平行线的性质
平行线的性质
教学过程:1、性质性质1:两条直线被第三条直线所截,同位角相等,简单说成“同位角相等,两直线平行”使用方法如图:∵a∥b,∴∠1=∠2(两直线平行,同位角相等)性质二:两条直线被第三条直线所截,内错角相等,简单说成“内错角相等,两直线平行”使用方法:∵a∥b,∴∠2=∠3(两直线平行,内错角相等)性质三:两条直线被第三条直线所截,同旁内角互补,简单说成“同旁内角互补,两直线平行”使用方法:∵a∥b,∴∠2+∠4=180°(两直线平行,同旁内角互补)另:同时______两条平行线,并且夹在这两条平行线间的____________叫做这两条平行线的距离.2、命题、定理(1)、命题:像下面这样判断一件事情的语句,叫做命题.注:命题由题设和结论两部分组成,任何一个命题都可以写成“如果……,那么……”的形式(1)两条直线被第三条直线所截,同旁内角互补.(2)互为余角的两个角,和为90°(3)等式的左右两边同时除一个不为0的数,结果仍然成立(4)三角形的内角和为180°(2)、分类:(1)真命题:如果题设成立,那么结论成立,这样的命题叫真命题(2)假命题:如果题设成立,那么结论不成立,这样的命题叫假命题平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.例题精讲:1.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______,理由是_____________________________________.(2)如果AB∥DC,那么∠3=______,理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______,理由是_______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______,理由是________________________.2.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(___________________)(2)∵DE∥AB,( )∴∠3=______.(___________________)(3)∵DE∥AB( ),∴∠1+______=180°.(____________________)3.已知:如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______//______.解:∵∠1=∠2,( )∴______//______.(__________________)∴∠4=_____=_____°.(__________________)4.已知:如图,∠1+∠2=180°,求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______//______.证明:∵∠1+∠2=180°,( )∴______//______.(_________________)∴∠3=∠4.(_________,_________)5.已知:如图,∠A=∠C,求证:∠B=∠D.证明思路分析:欲证∠B=∠D,只要证______//______.证明:∵∠A=∠C,( )∴______//______.(_________,_________)∴∠B=∠D.(_________,_________)6.已知:如图,AB∥CD,∠1=∠B,求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______//______.证明:∵AB∥CD,( )∴∠2=______.(_________,_________)但∠1=∠B,( )∴______=______.(等量代换)即CD是____ ________.7.已知:如图,AB∥CD,∠B=35°,∠1=75°,求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=______°(_________,_________)而∠1=75°,∴∠ACD=∠1+∠2=______。
平行线的性质
平行线的性质平行线是几何学中一个重要的概念,它具有一系列独特的性质和规律。
本文将从定义、性质以及常见应用几个方面来探讨平行线的特点。
一、定义平行线指在同一个平面上,永远不会相交的两条直线。
两条平行线之间的距离是不变的,无论它们延伸多远。
二、性质1. 平行线具有相同的斜率:对于两条平行线,它们的斜率相等。
可以通过直线的斜率公式来证明这个性质。
2. 平行线没有交点:平行线不会相交,因此在它们之间不存在交点。
这一性质是平行线的基本特征。
3. 平行线的内角和性质:当一条直线与两条平行线相交时,相应的内角和是补角。
也就是说,这些内角的和等于180度。
4. 平行线的外角性质:当一条直线与两条平行线相交时,相应的外角是等于对应内角的。
5. 平行线的转角性质:当有两条平行线与一条交线相交时,它们所对应的转角相等。
三、应用平行线的性质在几何学中有广泛的应用。
下面列举几个常见的应用场景。
1. 建筑与设计:在建筑和设计过程中,平行线的概念经常被用来处理墙壁、地板、屋顶等元素的布局。
通过确保平行线之间的距离一致,可以营造出整齐、协调的空间效果。
2. 路面交通:在道路设计和交通规划中,平行线的性质被用于绘制车行道、人行道和停车位等交通设施。
通过确保平行线的平直性和正确的间距,可以提高交通流畅度和安全性。
3. 数学证明:平行线的性质在数学证明中扮演重要的角色。
通过运用平行线的相关性质和定理,可以推导出更复杂的几何定理,解决各种几何问题。
总结:平行线是几何学中一个基础而重要的概念,它具有独特的性质和规律。
通过理解和应用平行线的性质,我们可以更好地解决几何问题,同时在建筑、设计和交通规划等领域中发挥重要作用。
掌握平行线的性质对于理解几何学和应用几何学都是至关重要的。
平行线的性质
平行线的性质苏州平江实验学校冯伟2000年5月平行线判定方法小结证明(请使用《几何画板》)平行线判定公理同位角相等,两直线平行。
平行线判定定理二同旁内角互补,两直线平行。
平行线判定定理一内错角相等,两直线平行。
平行线性质一平行线性质一:两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
已知:如图,直线AB,CD被MN所截,AB∥CD,求证:∠3=∠2.证明:∵ AB∥CD(已知),∴∠1=∠2(两直线平行,同位角相等).∵ ∠1=∠3(对顶角相等),∴ ∠3=∠2(等量代换).平行线性质二平行线性质二:两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
已知:如图,直线AB,CD被MN所截,AB∥CD,求证:∠2+∠4=1800.证明:∵ AB∥CD(已知)∴∠1=∠2(两直线平行,同位角相等)∵ ∠1+∠4=1800(邻补角)∴ ∠2+∠4 =1800(等量代换)平行线性质三平行线性质三:两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
例1:已知某零件如梯形ABCD,现已残破,只能量得∠A=1150,∠D=1000,你能知道下底的两个角∠B和∠C的度数吗?根据是什么?解:∵AD∥BC(已知)∴∠A+∠B=1800∴∠B=1800-∠A=650∴∠C+∠D=1800∴∠C=1800-∠D=800(两直线平行,同旁内角互补)。
例二:已知:CD平分∠ECB,DE∥BC(如下图).求证: ∠DCE=∠CDE.证明:∵CD平分∠ECB(已知),∴ ∠DCE=∠DCB(角平分线定义).∵ DE∥BC(已知),∴ ∠DCB=∠CDE(两直线平行,内错角相等),∴∠DCE=∠CDE(等量代换).练习1:如图,DE 与AB ,AC 分别相交于点F,G.填空:∵DE ∥BC (已知)∴∠1=∠(两直线平行,角相等)∵DB ∥AC (已知)∴∠3=∠(两直线平行,角相等)2同位A内错练习1:如图,DE 与AB ,AC 分别相交于点F,G.填空:∵EC ∥AB(已知)∴∠E+∠ =1800(两直线平行,角互补)4同旁内练习2:如图∵ AB∥CD(已知)∴∠ABC=∠( )∠ADC=∠( )∠BCD+∠ =1800( )DCE两直线平行,同位角相等FAD两直线平行,内错角相等B两直线平行,同旁内角互补平行线性质小结平行线性质一:两条平行线被第三条直线所截,同位角相等。
平行线的性质
平行线的性质平行线是几何学中重要的概念之一,它们有着独特的性质和特点。
本文将介绍平行线的性质,包括定义、判定方法以及与其他几何对象的关系。
一、定义及判定方法平行线是指在同一平面上永不相交的直线。
根据平行线的定义可以得出以下性质:1. 平行线具有相同的斜率:如果两条直线的斜率相等,那么这两条直线是平行线。
反之,如果两条直线平行,那么它们的斜率一定相等。
2. 平行线具有相同的夹角:如果两条直线分别与一条横穿它们的直线相交,且交角相等,那么这两条直线是平行线。
反之,如果两条直线平行,那么它们与同一条横穿它们的直线的交角一定相等。
3. 平行线具有相同的倾斜角:倾斜角指直线与水平线之间的夹角。
如果两条直线的倾斜角相等,那么这两条直线是平行线。
反之,如果两条直线平行,它们与水平线的倾斜角一定相等。
二、平行线与其他几何对象的关系1. 平行线与角的关系:当一条直线与两条平行线相交时,所对应的内角或外角具有特定的关系。
如果同时给定两条直线为平行线,以及一条与它们相交的第三条直线,那么我们可以根据角的性质计算出交角的大小。
2. 平行线与三角形的关系:如果一条直线与一个三角形的两条边分别平行,那么这条直线将会将这两条边分成对应的等分线段,从而形成一组相似三角形。
3. 平行线与平行四边形的关系:平行四边形是指具有两对平行边的四边形。
在平行四边形中,对角线相交于一点,并且相交点将对角线等分。
同时,两对相对边及相对角也具有相等关系。
三、应用举例平行线的性质在实际应用中有着广泛的应用。
以下是一些例子:1. 建筑工程:在建造房屋或桥梁等结构时,工程师需要利用平行线的性质来确保构件的平行度和垂直度。
2. 地理测量:地理测量中使用的经纬线是地球表面上的平行线,它们能够提供位置和方向信息。
3. 电路布局:在电路设计中,平行线的性质被应用于布线和电路板设计,以确保信号传输的稳定性和减少电磁干扰。
4. 图形学:在计算机图形学中,平行线的性质被用于3D渲染和投影算法,以模拟真实世界中的透视效果。
平行线的性质
平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.【典型例题】类型一、平行线的性质1.(2015春•荣昌县期末)如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF 于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.【思路点拨】(1)根据两直线平行,同位角相等可得∠FOB=∠A=30°,再根据角平分线的定义求出∠COF=∠FOB=30°,然后根据平角等于180°列式进行计算即可得解;(2)先求出∠DOG=60°,再根据对顶角相等求出∠AOD=60°,然后根据角平分线的定义即可得解.【答案与解析】解:(1)∵AE∥OF,∴∠FOB=∠A=30°,∵OF平分∠BOC,∴∠COF=∠FOB=30°,∴∠DOF=180°﹣∠COF=150°;(2)∵OF⊥OG,∴∠FOG=90°,∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°,∵∠AOD=∠COB=∠COF+∠FOB=60°,∴∠AOD=∠DOG,∴OD平分∠AOG.【总结升华】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键.举一反三:【变式】(2015•青海)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于l,若∠1=58°,则∠2=.【答案】32°类型二、两平行线间的距离2.下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型三、尺规作图3. 如图所示,已知∠α和∠β,利用尺规作∠AOB,使∠AOB=2(∠α-∠β).【答案与解析】作法:如图所示.(1)作∠COD=∠α;(2)以射线OD为一边,在∠COD 的外部作∠DOA,使∠DOA=∠α;(3)以射线OC为一边,在∠COA的内部作∠COE,使∠COE=∠β;(4)以射线OE为一边,在∠EOA内部作∠EOB,使∠EOB=∠β,则∠AOB就是所求作的角.【总结升华】本题考查作一个差角的倍数角,本题的做法有两种:一种可以先做倍数角再做差角,如本题提供的答案;另一种也可以先做差角再做倍数角.4. (苏州中考模拟)如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m 的道路,余下的部分种植花草,求种植花草部分的面积.【思路点拨】因种植花草部分比较分散,且有的是不规则的图形,所以直接求其面积较困难.因小路都是宽度相同的长方形,所以可想到把小路平移到一起,这样种植花草部分将汇集成一个长方形,问题便迎刃而解.【答案与解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).【总结升华】若分步计算则较繁琐.但采用“平移”的手段从整体上把握,问题便迅速求解.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为()A.600m2B.551m2C.550m2D.500m2【答案】B类型四、平行的性质与判定综合应用5.(黄冈调考)如图所示,AB∥CD,分别写出下面四个图形中∠A与∠P,∠C的数量关系,请你从所得到的关系中任选一图的结论加以说明.【思路点拨】过P点作AB的平行线,问题便会迅速得到求解.【答案与解析】解: (1)∠A+∠C=∠P;(2)∠A+∠P+∠C=360°;(3)∠A=∠P+∠C;(4)∠C=∠P+∠A.现以(3)的结论加以证明如下:如上图,过点P作PH∥AB ,因为AB∥CD,所以PH∥AB∥CD.所以∠HPA+∠A=180°,即∠HPA=180°-∠A;∠HPA+∠P+∠C=180°,即180°-∠A+∠P+∠C=180°,也即∠A=∠P+∠C.【总结升华】随着折点的不同,结论也会不同,但解法却如出一辙.都是过折点作平行线求解.举一反三:【变式1】如图,AB∥CD,∠ABG=42°,∠CDE=68°,∠DEF=26°.求证:BG∥EF.【答案】如图,分别过点G、F、E作GP∥AB,FQ∥AB,ER∥CD,又因为AB∥CD,所以AB∥GP∥FQ∥CD∥FQ.∴∠1=42°,∠2=∠3,∠4=∠5,∠5+26°=68°,∴∠5=68°-26°=42°,且∠4=∠5=42°.∴∠1+∠2=42°+∠2;∠4+∠3=42°+∠3.∴∠1+∠2=42°+∠3,即∠BGF=∠GFE.∴BG∥EF.【变式2】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是().A.120°B.130°C.140°D.150°【答案】D平行线的性质及尺规作图(提高)巩固练习【巩固练习】一、选择题1. 若∠1和∠2是同旁内角,若∠1=45°,则∠2的度数是()A.45°B.135°C.45°或135°D.不能确定2.(2016•安徽模拟)如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为()A.60° B.80°C.75° D.70°3.(湖北襄樊)如图所示,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为()A.150°B.130°C.120°D.100°4.如图,OP∥QR∥ST,则下列等式中正确的是()A.∠1+∠2-∠3=90°B.∠2+∠3-∠1=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5. 如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且交EF于点O,则与∠AOE相等的角有()A.5个B.4个C.3个D.2个6.(湖北潜江)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°7.如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是()A.3:4 B.5:8 C.9:16 D.1:2二、填空题8.(2016春•江苏月考)如图,BC∥DE,AD⊥DF,∠l=30°,∠2=50°,则∠A=.9.如图所示,AB∥CD,若∠ABE=120°,∠DCE=35°,则有∠BEC=________.10.(四川攀枝花)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3=.11.一个人从点A出发向北偏东60°方向走了4m到点B,再向南偏西80°方向走了3m到点C,那么∠ABC的度数是________.12.如图所示,过点P画直线a的平行线b的作法的依据是_.13.如图,已知ED∥AC,DF∥AB,有以下命题:①∠A=∠EDF;②∠1+∠2=180°;③∠A+∠B+∠C=180°;④∠1=∠3.其中,正确的是________.(填序号)三、解答题14.如图所示,AD⊥BC,EF⊥BC,∠3=∠C,则∠1和∠2什么关系?并说明理由.15.已知如图(1),CE∥AB,所以∠1=∠A,∠2=∠B,∴∠ACD=∠1+∠2=∠A+∠B.这是一个有用的事实,请用这个结论,在图(2)的四边形ABCD内引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.16.(2015春•澧县期末)已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.【答案与解析】一、选择题1. 【答案】D;【解析】本题没有给出两条直线平行的条件,因此同旁内角的数量关系是不确定的. 2. 【答案】D;【解析】∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故选D.3. 【答案】C;【解析】解:如图,∠3=30°,∠1=∠2=30°,∠C=180°-30°-30°=120°.4. 【答案】B;【解析】反向延长射线ST交PR于点M,则在△MSR中,180°-∠2+180°-∠3+∠1=180°,即有∠2+∠3-∠1=180°.5. 【答案】A【解析】与∠AOE相等的角有:∠DCA,∠ACB,∠COF,∠CAB,∠DAC.6. 【答案】C;【解析】解:∵AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,∴∠BCD =∠ABC =46°,∠FEC +∠ECD =180°,∴∠ECD =180°—∠FEC =26°,∴∠BCE =∠BCD —∠ECD =46°—26°=20°.7. 【答案】B ;【解析】=22+312=10S ⨯⨯⨯阴,=44=16S ⨯正ABCD ,所以ABCD S =10:165:8S =正阴:.二.填空题8. 【答案】70°;【解析】∵AD⊥DF,∴∠ADF=90°.∵∠1=30°,∴∠ADE=90°﹣30°=60°.∵BC∥DE,∴∠ABC=∠ADE=60°,∵△ABC 中,∠ABC=60°,∠2=50°,∴∠A=180°﹣60°﹣50°=70°.故答案为:70°.9.【答案】95°;【解析】如图,过点E 作EF ∥AB .所以∠ABE +∠FEB =180°(两直线平行,同旁内角互补),所以∠FEB =180°-120°=60°.又因为AB ∥CD ,EF ∥AB ,所以EF ∥CD ,所以∠FEC =∠DCE =35°(两直线平行,内错角相等),所以∠BEC =∠FEB +∠FEC =60°+35°=95°.10.【答案】60°;【解析】解:如图所示:∵l 1∥l 2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC 中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.11.【答案】20°;【解析】根据题意画出示意图,可得:∠ABC =80°-60°=20°.12.【答案】内错角相等,两直线平行;13.【答案】①②③④;【解析】由已知可证出:∠A=∠1=∠3=∠EDF,又∠EDF与∠1和∠3互补.三.解答题14.【解析】解:∠1=∠2.理由如下:∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFB=90°.∴AD∥EF(同位角相等,两直线平行),∴∠1=∠4(两直线平行,同位角相等).又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行).∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2.15.【解析】解:如图,过点D作DE∥AB交BC于点E.∴∠A+∠2=180°,∠B+∠3=180°(两直线平行,同旁内角互补).又∵∠3=∠1+∠C,∴∠A+∠B+∠C+∠1+∠2=360°,即∠A+∠B+∠C+∠ADC=360°.16.【解析】解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∵AB∥CD,∵AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,11∵AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)中,根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).12。
初中数学平行线的性质知识点归纳摘抄
初中数学平行线的性质知识点归纳摘抄初中数学平行线的性质知识点归纳摘抄在同一平面内,永不相交的两条直线互为平行线。
虽然平行线在平面内定义,但也适用于立体几何。
平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
额外补充的是,在高等数学中的平行线的定义是相交于无限远的两条直线为平行线,因为理论上是没有绝对的平行的!初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
平行线的性质与判定方法
平行线的性质与判定方法平行线是指在同一个平面内,永远不会相交的两条直线。
对于平行线的性质和判定方法,我们将在以下几个方面进行详细讨论。
一、平行线的性质1. 平行线的定义:在同一个平面内,如果两条直线没有任何交点,那么称它们为平行线。
2. 平行线的特点:平行线的特点主要体现在以下几个方面:a. 平行线的夹角:对于平行线而言,与它们垂直相交的直线与其它直线所形成的夹角相等。
b. 平行线的长度比较:如果一条直线与两条平行线相交,那么它们所截取的线段之比相等。
c. 平行线的斜率关系:如果两条直线的斜率相等,那么它们将是平行线。
d. 平行线的方程关系:两条平行线所对应的直线方程的系数比例相等。
3. 平行线的传递性:如果直线A与直线B平行,直线B与直线C 平行,那么直线A与直线C也是平行的。
二、平行线的判定方法1. 通过直线的斜率判定:两条直线的斜率相等时,它们是平行线。
根据直线斜率的公式,我们可以通过比较两条直线的斜率来判断它们是否平行。
2. 通过直线的方程判定:两条直线的方程之间存在一定的比例关系时,它们是平行线。
通过比较两条直线的一般方程或截距式方程的系数比例,我们可以判断它们是否平行。
3. 通过夹角的判定:两条直线之间的夹角与垂直直线之间的夹角相等时,它们是平行线。
通过测量两条直线的夹角以及垂直直线的夹角,我们可以判断它们是否平行。
4. 通过平行线的特殊性质判定:如果两条直线在同一平面内分别与第三条直线相交,并且所对应的内错角相等,则它们是平行线。
在实际问题中,我们可以根据具体的情况选择适当的判定方法,以确定两条直线是否平行。
通过简单的代数运算、图形分析或者几何推理,我们可以准确地判断平行线的性质和关系。
总结:平行线的性质与判定方法是几何学中的重要内容,对于我们理解空间关系、解决实际问题具有重要意义。
通过理解平行线的定义、特点以及判定方法,我们可以更好地应用这些知识来解决相关题目,提高数学思维能力和解决问题的能力。
平行线的条件
平行线的条件平行线的条件是指两条直线在同一个平面内,且永远不会相交。
在几何学中,平行线是一个重要的概念,它具有许多重要的性质和应用。
本文将介绍平行线的条件及其相关性质。
一、平行线的定义平行线是指在同一个平面内永不相交的两条直线。
平行线之间的距离在任意两点之间保持不变。
二、平行线的充分条件1. 直角定理:如果两条直线与一条横直线成直角,且这两条直线各自与另一条直线成直角,那么这两条直线是平行线。
2. 垂直定理:如果两条直线与一条横直线相交,且这两条直线各自与另一条直线成直角,那么这两条直线是平行线。
3. 夹角定理:如果两条直线与一条横直线相交,且这两条直线的内夹角相等,那么这两条直线是平行线。
4. 三角形内角定理:如果两条直线分别与一条横直线相交,且这两条直线的内角互补,那么这两条直线是平行线。
三、平行线的性质1. 平行线具有传递性:如果直线AB与CD平行,CD与EF平行,那么AB与EF也平行。
2. 平行线具有对称性:如果直线AB与CD平行,那么CD与AB也平行。
3. 平行线具有替代性:如果直线AB与CD平行,那么直线EF与CD平行,直线EF与AB也平行。
4. 平行线具有内夹角和外夹角相等的性质:如果直线AB与CD平行,那么直线AB与CD之间的内夹角与直线EF与CD之间的内夹角相等,直线AB与CD之间的外夹角与直线EF与CD之间的外夹角相等。
四、平行线的应用1. 平行线的应用之一是在建筑设计中。
在设计平行线的某个部分时,可以利用平行线的性质来确保建筑物的结构稳定。
2. 平行线的应用之二是在地理测量中。
通过测量地球上两个不相交的纬线或经线,可以确定它们是平行线,从而帮助测量地球的大小和形状。
3. 平行线的应用之三是在数学中的向量运算中。
在向量的加法、减法、数量乘法和向量积等运算中,平行线的性质起到了重要的作用。
总结:本文介绍了平行线的定义、充分条件、性质和应用。
平行线是几何学中的重要概念,具有许多重要的性质和应用。
平行线与平行线的性质
平行线与平行线的性质平行线是指在同一个平面内,永不相交的两条直线。
平行线的性质非常有趣而重要,对于几何学和实际应用都有重要的意义。
本文将深入探讨平行线的性质及其相关定理。
一、平行线的定义与符号表示平行线的定义如上所述,两条平行线在平面上不会相交,也不会交叉,可以用符号“∥”表示两条平行线关系。
例如,如果AB∥CD,则表示线段AB和CD是平行的。
二、平行线的基本性质1. 平行线上的任意两点到另一条平行线的距离相等。
这是平行线的基本性质,也是平行线定义的一个重要特点。
2. 平行线与交叉线之间的夹角具有特殊关系。
当两条平行线被一条交叉线相交时,同旁内角、同旁外角等夹角关系成立,即同旁内角互补,同旁外角相等。
三、平行线的性质定理1. 平行线定理:如果一条直线与两条平行线相交,那么这两条平行线之间的夹角与这条直线所交叉的两条平行线上的同旁内角相等。
证明:设直线l与平行线AB、CD相交于点E,则∠AED=∠CDE,同时∠AED与∠BEC同旁内角相等。
由同旁内角互补定理可推出∠BEC=∠AED。
2. 平行线三角形内角定理:当一条直线与两条平行线相交,所形成的三角形中,对于与这条直线相交的两条平行线上的两个内角来说,它们的和等于180°。
证明:设直线l与平行线AB、CD相交于点E,使得AE与CD相交于点F。
根据内角和定理可得∠FEA+∠EAF+∠FAE=180°,同时由平行线等夹角性质可得∠FAE+∠ABE=180°,由此可得∠FEA+∠EAF+∠ABE=180°。
3. 平行线内切多边形之和定理:若在两条平行线之间有n条直线交叉,且这些交叉线分别将两条平行线分割成(n+1)段,则在相邻两条直线之间有一个内切多边形,这些内切多边形的内角和等于180°×n。
证明:设有三条直线l、m、n,分别与平行线AB、CD相交于E、F、G。
根据平行线内角定理可得∠EDF+∠DFA+∠AFG+∠GFE=180°。
平行线与相交线的性质
平行线与相交线的性质平行线和相交线是几何学中的基本概念,它们在我们的日常生活中随处可见。
了解平行线和相交线的性质对于我们理解几何学的基本原理和应用是至关重要的。
本文将探讨平行线和相交线的性质,以及它们在实际生活中的应用。
一、平行线的性质平行线是指在同一个平面上,永远不会相交的线。
平行线的性质包括以下几点:1. 平行线具有相同的斜率:在平面直角坐标系中,如果两条线的斜率相等,那么它们是平行线。
这是因为斜率代表了线的倾斜程度,如果两条线的倾斜程度相同,它们就不可能相交。
2. 平行线的对应角相等:当平行线与一条横穿它们的直线相交时,对应角是相等的。
对应角是指位于平行线的同一侧,与横穿线相交的两个角。
这个性质可以通过证明两组对应角的和等于180度来得到。
3. 平行线的内角和是180度:当两条平行线被一条横穿线相交时,内角和是180度。
这是因为内角和等于对应角的和,而对应角是相等的。
二、相交线的性质相交线是指在同一个平面上,交于一点的两条线。
相交线的性质包括以下几点:1. 相交线的交点是唯一的:当两条线相交时,它们交于一个唯一的点。
这个性质可以通过反证法来证明,假设两条线交于两个不同的点,然后推导出矛盾。
2. 相交线的对应角相等:当两条相交线被一条横穿线相交时,对应角是相等的。
对应角是指位于相交线的同一侧,与横穿线相交的两个角。
这个性质可以通过证明两组对应角的和等于180度来得到。
3. 相交线的垂直角相等:当两条相交线互相垂直时,它们的垂直角是相等的。
垂直角是指相交线之间的角,其度数为90度。
这个性质可以通过证明两组垂直角的和等于180度来得到。
三、平行线和相交线的应用平行线和相交线的性质在实际生活中有许多应用。
以下是一些例子:1. 建筑设计:在建筑设计中,平行线和相交线的性质被广泛应用。
建筑师使用平行线来设计平行的墙壁和天花板,以增加空间的感觉。
他们还使用相交线来确定建筑物的结构和布局。
2. 道路交通:在道路交通中,平行线和相交线的性质被用来设计交叉口和标记道路。
平行线的性质
平行线的性质平行线是几何学中的重要概念,它们有着独特的性质和关系。
在本文中,我们将探讨平行线的性质,包括平行线的定义、平行线的性质以及与平行线相关的定理。
一、平行线的定义在几何学中,平行线是指在同一平面上永远不相交的两条直线。
平行线之间的距离保持恒定并且不存在交点。
数学上,我们可以用以下表达来定义平行线:两条直线的方向相同且不重合。
二、1. 平行线的夹角关系:如果一条直线与一对平行线相交,那么与这两条平行线相交的各个对应角相等。
2. 平行线的斜率关系:如果两条直线的斜率相等且不相交,那么这两条直线是平行的。
3. 平行线的性质传递性:如果直线A与直线B平行,直线B与直线C平行,那么直线A与直线C也平行。
4. 平行线与转角:如果一对平行线被一条第三条直线交叉,那么所形成的内、外转角互补。
三、与平行线相关的定理1. 直线与平行线的交角定理:如果一对平行线被一条直线直角相交,那么所形成的对应角相等。
2. 平行线与平面的关系:如果一条直线与一个平面平行,那么与这条直线平行的任意一条直线也与该平面平行。
3. 平行线的等分定理:如果两条平行线被一条截线分成若干小线段,那么这些小线段的比值相等。
4. 平行线与平行四边形的关系:如果一对对边分别平行,则该四边形为平行四边形。
5. 平行线的共垂线定理:如果两条平行线与一条横切线相交,那么所形成的对应交线都是垂直于平行线的。
四、应用举例1. 平行线在城市规划中的应用:在城市规划中,平行道路可以提供方便的交通流动,减少拥堵和交通事故的发生。
2. 平行线在建筑设计中的应用:建筑师在设计建筑物时,常常利用平行线的性质来布局房间、窗户和门等。
3. 平行线在数学证明中的应用:平行线的性质被广泛应用于各种数学证明中,例如平行线定理和平行四边形性质的证明。
总结:平行线是几何学中重要的概念,具有许多独特的性质和关系。
了解和应用平行线的性质,不仅可以增加我们对几何学的理解,还有助于解决实际问题。
平行线的性质与应用
平行线的性质与应用平行线是几何学中非常重要的概念之一。
它们在日常生活以及科学研究中都有着广泛的应用。
本文将介绍平行线的性质以及其在解决实际问题中的应用。
一、平行线的定义与性质平行线是指在同一个平面内不相交的直线。
根据平行线的定义,我们可以得出以下几个关键性质:1. 任意直线与平行线之间的夹角是相等的。
这意味着如果有一条直线与平行线相交,它与另一条平行线之间的夹角也是相等的。
2. 平行线具有传递性。
也就是说,如果线段A与线段B平行,线段B与线段C平行,那么线段A与线段C也平行。
3. 平行线与相交线之间的对应角是相等的。
当一条直线穿过两条平行线时,所形成的对应角是相等的。
以上是平行线的一些基本性质,它们为我们解决实际问题提供了重要的几何基础。
二、平行线的应用1. 地理测量:在地理测量领域,平行线的应用非常广泛。
当我们需要测量地球上的距离时,我们可以利用平行线的性质。
比如,我们可以利用地球经线间的角度差异来计算两个地点之间的距离。
2. 建筑设计:在建筑设计中,平行线被广泛应用于房屋的布局和设计中。
在平面图设计中,我们可以利用平行线的性质来确定墙壁、门窗、家具等物体的位置和方向,以保证整体结构的稳定和美观。
3. 交通运输规划:平行线的应用在交通规划中也非常重要。
例如,道路和铁路在设计时需要遵循平行线的原则,以确保行车和交通流畅。
此外,交通信号灯、行车道等也需要根据平行线的性质进行布置,以提高交通效率和安全性。
4. 电视和计算机显示屏:在电视和计算机显示屏的设计中,我们需要平行线来确保图像的水平和垂直对齐。
如果图像不按平行线排列,观看体验将受到影响。
5. 数学几何题:在数学几何题中,平行线的性质经常被用来解决问题。
例如,通过利用平行线和角的性质,我们可以计算未知角度的大小,从而求解出题目要求的答案。
以上仅是平行线在生活和科学研究中的一些应用,实际上平行线的应用还远不止于此。
通过深入了解平行线的性质,我们可以更好地将其应用于解决实际问题中。
初中数学平行线的性质及判定知识点
初中数学平行线的性质及判定知识点学校数学平行线的性质及判定学问点1平行线的性质及判定平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
通过上面对数学中平行线的性质及判定学问点的内容讲解学习,信任同学们已经能很好的把握了吧,盼望同学们会从中学习的更好。
学校数学平行线的性质及判定学问点2相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要留意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要留意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:推断对错:由于∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
( )相等的两个角互为对顶角。
( )2、垂直是两直线相交的特别状况。
留意:两直线垂直,是相互垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条相互垂直的直线的交点叫垂足。
垂直时,肯定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的全部线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
平行线的性质
2.3平行线的性质平行线的判定与性质1.判定方法:(1) 同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)在同一平面内,垂直于同一直线的两直线平行.2.性质:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.3.相同点:平行线的判定和性质研究的都是两直线被第三条直线所截的图形,可以说这个图形是它们共同的、必备的前提条件。
4.区别:平行线的性质和平行线的判定中的条件和结论恰好相反:平行线的“判定”,是为了判断两条直线是否平行,就要先研究同位角、内错角、同旁内角的数量关系,当知道了“同位角相等”或“内错角相等”或“同旁内角互补”时,就可以判定这两条直线平行。
它们是由“数”到“形”的判断。
平行线的“性质”,是已经知道两条直线平行时,就可以推出同位角相等,内错角相等,同旁内角互补的数量关系,即“平行线”这种图形具有的性质。
它们是由“形”到“数”的说理。
平行公理I平行公理:过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b∴a∥b。
1. 阅读填空:(1)如图,请你完成小颖和小明的说理过程:小颖:因为AD与BC是平行的,所以∠1=_____,理由是_____.小明:∠3=∠4→_____∥_____→∠A+_____=180°其中第一步的理由是_____第二步的理由是_____.2. 下列说法中,正确的是( )A.经过一点,有且只有一条直线与已知直线平行B.两条直线被第三条直线所截,内错角相等C.垂直于同一条直线的两条直线互相垂直D.两条直线被第三条直线所截,内错角相等,则两直线平行3. 下列说法中,正确的是( )A.连接两点的线段就叫做两点的距离B.AB=BC,则点B是线段AC的中点C.过直线外一点有且只有一条直线与这条直线平行D.过直线外一点有无数条直线与这条直线垂直4. 如果直线a∥b,则下列说法错误的是( )A.a与b之间距离处处相等B.若a∥c,则b∥cC.若a⊥c,则b⊥cD.a,b被第三条直线所截的同旁内角相等5. 已知:如图所示,AB∥CD,EF平分∠GFD,GF交AB于M,∠GMA=52°,求∠BEF 的度数.6. 如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是( )A.20°B.50°C.70°D.110°7. 如图,直线a∥直线b,∠1=∠2,∠3=150°,∠4的大小( )A.60°B.40°C.50°D.30°8. 已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知)∴∠D+∠EFD=180°∴_____∥_____又∵∠1=∠2(已知)∴_____∥_____∴_____∥_____∴∠3=∠B_____.9. 如图.已知AB∥CD,MG平分∠AMN,NH平分∠DNM,求证:MG∥NH.10. 如图,BC∥AD,∠1=∠E,若∠A=100°,求∠C的度数.11. 如图,B、C、D三点共线,CE∥AB,∠1=51°,∠2=46°,则∠A=_____°.12. 如图,直线AB∥DE,BC⊥CD,若∠1=25°,则∠2的度数是_____.13. 如果直线a∥b,直线b∥c,则直线a与c的关系是_____.14. 如图,已知AB∥DE,∠1=120°,∠2=110°,求∠3的度数.15. 如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)试说明:OB∥AC;(2)如图②,若点E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.16. 如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.17. 如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是( )A.17°B.34°C.56°D.68°18. 如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是( )A.40°B.60°C.80°D.120°19. 如图,点C在∠AOB的边OA上一点,请你使用直尺和圆规,过点C作直线OB的平行线.(保留作图痕迹,不要求写画法).20. 如图,已知AD⊥BC,EF⊥BC,∠1=∠C.(1)证明:AD∥EF;(2)猜想:∠2与∠3有怎样的关系,并说明理由.21. 如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数为( )A.30°B.32.5°C.35°D.37.5°22. 如图,已知a∥b,AC⊥AB,AC交直线b于点C,∠1=65°,那么∠2是_____°.23. 如图,点D、E、F分别在△ABC的三边上,已知∠1=50°,DE∥AC,DF∥AB,则∠2=_____°.24. 如图,AB∥CD,则∠1,∠2,∠3之间的关系是( )A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠2-∠3=180°D.∠1-∠2+∠3=180°25. 如图,已知AB∥CD,EF∥CD,∠B=70°,∠E=135°,∠1等于_____.26. 如图,AB∥CD,则∠α、∠β、∠γ之间的等量关系为_____.27.如图,已知AB∥DM,BC∥EF,探求∠B与∠D数量关系,∠AEF与∠D数量关系,并说明理由.28.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是( )A.先右转60°,再左转120°B.先左转120°,再右转120°C.先左转60°,再左转120°D.先右转60°,再右转60°29. 如图,AB∥CD,AD∥BC,若∠CBE=68°,则∠C=_____,∠D=_____.30. 平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部.试说明∠BPD=∠B-∠D;(2)将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明你的结论成立的理由;(3)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)31. 如图所示,把长方形ABCD的纸片,沿EF线折叠后,ED与BC的交点为G,点D、C 分别落在D′、C′的位置上,若∠1=70°,求∠2、∠EFG的度数.32. 将一条两边沿互相平行的纸带按如图折叠,当∠1:∠2=2:3,则∠2的度数为( )A.22.5°B.45°C.67.5°D.30°33.如果∠α与∠β的两边分别平行,∠α比∠β的4倍少30°,则∠α的度数是( )A.10°B.138°C.10°或138°D.以上都不对34. 如图,已知AB∥CD,直线EF分别交直线AB,CD于点E、F,FG平分∠CFE交AB 于点G,若∠BEF=70°,求∠AGF的度数.35. 已知:如图,在△ABC中,DE∥AC,DF∥AB,∠B=60°,∠C=70°.则∠EDF=_____.36. 如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是( )A.84°B.106°C.96°D.104°37. 如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠CBE的度数是( )A.17°B.34°C.56°D.68°38. 如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.39. 如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2=_____°.40. 如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于_____.。
平行线的性质
平行线的性质平行线是几何学中的重要概念,具有许多特殊的性质和规律。
本文将详细介绍平行线的性质,并探讨其在几何学中的应用。
一、平行线的定义平行线是指在同一个平面上,永不相交的两条直线。
根据几何学的定义,平行线具有以下重要性质。
1. 平行线的方向相同当两条直线平行时,它们的方向相同,即它们在同一平面上以相同的方向延伸。
2. 平行线的距离相等平行线之间的距离是恒定的,无论延长多长,始终保持相等的间隔。
3. 平行线不会相交平行线永远不会相交,无论两条线延长多长,它们始终保持相互平行的关系。
二、1. 夹角性质当一条直线与另外两条平行线相交时,形成的对应角、内错角、同旁内角等具有特殊的关系。
- 对应角:对应角相等,即对应的内角或外角大小相等。
- 内错角:内错角互补,即内接平行线上的内错角之和等于180度。
- 同旁内角:同旁内角互补,即相邻的内错角之和等于180度。
2. 平行线与垂直线的关系当一条直线与另外两条平行线相交时,形成的垂直线与平行线之间也有特殊的关系。
- 垂直线性质:垂直线与平行线形成的内角互补,即内接垂直线与平行线上的内角之和为180度。
- 垂直角:当两条垂直线相交时,形成的角称为垂直角,垂直角的大小为90度。
3. 平行线的延长性平行线可以无限延长,延长后的平行线与原线具有相同的性质。
这意味着无论平行线延长多长,它们仍然保持着互相平行的关系。
三、平行线的应用平行线的性质和规律在几何学中有着广泛的应用。
1. 三角形的判定平行线可以用来判定三角形是否相似。
当一条直线与两条平行线相交时,对应的对角线之间的比例相等,表明两个三角形相似。
2. 平行四边形的性质平行线的性质还可以用来研究平行四边形。
平行四边形的对角线相互平分,且对角线之间的比例相等。
3. 镜像对称平行线的延长线可以用于镜像对称的构造。
通过平行线的延长,可以找到与原线对称的另一条线,从而构造出完美的镜像对称。
四、总结平行线是几何学中的重要概念,具有许多独特的性质和规律。
平行线的性质
本节的主要概念有:1.平行线的三条性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.2.平行线的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.3.命题:判断一件事情的语句,叫命题.重、难、疑点:重点:平行线三条性质、平行线的距离和命题的概念.难点:平行线的性质与平行线的判定的区别和综合运用.疑点:命题与肯定句、疑问句之间的关系与区别典例精讲例1 (北京市海淀区中考题)如图所示,已知DE∥BC,∠1=∠2,试说明CD是∠ECB 的平分线.方法指导:由BC∥DE可得∠1=∠DCB,而恰巧是要说明∠DCB=∠2.解:∵DE∥BC(已知),∴∠1=∠DCB(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠2=∠DCB.即CD是∠ECB的平分线.方法总结:由平行线性质得到恰当的角之间的关系,为说明结论成立提供依据.举一反三如图,已知AB∥CD,EF交AB于点H,交CD于点G,试判断∠1与∠2是否相等.解:∠1=∠2.∵AB∥CD,∴AHG=∠DGE(两直线平行,内错角相等).又∵∠1=∠AHG,∠DGE=∠2(对顶角相等),∴∠1=∠2.例2如图,已知∠1=∠2,∠3=∠4,∠5=∠C,证明:AB∥DE.方法指导:欲证AB∥DE,可证∠1=∠AGD,而∠1=∠2,所以须证∠2=∠AGD;证∠2=∠AGD.只需证AF∥CD,即需证∠5+∠ADC=180°,也就是要证AD∥BC,而这可以由∠3=∠4证得.解:证明:∵∠3=∠4.∴AD∥BC(内错角相等,两直线平行),∴∠ADC+∠C=180°(两直线平行,同旁内角互补).∵∠5=∠C,∴∠ADC+∠5=180°,∴AF∥CD(同旁内角互补,两直线平行),∴∠2=∠AGD(两直线平行,内错角相等).又∵∠1=∠2∴∠1=∠AGD,∴AB∥DE(内错角相等,两直线平行).方法总结:本题的思考过程是从结论出发,分析所要说明的结论成立须具备哪些条件,再看这些条件成立又须具备什么条件,直到追溯到已知条件为止.另外,在书写推理过程中,每一步必须有根有据,将理由写在每一步的括号内,防止把平行线的判定和性质混淆,这对初学阶段尤其重要.举一反三如图所示,已知∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:∠EBC=∠DBC.解:证明,∵∠2+∠BDC=180°,∠2+∠1=180°,∴∠BDC=∠1(同角的补角相等),∴AE∥FC(同位角相等,两直线平行),∴∠EBC=∠C(两直线平行,内错角相等).又∵∠A=∠C(已知),∴∠EBC=∠A,∴AD∥BC(同位角相等,两直线平行),∴∠ADB=∠CBD,∠ADF=∠C.又∵∠ADB=∠ADF(角平分线定义),∴∠FBC=∠DBC.例3如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=50,∠B=76°,求∠EDC 及∠CDB的度数.方法指导:由DE∥BC可知,∠EDC=∠DCB(两直线平行,内错角相等),而;∠CDB=180°—∠EDC—∠ADE,而根据“两直线平行,同位角相等”可知∠ADE=∠B=76°.解:∵DE∥BC(已知),∴∠EDC=∠DCB(两直线平行,内错角相等).又∵∠ACD=∠BCD,∠ACB=50°(已知),∴.∵DE∥BC(已知),∴∠ADE=∠B(两直线平行,同位角相等).又∵∠B=76°,∴∠ADE=76°,∴∠CDB=180°—∠EDC—∠ADE=180°—25°—76°=79°.故∠EDC=25°,∠CDB=79°.方法总结:从题目的条件出发,结合图形,根据所学的性质和定理,找出所求的角与已知角之间的关系,达到计算角度数的目的.举一反三如图,已知∠ECD=∠ABC,问∠A+∠B+∠ACB等于多少度?并说明理由.解:∠A+∠B+∠ACB=180°.理由如下:∵∠ECD=∠ABC,∴AB∥EC(同位角相等,两直线平行).∴∠A=∠ACE(两直线平行,内错角相等).又∵∠ACB+∠ACE+∠ECD=180°(平角的定义).∴∠A+∠B+∠ACB=180°(等量代换).例4 判断下列语句是否是命题,如果是,指出命题的题设和结论.(1)同旁内角互补,两直线平行;(2)平角的一半是直角;(3)连接AB;(4)两个正数之和必为正数;(5)取AB的中点M.方法指导:(3)、(5)两个句子并未对某件事作出判断,(1)、(2)、(4)对某件事作出判断,是命题,可将它们写成“如果……那么……”的形式,再找出题设和结论.解:(3)、(5)不是命题,(1)、(2)、(4)是命题.(1)的题设是同旁内角互补,结论是两直线平等;(2)的题设是平角的一半,结论是直角;(4)的题设是两个正数之和,结论是为正数.方法总结:命题必须对某件事情作出判断,疑问句就不是命题,同时要注意的是错误的命题也是命题;将命题写成“如果……那么……”的形式,有助于分清命题的题设和结论.举一反三下列语句中,不是命题的是()A.同位角相等B.经过一点只能作一条直线与已知直线平行C.如果,那么a=bD.相交线和平行线解:D例5 将下列命题改成“如果……那么……”的形式,并判断其直假.(1)同角的补角相等;(2)垂直于同一条直线的两直线平行;(3)两个锐角的补角相等;(4)同旁内角互补;(5)正数与负数之和为正数.方法指导:分析命题的含义,找出题设和结论,将命题写成“如果……那么……”的形式;判断一个命题是假命题,只需要举出一个反例即可.解:(1)如果几个角是同一个角的补角,那么这几个角相等;是真命题;(2)如果两条直线都和同一条直线垂直,那么这两条直线平等;是真命题;(3)如果几个角是两个锐角的补角,那么这几个角相等;如130°是50°角的补角,120°是60°角的补角,但130°≠120°,所以此命题是假命题;(4)如果两个角是两条直线被第三条直线所截得的同旁内角,那么这两个角互补;显然,只有两条平行线被第三条直线所截得的同旁内角才互补,所以此命题是假命题;(5)如果一个数是一个正数与一个负数的和,那么这个数为正数;显然,如+5+(-8)=-3为负数,所以此命题为假命题.方法总结:将一个命题写成“如果……那么……”的形式,要先弄清语句的含义,分清题设和结论,改造后的句子要语句通顺,不能改变命题的意义;判断一个命题的真假,要运用和该命题相关的知识来作出判断,对于假命题,给出一个反例即可说明其为假命题.举一反三(黄冈市中考题)命题:(1)对顶角相等;(2)三条直线每两条直线都相交,最多有6对对顶角;(3)等角的补角相等;(4)不相等的角一定不是对顶角.其中真命题的个数是()A.1个B.2个C.3个D.4个解:D例6 如图,已知AB∥DE,∠B=40°,∠D=56,CF平分∠BCD,求∠DCF的度数.方法指导:由于“CF平分∠BCD”,所以欲求∠DCF的度数,只需求∠BCD的度数;但∠BCD与已知角∠B、∠D的关系并不明显,因此考虑构造辅助线——过点C作AB的平行线,再结合已知条件“AB∥DE”,利用平行线的性质,就不难找到所求角与已知角之间的联系了.解:过点C作CM∥AB(过一点有且只有一条直线与已知直线平行),∵AB∥ED,∴CM∥ED(如果两条直线都和第三条直线平行,那么这两条直线也互相平行).∵AB∥CM,CM∥ED,∴∠B=∠BCM,∠D=∠DCM(两直线平行,内错角相等),∴∠BCD=∠BCM+∠DCM=∠B+∠D.又∵∠B=40,∠D=56°,∴∠BCD=40°+56°=96°,∵CF平分∠BCD,∴.方法总结:在利用平行线的性质进行有关图形的推理和计算时,有一类“折线”问题(如上图所示),常用的思路是过拐点(如上图中的C点即称为拐点)作已知直线的平行线,从而在已知角与未知角之间架起一道桥梁,找到它们之间的关系.举一反三如图所示,∠ABC=120°,∠BCD=85°,AB∥ED,试求∠EDC的度数.解:过点C作CF∥AB(过一点有且只有一条直线与已知直线平行),∵AB∥ED,∴CF∥ED(两条直线都和第三条直线平行,这两条直线也互相平行).∵AB∥CF,∴∠ABC+∠BCF=180°(两直线平行,同旁内角互补).又∵∠ABC=120°,∴∠BCF=180°—∠ABC=60°.∵∠BCD=85°,∴∠FCD=∠BCD—∠BCF=85°—60°=25°.∵CF∥ED,∴∠EDC=∠FCD(两直线平行,内错角相等),∴∠EDC=25°.例7(河北省中考题)如图所示探究规律:如图①所示,已知,直线m∥n,A、B为直线n上两点,C、P为直线m上两点,(1)请写出图中面积相等的各对三角形;(2)如果A、B、C为三个定点,点P在m上移动,那么,无论P点移动到任何位置,总有_____________与△ABC的面积相等,理由是_________________________________.解决问题:如图②所示,五边形ABCDE是张大爷十年前承包的一块土地的示意图,经多年开垦荒地,现已变成如图③所示的形状,但承包土地与开垦荒地的分界小路(即图③中折线CDE)还保留着,张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多,请你用有关的几何知识,按张大爷的要求设计出修路方案(不计分界小路与直路的占地面积).(1)写出设计方案,并在图③中画出相应的图形;(2)说明方案设计理由.方法指导:探究规律中利用“平行线间的距离相等”,不难找到图中同底等高的三角形;解决问题中,要使得所修的路符合条件,即是要使得左边面积在修好后与修路前相比,多出的部分与减少的部分面积相等,而这两部分刚好是两个三角形.因此,关键是构造平行线,利用前面的结论,说明这两个三角形的面积相等.解:探究规律:(1)△ABC和△ABP,△AOC和△BOP,△CPA和△CPB;(2)△ABP因为平行线间的距离相等,所以无论点P在m上移动到任何位置,总有△ABP与△ABC同底等高,所以它们的面积总相等.解决问题:(1)方案:如图③所示,连结EC,过点D作DF∥EC,交CM于点F,连结EF,EF 即为所求直路的位置;(2)设EF交CD于点H,由上面结论可知:,,∴,,方法总结:善于用所学知识,解决实际问题是学习能力的一种体现.举一反三解放战争时期,有一天江南某游击队在村庄A点出发向正东方向行进,此时有一支残匪在游击队的东北方向B处(如图所示),残匪沿北偏东60°的方向向C村进发.游击队步行到A′处,A′正在B的正南方向上,突然接到上级命令,决定改变行进方向,沿北偏东30°方向赶往C村,问游击队行进方向A′C与残匪行进方向BC至少是多少度角时,才能保证C村村民不受伤害?解:如图,过C点作CE∥BA′,则∠BCE=∠NBC=60°,∴∠A′CE=∠BA′C=30°,∴∠BCA′=∠BCE—∠A′CE=60°—30°=30°.故夹角至少为30°才能保证C村村民不受伤害.知识网络学法点津1.在学习平行线的性质和平行线间的距离时,注意运用比较法、探索法,注意和同学间的探究和合作,归纳相关的知识要点.如要注意总结平行线的性质与判定的区别与联系,归纳如何在推理过程中灵活运用性质和判定,要做到每一步推理都有根有据,思路清晰.2.在学习命题有关的知识时,要结合语文学科的知识,弄清语句的含义,寻找出正确的题设和结论.在遇到较简洁的命题时,可先将命题写为“如果……那么……”的形式,但同时要注意,改编后的命题要语句通畅,同时不能改变原命题的意义,目的在于更清楚、明了地辨别命题的题设和结论.自测题1.下列说法中,平行线的性质为().①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④垂直于同一直线的两条直线平行.A.①B.②③C.④D.①④2.如图5-3-10,b∥c,a⊥b,∠1=130°,则∠2的度数为().A.30°B.40°C.50°D.60°3.关于平行线间的距离,下列说法正确的是().A.两条平行线间,任一条线段B.两条平行线间,任一条线段的长度C.两条平行线间,垂线段的长度D.夹在两平行线间的任一条垂线段4.下列语句中是命题的是().A.延长线段AB到点C,使AC=2BCB.你能说出平行线的三条性质吗C.所有的角都相等D.简单的习题5.下列命题中,正确的是().A.在同一平面内,垂直于同一条直线的两条直线平行B.相等的角是对顶角C.两条直线被第三条直线所截,同位角相等D.和为180°的两个角叫做邻补角6.已知:如图5-3-11,FH⊥AB,CD⊥AB,∠1=∠2.求证:BC∥EF.(在括号内注明理由)证明:因为FH⊥AB,CD⊥AB,所以FH∥CD(),所以∠1=∠3 ().又因为∠1=∠2,所以∠2=∠3,所以BC∥EF().7.如图5-3-12,AB∥EF,若∠ABC=30°,∠BCD=40°,∠DEF=160°,则∠CDE=__________.8.如图5-3-13,若BD⊥AC于D,EF⊥AC于F,∠ABC+∠BCD=180°,求证:∠1=∠2.证明:因为BD⊥AC,EF⊥AC(已知),所以∠BDC=90°,∠EFC=90°(垂直定义),所以∠BDC=∠EFC(等量代换),所以BD∥_____________(),所以_________=___________(两直线平行,同位角相等).又因为∠ABC+∠BCD=180°(已知),所以__________∥____________(),所以∠1=∠3(),所以∠1=∠2(等量代替).9.命题“两直线平行,内错角相等”的题设是___________,结论是___________;命题“内错角相等,两直线平行”的题设是___________,结论是___________.10.如图5-3-14,∠ADC=∠ABC,∠1+∠2=180°,AD为∠FDB的平分线.试问:BC为∠DBE的平分线吗?若是,请说明理由.11.如图5-3-15,已知AB∥CD,∠BAE=∠DGF,求证:∠E=∠F.12.请将下列命题改写成“如果……那么……”的形式.(1)等角的余角相等;(2)垂直于同一条直线的两直线平行;(3)平行线的同旁内角的平分线互相垂直.13.潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射时,入射角等于反射角(如图5-3-16,∠1=∠2,∠3=∠4).请解释为什么进入潜望镜的光线和离开潜望镜的光线是平行的.14.如图5-3-17,在A,B两地之间要修建一条笔直的公路,从A地测得公路走向最北偏东48°,A,B两地同时开工,若干天后公路准确接通.(1)B地所修公路的走向是南偏西多少度?为什么?(2)若公路AB长8km,另一公路BC长6km,且BC的走向是北偏西42°,试求A到公路BC的距离.15.如图5-3-18所示,试说明∠DAC=∠B+∠C.16.如图5-3-19,已知AB∥ED,∠α=∠A+∠E,∠β=∠B+∠C+∠D,求证:∠β=2∠α.参考答案1.A 2.B 3.C 4.C 5.A6.垂直同一直线的两条直线平行两直线平行,同位角相等同位角相等,两直线平行7.30°8.EF 同位角相等,两直线平行∠2 ∠3 GD BC 同旁内角互补,两直线平行,内错角相等9.两直线平行内错角相等内错角相等两直线平行10.BC为∠DBE的平分线.理由是:因为∠2+∠7=180°,∠1+∠2=180°,所以∠1=∠7,所以AB∥CD,所以∠3=∠C.又因为∠ADC=∠ABC,∠1=∠8=∠7,所以∠5=∠4,所以AD∥BC,所以∠6=∠C.又因为∠5=∠6,所以∠3=∠4,所以BC为∠DBE的平分线.11.因为AB∥CD,所以∠BAG=∠DGA(两直线平行,内错角相等),所以∠BAG—∠BAE=∠DGA—∠DGF,即∠EAG=∠FGA,所以AE∥FG(内错角相等,两直线平行),所以∠E=∠F(两直线平行,内错角相等).12.(1)如果两个角相等,那么它们的余角相等(2)如果两条直线垂直于同一条直线,那么它们互相平行(3)如果两条射线分别是平行线的同旁内角的平分线,那么这两条射线互相垂直13.提示:利用条件∠1=∠2,∠3=∠4,说明∠5=∠6.14.(1)48°,因为两直线平行,内错角相等(2)由条件可以计算出∠ABC=90°,所以A到BC的距离为AB=8km.15.解:如图5,过A作AE∥BC,则∠EAC=∠C,∠DAE=∠B,所以∠DAC=∠DAE+∠EAC=∠B+∠C.16.如图6,过C作CF∥AB.。
平行线的性质
平行线的性质平行线是几何学中的重要概念,它是指在同一个平面上永远不会相交的两条直线。
平行线具有一些独特的性质,这些性质在几何学中起着重要的作用。
本文将讨论平行线的性质及其应用。
一、平行线的定义平行线的定义是:在同一个平面上,如果两条直线所成的内角相等或者其中一条直线与另一条直线的一条斜面垂直,则这两条直线是平行线。
二、平行线的性质1. 平行线的夹角性质(1) 同位角性质:同位角是指两条平行线被一条截线切割所形成的对应角,这些对应角相等。
(2) 内错角性质:内错角是指两条平行线被一条截线切割所形成的相邻的内部角,这些内错角相等。
(3) 同旁内角性质:同旁内角是指两条平行线被一条截线切割所形成的同旁的内角,这些同旁内角互补。
(4) 顶角性质:当两条平行线被一条截线切割时,形成的顶角是相等的。
2. 平行线的平移性质平移是指将一个图形在平面上沿着一定方向和距离进行移动,平行线具有平移性质,即平行线的平移仍然是平行线。
3. 平行线的比例性质如果两条平行线被一条截线切割,截线上的任意一点与两条平行线所成的线段的比相等。
4. 平行线的垂直性质平行线具有垂直性质,即与平行线垂直的直线亦为平行线。
5. 平行线与平行线的交点两条平行线在平面上没有交点,如果两条平行线存在交点,那么它们将会重合,即为同一条直线。
三、平行线的应用平行线的性质在几何学和实际生活中有着广泛的应用,以下是其中的几个例子:1. 三角形的判定平行线的性质可用于三角形的判定,例如当一条直线平行于三角形的一边时,可以推断出其他的角和边是否相等。
2. 平面图形的构建在平面建筑和制图中,平行线的性质被广泛应用。
例如可以通过平行线的性质绘制等角线、平行线的切割以及平行线的延长线等。
3. 几何证明平行线性质常常在几何证明中发挥作用,通过利用平行线的性质可以得出证明中所需的结论。
4. 电子通信的编码在电子通信的编码中,平行线的性质被用来表示不同的信息,利用平行线的编码方式可以进行高效的数据传输。
平行线的性质及应用
平行线的性质及应用平行线是初中数学中非常重要的概念,它在几何学和代数学中都有着广泛的应用。
本文将围绕平行线的性质和应用展开讨论,旨在帮助中学生更好地理解和应用这一概念。
一、平行线的定义和性质平行线是指在同一个平面内永远不相交的直线。
根据平行线的定义,我们可以得出以下性质:1. 平行线具有相同的斜率。
斜率是直线的一个重要属性,它表示直线上的每个点与横轴的夹角的正切值。
如果两条直线的斜率相同,那么它们一定是平行线。
例如,直线y = 2x + 1和直线y = 2x - 3具有相同的斜率2,因此它们是平行线。
2. 平行线之间的对应角相等。
对应角是指两条平行线被一条横截线所切割而形成的相对应的角。
如果两条平行线被一条横截线切割,那么对应角一定相等。
例如,在下图中,直线l和m是平行线,被横截线n切割,那么∠1 = ∠5,∠2 = ∠6,∠3 = ∠7,∠4 = ∠8。
[插入图片]3. 平行线之间的内错角和外错角互补。
内错角是指两条平行线被一条横截线切割而形成的相对内侧的角,外错角是指两条平行线被一条横截线切割而形成的相对外侧的角。
内错角和外错角的和等于180度。
例如,在上图中,∠1和∠6是内错角,∠2和∠5是外错角,∠1 + ∠6 = ∠2+ ∠5 = 180度。
二、平行线的应用平行线在几何学和代数学中都有着广泛的应用。
下面我们将分别从几何学和代数学的角度来讨论平行线的应用。
1. 几何学应用在几何学中,平行线的应用非常广泛。
例如:(1)平行线的应用于平行四边形。
平行四边形是一个具有两组平行边的四边形。
根据平行线的性质,我们可以得出平行四边形的性质:对边相等、对角线互相平分、相邻角互补等。
这些性质在解决平行四边形相关问题时非常有用。
(2)平行线的应用于三角形。
当一条直线与两条平行线相交时,所形成的三角形具有特殊的性质。
例如,当一条直线与两条平行线相交时,所形成的两个内角和等于180度,这一性质在解决与平行线相关的三角形问题时非常有用。
平行线的性质
平行线的性质在几何学中,平行线是指永远不会相交的直线。
平行线具备以下几个性质:1. 平行线的定义:如果两条直线在平面上没有交点,那么它们是平行线。
2. 平行线的判定定理一:对于一条直线上的一点和一条不与该直线重合的直线,如果点到直线的距离与直线上每个点到另一条直线的距离相等,那么这两条直线是平行线。
3. 平行线的判定定理二:如果两条直线与第三条直线交叉,而且两个内角对与第三条直线的两个内角对互补,那么这两条直线是平行线。
4. 平行线的判定定理三:如果两条直线与第三条直线相交,而且其中一对同位角是内错角,另一对同位角是内对顶角,那么这两条直线是平行线。
5. 平行线的性质一:平行线之间的距离是恒定的。
根据两点间距离公式,我们可以计算出平行线上任意点到另一条平行线的距离,这个距离在整条平行线上是相等的。
6. 平行线的性质二:两条平行线被一条横切线所穿过时,对应角相等,内错角相等,内对顶角相等。
7. 平行线的性质三:两条平行线被一条横切线所穿过时,同位角之和为180度,即互补角。
总结起来,平行线有着独特的性质,它们永远不会相交,具有相等的内错角、内对顶角以及同位角之和为180度的互补角。
这些性质在几何学的证明和问题解答中发挥着重要的作用。
通过了解平行线的性质,我们可以更好地理解几何学中的相关概念和定理,运用这些性质来解决问题。
在数学和工程学等领域,平行线的性质也有广泛的应用,比如在建筑设计中确定直角、测量距离等。
因此,深入学习和掌握平行线的性质对于建立几何学的基础知识和解决实际问题都具有重要的意义。
通过实际操作和练习,我们可以更好地理解和应用平行线的性质,从而提升自己在几何学领域的能力和素养。
平行线的性质和计算
平行线间的线段长度可以通过勾股定理计算
平行线间的线段长度可以通过相似三角形计算
相似三角形:两个三角形的边长比例相等,即对应边成比例
勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方
平行线间的面积计算
平行线间的面积可以通过三角形的面积公式计算
三角形的面积公式为:面积=1/2*底*高
平行线间的角度计算
平行线间的角度:平行线间的角度是相等的,即两条平行线之间的角度是相等的。
平行线间的角度应用:平行线间的角度在几何学、工程学等领域有着广泛的应用。
平行线间的角度计算公式:平行线间的角度计算公式为:角度=180°/2。
平行线间的角度计算:平行线间的角度可以通过测量两条平行线之间的角度来计算。
平行线间的面积可以通过平行四边形的面积公式计算
平行四边形的面积公式为:面积=底*高
汇报人:XXX
感谢观看
XXX,a click to unlimited possibilities
平行线的性质和计算
目录
01
单击此处添加目录标题
02
平行线的性质
03
平行线的计算
01
添加章节标题ຫໍສະໝຸດ 2平行线的性质平行线的定义
平行线是指在同一平面内,永不相交的两条直线
平行线的性质包括:平行线之间的距离相等,平行线之间的角度相等
建筑设计:平行线在建筑设计中的应用广泛,如建筑平面图、立面图等
数学计算:平行线在数学计算中的应用,如平行四边形、矩形等几何图形的计算
地图绘制:平行线在地图绘制中的应用,如经纬线、等高线等
交通规划:平行线在交通规划中的应用,如道路规划、铁路规划等
03
平行线的计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的性质(第1课时)教案
教学目标:
1、知识与技能目标: 经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.
2、过程与方法目标:经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动。
在对平行线的性质进行的讨论中,敢于发表自己的看法,并从中获益。
通过学习平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既普遍联系又相互区别的辩证唯物主义思想.
教学过程
一、复习回顾
活动内容:复习已学过的同位角、内错角、同旁内角的概念及两直线平行的条件。
(1)因为∠1=∠5 (已知)
所以a∥b()
(2)因为∠4=∠(已知)
所以a∥b(内错角相等,两直线平行)
(3)因为∠4+∠=1800 (已知)
所以a∥b()
活动目的:平行线的性质与判定直线平行的条件
是互逆的,对初学者来说易将它们混淆,因此,复
习判定直线平行的条件为后面学习性质做好准备。
二、动手操作、探求新知
反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么样的关系呢?这是我们这节课要探究的问题。
活动内容:课本52页的“探究”部分。
如图,直线a与直线b平行。
(1)测量同位角∠1 和∠5 的大小,它们有什么关系?图中还有其他同位角吗?它们的大小有什么关系?
(2)图中有几对内错角?它们的大小有什么关系?
为什么?
(3)图中有几对同旁内角?它们的大小有什么关
系?为什么?
(4)换另一组平行线试试,你能得到相同的结论吗?
这是本节课的主体部分,具体教学时,可把该探究细分成如下几个活动:
活动1、先测量角的度数,把结果填入表内.
活动2、根据测量所得的结果作出猜想:
同位角具有怎样的数量关系?内错角具有怎样的数量关系?同旁内角呢?
活动3、验证猜测.
另外画一组平行线被第三条直线所截,同样测量并计算各角的度数,检验刚才的猜想是否成立?如果直线a与b不平行,猜想还成立吗?
活动4、归纳平行线的性质
性质1:两条平行直线被第三条直线所截,同位角相等。
简称为两直线平行, 同位角相等.
性质2:两条平行直线被第三条直线所截,内错角相等。
简称为两直线平行, 内错角相等.
性质3:两条平行直线按被第三条线所截,同旁内角互补。
简称为两直线平行, 同旁内角互补.
三、联系拓广,综合应用
如图 2-18,一束平行光线 AB 与 DE
射向一个水平镜面后被反射,此时
∠1 =∠2,∠3 = ∠4.
(1)∠1 与∠3 的大小有什么关系?∠ 2
与∠4 呢?
(2)反射光线 BC 与 EF 也平行吗?
活动目的:两个问题都是关于平行线性质和判定直线平行的条件的综合应用。
通过具体问题,使学生进一步认识和理解平行线的性质和判定直线平行的条件的区别和联系。
知道什么时候用性质,什么时候用判定直线平行的条件。
活动注意事项:1、注意平行线性质和判定直线平行的条件的区别。
2、题目综合性较强,在当前阶段要把两者结合起来考虑确实有一定的难度。
课堂上速度要放慢,给学生充足的思考与讨论的时间。
3、充分发挥学生的作用,让他们在相互讨论,相互启发中逐渐理解几何推理的要领,从而分清推理中因为和所以所表达的意义
四、课堂小结
活动内容:师生交流,共同总结本节课所学的知识,并有针对性的布置作业。
1.本节课你有哪些收获?
2.在本节课的学习中,你还存在哪些疑问?
活动目的:通过对以上问题的思考引导学生回顾整节课的学习历程,让学生对知识有一个沉淀、吸收的过程。
让学生畅谈自己学习的体会,通过教师为学生提供的交流互动的平台,使学生倾听别人的想法、意见,从而不断完善自己的认识,形成完整的知识结构.
五、布置作业
习题2.5 1,2,3
六、教学反思
本节课研究的内容是平行线的性质,它是在学生学习了判定直线平行的条件之后来进行学习的。
因此,在引入环节,就充分考虑到这一点,从复习判定直线平行的条件入手,进而引导学生进行平行线性质的探究。
在教学中,有意识、有计划地设计了教学活动,充分挖掘知识内涵,引导学生体会平行线性质与两直线平行的条件之间的联系与区别,使学生体会数学知识间的密切联系。