桥梁博士概述
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 有限元法概述
1.3.1 有限元法的基本思想
有限元法在20世纪50年代起源于飞机结构的矩阵分析, 其基本思想是用有限个离散单元的集合体代替原连续体,采 用能量原理研究单元及其离散集合体的平衡,以计算机为工 具进行结构数值分析。它避免了经典弹性力学获得连续解的 困难(建立和求解偏微分方程),使大型、复杂结构的计算 容易地在计算机上完成,应用十分广泛。ANSYS, SAP, Marc, 等。
混凝土斜拉桥的拉索一般为 柔性索,在索的自重作用下有 垂度,垂度对索的受拉性能有 影响,同时索力大小对垂度也 有影响。
在实际计算中索一般采用一 直杆表示,以索的弦长作为杆 长。
Eeq
1
E
12A2 L22X
3
E
1.2 土木工程结构的计算方法
土木工程材料如木材、石料、混凝土、钢材等多 为弹塑性材料,但从结构安全度的需要考虑,其工作 状态通常都处于以弹性为主的阶段,这就使结构力学 和弹性力学在土木工程结构分析中占有特别重要的地 位。
(1)小变形
定义:结构受载后的位移与应变相当微小,与结构的 原始尺寸相比可以忽略,则分析结构时可以以其未发 生变形前的原始状态为依据,则其形变几何关系(位 移-应变关系)是线性的。
(2)大变形
定义:结构受载后的位移与应变相当大,与结构的原 始尺寸相比不可忽略,因此结构分析时必须计算结构 几何形状的改变,即以结构变形后的现实状态作为计 算依据,则其形变几何关系(位移-应变关系)是非 线性的。
桥梁CAD
——杨剑 主讲
本课程教学要求
课堂教学学时:16h 讲授内容:桥梁CAD(桥梁博士) 教学、上机练习相结合 参考资料:
(1)桥梁博士V3用户手册 (2)龙驭球:有限单元法 (3)桥梁工程相关书籍、规范 成绩评定方法: (1)平时成绩 (2)考试成绩
桥梁CAD教学内容
工程结构材料的本构关系
(3)塑性
定义:结构物加载时于卸载时的应力-应变关系不重 合,有残余应变存在,且其应力-应变关系也为非线 性。
s
工程结构材料的本构关系
(4)其它本构关系
弹塑性、粘弹性、粘塑性等多种本构关系模型
江见鲸. 《钢筋混凝土结构非线形有限元分析》. 陕西 科学出版社。
工程结构的变形状态
1.3 有限元法概述
把整体结构离散为有限个单元,研究单元的平衡和变形 协调;再把这有限个离散单元集合还原成结构,研究离散结 构的平衡和变形协调。
(1) 结构力学:力法、位移法和混合法
(2) 弹性力学:基于二、三为连续体结构的几何条 件、静力平衡与本构关系,按满足既定的边界条件来 解析
结构力学计算方法
(1) 力法-取结点力作为基本未知量
δ 11 X1
δ 12 X 2
δ 13 X 3
△ 1P
0
δ
21 X1
δ
22 X 2
δ 13 X 3
工程结构材料的本构关系
(1)线弹性
定义:结构物加载下的应变,在荷载卸除后将完全消 除,从而恢复到结构未受载的原始状态,即:
E(co2)非线形弹性
定义:结构物在整个受载变形过程中,应力-应变关 曲线不再是直线而是曲线,即弹性模量E是变量。
E( )
徐芝纶:《弹性力学》,高等教育出版社。
能量变分原理-有限元法分析的重要理论基础
龙驭球:《结构力学》,清华大学出版社。
1.3 有限元法概述
由于结构几何形状与边界条件的复杂多样性,依 靠结构力学或弹性力学的直接解析来求取结果往往非 常困难。
通常最常用的是有限元法。有限元法进行的依据 不再是结构弹性体原型,而是将其进行离散化处理的, 由有限个单元在有限个结点相联结的替代结构,即 “有限元模型”。
△ 2
P
0
δ 31 X1
δ 32 X 2
δ 33 X 3
△ 3P
0
结构力学计算方法
(2) 位移法-取结点位移作为基本未知量
r11Z1
r 12
Z
2
r 13
Z3
R 1P
0
r21Z1
r 22
Z
2
r13Z3
R 2P
0
r31Z1
r 32
Z
2
r33Z3
R3P
有限元概述2h 直线桥设计计算输入4h 直线桥设计计算输出2h 设计计算工具2h 上机练习6h
第一章 有限元法概论
本章主要内容
工程结构的基本概念 土木工程结构的计算方法 有限元概述 平面杆系结构的有限元法
1.1工程结构的基本概念
工程结构分类
工程结构原型,广义的看均为由无限多个质点所 组成的三维连续固体,因而也就具有无限多个自由度 的体系。
d. 力法的基本结构是与原结构形状相同的静定结构, 因此,不同类型的原结构具有不同的形、载常数。
弹性力学的解析方法
1. 研究弹性物体在外力和其它外界因素作用下产生的 变形和内力 2. 主要应用于二、三维连续体结构问题 3. 其求解体系基于结构的几何条件、静力平衡与本构 关系,最终演化的数学表述为偏微分方程,按满足既 定的边界条件来解析
分类:
(a)平面杆系结构:全部杆件、支座及作用力均位于 同一平面内;
(b)空间杆系结构:全部杆件、支座及作用力不全位 于同一平面内;
工程结构分类
(2)二维结构
定义:当三维连续体z坐标向的应力或应变可以忽略时, 按二维问题简化分析
平面应力问题
平面应变问题
工程结构分类
(3)三维结构
定义:最一般的工程结构状态,其位移、应力、应变 都是三维坐标 x,y,z的函数。
0
结构力学计算方法
(3) 混合法-取一部分结点力和一部分位移作为基 本未知量
(4) 三种方法的比较 a. 最终的数学表述均为多元线性代数方程组。 b. 超静定结构解算的繁简取决与超静定次数的多少; c. 位移法将原结构最终简化为有限的几种基本杆件
的集合,因而具有较强的通用性,便于实现程序标准化。 (有限元法应用最广)
考虑其具体的几何形状与应力-应变的特殊性,工 程结构通常可划分:
(1)杆系结构 (2) 二维结构 (3) 三维结构
工程结构分类
(1)杆系结构
定义:由一定数量杆件通过一定数量结点相互连接而 组成的结构体系
○
○
○○
○
○
○
梁
○
○
框架
○
○
○○
○
桁架
特点:横截面尺寸远比其杆长小,二结点的联结可能 为铰接或刚接。