线221916x y -=的左焦点F 1,作倾斜角为=4πα的直线与双曲线交于两点A 、B ,求AB 的长.【例 3】已知动点 P 与双曲线 x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且 c os ∠F 1PF 2的最小值为13-.求动点P 的轨迹方程.【例 4】已知不论 b 取何实数,直线 y =kx +b 与双曲线 x 2-2y 2=1总有公共点,试求实数 k 的取值范围.【基础达标】1.到两定点F 1(-3,0)、F 2 (3,0) 的距离之差的绝对值等于 6的点 M 的轨迹( ) A .椭圆 B .线段 C .双曲线 D .两条射线 4.双曲线的两个顶点将焦距三等分,则它的离心率为( ) A .32 B .3 C .43D .3 5.已知 m ,n 为两个不相等的非零实数,则方程mx -y +n =0与 n x 2+my 2=mn 所表示的曲线可能是( )A B C D6.双曲线22197x y -=的右焦点到右顶点的距离为 . 7.与椭圆22+11625x y =有相同的焦点,且离心率为355的双曲线方程为 .1~5 DDCBC【能力提高】8.设双曲线()222210x y a b a b-=<<的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线lyox yox yox yox的距离为34c ,求此双曲线的离心率.9.求过点M (3,-1)且被点M 平分的双曲线2214x y -=的弦所在直线方程.10.设双曲线 C 1的方程为()222210,0x y a b a b-=>>,A 、B 为其左、右两个顶点,P 是双曲线 C 1上的任意一点,引 Q B ⊥PB ,QA ⊥PA ,AQ 与 B Q 交于点 Q ,求 Q 点的轨迹方程.§2.3.1 抛物线及其标准方程【知识要点】● 掌握抛物线的定义.● 标准方程的不同形式及其推导过程.● 熟练画出抛物线的草图,求出抛物线的标准方程、焦点、准线方程.【例题精讲】【例 1】已知抛物线的标准方程是:(1)y 2=12x ,(2)y =12x 2,求它的焦点坐标和准线方程.【例2】求满足下列条件的抛物线的标准方程:(1)焦点坐标是F(-5,0);(2)经过点A(2,-3)【例3】直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形A PQB的面积为()A.48 B.56 C.64 D.72【例4】斜率为1的直线经过抛物线y2=4x的焦点,与抛物线相交于两点A、B,求线段A B 的长.【基础达标】1.抛物线y 2=ax (a ≠0)的准线方程是 ( ) A .4a x =-B .4ax = C .4a x =- D .4a x =2.抛物线的顶点在原点,对称轴为 x 轴,焦点在直线 3x -4y -12=0上,此抛物线的方程是( ) A .y 2=16x B .y 2=12x C .y 2=-16x D .y 2=-12x 3.焦点在直线 3x -4y -12=0上的抛物线标准方程是( ) A .y 2=16x 或 x 2=16y B .y 2=16x 或 x 2=12y C .x 2=-12y 或 y 2=16x D .x 2=16y 或 y 2=-12x4.已知 M (m ,4)是抛物线 x 2=ay 上的点,F 是抛物线的焦点,若|MF |=5,则此抛物线的焦点坐标是( )A .(0,-1)B .(0,1)C .(0,-2)D .(0,2) 5.过抛物线 y 2=4x 的焦点 F 作倾斜角为34π的直线交抛物线于 A 、B 两点,则 A B 的长是( ) A .42 B .4 C .8 D .26.顶点在原点,焦点在 y 轴上,且过点 P (4,2)的抛物线方程是 . 7.平面上的动点P 到点 A (0,-2)的距离比到直线 l :y =4的距离小 2,则动点P 的轨迹方程 是 .1~5 AACBC【能力提高】8.点M 到点(0,8)的距离比它到直线 y =-7的距离大 1,求 M 点的轨迹方程.9.抛物线 y 2=16x 上的一点 P 到 x 轴的距离为 12,焦点为 F ,求|PF |的值.10.抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上有一4米宽6米高的大木箱,问此木排能否安全通过此桥?§2.3.2 抛物线的简单几何性质(一)【知识要点】● 抛物线的范围、对称性、顶点、离心率等几何性质;● 能根据抛物线的几何性质对抛物线方程进行讨论;注意数与形的结合.【例题精讲】【例 1】已知抛物线关于x 轴为对称轴,它的顶点在坐标原点,并且经过点()2,22M -,求它的标准方程.xy O【例2】过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以A B为直径的圆和这抛物线的准线相切.【例3】正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px()0p>上,求这个正三角形的边长.【例4】抛物线x2=4y的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,再以A F、BF为邻边作平行四边形F ARB,试求动点R的轨迹方程.【基础达标】1.过抛物线 y 2=4x 的焦点作直线交抛物线于()11,A x y ,()22,B x y 两点,如果126x x +=,那么|AB | =( )A .10B .8C .6D .42.顶点在原点,焦点在 y 轴上,且过点 P (4,2)的抛物线方程是( ) A .x 2=8y B .x 2=4y C .x 2=2y D .x 2=12y 3.已知 M 为抛物线y 2=4x 上一动点,F 为抛物线的焦点,定点 P (3,1),则MP MF +的最小值为( )A .3B .4C .5D .64.已知抛物线 y 2=-12x 上一点 P (x 0,y 0)到焦点的距离为 8,则 x 0的值为( ) A .-5 B .5 C .-4 D .45.抛物线 y 2=8x 上一点 P 到顶点的距离等于它们到准线的距离,这点坐标是( ) A .()2,4 B .()2,4± C .()1,22 D .()1,22± 6.抛物线 2y 2+5x =0 的准线方程是 .7.过抛物线焦点 F 的直线与抛物线交于 A 、B 两点,若 A 、B 在准线上的射影是 A 2,B 2,则∠A 2FB 2等于 .1~5 BABAD【能力提高】8.抛物线顶点在原点,它的准线经过双曲线22221x y a b-=的一个焦点,并且这条准线与双曲线的实轴垂直,又抛物线与双曲线交于点362⎛⎫ ⎪⎝⎭,,求二者的方程.9.顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为15,求抛物线的方程.p>的焦点F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准10.设抛物线y2=2px()0线上,且B C∥轴.证明:直线AC经过原点O.§2.3.2 抛物线的简单几何性质(二)【例题精讲】【例1】过抛物线y2=2x的顶点作互相垂直的二弦O A、OB.(1)求A B中点的轨迹方程.(2)证明:AB与x轴的交点为定点.【例2】已知点 A (2,8),B (x 1,y 1),C (x 2,y 2)在抛物线 y 2=2px 上,△ABC 的重心与此抛 物线的焦点 F 重合.(1)写出该抛物线的方程和焦点F 的坐标; (2)求线段BC 中点 M 的坐标; (3)求 B C 所在直线的方程.【例 3】抛物线 y =-x 2上的点到直线 4x +3y -8=0距离的最小值是( )A .43 B .75 C .85D .3【基础达标】1.已知抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线 3x -4y -12=0时,则此抛物线的方 程是( )A .y 2=16xB .x 2=-12yC .y 2=8x 或x 2=-6yD . y 2=16x 或x 2=-12y 2.抛物线的顶点在原点,对称轴是x 轴,点()5,25-到焦点距离是6,则抛物线的方程为( ) A .y 2=-4x B 、y 2=-2x C 、 y 2=2x D 、 y 2=-4x 或x 2=-36y 3.在抛物线 y =x 2上有三点 A 、B 、C ,其横坐标分别为-1,2,3,在y 轴上有一点D 的纵坐标为 6,那么以 A 、B 、C 、D 为顶点的四边形是( )A .正方形B .平行四边形C .菱形D .任意四边形4.抛物线 y 2=4x 的焦点F ,准线为l ,交 x 轴于 R ,过抛物线上一点 P (4,4)作 P Q ⊥ l 于Q ,则梯形 PFRQ 的面积是( )A .12B .14C .16D .18 5.抛物线 y 2=-4x 关于直线 x +y =2对称的曲线的顶点坐标为( )A .(2,2)B .(0,0)C .(-2,-2)D .(2,0) 6.若动点M (x ,y )到点F (4,0)的距离比它到直线x +5=0的距离小1,则M 点的轨迹方程 是 .7.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为 .1~5 DABBA【能力提高】8.经过抛物线 y 2=-8x 的焦点且和抛物线的对称轴成 60°角的直线与抛物线交 A 、B 两点,求|AB |.9.求过A(-1,1),且与抛物线y=x2+2有一个公共点的直线方程.10.已知抛物线C:y=x2+4x+72,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.若C在点M的法线的斜率为12-,求点M的坐标(x0,y0).第二章圆锥曲线复习(一)【知识要点】●椭圆定义,椭圆的标准方程,椭圆的性质.●双曲线的定义,双曲线的标准方程及特点,双曲线的几何性质.●抛物线定义,抛物线的几何性质.【例题精讲】【例1】椭圆的中心在原点,焦点在x轴上,一个焦点与短轴两端点的连线互相垂直,且这个焦点到长轴上较近顶点的距离是105-,求椭圆方程.【例 2】已知双曲线2214x y -=和定点12,2P ⎛⎫ ⎪⎝⎭.(Ⅰ)过 P 点可以做几条直线与双曲线 C 只有一个公共点;(Ⅱ)双曲线C 的弦中,以 P 点为中点的弦 P 1P 2是否存在? 并说明理由.【例 3】已知点 A (0,2)及椭圆22+14x y =,在椭圆上求一点 P 使PA 的值最大.【例 4】己知点P 在抛物线 x 2=y 上运动,Q 点的坐标是(-1,2),O 是原点,OPQR (O 、P 、Q 、R顺序按逆时针)是平行四边形,求 R 点的轨迹方程.【基础达标】1.平面上到定点 A (1,1)和到定直线 l :x +2 y =5距离相等的点的轨迹为( )A.直线B.抛物线C.双曲线D.椭圆2.若椭圆2kx2+ky2=1 的一个焦点坐标是(0,4),则k的值为()A.18B.132C.2D.3163.椭圆22+1259x y=上的点M到焦点F1的距离是2,N是M F1的中点,则ON为()A.4 B.2 C.8 D.3 24.如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为()A.32B.62C.32D.25.椭圆22+1259x y=的两焦点F1,F2,过F2引直线L交椭圆于A、B两点,则△ABF1的周长为()A.5 B.15 C.10 D.206.在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为.7.若椭圆的两个焦点为F1(-4,0)、F2(4,0),椭圆的弦A B过点F1,且△ABF2的周长为20,那么该椭圆的方程为.1~5 BBACD【能力提高】8.若双曲线的两条渐进线的夹角为60°,求该双曲线的离心率.9.正方形的一条边A B在直线y=x+4上,顶点C、D在抛物线y2=x上,求正方形的边长.10.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,求实数a的取值范围.第二章 圆锥曲线复习(二)【例题精讲】【例 1】已知直线 l 交椭圆22+12016x y =于 M 、N 两点,B (0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线 l 的方程.【例 2】已知倾斜角为4π的直线 l 被双曲线 x 2-4y 2=60截得的弦长82AB =,求直线l 的方程及以AB 为直径的圆的方程.【例 3】已知直线l :x =-1,点F (1,0),以F 为焦点,l 为准线的椭圆中,短轴一端点为B ,P为FB 的中点.(Ⅰ)求 P 点的轨迹方程,并说明它是什么曲线; (Ⅱ)M (m ,0)为定点,求|PM |的最小值.【例 4】已知两定点A (-2,0),B (1,0),如果动点P 满足2PA PB =,求点P 的轨迹所包围的图形的面积.【基础达标】1.已知 M (-2,0),N (2,0),4P M P N -=,则动点P 的轨迹是( )A .双曲线B .双曲线左支C .一条射线D .双曲线右支2.若圆 x 2+y 2=4上每个点的横坐标不变.纵坐标缩短为原来的13,则所得曲线的方程是( ) A .22+1412x y = B .22+1436x y = C .229+144x y = D .22+1364x y = 3.已知 F 1,F 2是椭圆22+1169x y =的两焦点,过点F 2的直线交椭圆于点A ,B ,若5AB =,则12AF BF -=( )A .3B .8C .13D .164.曲线()()22346225x y x y ---+-=的离心率为( ) A .110 B .12C .2D .无法确定5.抛物线y2=14x 关于直线x-y=0对称的抛物线的焦点坐标是()A.(1,0)B.116⎛⎫⎪⎝⎭,C.(0,1)D.116⎛⎫⎪⎝⎭,6.与椭圆4x2+ 9y2=36有相同的焦点,且过点(-3,2)的椭圆方程为.7.以双曲线22145x y-=的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是.1~5 C CABD 【能力提高】8.设F1,F2为双曲线2214xy-=的两个焦点,点P在双曲线上且满足∠F1PF2=90°,求△F1PF2的面积.9.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,求直线l的斜率的取值范围.10.设椭圆22+162x y=和双曲线2213xy-=的公共焦点为F1,F2,P是两曲线的一个公共点,求cos∠F1PF2的值.。
人教版高中数学章节目录
第一章集合与函数概念
集合
函数及其表示
函数的基本性质
第二章基本初等函数(Ⅰ)
指数函数
对数函数
幂函数
第三章函数的应用
函数与方程
函数模型及其应用
人教版高中数学必修二目录
第一章空间几何体
空间几何体的结构
空间几何体的三视图和直观图
空间几何体的表面积与体积
第二章点、直线、平面之间的位置关系
3.3 导数在研究函数中的应用
3.4 生活中的优化问题举例
人教版高中数学选修1-2目录
第一章 统计案例
1.1 回归分析的基本思想及其初步应用
1.2 独立性检验的基本思想及其初步应用
第二章 推理与证明
2.1 合情推理与演绎推理
2.2 直接证明与间接证明
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
2.2 二项分布及其应用
2.3 离散型随机变量的均值与方差
2.4 正态分布
第三章 统计案例
3.1 回归分析的基本思想及其初步应用
3.2 独立性检验的基本思想及其初步应用
人教版高中数学选修4-1目录
第一讲 相似三角形的判定及有关性质
一 平行线等分线段定理
二 平行线分线段成比例定理
三 相似三角形的判定及性质
2.2 直接证明与间接证明
2.3 数学归纳法
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
3.2 复数代数形式的四则运算
人教版高中数学选修2-3目录
第一章 计数原理
1.1 分类加法计数原理与分步乘法计数原理
1.2 排列与组合
1.3 二项式定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1 曲线与方程的概念
课堂导学
三点剖析
一、曲线与方程关系的判定
称曲线C 的方程是f (x ,y )=0或称方程f (x ,y )=0的曲线是C 意指:曲线C 上的点的坐标都是这个方程的解;反之,以这个方程的解为坐标的点都在曲线C 上.
【例1】 证明圆心为P (a,b )、半径等于r 的圆的方程是(x-a )2+(y-b )2=r 2.
证明:(1)设M (x 0,y 0)是圆上任意一点,则点M 到圆心的距离等于r , 即2
0202)()(b y a x ++-=r ,也就是(x 0-a )2+(y 0-b )2=r 2, 因此(x 0,y 0)是方程(x-a )2+(y-b )2=r 2
的解.
(2)设(x 0,y 0)是方程(x-a )2+(y-b )2=r 2的解,则有(x 0-a )2+(y 0-b )2=r 2,两边开方取算术根,得2020)()(b y a x -+-=r ,于是点M (x 0,y 0)到点(a ,b )的距离等于r ,点(x 0,y 0)是这个圆上的点.
由(1)(2)可知,(x-a )2+(y-b )2=r 2是圆心为P (a ,b ),半径等于r 的圆的方程.
温馨提示
证明方程的曲线或曲线的方程需证明两条:①曲线上的点的坐标都是方程的解;②以这个方程的解为坐标的点都在曲线上.
二、由方程画曲线
将方程通过化简变为我们熟悉的形式,然后由其特点和性质作出其图形.
【例2】 作出曲线y=|x-2|-2的图象,并求它与x 轴所围成的三角形的面积.
解析:(1)当x-2≥0时,原方程可化为y=x-4.
(2)当x-2<0时,原方程可化为y=-x,故原方程表示两条共端点的射线,易得其端点为B(2,-2),与x 轴交于点O(0,0)、A(4,0),它与x 轴围成的三角形的面积为S △AOB =2
1|OA|、5|y b |=4. 温馨提示
已知方程研究曲线,首先要对所给的方程进行同解变形,化为我们所熟悉的方程,进一步研究曲线的特点和性质,进而作出图形.
三、由曲线方程讨论字母系数
方程与曲线的问题也就是解与点的关系,判断点是否在曲线上,就是判断点的坐标是否适合曲线的方程.
【例3】已知方程(x-a )2+(y -b )2=36的曲线经过点O(0,0)和点A(0,-12),求a 、
b 的值.
解析:∵点O 、A 都在方程(x-a )2+(y-b )2=36表示的曲线上,
∴点O 、A 的坐标都是方程(x-a )2+(y-b )2=36的解.
∴⎪⎩⎪⎨⎧=--+-=-+-,
36)12()0(,36)0()0(2222b a b a 解得⎩⎨⎧-==,
6,0b a
即a=0,b=-6为所求.
温馨提示
若点在曲线上,则点的坐标满足曲线的方程
各个击破
类题演练 1
设A (2,0)、B (0,2),能否说线段AB 的方程是x+y-2=0?为什么?
解析:不能说线段AB 的方程是x+y-2=0,因点(-3,5)的坐标是方程x+y-2=0的一个解,但点(-3,5)不在线段AB 上,所以线段AB 的方程不是x+y-2=0.
变式提升 1
下列命题正确吗?为什么?
(1)过点P (2,0)且平行于y 轴的直线l 的方程是|x|=2;
(2)以坐标原点为圆心,半径为r 的圆的方程是y=22x r -.
解:(1)不对.因只具备条件①,而不具备条件②,故|x|=2不是直线l 的方程,l 也不全是方程|x|=2的直线.
(2)不对.设(x 0,y 0)是方程y=22x r -的解,则y 0=2
02x r -,即22020r y x =+, 两边开平方取算术根,得2020y x +=r.
即点(x 0,y 0)到原点的距离等于r ,点(x 0,y 0)是这个圆上的点.
因此满足条件②.但是,以原点为圆心、半径为r 的圆上的一点如点(2r ,2
3-r)在圆上,却不是y=22x r -的解,这就不满足条件①.所以,以原点为圆心,半径为r 的圆的方程不是y=22x r -(而应是y=±22x r -).
类题演练 2
方程(x 2-4)2+(y 2-4)2=0表示的图形是( )
A.两个点 B.四个点 C.两条直线 D.四条直线 答案:B
变式提升 2
已知方程x 2+(y-1)2=10.
(1)判断点P(1,-2),Q(2,3)是否在此方程表示的曲线上;
(2)若点M(
2m ,-m)在此方程表示的曲线上,求m 的值. 解:(1)∵12+(-2-1)2=10,
(2)2+(3-1)2=6≠10,
∴P(1,-2)在方程x 2+(y-1)2=10表示的曲线上,Q(2,3)不在此曲线上.
(2)∵M(2m ,-m)在方程x 2+(y-1)2
=10表示的曲线上, ∴(2m
)2+(-m-1)2=10.
解得m=2或m=518
.
类题演练 3
下列命题中,真命题的个数是( )
①若曲线C 上的点的坐标都是方程f(x,y)=0的解,则C 的方程是f(x,y)=0
②若以方程f(x,y)=0的解为坐标的点都是曲线C 上的点,则方程f(x,y)=0的曲线是C ③若以方程f(x,y)=0的解为坐标的点都是曲线C 上的点,则曲线C 的方程是f(x,y)=0
A.0
B.1
C.2
D.3
答案:A
变式提升 3
曲线f(x ,y)=0关于直线x-y-3=0对称的曲线方程为( )
A.f(x-3,y)=0
B.f(y+3,x)=0
C.f(y-3,x+3)=0
D.f(y+3,x-3)=0
答案:D。