湖北省部分重点中学联考2017-2018学年高二上学期期中数学试卷(文科) Word版含解析
2017_2018学年高二数学上学期期中联考试题文(3)
(2)求抽取的 人的年龄的中位数(结果保留整数);
(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.
(Ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;
(Ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度.
20.(本小题满分12分)已知函数 ,函数 在 上的零点按从小到大的顺序构成数列 .
(1)求数列 的通项公式;
(2)设 ,求数列 的前 项和 .
21.(本小题满分12分)在四棱锥 中, , , , 为 的中点, 为 的中点, .
A.5B.7C.11D.13
6.设 为不重合的直线, 是不重合的平面,则下列说法正确的个数是()
①若 则 ;②若 则 ;
③若 则 ;④若 则 ;
⑤若 则 ;⑥若 则
A.0B.1C.2D.3
7.程序框图如图所示:
如果上述程序运行的结果 ,那么判断框中应填入()
A. B. C. D.
8.已知函数 的图象如图所示,若将函数 的图象向右平移 个单位,则所得的函数解析式为()
A. B.
C. D.
9.在正方体 中, 是棱 的中点, 是 的中点, 是 上的一点且 ,则异面直线 与 所成的角为()
A. B. C. D.
10.已知 , 满足 则 的取值范围是()
A. B. C. D.
11.点 是直线 上动点, 是圆 : 的两条切线, 是切点,若四边形 面积的最小值是 ,则 的值为()
2017-2018学年高二(上)期中数学试卷(文科)带答案精讲
2017-2018学年高二(上)期中数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.24.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.27.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.259.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.13.(5分)=.14.(5分)若正数a,b满足a+b=1,则+的最小值为.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.16.(5分)给出下列命题:以下命题正确的是(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.17.(5分)过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)【分析】分别求出集合A和集合B中不等式的解集,求出两个解集的公共部分即为两个集合的交集.【解答】解:由集合B可知x﹣1>0即x>1;由集合A可知|x|≤2即﹣2≤x≤2.所以B∩A={x|1<x≤2}故选C.【点评】本题是一道以求不等式的解集为平台,求集合交集的基础题,也是高考中的基本题型.2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b【分析】根据平面的基本性质,可判断A;根据面面垂直的性质定理可判断B;根据线面平行的判定定理可判断C;根据异面直线夹角的定义,可判断D【解答】解:三条直线两两相交,则这三条直线确定一个平面或三个平面,故A 错误;若平面α⊥β,且α∩β=l,由面面垂直的性质定理可得:过α内一点P与l垂直的直线垂直于平面β,故B正确;若直线m与平面α内的一条直线平行,则m∥α或m⊂α,故C错误;若直线a与直线b平行,且直线a⊥l,则l⊥b,故D错误;故选:B【点评】本题考查的知识点是命题的真假判断与应用,平面的基本性质,面面垂直的性质定理,线面平行的判定定理,异面直线夹角的定义,难度不大,属于基础题.3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.2【分析】首先根据已知题意分析圆心与半径.通过直线与圆相交构造一个直角三角形.直角边分别为半弦长,弦心距.斜边为半径.按照勾股定理求出半弦长,然后就能求出弦长.【解答】解:根据题意,圆为x2+y2﹣4y=0故其圆心为(0,2),半径为:2圆心到直线的距离为:d==由题意,圆的半径,圆心到直线的距离,以及圆的弦长的一半构成直角三角形故由勾股定理可得:l=2=2故选:B.【点评】本题考查直线与圆的方程的应用,首先根据圆分析出圆的要素,然后根据直线与圆相交时构造的直角三角形按照勾股定理求出结果.属于基础题4.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件【分析】对两个条件,“cosA+sinA=cosB+sinB”与“C=90°”的关系,结合三角函数的定义,对选项进行判断【解答】解:“C=90°”成立时,有A+B=90°,故一定有“cosA+sinA=cosB+sinB”成立又当A=B时cosA+sinA=cosB+sinB”成立,即“cosA+sinA=cosB+sinB”得不出“C=90°”成立所以“cosA+sinA=cosB+sinB”是“C=90°”的必要非充分条件故选B.【点评】本题考查充要条件,解答本题要熟练理解掌握三角函数的定义,充分条件,必要条件的定义,且能灵活运用列举法的技巧对两个命题的关系进行验证,本题考查了推理论证的能力,解题时灵活选择证明问题的方法是解题成功的保证.5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.2【分析】由三视图想象出空间几何体,代入数据求值.【解答】解:如图所示,四面体为正四面体.是由边长为1的正方体的面对角线围成.其边长为,则其表面积为4×(××)=2.故选D.【点评】本题考查了学生的空间想象力,属于中档题.7.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=【分析】由题意以及框图的作用,直接推断空白框内应填入的表达式.【解答】解:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是P=.故选:D.【点评】本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力,属于基础题.8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.25【分析】根据等差数列的性质,我们可将a k=a1+a2+a3+…+a7,转化为a k=7a4,又由首项a1=0,公差d≠0,我们易得a k=7a4=21d,进而求出k值.【解答】解:∵数列{a n}为等差数列且首项a1=0,公差d≠0,又∵a k=(k﹣1)d=a1+a2+a3+…+a7=7a4=21d故k=22故选A【点评】本题考查的知识点是等差数列的性质,其中根据a4是数列前7项的平均项(中间项)将a k=a1+a2+a3+…+a7,化为a k=7a4,是解答本题的关键.9.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣【分析】条件“||=||”是向量模的等式,通过向量的平方可得向量的数量积|2=||2,•=0,可得出垂直关系,接下来,如由直线与圆的方程组成方程组求出A、B两点的坐标,势必计算很繁,故采用设而不求的方法.【解答】解:由||=||得||2=||2,•=0,⊥,三角形AOB为等腰直角三角形,圆心到直线的距离为,即=,a=±2,故选C.【点评】若非零向量,,满足||=||,则.模的处理方法一般进行平方,转化成向量的数量积.向量是既有大小,又有方向的量,它既有代数特征,又有几何特征,通过向量可以实现代数问题与几何问题的互相转化,所以向量是数形结合的桥梁.10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3【分析】利用函数f(x)的单调性以及f(0)=3,f(3)=﹣1,求出集合P,Q 的解集,利用充分条件和必要条件的定义进行求解.【解答】解:∵f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,∴不等式﹣1<f(x+t)<3,等价为f(3)<f(x+t)<f(0),即3>x+t>0,解得﹣t<x<3﹣t,即P={x|﹣t<x<3﹣t}.由f(x)<﹣1得f(x)<f(3),即x>3,∴Q={x|x>3},∵“x∈P”是”x∈Q”的充分不必要条件,∴﹣t≥3,即t≤﹣3.故选:C.【点评】本题主要考查函数单调性的应用,考查充分条件和必要条件的应用,利用函数的单调性先求解集合P,Q的等价条件是解决本题的关键.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为12.【分析】由方差的性质得2(k2+3),2(k2+3)…2(k8+3)的方差为22×3=12.【解答】解:∵数据组k1,k2…k8的平均数为3,方差为3,∴2(k2+3),2(k2+3)…2(k8+3)的方差为:22×3=12.故答案为:12.【点评】本题考查方差的求法,是中档题,解题时要认真审题,注意方差性质的合理运用.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.【分析】甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题,先做出甲和乙都抽到判断题的概率,根据对立事件的概率公式得到结果.【解答】(2)甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题, ∵甲、乙二人依次都抽到判断题的概率为, ∴甲、乙二人中至少有一人抽到选择题的概率为1﹣= 故答案为:. 【点评】本小题主要考查等可能事件的概率计算及分析和解决实际问题的能力,考查对立事件的概率.13.(5分)= .【分析】考查已知条件和要求的表达式,不难得到结果.【解答】解:因为1﹣sin 2x=cos 2x ,所以又=,所以= 故答案为:【点评】本题是基础题,考查同角三角函数的基本关系式的应用,考查计算能力.14.(5分)若正数a ,b 满足a +b=1,则+的最小值为 . 【分析】变形利用基本不等式即可得出.【解答】解:∵正数a ,b 满足a +b=1,∴(3a +2)+(3b +2)=7.∴+===,当且仅当a=b=时取等号. ∴+的最小值为. 故答案为:.【点评】本题考查了基本不等式的性质,属于中档题.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.【分析】等比数列{a n}中,公比q=2,可得a1a10=a2a9=...=a5a6=.由log2a1+log2a2+...+log2a10=35,利用对数的运算性质可得log2(a1a2 (10)==35,化为=27,可得a1.再利用等比数列的前n项和公式即可得出.【解答】解:∵等比数列{a n}中,公比q=2,∴a1a10=a2a9=…=a5a6=.∵log2a1+log2a2+…+log2a10=35,∴log2(a1a2…a10)==35,∴=27,∴a1=.∴a1+a2+…+a10==.故答案为:.【点评】本题考查了对数的运算性质、等比数列的性质通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.16.(5分)给出下列命题:以下命题正确的是①③④(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.【分析】根据向量加减法的平行四边形法则及菱形的性质可判断①,根据向量数量积的定义,及充要条件的定义,可判断②;根据否命题的定义,可判断③;根据向量数量积运算法则及向量模的定义,可判断④【解答】解:①非零向量、满足||=||=||,则以,为邻边的平行四边形为菱形,且,的夹角为60°,根据菱形的对角线平分对角,可得与的夹角为30°,故①正确; ②•>0,、的夹角为锐角或0,故•>0,是、的夹角为锐角的必要不充分条件,故②错误;③命题“若m 2+n 2=0,则m=0且n=0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故③正确;④若()===0,即,即AB=AC ,则△ABC 为等腰三角形,故④正确.故答案为:①③④【点评】本题以命题的真假判断为载体考查了向量加减法的平行四边形法则及菱形的性质,向量数量积的定义,充要条件的定义,否命题的定义,向量数量积运算法则及向量模的定义,是向量与逻辑的综合应用,难度中档.17.(5分)过点(2,3)且与直线l 1:y=0和l 2:都相切的所有圆的半径之和为 42 .【分析】设出圆的圆心坐标与半径,利用条件列出方程组,求出圆的半径即可.【解答】解:因为所求圆与y=0相切,所以设圆的圆心坐标(a ,r ),半径为r ,l 2:化为3x ﹣4y=0. 所以,解②得a=﹣r ,或a=3r ,由a=﹣r 以及①可得:a 2+14a +13=0,解得a=﹣1或a=﹣13,此时r=3或r=39, 所有半径之和为3+39=42.由a=3r以及①可得:9r2﹣18r+13=0,因为△=﹣144,方程无解;综上得,过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为:42.故答案为:42.【点评】本题考查圆的方程的求法,计算准确是解题的关键,考查计算能力.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.【分析】(I)利用sin(C﹣A)=1,求出A,C关系,通过三角形内角和结合sinB=,求出sinA的值;(II)通过正弦定理,利用(I)及AC=,求出BC,求出sinC,然后求△ABC 的面积.【解答】解:(Ⅰ)因为sin(C﹣A)=1,所以,且C+A=π﹣B,∴,∴,∴,又sinA>0,∴(Ⅱ)如图,由正弦定理得∴,又sinC=sin(A+B)=sinAcosB+cosAsinB=∴【点评】本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运算求解能力.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.【分析】(1)利用三角形中位线的性质,证明线线平行,从而可得线面平行;(2)先证明BD⊥平面PAC,即可证明平面PBD⊥平面PAC;(3)利用四棱锥P﹣ABCD的体积等于时,求出四棱锥P﹣ABCD的高为PA,利用PA⊥AB,即可求PB的长.【解答】(1)证明:∵在△PBD中,O、M分别是BD、PD的中点,∴OM是△PBD的中位线,∴OM∥PB,…(1分)∵OM⊄平面PAB,PB⊂平面PAB,…(3分)∴OM∥平面PAB.…(4分)(2)证明:∵底面ABCD是菱形,∴BD⊥AC,…(5分)∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.…(6分)∵AC⊂平面PAC,PA⊂平面PAC,AC∩PA=A,∴BD⊥平面PAC,…(8分)∵BD⊂平面PBD,∴平面PBD⊥平面PAC.…(10分)(3)解:∵底面ABCD是菱形,AB=2,∠BAD=60°,∴菱形ABCD的面积为,…(11分)∵四棱锥P﹣ABCD的高为PA,∴,得…(12分)∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.…(13分)在Rt△PAB中,.…(14分)【点评】本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.【分析】(Ⅰ)利用点到直线的距离公式,结合勾股定理,建立方程,根据圆C 的面积小于13,即可求圆C的标准方程;(Ⅱ)分类讨论,设出直线方程与圆的方程联立,利用韦达定理,再假设∥,则﹣3(x1+x2)=y1+y2,即可得出结论.【解答】解:(I)设圆C:(x﹣a)2+y2=R2(a>0),由题意知,解得a=1或a=,…(3分)又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x﹣1)2+y2=4.…(6分)(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立,消去y得:(1+k2)x2+(6k﹣2)x+6=0,…(9分)∴△=(6k﹣2)2﹣24(1+k2)=3k2﹣6k﹣5>0,解得或.x 1+x2=,y1+y2=k(x1+x2)+6=,=(x1+x2,y1+y2),,假设∥,则﹣3(x1+x2)=y1+y2,∴,解得,假设不成立.∴不存在这样的直线l.…(13分)【点评】本题考查圆的方程,考查直线与圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,综合性强.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.【分析】(1)结合韦达定理用m把α,β的和、乘积表示出来,代入所求化简即可;(2)利用定义进行证明,在判断结果的符号时,要适当结合第一问m与α,β间的关系,将m用α,β替换,根据α,β与x1,x2的大小关系进行化简判断符号.(3)先假设存在,根据已知构造出取最值时的等式,只要取等号的条件存在,即存在.【解答】解:(1)由题意得,故.(2)∀x1,x2∈[α,β],x1<x2,可得,因为(x1﹣α)(x2﹣β)≤0,(x1﹣β)(x2﹣α)<0,两式相加得2x1x2﹣(α+β)(x1+x2)+2αβ<0;又因为,∴(x2﹣x1)[4x1x2﹣4﹣m(x1+x2)]<0.所以f(x1)﹣f(x2)<0,所以函数f(x)在[α,β]上为增函数.(3)函数在[α,β]上为增函数,所以.当且仅当时,等号成立,此时f(β)=2,即.结合可得m=0.综上可得,存在实数m=0满足题意.【点评】本题综合考查了函数的零点与方程的根之间的关系,即利用函数的观点解决方程的问题,或利用方程思想来解决函数问题.属于综合题,有一定难度.。
2017-2018学年高二上学期期中数学试卷(文科) Word版含解析
2017-2018学年高二上学期期中试卷(文科数学)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.数列﹣,,,,…的一个通项公式可能是( )A .B .C .D .2.已知△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,a=,b=,B=60°,那么∠A 等于( )A .135°B .45°C .135°或45°D .60° 3.设a >b ,则下列不等式中恒成立的是( )A .<B .a 3>b 3C .>D .a 2>b 24.若等差数列{a n }的前n 项和为S n ,且S 6=3,a 4=2,则a 5等于( )A .5B .6C .7D .85.已知变量x ,y 满足约束条件,则的取值范围是( )A .[2,5]B .(﹣∞,2]∪[5,+∞)C .(﹣∞,3]∪[5,+∞)D .[3,5]6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,则角A 是( )A .B .C .D .7.设等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,则S 12等于( )A .8B .10C .12D .148.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,则△ABC 的形状是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰三角形或直角三角形9.若两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且,则等于( )A .2B .C .D .10.某企业生产甲、乙两种产品均需用A 、B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨) 128A .12万元B .16万元C .17万元D .18万元 11.若等差数列{a n }的公差为2,且a 5是a 2与a 6的等比中项,则该数列的前n 项和S n 取最小值时,n 的值等于( ) A .4B .5C .6D .712.定义算式⊗:x ⊗y=x (1﹣y ),若不等式(x ﹣a )⊗(x+a )<1对任意x 都成立,则实数a 的取值范围是( )A .﹣1<a <1B .0<a <2C .D .二、填空题(本大题共4小题,每小题5分,共20分.)13.不等式x 2+x ﹣2>0的解集为 .14.在数列{a n }中,若a 1=1,a n+1=2a n (n ≥1),则该数列的通项a n = .15.已知△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,a=1,c=,∠A=30°,则b 等于 .16.下列命题中:①在△ABC 中,sinA >sinB ,则A >B ;②若a >0,b >0,a+b=4,则的最大值为3;③已知函数f (x )是一次函数,若数列{a n }的通项公式为a n =f (n ),则该数列是等差数列;④数列{b n }的通项公式为b n =q n ,则数列{b n }的前n 项和S n =.正确的命题的序号是 .三、解答题(本大题6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,平面四边形ABCD 中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°.(1)求BD 的长;(2)求∠ADC 的度数.18.已知等差数列{a n }中,a 1+a 4=10,a 3=6. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,求数列{b n }的前n 项和S n .19.连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162dm 2(版心是指图中的长方形阴影部分,dm 为长度单位分米),上、下两边各空2dm ,左、右两边各空1dm .(1)若设版心的高为xdm ,求海报四周空白面积关于x 的函数S (x )的解析式;(2)要使海报四周空白面积最小,版心的高和宽该如何设计?20.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2ccosA+a=2b .(Ⅰ)求角C 的值;(Ⅱ)若a+b=4,当c 取最小值时,求△ABC 的面积.21.已知f (x )=x 2+ax+b ,a ,b ∈R ,若f (x )>0的解集为{x|x <0或x >2}.(Ⅰ)求a ,b 的值;(Ⅱ)解不等式f (x )<m 2﹣1.22.已知数列{a n }的前n 项和为S n =. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设T n 为数列{b n }的前n 项和,其中b n =,求T n ;(Ⅲ)若存在n ∈N *,使得T n ﹣λa n ≥3λ成立,求出实数λ的取值范围.2017-2018学年高二上学期期中试卷(文科数学)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.数列﹣,,,,…的一个通项公式可能是( )A .B .C .D .【考点】数列的函数特性.【分析】利用符号为(﹣1)n 与绝对值为即可得出.【解答】解:数列﹣,,,,…的一个通项公式可能是a n =(﹣1)n.故选:D .【点评】本题考查了数列的通项公式,参考老头老娘了与计算能力,属于基础题.2.已知△ABC中,a、b、c分别是角A、B、C的对边,a=,b=,B=60°,那么∠A等于()A.135°B.45°C.135°或45°D.60°【考点】正弦定理.【分析】结合已知条件a=,b=,B=60°,由正弦定理可得,可求出sinA,结合大边对大角可求得A【解答】解:a=,b=,B=60°,由正弦定理可得,a<b A<B=60°A=45°故选B【点评】本题考查正弦定理和大边对大角定理解三角形,属于容易题3.设a>b,则下列不等式中恒成立的是()A.<B.a3>b3C.>D.a2>b2【考点】不等式比较大小.【分析】A.取a=2,b=﹣1时不成立;B.利用函数y=x3在R上单调递增即可判断出正误.C.取a=2,b=1时不成立;D.取a=1,b=﹣2时不成立.【解答】解:A.取a=2,b=﹣1时不成立;B.由于函数y=x3在R上单调递增,∵a>b,∴a3>b3,成立.C.取a=2,b=1时不成立;D.取a=1,b=﹣2时不成立.故选:B.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.4.若等差数列{a n }的前n 项和为S n ,且S 6=3,a 4=2,则a 5等于( )A .5B .6C .7D .8 【考点】等差数列的前n 项和.【分析】利用等差数列的通项公式与求和公式即可得出. 【解答】解:设等差数列{a n }的公差为d ,∵S 6=3,a 4=2,∴6a 1+d=3,a 1+3d=2,解得a 1=﹣7,d=3. 则a 5=﹣7+3×4=5, 故选:A .【点评】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.5.已知变量x ,y 满足约束条件,则的取值范围是( )A .[2,5]B .(﹣∞,2]∪[5,+∞)C .(﹣∞,3]∪[5,+∞)D .[3,5]【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用的几何意义是区域内的点到原点的斜率,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则的几何意义是区域内的点到原点的斜率, 由图象知OC 的斜率最小,OA 的斜率最大,由得,即A (1,5),此时OA 的斜率k=5,由得,即C (2,4),此时OC 的斜率k==2,即2≤≤5,则的取值范围是[2,5],故选:A .【点评】本题主要考查线性规划的应用,利用的几何意义是区域内的点到原点的斜率是解决本题的关键.6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,则角A 是( )A .B .C .D .【考点】余弦定理.【分析】直接利用余弦定理化简求解即可.【解答】解:在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,由余弦定理可得:cosA=,解得A=.故选:A .【点评】本题考查余弦定理的应用,考查计算能力.7.设等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,则S 12等于( )A .8B .10C .12D .14 【考点】等比数列的前n 项和.【分析】直接利用等比数列的性质,化简求解即可.【解答】解:等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,可得S 4,S 8﹣S 4,S 12﹣S 8,也是等比数列,S 12﹣S 8===8.S 12=14. 故选:D .【点评】本题考查等比数列的简单性质的应用,考查计算能力.8.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,则△ABC 的形状是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰三角形或直角三角形【考点】三角形的形状判断.【分析】利用正弦定理转化求解三角形的角的关系,判断三角形的形状即可.【解答】解:在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,可得,可得sin2A=sin2B . 可得2A=2B 或2A+2B=π,即:A=B 或A+B=;故选:D .【点评】本题考查正弦定理的应用,三角形的形状的判断,考查计算能力.9.若两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且,则等于( )A .2B .C .D .【考点】等差数列的性质.【分析】利用===,即可得出结论.【解答】解: =====,故选C.【点评】本题考查等差数列通项的性质,考查等差数列的求和公式,比较基础.10.某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元【考点】简单线性规划的应用.【分析】设每天生产甲乙两种产品分别为x,y吨,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.【解答】解:设每天生产甲乙两种产品分别为x,y吨,利润为z元,则,目标函数为 z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z=3x+4y=6+12=18.max即每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元,故选:D.【点评】本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.11.若等差数列{an }的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和Sn取最小值时,n的值等于()A.4 B.5 C.6 D.7【考点】等差数列与等比数列的综合.【分析】由题意可得,运用等差数列的通项公式和等比数列的中项的性质,解方程可得a1,结合已知公差,代入等差数列的通项可求,判断数列的单调性和正负,即可得到所求和的最小值时n的值.【解答】解:由a5是a2与a6的等比中项,可得a52=a2a6,由等差数列{an}的公差d为2,即(a1+8)2=(a1+2)(a1+10),解得a1=﹣11,a n =a1+(n﹣1)d=﹣11+2(n﹣1)=2n﹣13,由a1<0,a2<0,…,a6<0,a7>0,…可得该数列的前n项和Sn取最小值时,n=6.故选:C.【点评】等差数列与等比数列是高考考查的基本类型,本题考查等差数列的通项公式的运用,同时考查等比数列的中项的性质,以及等差数列的单调性和前n项和的最小值,属于中档题.12.定义算式⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x+a)<1对任意x都成立,则实数a的取值范围是()A.﹣1<a<1 B.0<a<2 C.D.【考点】二次函数的性质.【分析】由已知中算式⊗:x⊗y=x(1﹣y),我们可得不等式(x﹣a)⊗(x+a)<1对任意x都成立,转化为一个关于x的二次不等式恒成立,进而根据二次不等式恒成立的充要条件,构造一个关于a的不等式,解不等式求出实数a的取值范围.【解答】解:∵x⊗y=x(1﹣y),∴若不等式(x﹣a)⊗(x+a)<1对任意x都成立,则(x﹣a)(1﹣x﹣a)﹣1<0恒成立即﹣x2+x+a2﹣a﹣1<0恒成立则△=1+4(a2﹣a﹣1)=4a2﹣4a﹣3<0恒成立解得故选D【点评】本题考查的知识点是二次函数的性质,其中根据二次不等式ax2+bx+c<0恒成立充要条件是a<0,△<0构造一个关于a的不等式,是解答本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.)13.不等式x2+x﹣2>0的解集为{x|x<﹣2或x>1} .【考点】一元二次不等式的解法.【分析】不等式x2+x﹣2>0化为:(x+2)(x﹣1)>0,解出即可得出.【解答】解:不等式x2+x﹣2>0化为:(x+2)(x﹣1)>0,解得x>1或x<﹣2.∴不等式x2+x﹣2>0的解集为{x|x<﹣2或x>1}.故答案为:{x|x<﹣2或x>1}.【点评】本题考查了一元二次不等式的解法,考查了推理能力与计算能力,属于基础题.14.在数列{an }中,若a1=1,an+1=2an(n≥1),则该数列的通项an= 2n﹣1.【考点】等比数列的通项公式.【分析】由题意可得,该数列是以1为首项,以2为公比的等比数列,由此求得它的通项公式.【解答】解:由于在数列{a n }中,若a 1=1,a n+1=2a n (n ≥1),则该数列是以1为首项,以2为公比的等比数列,故它的通项公式为 a n =1×2n ﹣1=2n ﹣1,故答案为 2n ﹣1.【点评】本题主要考查等比数列的定义和通项公式,属于基础题.15.已知△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,a=1,c=,∠A=30°,则b 等于 1或2 .【考点】正弦定理.【分析】由已知及余弦定理可得b 2﹣3b+2=0,进而可解得b 的值.【解答】解:∵a=1,c=,∠A=30°,∴由余弦定理a 2=b 2+c 2﹣2bccosA ,可得:1=b 2+3﹣2×b ×,整理可得:b 2﹣3b+2=0,∴解得:b=1或2. 故答案为:1或2.【点评】本题主要考查了余弦定理在解三角形中的应用,属于基础题.16.下列命题中:①在△ABC 中,sinA >sinB ,则A >B ;②若a >0,b >0,a+b=4,则的最大值为3;③已知函数f (x )是一次函数,若数列{a n }的通项公式为a n =f (n ),则该数列是等差数列;④数列{b n }的通项公式为b n =q n ,则数列{b n }的前n 项和S n =.正确的命题的序号是 ①②③ .【考点】命题的真假判断与应用;基本不等式;数列的函数特性;正弦定理.【分析】逐项判断.①利用正弦定理易得;②先平方在利用基本不等式即可;③由等差数列的函数特征易得;④易知当q=1时,结论不正确.【解答】解:①由正弦定理,当sinA>sinB时,由 a>b,故有A>B,所以①为真;②≤9+(a+3)+(b+2)=18,所以“=”当且仅当“”成立,故②为真;③由等差数列的通项公式的函数特征知③正确;④易知,当q=1时结论不正确.总上可得①②③正确.故答案为:①②③.【点评】本题考查了正弦定理,基本不等式,等差数列的通项以及等比数列的前n项和问题.其中第2个命题的判断是本题难点.属于中档题.三、解答题(本大题6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,平面四边形ABCD中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°.(1)求BD的长;(2)求∠ADC的度数.【考点】余弦定理;正弦定理.【分析】(1)方法一:在△BCD中,由题意和正弦定理求出BD;方法二:由∠BDC=30°求出BC,利用条件和余弦定理列出方程,求出BD;(2)在△ABD中,利用条件和余弦定理求出cos∠ADB的值,结合图象求出∠ADC的度数.【解答】解:(1)方法一:在△BCD中,由正弦定理得:,即…解得BD=3…方法二:由已知得∠BDC=30°,故…由余弦定理得:BD2=CD2+BC2﹣2CDBCcos∠BCD= …∴BD=3…(2)在△ABD 中,由余弦定理得:…∴∠ADB=45° … 由已知∠BDC=30°…∴∠ADC=∠ADB+∠BDC=45°+30°=75°…【点评】本题考查正弦、余弦定理在解三角形中的应用,考查一题多解,化简、计算能力.18.已知等差数列{a n }中,a 1+a 4=10,a 3=6. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,求数列{b n }的前n 项和S n .【考点】数列递推式;数列的求和.【分析】(I )利用等差数列的通项公式即可得出. (II )利用“裂项求和”方法即可得出.【解答】解:(Ⅰ)设公差为d ,∵a 1+a 4=10,a 3=6.∴,解得, ∴数列{a n }的通项公式为a n =2n .(Ⅱ)由(Ⅰ)知,从而,∴.【点评】本题考查了等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.19.连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162dm2(版心是指图中的长方形阴影部分,dm为长度单位分米),上、下两边各空2dm,左、右两边各空1dm.(1)若设版心的高为xdm,求海报四周空白面积关于x的函数S(x)的解析式;(2)要使海报四周空白面积最小,版心的高和宽该如何设计?【考点】函数模型的选择与应用.【分析】(1)由已知版心的高为xdm,则版心的宽为dm,求出海报四周空白面积.(2)利用基本不等式求解即可.【解答】(本小题满分12分)解:(1)由已知版心的高为xdm,则版心的宽为dm…故海报四周空白面积为,…即S(x)=2x++8,x>0…(2)由基本不等式得:…当且仅当时取等号…∴要使海报四周空白面积最小,版心的高应该为18 dm、宽为9 dm…【点评】本题考查实际问题选择函数的模型,基本不等式的应用,考查计算能力.20.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b.(Ⅰ)求角C的值;(Ⅱ)若a+b=4,当c取最小值时,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】方法一:(Ⅰ)利用正弦定理、诱导公式、两角和的正弦公式化简已知的式子,由内角的范围和特殊角的三角函数值求出角C;(Ⅱ)利用余弦定理列出方程,由条件和完全平方公式化简后,利用基本不等式求出c的最小值,由面积公式求出△ABC的面积;方法二:(Ⅰ)利用余弦定理化简已知的式子得到边的关系,由余弦定理求出cosC的值,由内角的范围和特殊角的三角函数值求出角C;(Ⅱ)利用余弦定理列出方程,结合条件消元后,利用一元二次函数的性质求出c的最小值,由面积公式求出△ABC的面积.【解答】解:方法一:(Ⅰ)∵2ccosA+a=2b,∴2sinCcosA+sinA=2sinB,…∵A+B+C=π,∴2sinCcosA+sinA=2sin(A+C),…即 2sinCcosA+sinA=2sinAcosC+2cosAsinC,…∴sinA=2sinAcosC,…∵sinA≠0,∴cosC=,…又∵C是三角形的内角,∴C=.…(Ⅱ)由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab,…∵a+b=4,故c2=a2+b2﹣ab=(a+b)2﹣3ab=16﹣3ab,…∴(当且仅当a=b=2时等号成立),…∴c的最小值为2,故.…方法二:(Ⅰ)∵2ccosA+a=2b,∴,…∴b2+c2﹣a2+ab=2b2,即 c2=a2+b2﹣ab,…∴,…又∵C是三角形的内角,∴c=.…(Ⅱ)由已知,a+b=4,即b=4﹣a,由余弦定理得,c 2=a 2+b 2﹣ab=(a+b )2﹣3ab ,…∴c 2=16﹣3a (4﹣a )=3(a ﹣2)2+4,…∴当a=2时,c 的最小值为2,故. …【点评】本题考查正弦、余弦定理,三角恒等变换中的公式,以及求最值的方法:基本不等式、一元二次函数的性质,考查一题多解,化简、变形能力.21.已知f (x )=x 2+ax+b ,a ,b ∈R ,若f (x )>0的解集为{x|x <0或x >2}.(Ⅰ)求a ,b 的值;(Ⅱ)解不等式f (x )<m 2﹣1. 【考点】二次函数的性质.【分析】(Ⅰ)利用方程的根,列出方程组,即可求解a ,b 的值;(Ⅱ)化简不等式为乘积的形式,通过因式的根的大小对m 讨论,求解不等式的解集即可.【解答】(本小题满分12分)解:(Ⅰ)根据题意可知,方程x 2+ax+b=0两根分别为0,2,…将两根代入方程得∴.…(Ⅱ)由(Ⅰ)可知不等式f (x )<m 2﹣1为x 2﹣2x <m 2﹣1, 即[x ﹣(1﹣m )][x ﹣(1+m )]<0,…∴当m=0时,1﹣m=1+m ,不等式的解集为Φ;…当m >0时,1﹣m <1+m ,不等式的解集为{x|1﹣m <x <1+m}; … 当m <0时,1+m <1﹣m ,不等式的解集为{x|1+m <x <1﹣m}.… (如上,没有“综上所述…”,不扣分)【点评】本题考查二次函数的简单性质的应用,考查分类讨论思想以及转化思想的应用,考查计算能力.22.已知数列{a n }的前n 项和为S n =. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设T n 为数列{b n }的前n 项和,其中b n =,求T n ;(Ⅲ)若存在n ∈N *,使得T n ﹣λa n ≥3λ成立,求出实数λ的取值范围.【考点】数列递推式;数列的求和.【分析】(Ⅰ)由已知数列的前n 项和,利用a n =S n ﹣S n ﹣1(n ≥2)求数列的通项公式;(Ⅱ)把b n =变形,利用裂项相消法化简,代入S n =得答案;(Ⅲ)把a n 、T n 代入T n ﹣λa n ≥3λ,分离参数λ,利用不等式求得最值得答案.【解答】解:(Ⅰ)当n ≥2时,a n =S n ﹣S n ﹣1==n ,当n=1时,a 1=S 1=1也符合上式,∴a n =n ;(Ⅱ)∵,∴=;(Ⅲ)∵存在n ∈N *,使得T n ﹣λa n ≥3λ成立,∴存在n ∈N *,使得成立,即有解,∴,而,当n=1或n=2时取等号,∴λ的取值范围为.【点评】本题考查数列递推式,训练了裂项相消法求数列的前n 项和,训练了利用分离参数法求解数列恒成立问题,是中档题.。
2017-2018学年湖北省鄂东南示范高中教改联盟高二上学期期中联考数学(文)试题
1y y2017 年秋季鄂东南省级示范高中教育教学改革联盟学校期中联考7.如图,平面α ⊥ 平面 β, A ∈α, B ∈ β, A B 与两平面α, β 所成的角高二数学(文科)试卷π 分别为 和 4π,过 A , B 分别作两平面交线的垂线,垂足为 A ', B ' ,若6考试时间: 11 月 14 日 8:00—10:00 试卷满分:150 分一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符 AB = 8 ,则 A 'B ' = ( )A .2B .3C .4D . 4 2合题目要求的.1.在空间直角坐标系 O - xyz 中,点 P (-1,2,-3) 关于 y Oz 平面的对称点的坐标为()x 2 y 28.已知双曲线 - a 2 b 2= 1(a > 0, b > 0) 的虚轴上、下端点分别为 M , N ,右顶点为 A ,右焦点为 F ,A. (1,2,-3)B. (-1,-2,3)C. (1,-2,-3)D.(-1,2,3)AN ⊥ MF ,则该双曲线的离心率为( )2.如图,某几何体的正视图与侧视图都是边长为 1 的正方形,则下列四个俯视图中使该几何体表面 积最大的是()2 + 1A .23 + 1 B .25 + 1 C .22 + 5 D .29.已知在长方体 A BCD - A 1 B 1C 1 D 1 中,底面是边长为 1 的正方形,高为 2,则点 A 1 到截面 A B 1 D 1的距离是( )43 A .B .342 3 C .D .323.设 a , b 是两条不同的直线,α, β 是两个不同的平面,下列命题中正确的是()10.正方体 ABCD - A B C D 棱长为 2, M , N , P 分别是棱 A D , AB , D C 的中点,则过 M , N , P 1 1 1 1 1 1 1 1A. 若 a //α, b // β,α// β,则 a // bB. 若 a //α, b ⊥ β,α ⊥ β,则 a // b三点的平面截正方体所得截面的面积为()C. 若 a ⊥ α, a // b , b // β,则α ⊥ β4.下列命题中真命题的个数是()D. 若 a ⊥ b , a ⊂ α, b ⊂ β ,则α ⊥ β3 33 A .B .22C . 2 3D . 3 3① ∀x ∈ R , x 4> x 2;②若“ p ∧ q ”是假命题,则 p , q 都是假命题;③命题“ ∀x ∈ R , x 3 - x 2 + 1 ≤ 0 ”的否定是“ ∃x∉ R , x 3 - x 2 + 1 > 0 ”;11.如图,过抛物线 y 2= 2 px ( p > 0) 的焦点 F 的直线 l 交抛物线于点 A , B , 交其准线于点 C ,若| BC |= 3 | BF | ,且| AF |= 12 ,则 p 为( )④命题“若 x 2 - 3x + 2 = 0 ,则 x = 1”的否命题是“若 x 2 - 3x + 2 ≠ 0 ,则 x ≠ 1 ”. A . 4B . 6C . 8D .16A .0B .1C .2D .312.设 F , F x 2 是椭圆 += 1 的左、右两个焦点,若椭圆在第一象限上存在一点 M ,使5.设两条直线 l 1 : mx + 3 y - 6 = 0 ,l 2 : 2 x + (5 + m ) y + 2 = 0 ,则 l 1 // l 2 是 m = 1或m = -6 的()1 2 9 4A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件(OM + OF 2 ) ⋅ F 2 M3 A .= 0 (O 为坐标原点),且| MF 1 |= λ| MF 2 | ,则λ的值为( )B . 2C . 3D . 4x 2 6.双曲线 -= 1 的渐近线与圆 ( x - 3) 2 + y 2 = r 2 (r > 0) 相切,则 r = ( )2二、填空題:本大题共 4 小题,每小题 5 分,共 20 分.4 213.已知双曲线m x2 +y2 =1的虚轴长是实轴长的两倍,则双曲线的离心率e= .A. 3B. 2C. 3D. 62鄂东南省级示范高中教育教学改革联盟学校期中联考 高二数学(文科)试卷(共 4 页)第 3页 鄂东南省级示范高中教育教学改革联盟学校期中联考 高二数学(文科)试卷(共 4 页)第 4页14.在直三棱柱 A BC - A 1B 1C 1 中,∠ACB = 90︒ 1, AC = BC = AA 1 ,则异面直线 A 1B 与 A C 所2(本小题满分 12 分)如图,在三棱柱 A BC - A 1 B 1C 1 中,侧棱垂直于底面, A B ⊥ BC ,成角的余弦值是BA = BC = 1 BB= 1 , E , F 分别为 A C , BC 的中点.15.中国古代数学经典《九章算术》中,将底面为长方形且有 条侧棱与底面垂直的四棱锥称之为 阳马,将四个面都为直角三角形的三棱锥称之为鳖臑。
湖北省重点高中联考2017-2018学年高三上学期期中数学试卷(文科) Word版含解析
湖北省重点高中联考2017-2018学年高三上学期期中数学试卷(文科)一、选择题:每小题5分,10小题共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.(5分)函数y=ln(2﹣x﹣x2)+的定义域是()A.(﹣1,2)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣2,1)D.①若=,=,则=;②若∥,∥,则∥;③||=||•||;④若•=•,则=的逆命题.其中正确的是()A.①②B.①④C.①②③D.①②④7.(5分)已知数列{a n}的前n项和S n=n2﹣9n,第k项满足5<a k<8,则k等于()A.9B.8C.7D.68.(5分)在数列{a n}中,a n+1=ca n(c为非零常数),前n项和为S n=3n+k,则实数k为()A.0B.1C.﹣1 D.29.(5分)已知A,B,C是平面上不共线上三点,O为△ABC外心,动点P满足:(λ∈R且λ≠0),则P的轨迹一定通过△ABC的()A.内心B.垂心C.重心D.AB边的中点10.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f>e2014f(0)B.e2014f(﹣2014)<f(0),f<e2014f(0)C.e2014f(﹣2014)>f(0),f>e2014f(0)D.e2014f(﹣2014)>f(0),f<e2014f(0)二、填空题:本大题共7个小题,每小题5分,共35分.把答案填在答题卡上对应题号后的横线上.答错位置,书写不清,模棱两可不得分.11.(5分)若集合A={x|2x﹣1>0},B={x||x|<1},则A∩B=.12.(5分)已知幂函数f(x)=x2+m是定义在区间上的奇函数,则f(m+1)=.13.(5分)在△ABC中,2sin2=sinA,sin(B﹣C)=2cosBsinC,则=.14.(5分)已知角A、B、C是△ABC 的内角,a,b,c 分别是其对边长,向量,,,且a=2,.则b=.15.(5分)数列{a n}的前n项和为S n,已知S n=1﹣2+3﹣4+…+(﹣1)n﹣1•n,则S17=.16.(5分)已知函数f(x)=2x,等差数列{a n}的公差为2,若f(a2+a4+a6+a8+a10)=4,则log2=.17.(5分)已知函数f(x)=2x,g(x)=+2.则函数g(x)的值域为;满足方程f(x)﹣g(x)=0的x的值是.三、解答题:本大题共5个小题,共65分.解答应写出文字说明,证明过程或演算步骤.把答案填在答题卡上对应题号指定框内.18.(12分)已知向量=(2cos(+x),﹣1),=(﹣sin(),cos2x),定义函数f(x)=•.(1)求函数f(x)的表达式,并指出其最大值和最小值;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC 的面积S.19.(13分)已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(1)求a n,b n;(2)求数列{a n•b n}的前n项和T n.20.(13分)已知函数,其中ω为使f(x)能在时取得最大值的最小正整数.(1)求ω的值;(2)设△ABC的三边长a、b、c满足b2=ac,且边b所对的角θ的取值集合为A,当x∈A 时,求f(x)的值域.21.(13分)设函数f(x)=,方程x=f(x)有唯一解,其中实数a为常数,f(x1)=,f(x n)=x n+1(n∈N*).(1)求f(x)的表达式;(2)求x2015的值;(3)若a n=﹣4023且b n=(n∈N*),求证:b1+b2+…+b n<n+1.22.(14分)已知函数φ(x)=,a为常数.(1)若f(x)=lnx+φ(x),且a=,求函数f(x)的单调区间;(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],当x1≠x2时,都有<﹣1,求a的取值范围.湖北省重点高中联考2015届高三上学期期中数学试卷(文科)参考答案与试题解析一、选择题:每小题5分,10小题共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.(5分)函数y=ln(2﹣x﹣x2)+的定义域是()A.(﹣1,2)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣2,1)D.A.9B.8C.7D.6考点:数列递推式.专题:计算题.分析:先利用公式a n=求出a n,再由第k项满足5<a k<8,求出k.解答:解:a n==∵n=1时适合a n=2n﹣10,∴a n=2n﹣10.∵5<a k<8,∴5<2k﹣10<8,∴<k<9,又∵k∈N+,∴k=8,故选B.点评:本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用.8.(5分)在数列{a n}中,a n+1=ca n(c为非零常数),前n项和为S n=3n+k,则实数k为()A.0B.1C.﹣1 D.2考点:等比数列的前n项和.专题:计算题.分析:由a n+1=ca n,知{a n}是等比数列,由S n=3n+k,分别求出a1,a2,a3,再由a1,a2,a3成等比数列,求出k的值..解答:解:∵a n+1=ca n,∴{a n}是等比数列,∵a1=S1=3+k,a2=S2﹣S1=(9+k)﹣(3+k)=6,a3=S3﹣S2=(27+k)﹣(9+k)=18,∵a1,a2,a3成等比数列,∴62=18(3+k),∴k=﹣1.故选C.点评:本题考查等比数列的性质和应用,解题时要认真审题,注意等比数列通项公式的合理运用.9.(5分)已知A,B,C是平面上不共线上三点,O为△ABC外心,动点P满足:(λ∈R且λ≠0),则P的轨迹一定通过△ABC的()A.内心B.垂心C.重心D.AB边的中点考点:轨迹方程;三角形五心.专题:计算题;数形结合.分析:根据向量的加法的平行四边形法则向量的运算法则,对进行化简,得到,根据三点共线的充要条件知道P、C、D三点共线,但λ≠0则点P的轨迹一定不经过△ABC的重心.解答:解:取AB的中点D,则∵∴=,而,∴P、C、D三点共线,∵λ≠0∴点P的轨迹一定不经过△ABC的重心.故选D.点评:此题是个中档题.考查向量的加法法则和运算法则,以及三点共线的充要条件,和三角形的五心问题,综合性强,体现了数形结合的思想.10.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f>e2014f(0)B.e2014f(﹣2014)<f(0),f<e2014f(0)C.e2014f(﹣2014)>f(0),f>e2014f(0)D.e2014f(﹣2014)>f(0),f<e2014f(0)考点:函数的单调性与导数的关系.专题:导数的综合应用.分析:构造函数g(x)=,可求函数g(x)=在R上单调递减,即可得>f(0),<f(0).解答:解:构造函数g(x)=,则g′(x)=.因为∀x∈R,均有f(x)>f′(x),并且e x>0,所以g′(x)<0,故函数g(x)=在R上单调递减,所以g(﹣2014)>g(0),g<g(0),即>f(0),<f(0),即e2014f(﹣2014)>f(0),f<e2014f(0).故选:D.点评:本题主要考察了函数的单调性与导数的关系,其中,构造函数g(x),并讨论其单调性是关键,属于中档题.二、填空题:本大题共7个小题,每小题5分,共35分.把答案填在答题卡上对应题号后的横线上.答错位置,书写不清,模棱两可不得分.11.(5分)若集合A={x|2x﹣1>0},B={x||x|<1},则A∩B=(,1).考点:交集及其运算.专题:计算题.分析:由题意,可先化简两个集合A,B,再求两个集合的交集得到答案解答:解:由题意A={x|2x﹣1>0}={x|x>},B={x|﹣1<x<1},∴A∩B=(,1)故答案为(,1)点评:本题考查交的运算,是集合中的基本题型,解题的关键是熟练掌握交集的定义12.(5分)已知幂函数f(x)=x2+m是定义在区间上的奇函数,则f(m+1)=8.考点:幂函数的单调性、奇偶性及其应用.专题:函数的性质及应用.分析:利用奇函数的定义域关于原点对称可得m,即可得出.解答:解:∵幂函数在上是奇函数,∴m=1,∴f(x)=x3,∴f(m+1)=f(1+1)=f(2)=23=8.故答案为:8.点评:本题考查了奇函数的性质、函数求值,属于基础题.13.(5分)在△ABC中,2sin2=sinA,sin(B﹣C)=2cosBsinC,则=.考点:余弦定理的应用;正弦定理的应用.专题:综合题;解三角形.分析:利用2sin2=sinA,求出A,由余弦定理,得a2=b2+c2+bc①,将sin(B﹣C)=2cosBsinC展开得sinBcosC=3cosBsinC,所以将其角化边,即可得出结论.解答:解:∵2sin2=sinA,∴1﹣cosA=sinA,∴sin(A+)=,又0<A<π,所以A=.由余弦定理,得a2=b2+c2+bc①,将sin(B﹣C)=2cosBsinC展开得sinBcosC=3cosBsinC,所以将其角化边,得b•=3••c,即2b2﹣2c2=a2②,将①代入②,得b2﹣3c2﹣bc=0,左右两边同除以c2,得2﹣﹣3=0,③解③得=或=﹣1(舍),所以=.故答案为:.点评:本题考查余弦定理、正弦定理的应用,考查学生的计算能力,属于中档题.14.(5分)已知角A、B、C是△ABC 的内角,a,b,c 分别是其对边长,向量,,,且a=2,.则b=.考点:二倍角的余弦;数量积判断两个平面向量的垂直关系.专题:计算题.分析:根据两向量垂直时数量积为0,利用平面向量的数量积的运算法则化简=0,利用二倍角的正弦、余弦函数公式化简,提取2后,利用两角差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由A的范围求出此角的范围,利用特殊角的三角函数值即可求出A的度数;由B的范围及cosB的值,利用同角三角函数间的基本关系求出sinB 的值,然后由a,sinA及sinB的值,利用正弦定理求出b的值即可.解答:解:∵,∴,∴,(4分)∴,(6分)∵0<A<π,∴,∴,(8分)∴;(9分)在△ABC中,,a=2,,∴,(10分)由正弦定理知:,(11分)∴═.∴b=.(13分)点评:此题综合考查了平面向量的数量积的运算法则,三角函数的恒等变换及正弦定理.要求学生掌握平面向量垂直时满足的关系及正弦函数的值域,牢记特殊角的三角函数值.15.(5分)数列{a n}的前n项和为S n,已知S n=1﹣2+3﹣4+…+(﹣1)n﹣1•n,则S17=9.考点:数列的求和.专题:等差数列与等比数列.分析:由已知得S17=(1﹣2)+(3﹣4)+…+(15﹣16)+17,由此能求出结果.解答:解:∵S n=1﹣2+3﹣4+…+(﹣1)n﹣1•n,∴S17=(1﹣2)+(3﹣4)+…+(15﹣16)+17=+17=﹣8+17=9.故答案为:9.点评:本题考查数列的前17项和的求法,是基础题,解题时要认真审题,注意总结规律.16.(5分)已知函数f(x)=2x,等差数列{a n}的公差为2,若f(a2+a4+a6+a8+a10)=4,则log2=﹣6.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:先根据等差数列{a x}的公差为2和a2+a4+a6+a8+a10=2进而可得到a1+a3+a5+a7+a9=2﹣5×2=﹣8,即可得到a1+…+a10=﹣6,即可求出答案.解答:解:∵f(x)=2x,f(a2+a4+a6+a8+a10)=4,∴a2+a4+a6+a8+a10=2,又{a n}的公差为2,∴a1+a3+a5+a7+a9=(a2+a4+a6+a8+a10)﹣5d=﹣8,∴a1+a2+…+a9+a10=﹣6,∴log2=log22﹣6=﹣6.故答案为:﹣6.点评:本题主要考查等差数列的性质和指数函数的运算法则.属基础题.17.(5分)已知函数f(x)=2x,g(x)=+2.则函数g(x)的值域为(2,3];满足方程f(x)﹣g(x)=0的x的值是log.考点:指数函数综合题.专题:函数的性质及应用.分析:(1)根据指数函数的性质结合不等式求解,(2)分类求解方程:2x﹣﹣2=0,即可.解答:解:(1)∵2|x|≥1,∴,∴2<+2≤3故g(x)的值域是(2,3].故答案为(2,3].(2)由f(x)﹣g(x)=0,当x≤0时,﹣2=0,显然不满足方程,即只有x>0时满足2x﹣﹣2=0,整理得(2x)2﹣2•2x﹣1=0,(2x﹣1)2=2,故2x=1±,即x=log2(1+).故答案为;log点评:本题考察了指数函数的性质,求解方程等问题,属于中档题.三、解答题:本大题共5个小题,共65分.解答应写出文字说明,证明过程或演算步骤.把答案填在答题卡上对应题号指定框内.18.(12分)已知向量=(2cos(+x),﹣1),=(﹣sin(),cos2x),定义函数f(x)=•.(1)求函数f(x)的表达式,并指出其最大值和最小值;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC 的面积S.考点:正弦定理的应用;平面向量数量积的运算;三角函数中的恒等变换应用.专题:解三角形.分析:(1)首先对向量进行化简,利用三角函数的基本关系确定函数f(x)的解析式,从而求出f(x)的最大,最小值.(2)根据已知条件以及(1)中的结论确定A的值,再利用三角形的面积公式求出面积S.解答:解:(1)∵,.∴f(x)=•=(﹣2sinx,﹣1)•(﹣cosx,cos2x)=(﹣2sin x,﹣1)•(﹣cos x,cos 2x)=(﹣sinx)•(﹣cosx)﹣cos2x=sin 2x﹣cos2x=sin(2x﹣),∴f(x)的最大值和最小值分别是和﹣.(2)∵f(A)=1,∴,∴sin(2A﹣)=.又∵0<A<π∴2A﹣=或2A﹣=.∴A=或A=.又∵△ABC为锐角三角形,∴A=.∵bc=8,∴△ABC的面积S═×8×=2.点评:本题考查三角函数基本关系的应用,正弦定理等知识.属于中档题.19.(13分)已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(1)求a n,b n;(2)求数列{a n•b n}的前n项和T n.考点:数列的求和;等差关系的确定;等比关系的确定.专题:等差数列与等比数列.分析:(Ⅰ)由S n=2n2+n可得,当n=1时,可求a1=3,当n≥2时,由a n=s n﹣s n﹣1可求通项,进而可求b n(Ⅱ)由(Ⅰ)知,,利用错位相减可求数列的和解答:解:(Ⅰ)由S n=2n2+n可得,当n=1时,a1=s1=3当n≥2时,a n=s n﹣s n﹣1=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1而n=1,a1=4﹣1=3适合上式,故a n=4n﹣1,又∵a n=4log2b n+3=4n﹣1∴(Ⅱ)由(Ⅰ)知,2T n=3×2+7×22+…+(4n﹣5)•2n﹣1+(4n﹣1)•2n∴=(4n﹣1)•2n=(4n﹣1)•2n﹣=(4n﹣5)•2n+5点评:本题主要考查了数列的递推公式在数列的通项公式求解中的应用,数列求和的错位相减求和方法的应用.20.(13分)已知函数,其中ω为使f(x)能在时取得最大值的最小正整数.(1)求ω的值;(2)设△ABC的三边长a、b、c满足b2=ac,且边b所对的角θ的取值集合为A,当x∈A 时,求f(x)的值域.考点:两角和与差的正弦函数;余弦定理.专题:解三角形.分析:(1)利用两角和差的正弦公式化简函数f(x)的解析式为,再根据在时取得最大值可得,由此求得ω的最小正整数值.(2)△ABC中,由b2=ac 以及余弦定理可得,可得,即,再利用正弦函数的定义域和值域求得当x∈A时,f(x)的值域.解答:解:(1)∵函数=sin2ωx﹣=,由于f(x)能在时取得最大值,故,即,故ω的最小正整数值为2.…(5分)(2)△ABC中,由余弦定理可得b2=a2+c2﹣2accosB,再由b2=ac,可得a2+c2﹣2accosB=ac,化简得,当且仅当a=c时,取等号.求得,可得,即.…(8分)∴,()∴,∴,…(10分)∴函数f(x)的值域是.…(12分)点评:本题主要考查两角和差的正弦公式、余弦定理、正弦函数的定义域和值域,属于中档题.21.(13分)设函数f(x)=,方程x=f(x)有唯一解,其中实数a为常数,f(x1)=,f(x n)=x n+1(n∈N*).(1)求f(x)的表达式;(2)求x2015的值;(3)若a n=﹣4023且b n=(n∈N*),求证:b1+b2+…+b n<n+1.考点:数列与不等式的综合.专题:等差数列与等比数列.分析:(1)由x=,得ax(x+2)=x(a≠0),由此能求出f(x)=.(2)由f(x n)=x n+1,得=x n+1,从而数列是以为首项,为公差的等差数列.由此能求出x n=,从而x2015==.(3)由x n=,得a n=2n﹣1,从而b n=1+﹣,由此能证明b1+b2+…+b n<n+1.解答:(1)解:由x=,得ax(x+2)=x(a≠0),所以ax2+(2a﹣1)x=0,当且仅当a=时,方程x=f(x)有唯一解.从而f(x)=.(2)解:由已知f(x n)=x n+1,得=x n+1,∴=+,即=(n∈N*),∴数列是以为首项,为公差的等差数列.∴=+(n﹣1)×=,故x n=.∵f(x1)=,∴=,解得x1=.∴x n==,故x2015==.(3)证明:∵x n=,∴a n=4×﹣4 023=2n﹣1,∴b n====1+﹣,∴b1+b2+…+b n﹣n=﹣n=1﹣<1.故b1+b2+…+b n<n+1.点评:本题考查函数的表达式的求法,考查数列的第2005项的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.22.(14分)已知函数φ(x)=,a为常数.(1)若f(x)=lnx+φ(x),且a=,求函数f(x)的单调区间;(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],当x1≠x2时,都有<﹣1,求a的取值范围.考点:利用导数求闭区间上函数的最值;对数函数图象与性质的综合应用.专题:综合题;分类讨论;函数思想;导数的综合应用.分析:(1)对f(x)求导,利用f′(x)>0判断函数单调增,f′(x)<0函数单调减,求出单调区间;(2)由题意,构造函数h(x)=g(x)+x,根据h(x)在(0,2]上的单调性,再利用导数讨论h(x)的单调性与最值问题,从而求出a的取值范围.解答:解:(1)∵f(x)=lnx+φ(x)=lnx+,(x>0);∴f′(x)=﹣=,当a=时,令f′(x)>0,即x2﹣x+1>0,解得x>2,或x,∴函数f(x)的单调增区间为(0,),(2,+∞),单调减区间为(,2);﹣﹣﹣5分(注:两个单调增区间,错一个扣1分)(2)∵<﹣1,∴+1<0,即<0;设h(x)=g(x)+x,依题意,h(x)在(0,2]上是减函数;﹣﹣﹣8分当1≤x≤2时,h(x)=lnx++x,h′(x)=﹣+1;令h′(x)≤0,解得a≥+(x+1)2=x2+3x++3对x∈时恒成立;设m(x)=x2+3x++3,则m′(x)=2x+3﹣,∵1≤x≤2,∴m′(x)=2x+3﹣>0,∴m(x)在上是增函数,则当x=2时,m(x)的最大值为,∴a≥;…11分当0<x<1时,h(x)=﹣lnx++x,h′(x)=﹣﹣+1,令h′(x)≤0,解得a≥﹣+(x+1)2=x2+x﹣﹣1,设t(x)=x2+x﹣﹣1,则t′(x)=2x+1+>0,∴t(x)在(0,1)上是增函数,∴t(x)<t(1)=0,∴a≥0;﹣﹣﹣13分综上所述,a的取值范围{a|a≥}.﹣﹣﹣14分点评:本题考查了导数的综合应用问题,也考查了构造函数来研究函数的单调性与最值问题和分类讨论思想,是综合性题目.。
2017-2018学年第一学期高二级(文科)数学期中考试答案
2017-2018学年度第二学期高二级文科数学期中试题答案一、选择题:CBCA DADC BDCB 二、填空题:13.1; 14.b 21+a 41 ;15,-1;16.26、【命题意图】本试题主要考查了对数、指数的比较大小的运用,采用中间值大小比较方法.【解析】ln ln 1e π>=,51log 2log 2<,1212z e -===,故选答案A.9、【解析】由12n n S a +=可知 ,当1n =时得211122a S == 当2n ≥时,有12n n S a += ① 12n n S a -= ②①-②可得122n n n a a a +=-即132n n a a +=,故该数列是从第二项起以12为首项,以32为公比的等比数列,故数列通项公式为2113()22nn a -⎧⎪=⎨⎪⎩(1)(2)n n =≥, 故当2n ≥时,1113(1())3221()3212n n n S ---=+=- 当1n =时,11131()2S -==,故选答案B本题还有其它方法11.圆222210x x y y -+-+=的圆心为M(1,1),半径为1,从外一点(3,2)P 向这个圆作两条切线,则点P 到圆心M 的距离等于5,每条切线与PM 的夹角的正切值等于21,所以两切线夹角的正切值为1242tan 1314θ⋅==-,该角的余弦值等于35,选B.(不排除其它方法)15、答案:1-(y 的系数是负的);三、解答题 17.解:(1)211cos 22cos 1212cos 2cos 22+-++=++A A A A 2c o s c o s 22A A += ……2分505153212592=⋅+⋅= ……………… 5分 (2),2,4sin 21===b A bc S ABC ∆中,54cos 1sin 2=-=A A ……… 7分代入解得5=c …… 8分 由余弦定理得: 1753522254cos 222=⨯⨯⨯-+=-+=A bc c b a ………10分 17=∴a ………11分18. 【解析】(1)由312S =,530S =得:11331251030a d a d +=⎧⎨+=⎩……2分解得:12,2a d ==……4分 所以2n a n =.……5分 (2)因为11111()(1)(1)(21)(21)22121n n a a n n n n ==--+-+-+……7分所以1111133557(21)(21)n T n n =++++⨯⨯⨯-⋅+111111111[()()()()]21335572121n n =-+-+-++--+……9分 11(1)22121n n n =-=++.……11分 19【解析】(1)由已知得1//2EF AB EF AB =且 取AD 的中点G,连结GH,GF则1GH//2AB AB =且GH//,EF GH EF GH EFGH ∴=∴且即为平行四边形FG//EH ,,平面且平面EH ADF FG ADF ⊄⊂∴E H∥平面EAD …………4分 (2)EH ABCD ⊥平面,且FG//EH,FG ABCD FG ADF ∴⊥⊂平面且平面ADF ABCD ∴⊥平面平面 …………8分(3) 由(1)(2)可得,平行四边形EFGH 为矩形, ∴HG ⊥FG,有∵HG⊥AD,∴HG⊥平面EAD ∴EF⊥平面EAD ,∴EF 为三棱锥E-ADE 的高且EF=GH=1,又因为1=××21=ΔEG AD S EAD ,∴31=1•1•31=AFD E V -. …………12分20(一)直接法(除了原点)的轨迹方程为所以点,设根据垂径定理020)2(),2(),(),2(),,(),(90222=-+∴=--∙=--∙=∙∴--==∴=∠x y x M y x x y x y x y x y x y x M OMC点评:挖掘圆的几何特征:圆是以圆心为对称中心的中心对称图形,一定联想垂径分弦定理,挖掘出CM OA ⊥,再把CM OA ⊥坐标化的方法:(优选方法(1) (1)向量转化法:0CM OA ⋅=;(2)斜率转化法:分类有无斜率利用1CM OA k k ⋅=-;(3)勾股定理:222OM MC OC +=直接法:根据已知条件找到一个等式,只要将有关的点代入等式,等式里除了所求点的坐标为(x,y),其它点的坐标已知,化简此等式就是所求点的轨迹方程(二)定义法(除了原点))的轨迹方程为(所以点),半径中点(圆心为)为直径的圆(除了原点的轨迹为以点,设根据垂径定理11-1||211,0),(9022=+∴==∴=∠y x M OC r OC OC M y x M OMC定义法:根据圆、椭圆、双曲线、抛物线的定义,判断点的轨迹符合每个曲线的性质,在使用待定系数法求出轨迹方程,CM OA ⊥∴点M 在以OC 为直径的圆上(下略)这是:利用圆的性质(直径所对的圆周角是直角的逆定理) (三)相关点代入法(除了原点))即()(((上在曲线(点中点为设11-42)224)24)2),(22220220),(,),(22222020220000000000=+=+-∴=+-∴=+-⎩⎨⎧==∴⎪⎪⎩⎪⎪⎨⎧=+==+=∴y x y x y x y x y x A y y xx y y y x x x OA M y x A y x M相关点代入法:已知某点A 的曲线方程,找出所求点P 坐标与点A 坐标之间的关系,用点P 坐标表示点A 坐标,代入点A 所在的曲线方程并化简。
2017_2018学年高二数学上学期期中联考试题
年高二上学期期中考试数学试题2017.11本试卷分I 卷选择题(60分)II 卷非选择题(90分),满分150分,时间120分钟第I 卷(选择题60分)一.选择题:本大题共12个小题每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.在△ABC 中,a =3,b =5,sin A =13,则sin B =()A.15B.59C.53D .1 2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为()A .锐角三角形B .直角三角形C .钝角三角形D .不确定 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于()A .8B .10C .12D .144. 如图从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于()1)m -2180(.B 1)m -3240(.A 1)m+330(.1)m D -3120(.C 5.在△ABC 中,若a 2-b 2=3bc 且sin A +B sin B=23,则A =()A.π6B.π3C.2π3D.5π66.已知等差数列{a n }的公差为-2,且a 2,a 4,a 5成等比数列,则a 2=()A .-4B .-6C .-8D .87.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要()A .6秒钟B .7秒钟C .8秒钟D .9秒钟8.若a >b >0,c <d <0,则一定有()A.a d >b cB.a d <b cC.a c >b dD.a c <b d9.若数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10=()A .15B .12C .-12D .-1510. 某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B .16万元C .17万元D .18万元11. 已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则()A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>012. 若直线2ax +by -2=0(a >0,b >0)平分圆x 2+y 2-2x -4y -6=0的周长,则2a +1b 的最小值是()A .2-2B.2-1C .3+22D .3-2 2第II 卷(非选择题共90分)二.填空题:本大题共4个小题,每小题5分,共20分,把答案填在题横线上 13. 已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则a =________.14.已知不等式(k -2)x 2-2(k -2)x -4<0恒成立,则实数k 的取值范围是________. 15. 在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________.16.在△ABC 中,sin A ,sin B ,sin C 依次成等比数列,则B 的取值范围是________. 三.解答题:本大题共6个小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤17.(本小题满分10分)已知f (x )=-3x 2+a (6-a )x +6. (1)解不等式f (1)>0 ,求a 的范围(2)若不等式f (x )>b 的解集为(-1,3),求实数a 、b 的值. 18.(本小题满分12分)。
2017-2018年湖北省孝感市八校联考高二上学期期中数学试卷及答案(文科)
2017-2018学年湖北省孝感市八校联考高二(上)期中数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)某校共有850名高二学生参加2017年上学期期中考试,为了了解这850名学生的数学成绩,决定从中抽取50名学生的数学成绩进行统计分析.在这个问题中,50名学生的数学成绩是()A.总体B.样本的容量C.个体D.从总体中抽取的一个样本2.(5分)从孝感地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样3.(5分)武汉市2016年各月的平均气温(°C)数据的茎叶图,如图所示,则这组数据的中位数是()A.22 B.23 C.24 D.254.(5分)已知样本数据x1,x2,…,x n的平均数是,则新的样本数据x1+2,x2+2,…,x n+2的平均数为()A.3 B.4 C.5 D.65.(5分)口袋内装有红色、绿色和蓝色卡片各2张,一次取出2张卡片,则与事件“2张卡片都为红色”互斥而非对立的事件是以下事件“①2张卡片都不是红色;②2张卡片恰有一张红色;③2张卡片至少有一张红色;④2张卡片恰有两张绿色”中的哪几个?()A.①②④B.①③④C.②③④D.①②③④6.(5分)计算机执行如图的程序段后,输出的结果是()A.2,3 B.2,2 C.0,0 D.3,27.(5分)某校2017年高二上学期给学生分发的教材有:语文3本、数学3本、英语8本、物理2本、生物3本和化学2本,从中任取1本,取出除语文和英语以外的课本的概率为()A.B.C.D.8.(5分)某工厂生产某型号水龙头,成功率x%和每吨铜成本y(元)之间的回归直线方程为,表明()A.成功率每减少1%,铜成本每吨增加314元B.成功率每增加1%,铜成本每吨增加2元C.成功率每减少1%,铜成本每吨增加2元D.成功率不变,铜成本不变,总为314元9.(5分)《九章算术》是我国古代的数学专著,其中的“更相减损术”也可以用来求两个数的最大公约数.如图程序框图的算法思路源于“更相减损术”,若输入的a,b,i分别为18,14,0,则输出的i,a分别为()A.6,4 B.6,2 C.5,4 D.5,210.(5分)某公园有一个露天剧场,其场地呈正六边形,如图所示,若阴影部分可以放200个座位,则整个场地估计可以坐()个观众.A.400 B.500 C.550 D.60011.(5分)用秦九昭算法计算多项式f(x)=x4+4x3+3x2+x+1当x=2时的值时,则V2=()A.6 B.15 C.31 D.6312.(5分)执行如图所示的程序框图,则输出的数值是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)将八进制数706(8)化为十进制的数是;再化为三进制的数.(3)14.(5分)153和119的最大公约数为.15.(5分)一次射击训练中,某战士命中10环的概率是0.21,命中9环的概率为0.25,命中8环的概率为0.35,则至少命中8环的概率为.16.(5分)执行如图所示的程序框图,如果输出s=1320,则正整数M为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)孝感市及周边地区的市民游玩又添新去处啦!孝感熙凤水乡旅游度假区于2017年10月1日正式对外开放.据统计,从2017年10月1日到10月7日参观孝感市熙凤水乡旅游度假区的人数如表所示:(1)把这7天的参观人数看成一个总体,求该总体的众数和平均数(精确到0.1);(2)用简单随机抽样方法从10月1日到10月4日中抽取2天,它们的参观人数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过1万的概率.18.(12分)某校高三共有800名学生,为了解学生3月月考生物测试情况,根据男女学生人数差异较大,从中随机抽取了200名学生,记录他们的分数,并整理得如图频率分布直方图.(1)若成绩不低于60分的为及格,成绩不低于80分的为优秀,试估计总体中合格的有多少人?优秀的有多少人?(2)已知样本中有一半的女生分数不小于80,且样本中不低于80分的男女生人数之比2:3,试估计总体中男生和女生人数的比例.19.(12分)为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).(1)求甲、乙两人成绩的平均数和中位数;(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?20.(12分)孝感星河天街购物广场某营销部门随机抽查了100名市民在2017年国庆长假期间购物广场的消费金额,所得数据如表,已知消费金额不超过3千元与超过3千元的人数比恰为3:2.(1)试确定x,y,p,q的值,并补全频率分布直方图(如图);(2)用分层抽样的方法从消费金额在(0,1]和(1,2]的两个群体中抽取5人进行问卷调查,则各小组应抽取几人?若从这5人中随机选取2人,则此2人来自同一群体的概率是多少?21.(12分)孝感车天地关于某品牌汽车的使用年限x(年)和所支出的维修费用y(千元)由如表的统计资料:(1)画出散点图并判断使用年限与所支出的维修费用是否线性相关;如果线性相关,求回归直线方程;(2)若使用超过8年,维修费用超过1.5万元时,车主将处理掉该车,估计第10年年底时,车主是否会处理掉该车?()22.(12分)已知f(x)=|x|,g(x)=x﹣1.(1)若x是从区间[﹣3,4]上任取的一个实数,y=2,求满足f(x)≥|g(y)+1|的概率.(2)若x、y都是从区间[0,4]上任取的一个实数,求满足f2(x)+(g(y)+1)2≤4的概率.2017-2018学年湖北省孝感市八校联考高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)某校共有850名高二学生参加2017年上学期期中考试,为了了解这850名学生的数学成绩,决定从中抽取50名学生的数学成绩进行统计分析.在这个问题中,50名学生的数学成绩是()A.总体B.样本的容量C.个体D.从总体中抽取的一个样本【解答】解:根据题意,从中抽取的50名学生的数学成绩是“从总体中抽取的一个样本”.故选:D.2.(5分)从孝感地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样【解答】解:常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,事先了解到该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生肺活量差异不大;最合理的抽样方法是按学段分层抽样.故选:C.3.(5分)武汉市2016年各月的平均气温(°C)数据的茎叶图,如图所示,则这组数据的中位数是()A.22 B.23 C.24 D.25【解答】解:把茎叶图中的数据按照从小到大的顺序排列为:4,8,12,15,18,21,23,23,23,28,33,34;排在中间的两个数是21和23,所以这组数据的中位数是22.故选:A.4.(5分)已知样本数据x1,x2,…,x n的平均数是,则新的样本数据x1+2,x2+2,…,x n+2的平均数为()A.3 B.4 C.5 D.6【解答】解:样本数据x1,x2,…,x n的平均数是,则新的样本数据x1+2,x2+2,…,x n+2的平均数为+2=3+2=5.故选:C.5.(5分)口袋内装有红色、绿色和蓝色卡片各2张,一次取出2张卡片,则与事件“2张卡片都为红色”互斥而非对立的事件是以下事件“①2张卡片都不是红色;②2张卡片恰有一张红色;③2张卡片至少有一张红色;④2张卡片恰有两张绿色”中的哪几个?()A.①②④B.①③④C.②③④D.①②③④【解答】解:口袋内装有红色、绿色和蓝色卡片各2张,一次取出2张卡片,①事件2张卡片都不是红色与事件“2张卡片都为红色”是互斥不对立事件;②事件2张卡片恰有一张红色与事件“2张卡片都为红色”是互斥不对立事件;③事件2张卡片至少有一张红色与事件“2张卡片都为红色”不是互斥事件事件;④2事件张卡片恰有两张绿色与事件“2张卡片都为红色”是互斥不对立事件;故选:A.6.(5分)计算机执行如图的程序段后,输出的结果是()A.2,3 B.2,2 C.0,0 D.3,2【解答】解:模拟执行如图的程序后,输出的结果是a=3﹣1=2,b=2+1=3.故选:A.7.(5分)某校2017年高二上学期给学生分发的教材有:语文3本、数学3本、英语8本、物理2本、生物3本和化学2本,从中任取1本,取出除语文和英语以外的课本的概率为()A.B.C.D.【解答】解:语文3本、数学3本、英语8本、物理2本、生物3本和化学2本,共有21本,其中除语文和英语以外的课本有10本,故从中任取1本,取出除语文和英语以外的课本的概率P=,故选:D.8.(5分)某工厂生产某型号水龙头,成功率x%和每吨铜成本y(元)之间的回归直线方程为,表明()A.成功率每减少1%,铜成本每吨增加314元B.成功率每增加1%,铜成本每吨增加2元C.成功率每减少1%,铜成本每吨增加2元D.成功率不变,铜成本不变,总为314元【解答】解:回归直线方程表示成功率x%和每吨铜成本y(元)之间的相关关系,由=﹣2x+514,即成功率每减少1%,铜成本每吨平均增加2元,故选:C.9.(5分)《九章算术》是我国古代的数学专著,其中的“更相减损术”也可以用来求两个数的最大公约数.如图程序框图的算法思路源于“更相减损术”,若输入的a,b,i分别为18,14,0,则输出的i,a分别为()A.6,4 B.6,2 C.5,4 D.5,2【解答】解:若输入的a,b,i分别为18,14,0,则第一次执行循环体后,i=1,a=4,b=14;第二次执行循环体后,i=2,a=4,b=10;第三次执行循环体后,i=3,a=4,b=6;第四次执行循环体后,i=4,a=4,b=2;第五次执行循环体后,i=5,a=2,b=2;第六次执行循环体后,i=6,故输出的i,a的值分别为:6,2,故选:B.10.(5分)某公园有一个露天剧场,其场地呈正六边形,如图所示,若阴影部分可以放200个座位,则整个场地估计可以坐()个观众.A.400 B.500 C.550 D.600【解答】解:由已知可得:阴影部分的面积占正六边形总面积的,∵阴影部分可以放200个座位,则整个场地估计可以坐600个观众,故选:D.11.(5分)用秦九昭算法计算多项式f(x)=x4+4x3+3x2+x+1当x=2时的值时,则V2=()A.6 B.15 C.31 D.63【解答】解:函数f(x)=x4+4x3+3x2+x+1=(((x+4)x+3)x+1)x+1,当x=2时,分别算出v0=1,v1=6×2+3=15,v2=15×2+1=31,故选:C.12.(5分)执行如图所示的程序框图,则输出的数值是()A.B.C.D.【解答】解:由已知可得该程序的功能是计算并输出a=+++…+的值,故a=1﹣+…+﹣=,故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)将八进制数706(8)化为十进制的数是454;再化为三进制的数121211(3).【解答】解:由题意,706(8)=7×82+0×81+6×80=454,454÷3=151 (1)151÷3=50 (1)50÷3=16 (2)16÷3=5 (1)5÷3=1 (2)14÷3=0 (1)即706(8)=454(10)=121211(3)故答案为:454,121211.14.(5分)153和119的最大公约数为17.【解答】解:∵153÷119=1…34,119÷34=3…17,34÷17=2,∴153与119的最大公约数是17.故答案为:17.15.(5分)一次射击训练中,某战士命中10环的概率是0.21,命中9环的概率为0.25,命中8环的概率为0.35,则至少命中8环的概率为0.81.【解答】解:某战士命中10环的概率P(A10)=0.21,命中9环的概率P(A9)=0.25,命中8环的概率为P(A8)=0.35,记“射击一次,至少命中8环”的事件为B,则P(B)=P(A10)+P(A9)+P(A8)=0.21+0.25+0.35=0.81,故答案为:0.8116.(5分)执行如图所示的程序框图,如果输出s=1320,则正整数M为13.【解答】解:当i=10时,不满足输出条件,故S=10,i=11;当i=11时,不满足输出条件,故S=110,i=12;当i=12时,不满足输出条件,故S=1320,i=13当i=13时,满足输出条件,故正整数M的值为13,故答案为:13三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)孝感市及周边地区的市民游玩又添新去处啦!孝感熙凤水乡旅游度假区于2017年10月1日正式对外开放.据统计,从2017年10月1日到10月7日参观孝感市熙凤水乡旅游度假区的人数如表所示:(1)把这7天的参观人数看成一个总体,求该总体的众数和平均数(精确到0.1);(2)用简单随机抽样方法从10月1日到10月4日中抽取2天,它们的参观人数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过1万的概率.【解答】解:(1)总体的平均数为,总体的众数为8.(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过1万”.从非指定参观日中抽取2天可能的基本事件有:(11,13),(11,8),(11,9),(13,8),(13,9),(8,9)共6个,事件A包含的基本事件有:(11,8),(11,9),(8,9)共3个,所以该样本平均数与总体平均数之差的绝对值不超过1万的概率.18.(12分)某校高三共有800名学生,为了解学生3月月考生物测试情况,根据男女学生人数差异较大,从中随机抽取了200名学生,记录他们的分数,并整理得如图频率分布直方图.(1)若成绩不低于60分的为及格,成绩不低于80分的为优秀,试估计总体中合格的有多少人?优秀的有多少人?(2)已知样本中有一半的女生分数不小于80,且样本中不低于80分的男女生人数之比2:3,试估计总体中男生和女生人数的比例.【解答】解:(1)根据频率分布直方图可知,总体中及格的人数估计为(0.02+0.04+0.02)×10×800=640,总体中优秀的人数估计为0.02×10×800=160,所以估计总体中及格的有640人,优秀的有160人.(2)由题意可知,样本中分数不小于80的学生人数为0.02×10×200=40,所以样本中分数不小于80的女生人数为,所以样本中的女生人数为24×2=48,男生人数为200﹣48=152,男生和女生人数的比例为152:48=19:6,所以根据分层抽样原理,总体中男生和女生人数的比例估计为19:6.19.(12分)为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).(1)求甲、乙两人成绩的平均数和中位数;(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?【解答】解:(1)根据茎叶图,计算甲的平均数为=×(68+69+71+72+74+78+83+85)=75,乙的平均数为=×(65+70+70+73+75+80+82+85)=75,甲的中位数为=73,乙的中位数为=74;(2)计算甲的方差为=[(68﹣75)2+(69﹣75)2+(71﹣75)2+(72﹣75)2+(74﹣75)2+(83﹣75)2+(85﹣75)2]=35.5,乙的方差为=[(65﹣75)2+(70﹣75)2+(70﹣75)2+(73﹣75)2+(75﹣75)2+(80﹣75)2+(82﹣75)2+(85﹣75)2]═41,∵<,∴甲成绩稳定;在两人平均成绩相等的情况下,甲成绩稳定些,应派甲去参加比赛.20.(12分)孝感星河天街购物广场某营销部门随机抽查了100名市民在2017年国庆长假期间购物广场的消费金额,所得数据如表,已知消费金额不超过3千元与超过3千元的人数比恰为3:2.(1)试确定x,y,p,q的值,并补全频率分布直方图(如图);(2)用分层抽样的方法从消费金额在(0,1]和(1,2]的两个群体中抽取5人进行问卷调查,则各小组应抽取几人?若从这5人中随机选取2人,则此2人来自同一群体的概率是多少?【解答】解:(1)根据题意,有解得∴,.补全频率分布直方图如图所示:(2)根据题意,消费金额在(0,1]内的人数为(人),记为:A,B,消费金额在(1,2]内的人数为(人),记为:1,2,3.消费金额在(4,5]内的人数为(人),记为:a,b.则从这7人中随机选取2人的选法为:(A,B),(A,1),(A,2),(A,3),(A,a),(A,b),(B,1),(B,2),(B,3),(B,a),(B,b),(1,2),(1,3),(1,a),(1,b),(2,3),(2,a),(2,b),(3,b),(3,b),(a,b)共21种,记2人来自同一群体的事件为M,则M中含有(A,B),(1,2),(1,3),(2,3),(a,b)共5种,∴.21.(12分)孝感车天地关于某品牌汽车的使用年限x(年)和所支出的维修费用y(千元)由如表的统计资料:(1)画出散点图并判断使用年限与所支出的维修费用是否线性相关;如果线性相关,求回归直线方程;(2)若使用超过8年,维修费用超过1.5万元时,车主将处理掉该车,估计第10年年底时,车主是否会处理掉该车?()【解答】解:(1)作出散点图如图:由散点图可知是线性相关的.列表如下:=4,=5,=90,=113计算得:,于是:,即得回归直线方程为.(2)把x=10代入回归方程,得,因此,估计使用10年维修费用是12.8千元,即维修费用是1.28万元,因为维修费用低于1.5万元,所以车主不会处理该车.22.(12分)已知f(x)=|x|,g(x)=x﹣1.(1)若x是从区间[﹣3,4]上任取的一个实数,y=2,求满足f(x)≥|g(y)+1|的概率.(2)若x、y都是从区间[0,4]上任取的一个实数,求满足f2(x)+(g(y)+1)2≤4的概率.【解答】解:(1)由f(x)≥|g(y)+1|知|x|≥|y﹣1+1|,得|x|≥|y|,即|x|≥2,因为﹣3≤x≤4,所以满足f(x)≥|g(y)+1|的概率为.(2)由f2(x)+(g(y)+1)2≤4知|x|2+y2≤4,得x2+y2≤4,因为0≤x≤4,0≤y≤4,所以满足f 2(x )+(g (y )+1)2≤4的概率为.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;xyBCAO2.如图,在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则14S S+=.ls4s3s2s13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
湖北省重点高中联考协作体2017-2018高二上学期期中考试文科数学(含答案)(2017.11)
2017年秋季湖北省重点高中联考协作体期中考试高二数学文科试卷(B 卷)第Ⅰ卷选择题(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知抛物线:24x y =,则其焦点坐标为()A .(0,1)-B .(0,1)C .(1,0)-D .(1,0)2.命题“0(0,)x ∃∈+∞,00ln 2x x =-”的否定是()A .0(0,)x ∃∈+∞,00ln 2x x ≠-B .0(0,)x ∃∉+∞,00ln 2x x =-C .(0,)x ∀∉+∞,ln 2x x =-D .(0,)x ∀∈+∞,ln 2x x ≠-3.命题“x R ∀∈,使得20x mx m ++>”为真命题,则实数m 的取值范围为()A .[0,4]B .(0,4)C .[4,0]-D .(4,0)-4.已知函数'2()sin ()2f x x f x π=+,则'(2f π=()A .12B .0 C.2πD .15.,a b 表示空间两条直线,α为一平面,若:,p a b 与平面α所成角相等;:q a 与b 平行,则p 是q ()A .充要条件B .充分不必要条件 C.必要不充分条件D .既不充分又不必要条件6.函数32()392f x x x x =--+在[0,4]上的最大值和最小值分别是()A .2,-18B .-18,-25 C.2,-25D .2,-207.已知12,F F 为椭圆22184x y +=的左、右焦点,P 是椭圆上一点,若124F PF S ∆=,则12F PF ∠等于()A .030B .045 C.060D .0908.下列命题是真命题的是()(1)若a b b c ∙=∙ ,则a c= (2)若02x π<<,则sin tan x x <(3)函数()ln 1g x x x x =-+有且仅有一个零点(4)数列{}n a 的前n 项和221n S n n =-+,则数列{}n a 为等差数列A .(1)(2)B .(2)(3) C.(2)(4)D .(3)(4)9.已知双曲线2222:1x yC a b-=(0a >,0b >)的实轴的两端点分别为,A B ,且以线段AB 为直径的圆与直线20ax by ab -+=相切,则双曲线的离心率为()A .3B .3 C.3D .1310.函数x e y x=的图象是()11.已知椭圆2222:1x y E a b+=(0a b >>)的右焦点F ,短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点,若4AF BF +=,且点M 到直线l 的距离不小于。
数学-高二-湖北省部分重点中学联考高二(上)期中数学试卷(文科)
2016-2017学年湖北省部分重点中学联考高二(上)期中数学试卷(文科)一、选择题(5×12=60分)1.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面2.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()A.40 B.30 C.20 D.123.已知直线l⊥平面α,直线m⊂平面β,给出下列命题①α∥β=l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是()A.①②③ B.②③④ C.①③D.②④4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?5.有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为(()A.B.C.D.6.如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m为数字0﹣9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小不确定7.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1 B.2 C.3 D.48.两条异面直线a,b所成的角是60°,A为空间一定点,则过点A作一条与直线a,b均成60°的直线,这样的直线能作几条()A.1条B.2条C.3条D.4条9.如图是正方体的平面展开图.在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③ B.②④C.③④D.②③④10.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,给出以下四个命题:①异面直线C1P与CB1所成的角为定值;②二面角P﹣BC1﹣D的大小为定值;③三棱锥D﹣BPC1的体积为定值;其中真命题的个数为()A.0 B.1 C.2 D.311.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为=0.8x﹣155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为m(如表所示),则利用回归方程可求得实数m的值为()x 196 197 200 203 204y 1 3 6 7 mA.8.3 B.8.2 C.8.1 D.812.已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC 的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.二、填空题(5×4=20分)13.已知A表示点,a,b,c表示直线,M,N表示平面,给出以下命题:①a⊥M,若M⊥N,则a∥N②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b③a⊥M,b⊄M,若b∥M,则b⊥a④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b.其中命题成立的是.14.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为.15.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是.16.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,则有一艘船停靠泊位时必需等待一段时间的概率为.三、解答题(10+12×5=70分)17.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段80,85),90,95),(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.18.已知:四棱锥P﹣ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点,PA=a,∠PDA=45°(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求点D到平面PCE的距离.19.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:60,70),80,90),.(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在hslx3y3h50,90)之外的人数.分数段hslx3y3h50,60)hslx3y3h60,70)hslx3y3h70,80)hslx3y3h80,90)x:y 1:1 2:1 3:4 4:520.已知四棱锥P﹣GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(Ⅰ)求异面直线GE与PC所成角的余弦值;(Ⅱ)若F点是棱PC上一点,且DF⊥GC,PF:FC=k,求k的值.21.等边三角形ABC的边长为2沿平行于BC的线段PQ折起,使平面APQ⊥平面PBCQ,设点A到直线PQ的距离为x,AB的长为d.(Ⅰ)x为何值时,d2取得最小值,最小值是多少;(Ⅱ)若∠BAC=θ,求cosθ的最小值.22.如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.2016-2017学年湖北省部分重点中学联考高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(5×12=60分)1.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面【考点】平面的基本性质及推论.【分析】根据公理2以及推论判断A、B、D,再根据空间四边形判断C.【解答】解:A、根据公理2知,必须是不共线的三点确定一个平面,故A不对;B、根据一条直线和直线外的一点确定一个平面知,故B不对;C、比如空间四边形则不是平面图形,故C不对;D、两两相交且不共点的三条直线,则三个交点不共线,故它们确定一个平面,由公理1知三条直线都在此平面内,故D正确.故选D.2.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()A.40 B.30 C.20 D.12【考点】系统抽样方法.【分析】系统抽样中,分段的间隔(抽样距)=【解答】解:抽样距==40.故选A3.已知直线l⊥平面α,直线m⊂平面β,给出下列命题①α∥β=l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是()A.①②③ B.②③④ C.①③D.②④【考点】平面与平面之间的位置关系.【分析】由两平行平面中的一个和直线垂直,另一个也和平面垂直得直线l⊥平面β,再利用面面垂直的判定可得①为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,故②为假命题;由两平行线中的一条和平面垂直,另一条也和平面垂直得直线m⊥平面α,再利用面面垂直的判定可得③为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,如果直线m 在平面α内,则有α和β相交于m,故④为假命题.【解答】解:l⊥平面α且α∥β可以得到直线l⊥平面β,又由直线m⊂平面β,所以有l⊥m;即①为真命题;因为直线l⊥平面α且α⊥β可得直线l平行与平面β或在平面β内,又由直线m⊂平面β,所以l与m,可以平行,相交,异面;故②为假命题;因为直线l⊥平面α且l∥m可得直线m⊥平面α,又由直线m⊂平面β可得α⊥β;即③为真命题;由直线l⊥平面α以及l⊥m可得直线m平行与平面α或在平面α内,又由直线m⊂平面β得α与β可以平行也可以相交,即④为假命题.所以真命题为①③.故选C.4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 1/第一圈2 4 是第二圈3 11 是第三圈4 26 是第四圈5 57 否故退出循环的条件应为k>4故答案选A.5.有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为(()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】由组合数公式可得从5根木棒中任取3根的情况数目,由三角形的三边关系分析可得取出的三根可以搭成三角形的情况数目,由等可能事件的概率公式,计算可得答案.【解答】解:根据题意,从5根木棒中任取3根,有C53=10种情况,其中能构撘成三角形的有3、5、7,3、7、9,5、7、9,共3种情况,则能搭成三角形的概率为;故选D.6.如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m为数字0﹣9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小不确定【考点】众数、中位数、平均数;茎叶图.【分析】由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,根据样本平均数的计算公式,代入数据可以求得甲和乙的平均分,把两个平均分进行比较,得到结果.【解答】解:由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,代入数据可以求得甲和乙的平均分,,∴a2>a1故选B.7.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1 B.2 C.3 D.4【考点】极差、方差与标准差.【分析】由题意知这组数据的平均数为10,方差为2可得到关于x,y的一个方程组,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出|x﹣y|,利用换元法来解出结果.【解答】解:由题意这组数据的平均数为10,方差为2可得:x+y=20,(x﹣10)2+(y﹣10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出|x﹣y|,设x=10+t,y=10﹣t,由(x﹣10)2+(y﹣10)2=8得t2=4;∴|x﹣y|=2|t|=4,故选D.8.两条异面直线a,b所成的角是60°,A为空间一定点,则过点A作一条与直线a,b均成60°的直线,这样的直线能作几条()A.1条B.2条C.3条D.4条【考点】空间中直线与直线之间的位置关系.【分析】过P作a′∥a,b′∥b,设直线a′、b′确定的平面为α,异面直线a、b成60°角,直线a′、b′所成锐角为60°,过点P与a′、b′都成60°角的直线,可以作3条.【解答】解:过P作a′∥a,b′∥b,设直线a′、b′确定的平面为α,∵异面直线a、b成60°角,∴直线a′、b′所成锐角为60°.①当直线l在平面α内时,若直线l平分直线a′、b′所成的钝角,则直线l与a、b都成60°角;②当直线l与平面α斜交时,若它在平面α内的射影恰好落在直线a′、b′所成的锐角平分线上时,直线l与a、b所成角相等.此时l与a′、b′所成角的范围为,适当调整l的位置,可使直线l与a、b也都成60°角,这样的直线l有两条.综上所述,过点P与a′、b′都成60°角的直线,可以作3条.∵a′∥a,b′∥b,∴过点P与a′、b′都成60°角的直线,与a、b也都成60°的角.故选:C.9.如图是正方体的平面展开图.在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③ B.②④C.③④D.②③④【考点】棱柱的结构特征.【分析】正方体的平面展开图复原为正方体,不难解答本题.【解答】解:由题意画出正方体的图形如图:显然①②不正确;③CN与BM成60°角,即∠ANC=60°正确;④DM⊥平面BCN,所以④正确;故选C.10.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,给出以下四个命题:①异面直线C1P与CB1所成的角为定值;②二面角P﹣BC1﹣D的大小为定值;③三棱锥D﹣BPC1的体积为定值;其中真命题的个数为()A.0 B.1 C.2 D.3【考点】棱柱的结构特征.【分析】对于①由题意及图形利用异面直线所成角的概念及求异面直线间的方法及可求解;对于②由题意及平面具有延展性可知实质为平面ABC1D1与平面BDC1所成的二面角;对于③由题意及三棱锥的体积的算法中可以进行顶点可以轮换性求解体积,和点P的位置及直线AD1与平面BDC1的位置即可判断正误.【解答】解:对于①因为在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,有正方体的及题意易有B1C⊥平面ABC1D1,而C1P⊂平面ABC1D1,所以B1C⊥C1P,故这两个异面直线所成的角为定值90°,所以①正确;对于②因为二面角P﹣BC1﹣D的大小,实质为平面ABC1D1与平面BDC1所成的二面角而这两的平面为固定的不变的平面所以夹角也为定值,故②正确;对于③三棱锥D﹣BPC1的体积还等于三棱锥的体积P﹣DBC1的体积,而平面DBC1为固定平面且大小一定,又因为P∈AD1,而AD1∥平面BDC1,所以点A到平面DBC1的距离即为点P到该平面的距离,所以三棱锥的体积为定值,故③正确.故选D.11.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为=0.8x﹣155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为m(如表所示),则利用回归方程可求得实数m的值为()x 196 197 200 203 204y 1 3 6 7 mA.8.3 B.8.2 C.8.1 D.8【考点】线性回归方程.【分析】根据回归直线经过样本数据中心点,求出x、y的平均数,即可求出m值.【解答】解:根据题意,计算=×=200,=×(1+3+6+7+m)=,代入回归方程=0.8x﹣155中,可得=0.8×200﹣155=25,解得m=8.故选:D.12.已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC 的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【考点】异面直线及其所成的角.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB 与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选B.二、填空题(5×4=20分)13.已知A表示点,a,b,c表示直线,M,N表示平面,给出以下命题:①a⊥M,若M⊥N,则a∥N②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b③a⊥M,b⊄M,若b∥M,则b⊥a④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b.其中命题成立的是②③④.【考点】命题的真假判断与应用.【分析】根据空间线面之间的位置关系及几何特征,逐一分析四个命题的真假,可得答案.【解答】解:①a⊥M,若M⊥N,则a∥N,或a⊂N,故错误;②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b,故正确;③a⊥M,b⊄M,若b∥M,则b⊥a,故正确;④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b,故正确.故答案为:②③④14.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为8.【考点】循环结构.【分析】由已知中的程序框图及已知中输入8,可得:进入循环的条件为i<8,即i=2,4,6模拟程序的运行结果,即可得到输出的s值.【解答】解:当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4;当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i<8”,退出循环,则输出的s=8故答案为:815.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是90°.【考点】异面直线及其所成的角.【分析】以D为坐标原点,建立空间直角坐标系,利用向量的方法求出与夹角求出异面直线A1M与DN所成的角.【解答】解:以D为坐标原点,建立如图所示的空间直角坐标系.设棱长为2,则D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),=(0,2,1),=(﹣2,1,﹣2)•=0,所以⊥,即A1M⊥DN,异面直线A1M与DN所成的角的大小是90°,故答案为:90°.16.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,则有一艘船停靠泊位时必需等待一段时间的概率为.【考点】几何概型.【分析】分析知如两船到达的时间间隔超过了停泊的时间则不需要等待,要求一艘船停靠泊位时必须等待一段时间的概率;即计算一船到达的时间恰好另一船还没有离开,此即是所研究的事件.【解答】解:设甲船在x点到达,乙船在y点到达,必须等待的事件需要满足如下条件:,画出不等式组表示的平面区域如图所示;所以p(A)=1﹣=;所以一艘船停靠泊位时必须等待一段时间的概率是.故答案为:.三、解答题(10+12×5=70分)17.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段80,85),90,95),(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.【考点】古典概型及其概率计算公式.【分析】(I)利用频率分布直方图,求出频率,进而根据频数=频率×样本容量,得到答案;(II)先计算从参加社区服务时间不少于90小时的学生中任意选取2人的情况总数,再计算所选学生的参加社区服务时间在同一时间段内的情况数,代入古典概型概率计算公式,可得答案.【解答】解:(Ⅰ)由题意可知,参加社区服务在时间段95,10090,95)的学生有4人,记为a,b,c,d;参加社区服务在时间段的学生有2人,记为A,B.从这6人中任意选取2人有ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB共15种情况.事件A包括ab,ac,ad,bc,bd,cd,AB共7种情况.所以所选学生的服务时间在同一时间段内的概率.…18.已知:四棱锥P﹣ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点,PA=a,∠PDA=45°(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求点D到平面PCE的距离.【考点】平面与平面垂直的判定;直线与平面平行的判定;点、线、面间的距离计算.【分析】(1)取PC的中点G,连接FG、EG,证出AF∥EG,由线面平行的判定定理,即可证出:AF∥平面PCE.(2)先证出AF⊥平面PCD,再由(1),可证EG⊥平面PCD,由面面垂直的判定定理即可证出平面PCE⊥平面PCD;(3)过点D作DH⊥PC于H,DH的长为点D到平面PEC的距离.【解答】(1)证明:取PC的中点为G,连结FG、EG∵FG∥DC,FG=DC,DC∥AB,AE=AB∴FG∥AE且FG=A∴四边形AFGE为平行四边形,∴AF∥EG.又∵AF⊄平面PCE,EG⊂平面PCE,∴AF∥平面PCE…(2)证明:∵PA⊥平面ABCD,AD⊥D,∴PD⊥DC∴∠PDA为二面角P﹣CD﹣B的平面角,∴∠PDA=45°,即△PAD为等腰直角三角形又∵F为PD的中点,∴AF⊥PD ①由DC⊥AD,DC⊥PD,AD∩PD=D,得:DC⊥平面PAD.而AF⊂平面PAD,∴AF⊥DC ②由①②得AF⊥平面PDC.而EG∥AF∴EG⊥平面PDC,又EG⊂平面PCE,∴平面PCE⊥平面PDC…(3)解:过点D作DH⊥PC于H.∵平面PCE⊥平面PDC,∴DH⊥平面PEC.即DH的长为点D到平面PEC的距离.在Rt△PAD中,PA=AD=a,PD= a在Rt△PDC中,PD=a,CD=a,PC=a,DH=a.即:点D到平面PCE的距离为a…19.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:60,70),80,90),.(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在hslx3y3h50,90)之外的人数.分数段hslx3y3h50,hslx3y3h60,hslx3y3h70,hslx3y3h80,60)70)80)90)x:y 1:1 2:1 3:4 4:5【考点】用样本的频率分布估计总体分布;频率分布直方图;众数、中位数、平均数.【分析】(1)由频率分布直方图的性质可10(2a+0.02+0.03+0.04)=1,解方程即可得到a 的值;(2)由平均数加权公式可得平均数为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05,计算出结果即得;(3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在50,60)的人数为:100×0.05=5,数学成绩在70,80)的人数为:,数学成绩在50,90)之外的人数为:100﹣5﹣20﹣40﹣25=10.20.已知四棱锥P﹣GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(Ⅰ)求异面直线GE与PC所成角的余弦值;(Ⅱ)若F点是棱PC上一点,且DF⊥GC,PF:FC=k,求k的值.【考点】异面直线及其所成的角.【分析】(Ⅰ)直接作出异面直线所成角的平面角,通过余弦定理求解.(Ⅱ)由线线垂直转化为线面垂直及面面垂直然后建立比例关系,最后求参数的值.【解答】解:(Ⅰ)在平面ABCD内,过C点作CH∥EG交AD于H,连结PH,则∠PCH(或其补角)就是异面直线GE与PC所成的角.在△PCH中,由余弦定理得,cos∠PCH=∴异面直线GE与PC所成角的余弦值为.(Ⅱ)在平面GBCD内,过D作DM⊥GC,M为垂足,连结MF,又因为DF⊥GC∴GC⊥平面MFD,∴GC⊥FM由平面PGC⊥平面GBCD,∴FM⊥平面GBCD∴FM∥PG由得GM⊥MD,∴GM=GD•cos45°=∵,∴k=321.等边三角形ABC的边长为2沿平行于BC的线段PQ折起,使平面APQ⊥平面PBCQ,设点A到直线PQ的距离为x,AB的长为d.(Ⅰ)x为何值时,d2取得最小值,最小值是多少;(Ⅱ)若∠BAC=θ,求cosθ的最小值.【考点】直线与平面垂直的判定;余弦定理.【分析】(I)如图(1)为折叠前对照图,图(2)为折叠后的空间图形.利用面面垂直和线面垂直的判定与性质定理和二次函数的单调性即可得出;(II)在等腰△ADC中,使用余弦定理和利用余弦函数的单调性即可得出.【解答】解:(Ⅰ)如图(1)为折叠前对照图,图(2)为折叠后的空间图形.∵平面APQ⊥平面PBCQ,又∵AR⊥PQ,∴AR⊥平面PBCQ,∴AR⊥RB.在Rt△BRD中,BR2=BD2+RD2=,AR2=x2.故d2=BR2+AR2=.∴当时,d2取得最小值.(Ⅱ)∵AB=AC=d,BC=2,∴在等腰△ADC中,由余弦定理得,即,∴当时,cosθ取得最小值.22.如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.【考点】棱锥的结构特征.【分析】(1)分别作出三角形的高,求出四个三角形的面积,然后求三棱锥D﹣ABC的表面积;(2)要证AC⊥平面DEF,先证AC⊥DE,再证AC⊥EF,即可.(3)M为BD的中点,连CM,设CM∩DE=O,连OF,只要MN∥OF即可,求出CN.【解答】解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D﹣ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.2016年11月26日。
湖北省部分重点中学2017-2018学年新高三上学期起点考试 数学(文) Word版含答案
湖北省部分重点中学2017-2018学年度上学期新高三起点考试数学试题(文科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U=R,若集合A={>13|x x },B={>0log |3x x },A ∩C u B().A.{<0|x x }B. {>1|x x }C. {<10|x x ≤}D. {1<0|≤x x } 2.已知复数i iz 2310-+=(其中i 为虚数单位),则|z | = ( ). A. 33 B. 23 C. 32D. 223.在平面直角坐标xoy 中,已知四边形ABCD 是平行四边形,错误!未找到引用源。
=(3,1),错误!未找到引用源。
=(2,-2),则错误!未找到引用源。
•错误!未找到引用源。
= ( ). A.2 B. -2 C.-10D. 104. 己知P: >ax 5),3,2(2+∈∀x x 是假,则实数a 的取值范围是( ) A. [52,+∞)B.[29, +∞) C .[314, +∞) D.(-∞,52] 5.先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为( ). A.121B.61 C.41D.316.过双曲线1322=-y x 的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于 A 、B 两点,则|AB|=( ). A.334 B. 32 C. 3π D. 125π7.函数x y 2cos =的图象向右平移)2<<0(πϕϕ 个单位后,与函数)62sin(π-=x y 的图象重合, 则ϕ=( ). A.12π B. 6π C.3πD.125π8. 己知等比数列{n a }满足14,25311=++=a a a a ,则=++321111a a a ( ).A.87 B. 47 C. 913 D. 18139.已知变量x,y 满足约束条件⎪⎩⎪⎨⎧≤+≤-≥4220y x t x x ,则13-+=x y z 的取值范围是( )A.(-∞,-3]∪[1,+∞)B. [-1,3]C. (-∞,-1]∪[3,+∞)D. [-3,1]10. 阅读如图所示的程序框图,则输出结果S 的值为( ).A.81 B. 21 C. 163 D. 16111.如图是某几何体的三视图,当xy 最大时,该几何体的体积为( ). A. 1215152π+B. 121π+ C.41515π+D.4151π+12. 若函数x a x x x f sin 2sin 31)(+-=在(-∞,+∞)上单调递增,则a 的取值范围是().A. [-1,1]B. [-1,31] C. [31-,31] D. [-1, 31-] 二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分。
2017-2018学年高二上学期期中数学(文科)试卷 Word版含解析
2017-2018学年高二(上)期中试卷(文科数学)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.△ABC 中,a=1,b=,A=30°,则B 等于( )A .60°B .60°或120°C .30°或150°D .120°2.已知数列…,则2是这个数列的( )A .第6项B .第7项C .第11项D .第19项3.已知{a n }是等比数列,a 2=2,a 5=,则公比q=( )A .B .﹣2C .2D .4.已知等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值是( )A .55B .95C .100D .不确定5.命题“若x >1,则x >0”的否命题是( )A .若x ≤1,则x ≤0B .若x ≤1,则x >0C .若x >1,则x ≤0D .若x <1,则x <06.若变量x ,y 满足约束条件,则z=x ﹣2y 的最大值为( )A .4B .3C .2D .17.若0<a <b ,且a+b=1,则在下列四个选项中,较大的是( )A .B .a 2+b 2C .2abD .b8.△ABC 中,sinA=2sinCcosB ,那么此三角形是( )A .等边三角形B .锐角三角形C .等腰三角形D .直角三角形9.设S n 是等差数列{a n }的前n 项和,若=,则=( )A .B .C .D .10.等差数列{a n }的前三项依次为a ﹣1,a+1,2a+3,则此数列的第n 项a n =( )A .2n ﹣5B .2n ﹣3C .2n ﹣1D .2n+111.设a >0,b >0.若3是3a 与3b 的等比中项,则的最小值为( )A .4B .2C .1D .12.若{a n }是等差数列,首项a 1>0,a 5+a 6>0,a 5a 6<0,则使前n 项和S n >0成立的最大自然数n 的值是() A .6 B .7 C .8 D .10二、填空题(每小题5分,满分20分,将答案填在答题纸上)13.已知等差数列{a n }的公差d=﹣2,a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99的值是 .14.已知点(3,﹣1)和(﹣4,﹣3)在直线3x ﹣2y+a=0的同侧,则a 的取值范围是 .15.不等式2x 2﹣x ﹣1>0的解集是 .16.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若sinA=,b=sinB ,则a= .三、解答题:17.若不等式ax 2+5x ﹣2>0的解集是,求不等式ax 2﹣5x+a 2﹣1>0的解集.18.△ABC 中,BC=7,AB=3,且=. (1)求AC 的长;(2)求∠A 的大小.19.已知{a n }是等差数列,其中a 1=25,a 4=16(1)求{a n }的通项;(2)求a 1+a 3+a 5+…+a 19值.20.已知{a n }是公差不为零的等差数列,a 1=1且a 1,a 3,a 9成等比数列.(1)求数列{a n }的通项;(2)求数列{2a n }的前n 项和S n .21.一缉私艇发现在北偏东45°方向,距离12nmile 的海面上有一走私船正以10nmile/h 的速度沿东偏南15°方向逃窜.缉私艇的速度为14nmile/h ,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追击所需的时间和α角的正弦值.22.设数列{a n }的前n 项和为S n ,且满足S n =2﹣a n ,n=1,2,3,….(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,且b n+1=b n +a n ,求数列{b n }的通项公式.2017-2018学年高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.△ABC 中,a=1,b=,A=30°,则B 等于( )A .60°B .60°或120°C .30°或150°D .120°【考点】正弦定理.【分析】由正弦定理可得,求出sinB 的值,根据B 的范围求得B 的大小.【解答】解:由正弦定理可得,∴,∴sinB=.又 0<B <π,∴B= 或,故选B .2.已知数列…,则2是这个数列的( )A .第6项B .第7项C .第11项D .第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n 2﹣a n ﹣12=3从而利用等差数列通项公式a n 2=2+(n ﹣1)×3=3n ﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n 2﹣a n ﹣12=3,又∵a 12=2,∴a n 2=2+(n ﹣1)×3=3n ﹣1,令3n ﹣1=20,则n=7.故选B .3.已知{a n }是等比数列,a 2=2,a 5=,则公比q=( )A .B .﹣2C .2D .【考点】等比数列.【分析】根据等比数列所给的两项,写出两者的关系,第五项等于第二项与公比的三次方的乘积,代入数字,求出公比的三次方,开方即可得到结果.【解答】解:∵{a n }是等比数列,a 2=2,a 5=,设出等比数列的公比是q ,∴a 5=a 2•q 3,∴==,∴q=,故选:D .4.已知等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值是( )A .55B .95C .100D .不确定【考点】等差数列的前n 项和;等差数列的通项公式.【分析】由等差数列的性质,结合a 3+a 17=10求出a 10,代入前19项的和得答案.【解答】解:在等差数列{a n }中,由a 3+a 17=10,得2a 10=10,∴a 10=5.∴.故选:B .5.命题“若x >1,则x >0”的否命题是( )A .若x ≤1,则x ≤0B .若x ≤1,则x >0C .若x >1,则x ≤0D .若x <1,则x <0【考点】四种命题.【分析】根据否命题的定义:“若p 则q”的否命题是:“若¬p ,则¬q”,所以应该选A .【解答】解:根据否命题的定义,x >1的否定是:x ≤1;x >0的否定是:x ≤0,所以命题“若x >1,则x >0”的否命题是:“若x ≤1,则x ≤0”.故选A .6.若变量x ,y 满足约束条件,则z=x ﹣2y 的最大值为( )A .4B .3C .2D .1【考点】简单线性规划的应用.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x ﹣2y 表示直线在y 轴上的截距,只需求出可行域直线在y 轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x ﹣2y ⇒y=x ﹣z ,由图可知,当直线l 经过点A (1,﹣1)时,z 最大,且最大值为z max =1﹣2×(﹣1)=3.故选:B .7.若0<a<b,且a+b=1,则在下列四个选项中,较大的是()A.B.a2+b2 C.2ab D.b【考点】不等式比较大小.【分析】根据两个数的和是1,和两个数的大小关系,得到b和的大小关系,根据基本不等式得到B,C两个选项的大小关系,再比较B,D的大小.【解答】解:∵a+b=10<a<b所以a<b>所以D答案>A答案;C答案一定不大于B答案;B:a2+b2=(1﹣b)2+b2,D:b,所以B﹣D=(1﹣b)2+b2﹣b=2b2﹣3b+1=(b﹣1)(2b﹣1),又<b<1,∴B﹣D=(b﹣1)(2b﹣1)<0,即B<D;所以D最大故选D.8.△ABC中,sinA=2sinCcosB,那么此三角形是()A.等边三角形B.锐角三角形C.等腰三角形D.直角三角形【考点】三角形的形状判断.【分析】由三角形的内角和及诱导公式得到sinA=sin(B+C),右边利用两角和与差的正弦函数公式化简,再根据已知的等式,合并化简后,再利用两角和与差的正弦函数公式得到sin(B﹣C)=0,由B与C都为三角形的内角,可得B=C,进而得到三角形为等腰三角形.【解答】解:∵A+B+C=π,即A=π﹣(B+C),∴sinA=sin(B+C)=sinBcosC+cosBsinC.又sinA=2cosBsinC,∴sinBcosC+cosBsinC=2cosBsinC.变形得:sinBcosC﹣cosBsinC=0,即sin(B﹣C)=0.又B和C都为三角形内角,∴B=C,则三角形为等腰三角形.故选C.9.设S n 是等差数列{a n }的前n 项和,若=,则=( )A .B .C .D .【考点】等差数列的前n 项和.【分析】根据等差数列的前n 项和公式,用a 1和d 分别表示出s 3与s 6,代入中,整理得a 1=2d ,再代入中化简求值即可.【解答】解:设等差数列{a n }的首项为a 1,公差为d ,由等差数列的求和公式可得且d ≠0,∴,故选A .10.等差数列{a n }的前三项依次为a ﹣1,a+1,2a+3,则此数列的第n 项a n =( )A .2n ﹣5B .2n ﹣3C .2n ﹣1D .2n+1【考点】等差数列的通项公式.【分析】由题意结合等差数列的性质求得a ,则等差数列的首项和公差可求,代入通项公式得答案.【解答】解:∵等差数列{a n }的前三项依次为a ﹣1,a+1,2a+3,∴2(a+1)=(a ﹣1)+(2a+3),解得:a=0.∴等差数列{a n }的前三项依次为﹣1,1,3,则等差数列的首项为﹣1,公差为d=2,∴a n =﹣1+(n ﹣1)×2=2n ﹣3.故选:B .11.设a >0,b >0.若3是3a 与3b 的等比中项,则的最小值为( )A .4B .2C .1D . 【考点】基本不等式.【分析】利用等比中项即可得出a 与b 的关系,再利用“乘1法”和基本不等式的性质即可得出.【解答】解:∵3是3a 与3b 的等比中项,∴32=3a •3b =3a+b ,∴a+b=2.a >0,b >0.∴===2.当且仅当a=b=1时取等号.故选B .12.若{a n }是等差数列,首项a 1>0,a 5+a 6>0,a 5a 6<0,则使前n 项和S n >0成立的最大自然数n 的值是( )A .6B .7C .8D .10【考点】等差数列的性质;数列的求和.【分析】由已知结合等差数列的单调性可得a 5+a 6>0,a 6<0,由求和公式可得S 8<0,S 7>0,可得结论.【解答】解:∵{a n }是等差数列,首项a 1>0,a 5+a 6>0,a 5a 6<0,∴a 5,a 6必定一正一负,结合等差数列的单调性可得a 5>0,a 6<0,∴S 11==11a 6<0,S 10==5(a 5+a 6)>0,∴使前n 项和S n >0成立的最大自然数n 的值为10.故选D .二、填空题(每小题5分,满分20分,将答案填在答题纸上)13.已知等差数列{a n }的公差d=﹣2,a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99的值是 ﹣82 .【考点】等差数列的前n 项和.【分析】由等差数列的性质得a 3+a 6+a 9+…+a 99=(a 1+a 4+a 7+…+a 97)+33×2d ,由此能求出结果.【解答】解:∵等差数列{a n }的公差d=﹣2,a 1+a 4+a 7+…+a 97=50,∴a 3+a 6+a 9+…+a 99=(a 1+a 4+a 7+…+a 97)+33×2d=50+33×2×(﹣2)=﹣82.故答案为:﹣82.14.已知点(3,﹣1)和(﹣4,﹣3)在直线3x ﹣2y+a=0的同侧,则a 的取值范围是 (﹣∞,﹣11)∪(6,+∞) .【考点】二元一次不等式(组)与平面区域.【分析】由已知点(3,﹣1)和(﹣4,﹣3)在直线3x ﹣2y+a=0的同侧,我们将A ,B 两点坐标代入直线方程所得符号相同,则我们可以构造一个关于a 的不等式,解不等式即可得到答案.【解答】解:若(3,﹣1)和(﹣4,﹣3)在直线3x ﹣2y ﹣a=0的同侧则[3×3﹣2×(﹣1)+a]×[3×(﹣4)+2×3+a]>0即(a+11)(a ﹣6)>0解得a ∈(﹣∞,﹣11)∪(6,+∞)故答案为:(﹣∞,﹣11)∪(6,+∞).15.不等式2x 2﹣x ﹣1>0的解集是 .【考点】一元二次不等式的解法.【分析】把不等式的左边分解因式后,根据两数相乘同号得正的取符号法则,得到2x+1与x ﹣1同号,可化为两个不等式组,分别求出两不等式组的解集的并集即可得到原不等式的解集.【解答】解:不等式2x 2﹣x ﹣1>0,因式分解得:(2x+1)(x ﹣1)>0,可化为:或,解得:x >1或x <﹣,则原不等式的解集为.故答案为:16.已知△ABC的内角A,B,C所对的边分别为a,b,c,若sinA=,b=sinB,则a= .【考点】正弦定理.【分析】由已知利用正弦定理即可计算得解.【解答】解:∵sinA=,b=sinB,∴由正弦定理可得:a===.故答案为:.三、解答题:17.若不等式ax2+5x﹣2>0的解集是,求不等式ax2﹣5x+a2﹣1>0的解集.【考点】一元二次不等式的应用.【分析】由不等式的解集与方程的关系,可知,2是相应方程的两个根,利用韦达定理求出a的值,再代入不等式ax2﹣5x+a2﹣1>0易解出其解集.【解答】解:由已知条件可知a<0,且是方程ax2+5x﹣2=0的两个根,…由根与系数的关系得:解得a=﹣2…所以ax2﹣5x+a2﹣1>0化为2x2+5x﹣3<0,…化为:(2x﹣1)(x+3)<0…解得,…所以不等式解集为…18.△ABC中,BC=7,AB=3,且=.(1)求AC的长;(2)求∠A的大小.【考点】正弦定理;余弦定理.【分析】(1)由已知利用正弦定理即可得解AC的值.(2)由已知利用余弦定理可求cosA的值,结合A的范围,根据特殊角的三角函数值即可得解.【解答】解:(1)由正弦定理,可得: =,可得:AC==5.(2)由余弦定理可得:cosA===﹣,由于A ∈(0°,180°),可得:A=120°.19.已知{a n }是等差数列,其中a 1=25,a 4=16(1)求{a n }的通项;(2)求a 1+a 3+a 5+…+a 19值.【考点】等差数列的前n 项和;等差数列的通项公式.【分析】(1)由题意和等差数列的通项公式可得公差,可得通项公式;(2)可得a 1+a 3+a 5+…+a 19是首项为25,且公差为﹣6的等差数列,共有10项,由等差数列的求和公式可得.【解答】解:(1)设等差数列{a n }的公差为d ,则a 4=a 1+3d ,代值可得16=25+3d ,解得d=﹣3,∴a n =25﹣3(n ﹣1)=28﹣3n ;(2)由题意可得a 1+a 3+a 5+…+a 19是首项为25,且公差为﹣6的等差数列,共有10项,∴20.已知{a n }是公差不为零的等差数列,a 1=1且a 1,a 3,a 9成等比数列.(1)求数列{a n }的通项;(2)求数列{2a n }的前n 项和S n .【考点】等差数列与等比数列的综合.【分析】(1)由题意得关于公差d 的方程,求出公差d 的值,即可得到数列{a n }的通项公式.(2)利用等差数列的求和公式,即可得出结论.【解答】解:(1)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列,得,解得d=1,或d=0(舍去),故{a n }的通项a n =1+(n ﹣1)×1=n ;(2)由(1)得:数列{2a n }是以2为首项,以2为公差的等差数列,故S n =2n+=n (n+1).21.一缉私艇发现在北偏东45°方向,距离12nmile 的海面上有一走私船正以10nmile/h 的速度沿东偏南15°方向逃窜.缉私艇的速度为14nmile/h ,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追击所需的时间和α角的正弦值.【考点】解三角形的实际应用;余弦定理.【分析】由图A ,C 分别表示缉私艇,走私船的位置,设经过 x 小时后在B 处追上,则有 AB=14x ,BC=10x ,∠ACB=120°从而在△ABC 中利用余弦定理可求追击所需的时间,进一步可求α角的正弦值.【解答】解:设A ,C 分别表示缉私艇,走私船的位置,设经过 x 小时后在B 处追上,…则有 AB=14x ,BC=10x ,∠ACB=120°.∴(14x )2=122+(10x )2﹣240xcos120°…∴x=2,AB=28,BC=20,…∴.所以所需时间2小时,.…22.设数列{a n }的前n 项和为S n ,且满足S n =2﹣a n ,n=1,2,3,….(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,且b n+1=b n +a n ,求数列{b n }的通项公式.【考点】数列递推式;数列的应用.【分析】(1)由S n =2﹣a n ,知S 1=2﹣a 1,a n =S n ﹣S n ﹣1=(2﹣a n )﹣(2﹣a n ﹣1),得,由此能求出数列{a n }的通项公式.(2)由b n+1=b n +a n ,且,知b n ﹣1﹣b n =()n ﹣1,由此利用叠加法能求出. 【解答】解:(1)∵S n =2﹣a n ,∴当n=1时,S 1=2﹣a 1,∴a 1=1,当n ≥2时,S n ﹣1=2﹣a n ﹣1,∴a n =S n ﹣S n ﹣1=(2﹣a n )﹣(2﹣a n ﹣1),得,∴数列{a n }是以a 1=1为首项,为公比的等比数列,∴数列{a n }的通项公式是.(2)由b n+1=b n +a n ,且,∴b n ﹣1﹣b n =()n ﹣1,则,,,…,b n ﹣b n ﹣1=()n ﹣2, 以上n 个等式叠加得:==2[1﹣()n﹣1]=2﹣,=1,∴.∵b1。
2017-2018学年湖北省部分重点中学高二(上)数学期中试卷带解析答案(文科)
2017-2018学年湖北省部分重点中学高二(上)期中数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题p:∃x0∈R,x02﹣5x0+6<0,则()A.¬p:∃x0∈R,B.¬p:∃x0∉R,C.¬p:∀x∈R,x2﹣5x+6>0 D.¬p:∀x∈R,x2﹣5x+6≥02.(5分)已知命题p:经过定点P0(x0,y0)的直线都可以用方程y﹣y0=k(x ﹣x0)表示,命题q:直线xtan+y﹣7=0的倾斜角是,则下列命题是真命题的为()A.(¬p)∧q B.p∧q C.p∨(¬q)D.(¬P)∧(¬q)3.(5分)已知A(4,﹣3)关于直线l的对称点为B(﹣2,5),则直线l的方程是()A.3x+4y﹣7=0 B.3x﹣4y+1=0 C.4x+3y﹣7=0 D.3x﹣4y﹣1=04.(5分)设p:a=1,q:直线l1:ax+y﹣1=0与l2:3x+(a+2)y+1=0平行,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)圆x2+y2﹣4x+6y=0与直线2mx+y+2﹣m=0(m∈R)的位置关系为()A.相离B.相切C.相交D.以上都有可能6.(5分)椭圆mx2+y2=1的离心率是,则它的长轴长是()A.1 B.1或2 C.2 D.2或47.(5分)设x,y满足约束条件,若z=x+2y的最大值和最小值的差为8,则实数m=()A.﹣1 B.1 C.D.8.(5分)曲线x2+y2=2|x|+2|y|所围成的图形的面积为()A.6+2πB.6+4πC.8+2πD.8+4π9.(5分)已知平面内两点A(1,2),B(﹣2,﹣2)到直线l的距离分别为2,3,则满足条件的直线l的条数为()A.4 B.3 C.2 D.110.(5分)已知椭圆的弦AB的中点坐标为M(1,1),则直线AB的方程为()A.x+2y﹣3=0 B.x﹣2y+1=0 C.2x+y﹣3=0 D.2x﹣y+1=011.(5分)已知两点A(﹣1,0),B(0,1),点P是椭圆上任意一点,则点P到直线AB的距离最大值为()A.B.C.6 D.12.(5分)阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点A、B的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为()A.B.C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)过点P(1,2),并且在两轴上的截距互为相反数的直线方程是.14.(5分)已知圆x2+y2=16,直线l:,圆上至少有三个点到直线l的距离都是2,则m的取值范围是.15.(5分)已知直线l交椭圆C:于A,B两点,F1为椭圆的左焦点,当直线l经过右焦点时,△ABF1周长为.16.(5分)设椭圆C的两个焦点是F1、F2,过F1的直线与椭圆C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,则椭圆的离心率为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知△ABC的顶点A(6,1),AB边上的中线CM所在直线方程为2x﹣y﹣7=0,AC边上的高BH所在直线方程为x﹣2y﹣6=0.(1)求点C的坐标;(2)求直线BC的方程.18.(12分)为迎接2017年“双11”,“双12”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共100个,生产一个汤碗需5分钟,生产一个花瓶需7分钟,生产一个茶杯需4分钟,已知总生产时间不超过10小时.若生产一个汤碗可获利润5元,生产一个花瓶可获利润6元,生产一个茶杯可获利润3元.(1)使用每天生产的汤碗个数x与花瓶个数y表示每天的利润ω(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?19.(12分)矩形ABCD的两条对角线相交于点M(2,0),AB边所在的直线的方程为x﹣4y=8,点T(﹣1,2)在边AD所在的直线上.(1)求边AD所在直线的方程;(2)求矩形ABCD外接圆的方程;(3)过点P(1,2)的直线l被矩形ABCD的外接圆截得的弦长为,求直线l的方程.20.(12分)在直角坐标系xOy中,二次函数y=x2+mx﹣3的图象与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:(1)以AB为直径的圆能否经过点C?说明理由;(2)过A,B,C三点的圆在y轴上截得的弦长是否为定值?若是,则求出该定值;若不是,请说明理由.21.(12分)已知点是椭圆C:上的一点,椭圆的右焦点为F(1,0),斜率为的直线BD交椭圆C于B、D两点,且A、B、D 三点互不重合.(1)求椭圆C的方程;(2)求证:直线AB,AD的斜率之和为定值.22.(12分)已知圆M:和点,动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B,C在曲线E上,若直线AB,AC 的斜率分别是k1,k2,满足k1•k2=9,求△ABC面积的最大值.2017-2018学年湖北省部分重点中学高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题p:∃x0∈R,x02﹣5x0+6<0,则()A.¬p:∃x0∈R,B.¬p:∃x0∉R,C.¬p:∀x∈R,x2﹣5x+6>0 D.¬p:∀x∈R,x2﹣5x+6≥0【解答】解:∵特称命题的否定是全称命题,∴命题p:∃x0∈R,x02﹣5x0+6<0,则¬p:∀x∈R,x2﹣5x+6≥0,故选:D.2.(5分)已知命题p:经过定点P0(x0,y0)的直线都可以用方程y﹣y0=k(x ﹣x0)表示,命题q:直线xtan+y﹣7=0的倾斜角是,则下列命题是真命题的为()A.(¬p)∧q B.p∧q C.p∨(¬q)D.(¬P)∧(¬q)【解答】解:直线的斜率不存在时,不能表示,故p是假命题;直线xtan+y﹣7=0的斜率是﹣,故倾斜角是,故q是真命题,故(¬p)∧q是真命题,故选:A.3.(5分)已知A(4,﹣3)关于直线l的对称点为B(﹣2,5),则直线l的方程是()A.3x+4y﹣7=0 B.3x﹣4y+1=0 C.4x+3y﹣7=0 D.3x﹣4y﹣1=0【解答】解:由题意,直线AB与l的方程垂直,点A(4,﹣3),B(﹣2,5),k AB==﹣,那么直线l的方程的斜率为k=,A,B的中点的坐标在l的方程上,即中点为(1,1),∴l的方程为:y﹣1=(x﹣1),即3x﹣4y+1=0.故选:B.4.(5分)设p:a=1,q:直线l1:ax+y﹣1=0与l2:3x+(a+2)y+1=0平行,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:对于命题q:由a(a+2)﹣3=0,解得a=1或﹣3.a=﹣3时,两条直线重合,舍去.∴a=1.∴p是q的充要条件.故选:C.5.(5分)圆x2+y2﹣4x+6y=0与直线2mx+y+2﹣m=0(m∈R)的位置关系为()A.相离B.相切C.相交D.以上都有可能【解答】解:根据题意,直线的方程为2mx+y+2﹣m=0,即m(2x﹣1)+y+2=0,则直线恒过点(,﹣2),圆x2+y2﹣4x+6y=0的标准方程为(x﹣2)2+(y+3)2=13,其圆心为(2,﹣3),半径为,分析可得点(,﹣2)在圆内,则直线与圆相交;故选:C.6.(5分)椭圆mx2+y2=1的离心率是,则它的长轴长是()A.1 B.1或2 C.2 D.2或4【解答】解:把椭圆mx2+y2=1方程转化为:分两种情况:①椭圆的离心率则:解得:m=进一步得长轴长为4②椭圆的离心率则:长轴长为2故选:D.7.(5分)设x,y满足约束条件,若z=x+2y的最大值和最小值的差为8,则实数m=()A.﹣1 B.1 C.D.【解答】解:由x,y满足约束条件作出可行域如图,联立,解得A(2,3),联立,解得B(m﹣1,m),化z=x+2y,得y=﹣+.由图可知,当直线y=﹣+过A时,z有最大值为8,当直线y=﹣+过B时,z有最小值为3m﹣1,由题意,8﹣(3m﹣1)=8,解得:m=.故选:D.8.(5分)曲线x2+y2=2|x|+2|y|所围成的图形的面积为()A.6+2πB.6+4πC.8+2πD.8+4π【解答】解:由题意,作出如图的图形,由曲线关于原点对称,当x≥0,y≥0时,解析式为(x﹣1)2+(y﹣1)2=2,故可得此曲线所围的力图形由一个边长为2的正方形与四个半径为的半圆组成,所围成的面积是2×2+4××π×=8+4π故选:D.9.(5分)已知平面内两点A(1,2),B(﹣2,﹣2)到直线l的距离分别为2,3,则满足条件的直线l的条数为()A.4 B.3 C.2 D.1【解答】解:线段AB的中点M(﹣,0),|AB|==5.因此经过线段AB上的一点P,且满足|AP|:|PB|=2:3的点P且与直线AB垂直的直线满足条件.则直线AB的两侧各有一条直线满足条件.综上共有3条直线满足条件.故选:B.10.(5分)已知椭圆的弦AB的中点坐标为M(1,1),则直线AB的方程为()A.x+2y﹣3=0 B.x﹣2y+1=0 C.2x+y﹣3=0 D.2x﹣y+1=0【解答】解:根据题意,设直线方程AB为y=k(x﹣1)+1,设A、B的横坐标分别为x1、x2,且AB的中点坐标为M(1,1),则有(x1+x2)=1,即x1+x2=2,将直线AB的方程代入椭圆方程中,整理得(2k2+1)x2+4k(1﹣k)x+2(1﹣k)2﹣8=0,有x1+x2=﹣,设则有﹣=2,解可得k=﹣,则直线AB方程为y=﹣(x﹣1)+1,变形可得x+2y﹣3=0;故选:A.11.(5分)已知两点A(﹣1,0),B(0,1),点P是椭圆上任意一点,则点P到直线AB的距离最大值为()A.B.C.6 D.【解答】解:由两点A(﹣1,0 ),B(0,1),则直线AB的方程为y=x+1,由图知,直线y=x+m(m<0)和椭圆相切于P点时,到AB的距离最大.联立方程得到,整理得25x2+32mx+16m2﹣144=0由于直线y=x+m和椭圆相切,则△=(32m)2﹣4×25×(16m2﹣144)=0解得m=﹣5由于y=x+1与直线y=x﹣5的距离为d==3,则点P到直线AB距离的最大值为:3.故选:A.12.(5分)阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点A、B的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为()A.B.C. D.【解答】解:如图,取点K(﹣2,0),连接OM、MK.∵OM=1,OA=,OK=2,∴==2,∵∠MOK=∠AOM,∴△MOK∽△AOM,∴==2,∴MK=2MA,∴|MB|+2|MA|=|MB|+|MK|,在△MBK中,|MB|+|MK|≥|BK|,∴|MB|+2|MA|=|MB|+|MK|的最小值为|BK|的长,∵B(1,1),K(﹣2,0),∴|BK|==.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)过点P(1,2),并且在两轴上的截距互为相反数的直线方程是x ﹣y+1=0或2x﹣y=0.【解答】解:直线经过原点时满足条件:直线方程为:y=2x.直线不经过原点时,设直线方程为:x﹣y=a,把点P(1,2)代入可得:1﹣2=a,解得a=﹣1.∴直线方程为:x﹣y+1=0.故答案为:x﹣y+1=0或2x﹣y=0.14.(5分)已知圆x2+y2=16,直线l:,圆上至少有三个点到直线l的距离都是2,则m的取值范围是﹣4≤m≤4.【解答】解:由圆C的方程:x2+y2=16,可得圆C的圆心为原点O(0,0),半径为4;若圆上至少有三个点到直线l:y=x+m的距离等于2,则满足O到直线l的距离d≤2,∵直线l的一般方程为:x﹣y+m=0,∴d==≤2,解得﹣4≤m≤4,∴m的取值范围是﹣4≤m≤4.故答案为:﹣4≤m≤4.15.(5分)已知直线l交椭圆C:于A,B两点,F1为椭圆的左焦点,当直线l经过右焦点时,△ABF1周长为12.【解答】解:椭圆C:的a=3,由椭圆的定义可得,△AF1B的周长为c=|AB|+|AF1|+|BF1|=(|AF2|+|AF1|)+(|BF1|+|BF2|)=2a+2a=4a=12.故答案为:12.16.(5分)设椭圆C的两个焦点是F1、F2,过F1的直线与椭圆C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,则椭圆的离心率为.【解答】解:设椭圆的标准方程为:(a>b>0),由5|PF1|=6|F1Q|,设|PF1|=6k,|F1Q|=5k,|PF2|=|F1F2|=2c,过F2做F2D⊥PQ,则丨PD丨=丨DF1丨=3k,由椭圆的定义可得:|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,∴2c+6k=2a,即a﹣c=3k,①,|QF2|=2c﹣5k,由|PF2|2﹣|PD|2=|QF2|2﹣|QD|2,即(2c)2﹣(3k)2=(2c﹣5k)2﹣(8k)2,整理得:6c﹣4a=15k,②解得:a=k,c=k,则e==,故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知△ABC的顶点A(6,1),AB边上的中线CM所在直线方程为2x﹣y﹣7=0,AC边上的高BH所在直线方程为x﹣2y﹣6=0.(1)求点C的坐标;(2)求直线BC的方程.【解答】解:(1)依题意知:k AC=﹣2,A(6,1),∴l AC方程为:2x+y﹣13=0,联立l AC、l CM得,∴C(5,3).(2)设B(x0,y0),AB的中点M为(,),代入2x﹣y﹣7=0,得2x0﹣y0﹣3=0,∴,∴B(0,﹣3),∴k BC=,∴直线BC的方程为y=x﹣3,即6x﹣5y﹣15=0.18.(12分)为迎接2017年“双11”,“双12”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共100个,生产一个汤碗需5分钟,生产一个花瓶需7分钟,生产一个茶杯需4分钟,已知总生产时间不超过10小时.若生产一个汤碗可获利润5元,生产一个花瓶可获利润6元,生产一个茶杯可获利润3元.(1)使用每天生产的汤碗个数x与花瓶个数y表示每天的利润ω(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【解答】解:(1)依题意每天生产的茶杯个数为100﹣x﹣y,所以利润ω=5x+6y+3(100﹣x﹣y)=2x+3y+300.(2)约束条件为整理得目标函数为ω=2x+3y+300,作出可行域,如图所示,作初始直线l0:2x+3y=0,平移l0,当l0经过点A时,ω有最大值,由得∴最优解为A(50,50),此时ωmax=550元.故每天生产汤碗50个,花瓶50个,茶杯0个时利润最大,且最大利润为550元.19.(12分)矩形ABCD的两条对角线相交于点M(2,0),AB边所在的直线的方程为x﹣4y=8,点T(﹣1,2)在边AD所在的直线上.(1)求边AD所在直线的方程;(2)求矩形ABCD外接圆的方程;(3)过点P(1,2)的直线l被矩形ABCD的外接圆截得的弦长为,求直线l的方程.【解答】解:(1)∵AB⊥AD,k AB=,∴k AD=﹣4,∵点T(﹣1,2)在边AD所在的直线上,∴直线AD的方程为y﹣2=﹣4(x+1),即4x+y+2=0,(2)联立,解得A(0,﹣2).∵矩形ABCD的两条对角线相交于点M(2,0),即圆心为M(2,0),∴圆的半径为AM=2,∴矩形ABCD外接圆的方程(x﹣2)2+y2=8.(3)当直线斜率不存在时,直线方程为x=1,圆心M到直线l的距离d=1,∴直线l被圆截得弦长为2=2,符合题意;当直线斜率存在时,设直线为y﹣2=k(x﹣1),即kx﹣y﹣2k+2=0,圆心M到直线的距离为d=,解得:k=﹣,则直线为3x+4y﹣11=0,综上,直线l的方程为x=1或3x+4y﹣11=0.20.(12分)在直角坐标系xOy中,二次函数y=x2+mx﹣3的图象与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:(1)以AB为直径的圆能否经过点C?说明理由;(2)过A,B,C三点的圆在y轴上截得的弦长是否为定值?若是,则求出该定值;若不是,请说明理由.【解答】解:(1)以AB为直径的圆不经过点C,理由如下:二次函数y=x2+mx﹣3的图象与x轴交于A,B两点,设A(x1,0),B(x2,0),则x1x2=﹣3,又C的坐标为(0,1),故AC的斜率与BC的斜率之积为=﹣,所以不能出现AC⊥BC的情况,以AB为直径的圆不经过点C.(2)设过A,B,C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),将A,B,C三点坐标带入,得x12+Dx1+F=0,x22+Dx2+F=0,1+E+F=0.∴x1x2=﹣3=F,从而E=2,∴圆的方程为x2+y2+Dx+2y﹣3=0,令x=0,得y2+2y﹣3=0,∴y1=﹣3,y2=1,进而得到圆在y轴上截得的弦长是定值为4.21.(12分)已知点是椭圆C:上的一点,椭圆的右焦点为F(1,0),斜率为的直线BD交椭圆C于B、D两点,且A、B、D 三点互不重合.(1)求椭圆C的方程;(2)求证:直线AB,AD的斜率之和为定值.【解答】(1)由题意,左焦点为F′(﹣1,0),由椭圆定义可得2a=|AF|+|AF′|=+=4,解得a=2,b=,所以椭圆C的方程为+=1.(2)证明:设直线BD的方程为y=x+m,又A、B、D三点不重合,∴m≠﹣1,设D(x1,y1),B(x2,y2),则由得x2+mx+m2﹣3=0,所以△=﹣3m2+12>0,所以﹣2<m<2.x1+x2=﹣m,x1x2=﹣m2﹣3,设直线AB、AD的斜率分别为:k AB、k AD,则k AD+k AB═+=+=1+(m+1)﹣,=1+(m+1)﹣,=1+(m+1)﹣,=1﹣1=0,所以k AD+k AB=0,即直线AB,AD的斜率之和为定值.22.(12分)已知圆M:和点,动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B,C在曲线E上,若直线AB,AC 的斜率分别是k1,k2,满足k1•k2=9,求△ABC面积的最大值.【解答】解:(1)圆M:的圆心为M(0,﹣),半径为2,点N(0,),在圆M内,因为动圆P经过点N且与圆M相切,所以动圆P与圆M内切.设动圆P半径为r,则2=|PM|.因为动圆P经过点N,所以r=|PN|,|PM|+|PN|=>|MN|,所以曲线E是M,N为焦点,长轴长为2的椭圆.由a=,c=,得b2=3﹣2=1,所以曲线E的方程为:.(2)直线BC斜率为0时,不合题意;设B(x1,y1),C(x2,y2),直线BC:x=ty+m,联立方程组,得(1+3t2)y2+6mty+3m2﹣3=0,y1+y2=,y1y2=,又k1k2=9,知y1y2=9(x1﹣1)(x2﹣1)=9(ty1﹣1+m)(ty2﹣1+m)=9t2y1y2+9(m﹣1)t(y1+y2)+9(m﹣1)2.且m≠1,y1+y2=,y1y2=,代入化简得(9t2﹣1)(m+1)﹣18mt2+3(m﹣1)(1+3t2)=0,解得m=2,故直线BC过定点(2,0),由△>0,解得t2>1,S△ABC=|y2﹣y1|===,(当且仅当时取等号).综上,△ABC面积的最大值为:.。
2017-2018学年高二上学期期中数学试卷 Word版含解析
2017-2018学年高二上学期期中数学试卷一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.103.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=04.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=16.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.2017-2018学年高二上学期期中数学试卷参考答案与试题解析一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α考点:空间中直线与平面之间的位置关系.专题:阅读型.分析:根据空间中直线与平面的位置关系可得答案.解答:解:根据空间中直线与平面的位置关系可得:b可能与平面α相交,也可能b与平面相交α,故选D.点评:解决此类问题的关键是熟练掌握空间中点、直线以及平面之间的位置关系.2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.10考点:斜率的计算公式.专题:计算题.分析:因为过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,所以,两直线的斜率相等.解答:解:∵直线2x+y﹣1=0的斜率等于﹣2,∴过点A(﹣2, m)和B(m,4)的直线的斜率K也是﹣2,∴=﹣2,解得,故选 B.点评:本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.3.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=0考点:圆的切线方程.专题:直线与圆.分析:首先讨论斜率不存在的情况,直线方程为x=﹣1满足条件.当斜率存在时,设直线方程为:y﹣5=k (x+1).利用圆心到直线的距离等于半径解得k的值,从而确定圆的切线方程.解答:解:①斜率不存在时,过点M(﹣1,5)的直线方程为x=﹣1.此时,圆心(1,2)到直线x=﹣1的距离d=2=r.∴x=﹣1是圆的切线方程.②斜率存在时,设直线斜率为k,则直线方程为:y﹣5=k(x+1).即kx﹣y+k+5=0.∵直线与圆相切,∴圆心到直线的距离.解得,.∴直线方程为5x+12y﹣55=0.∴过点M(﹣1,5)且与圆相切的直线方程为x=﹣1或5x+12y﹣55=0.故选:C.点评:本题考查直线与圆相切的性质,点到直线的距离公式等知识的运用.做题时容易忽略斜率不存在的情况.属于中档题.4.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用线面平行和线面垂直的性质和判定定理对四个选项逐一解答.A选项用垂直于同一条直线的两个平面平行判断即可;B选项用两个平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;C选项用线面垂直的性质定理判断即可;D选项由线面平行的性质定理判断即可.解答:解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.点评:本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=1考点:轨迹方程.专题:直线与圆.分析:设圆上任意一点为(x1,y1),中点为(x,y),则,由此能够轨迹方程.解答:解:设圆上任意一点为(x1,y1),中点为(x,y),则代入x2+y2=4得(2x﹣4)2+(2y+2)2=4,化简得(x﹣2)2+(y+1)2=1.故选A.点评:本题考查点的轨迹方程,解题时要仔细审题,注意公式的灵活运用.6.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:使△ABC绕直线BC旋转一周,则所形成的几何体是一个底面半径为4,高为3的一个圆锥,代入圆锥体积公式,可得答案.解答:解:将△ABC绕直线BC旋转一周,得到一个底面半径为4,高为3的一个圆锥,故所形成的几何体的体积V=×π×42×3=16π,故选:D点评:本题考查的知识点是旋转体,其中分析出旋转得到的几何体形状及底面半径,高等几何量是解答的关键.7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:利用三视图的数据,直接求解三棱柱的表面积.解答:解:因为正三棱柱的三视图,其中正(主)视图是边长为2的正方形,棱柱的侧棱长为2,底面三角形的边长为2,所以表面积为:2×+2×3×2=12+2.故选C.点评:本题考查几何体的三视图的应用,几何体的表面积的求法,考查计算能力.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1考点:抛物线的应用.专题:函数的性质及应用.分析:本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个跟),从而得到点C的个数.解答:解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故应选:A点评:本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为x2+(y﹣1)2=1.考点:圆的标准方程.专题:直线与圆.分析:利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.解答:解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.点评:本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为11cm.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:利用面积之比是相似比的平方,求出截取棱锥的高,然后求出截面与底面的距离.解答:解:设截取棱锥的高为:h,则,∴h=5,所以截面与底面的距离:16﹣5=11cm故答案为:11cm点评:本题是基础题,考查面积之比是选上比的平方,考查计算能力,空间想象能力.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为12π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.解答:解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球O的表面积为4π×3=12π.故答案为:12π.点评:本题考查球的表面积的求法,考查空间想象能力、计算能力.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.考点:平面与平面垂直的性质.专题:计算题;空间位置关系与距离.分析:由题意,两个矩形的对角线长分别为5,=2,利用余弦函数,即可求出cosα:cosβ.解答:解:由题意,两个矩形的对角线长分别为5,=2,∴cosα==,cosβ=,∴cosα:cosβ=,故答案为:.点评:本题考查平面与平面垂直的性质,考查学生的计算能力,比较基础.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=±.考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.解答:解:圆心C(2,2),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d==,解得a=±,故答案为:±.点评:本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.考点:圆的标准方程;直线与圆的位置关系.专题:计算题;直线与圆.分析:(I)设圆E的方程为x2+y2+Dx+Ey+F=0,将A、B、C的坐标代入,建立关于D、E、F的方程组,解之即可得到△ABC的外接圆E的方程;(II)化圆E为标准方程,得圆心为E(1,2),半径r=1.设直线l方程为y=kx,由点到直线的距离公式和垂径定理建立关于k的方程,解之得到k=1或7,由此即可得到直线l的方程.解答:解:(I)设圆E的方程为x2+y2+Dx+Ey+F=0∵A(2,2)、B(1,3)、C(1,1)都在圆E上∴,解之得因此,圆E的方程为x2+y2﹣2x﹣4y+4=0;(II)将圆E化成标准方程,可得(x﹣1)2+(y﹣2)2=1∴圆心为E(1,2),半径r=1设直线l方程为y=kx,则圆心E到直线l的距离为d=∵直线l与圆E相交所得弦的长为,∴由垂径定理,得d2+()2=r2=1可得d2=,即=,解之得k=1或7∴直线l的方程是y=x或y=7x.点评:本题给出三角形ABC三个顶点,求它的外接圆E的方程,并求截圆所得弦长为的直线方程.着重考查了直线的方程、圆的方程和直线与圆的位置关系等知识,属于中档题.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.考点:直线与平面垂直的性质;直线与平面平行的判定.专题:计算题;证明题;空间位置关系与距离.分析:(I)根据三角形中位线定理,证出DE∥BC,再由线面平行判定定理即可证出DE∥面PBC;(II)连结PD,由等腰三角形“三线合一”,证出PD⊥AB,结合DE⊥AB证出AB⊥平面PDE,由此可得AB ⊥PE;(III)由面面垂直性质定理,证出PD⊥平面ABC,得PD是三棱锥P﹣BEC的高.结合题中数据算出PD=且S△BEC=,利用锥体体积公式求出三棱锥P﹣BEC的体积,即得三棱锥B﹣PEC的体积.解答:解:(I)∵△ABC中,D、E分别为AB、AC中点,∴DE∥BC∵DE⊄面PBC且BC⊂面PBC,∴DE∥面PBC;(II)连结PD∵PA=PB,D为AB中点,∴PD⊥AB∵DE∥BC,BC⊥AB,∴DE⊥AB,又∵PD、DE是平面PDE内的相交直线,∴AB⊥平面PDE∵PE⊂平面PDE,∴AB⊥PE;(III)∵PD⊥AB,平面PAB⊥平面ABC,平面PAB∩平面ABC=AB∴PD⊥平面ABC,可得PD是三棱锥P﹣BEC的高又∵PD=,S△BEC=S△ABC=∴三棱锥B﹣PEC的体积V=V P﹣BEC=S△BEC×PD=点评:本题在三棱锥中求证线面平行、线线垂直,并求锥体的体积.着重考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.考点:直线与平面平行的判定;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离.分析:(Ⅰ)先根据线面垂直的性质证明出BB1⊥A1C1.进而根据菱形的性质证明出A1C1⊥B1D1.最后根据线面垂直的判定定理证明出A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.先证明OC1∥AE和OC1=AE,推断出AOC1E为平行四边形,进而推断AO∥C1E,最后利用线面平行的判定定理证明出AO∥平面BC1D.(Ⅲ)先由E为BD中点,推断出BD⊥C1E,进而根据C1D=C1B,推断出ME⊥BD,进而根据OM⊥BD,推断出BD∥B1D1.直角三角形OC1E中利用射影定理求得OM.解答:解:(Ⅰ)依题意,因为四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,所以BB1⊥底面A1B1C1D1.又A1C1⊂底面A1B1C1D1,所以BB1⊥A1C1.因为A1B1C1D1为菱形,所以A1C1⊥B1D1.而BB1∩B1D1=B1,所以A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.依题意,AA1∥CC1,且AA1=CC1,AA1⊥AC,所以A1ACC1为矩形.所以OC1∥AE.又,,A1C1=AC,所以OC1=AE,所以AOC1E为平行四边形,则AO∥C1E.又AO⊄平面BC1D,C1E⊂平面BC1D,所以AO∥平面BC1D.(Ⅲ)在△BC1D内,满足OM⊥B1D1的点M的轨迹是线段C1E,包括端点.分析如下:连接OE,则BD⊥OE.由于BD∥B1D1,故欲使OM⊥B1D1,只需OM⊥BD,从而需ME⊥BD.又在△BC1D中,C1D=C1B,又E为BD中点,所以BD⊥C1E.故M点一定在线段C1E上.当OM⊥C1E时,OM取最小值.在直角三角形OC1E中,OE=1,,,所以.点评:本题主要考查了线面平行和线面垂直的判定定理的应用.考查了学生基础知识的综合运用.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是1.考点:二项式系数的性质.专题:计算题;二项式定理.分析:在展开式的通项公式,令x的指数为3,利用(ax+1)5的展开式中x3的系数是10,即可实数a的值.解答:解:(ax+1)5的展开式的通项公式为T r+1=,则∵(ax+1)5的展开式中x3的系数是10,∴=10,∴a=1.故答案为:1.点评:二项展开式的通项公式解决二项展开式的特定项问题的重要方法.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为4.考点:棱锥的结构特征.专题:空间位置关系与距离.分析:根据侧面展开图求解得出,再利用直角三角形求解.解答:解:∵正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,∴侧面展开为下图连接AA得:RT△中,长度为4,∴△AEF的周长的最小值为4,故答案为:4,点评:本题考查了空间几何体中的最小距离问题,属于中档题.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是(0,].考点:棱锥的结构特征.专题:空间位置关系与距离.分析:运用图形得||=||,再根据向量求解.解答:解:0为BD中点,∵AB=BC=CD=DA=BD=1,∴|OA|=|OB|=,||=||==,θ∈(0°,180°]∴AC的取值范围是(0,]故答案为:(0,]点评:本题考查了向量的运用求解距离,属于中档题.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:根据直线和圆的位置关系,利用数形结合即可得到结论.解答:解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是5.考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5点评:本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.考点:直线与平面垂直的判定.专题:空间位置关系与距离.分析:(I)由线面垂直得A1A⊥AB,再由AB⊥AC,能证明AB⊥面A1CC1.(II)由AB∥DE,在△ABC中,E是棱BC的中点,推导出D是线段AC的中点.(III)由已知条件推导出A1C⊥AC1,AB⊥A1C,从而得到A1C⊥面ABC1,由此能证明EF⊥AC1.解答:(I)证明:∵AA1⊥底面ABC,∴A1A⊥AB,(2分)∵AB⊥AC,A1A∩AC=A,∴AB⊥面A1CC1.(4分)(II)解:∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=AB,∴AB∥DE,(7分)∵在△ABC中,E是棱BC的中点,∴D是线段AC的中点.(8分)(III)证明:∵三棱柱ABC﹣A1B1C1中,A1A=AC,∴侧面A1ACC1是菱形,∴A1C⊥AC1,(9分)由(Ⅰ)得AB⊥A1C,∵AB∩AC1=A,∴A1C⊥面ABC1,(11分)∴A1C⊥BC1.(12分)又∵E,F分别为棱BC,CC1的中点,∴EF∥BC1,(13分)∴EF⊥AC1.(14分)点评:本题考查直线与平面垂直的证明,考查点的位置的确定,考查异面直线垂直的证明,解题时要认真审题,注意空间思维能力的培养.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.考点:直线与圆的位置关系.专题:综合题.分析:(Ⅰ)分两种情况:当直线l的斜率存在时,设出直线l的斜率为k,由P的坐标和设出的k写出直线l的方程,利用点到直线的距离公式表示出P到直线l的距离d,让d等于1列出关于k的方程,求出方程的解即可得到k的值,利用求出的k和P写出直线l的方程即可;当直线l的斜率不存在时,得到在线l的方程,经过验证符合题意;(Ⅱ)由利用两点间的距离公式求出圆心C到P的距离,再根据弦长|MN|的一半及半径,利用勾股定理求出弦心距d,发现|CP|与d相等,所以得到P为MN的中点,所以以MN为直径的圆的圆心坐标即为P的坐标,半径为|MN|的一半,根据圆心和半径写出圆的方程即可;(Ⅲ)把已知直线的方程代入到圆的方程中消去y得到关于x的一元二次方程,因为直线与圆有两个交点,所以得到△>0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围,利用反证法证明:假设符合条件的a存在,由直线l2垂直平分弦AB得到圆心必在直线l2上,根据P与C的坐标即可求出l2的斜率,然后根据两直线垂直时斜率的乘积为﹣1,即可求出直线ax﹣y+1=0的斜率,进而求出a的值,经过判断求出a的值不在求出的范围中,所以假设错误,故这样的a不存在.解答:解:(Ⅰ)设直线l的斜率为k(k存在)则方程为y﹣0=k(x﹣2).又圆C的圆心为(3,﹣2),半径r=3,由,解得.所以直线方程为,即3x+4y﹣6=0;当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件;(Ⅱ)由于,而弦心距,所以d=,所以P为MN的中点,所以所求圆的圆心坐标为(2,0),半径为|MN|=2,故以MN为直径的圆Q的方程为(x﹣2)2+y2=4;(Ⅲ)把直线ax﹣y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a﹣1)x+9=0.由于直线ax﹣y+1=0交圆C于A,B两点,故△=36(a﹣1)2﹣36(a2+1)>0,即﹣2a>0,解得a<0.则实数a的取值范围是(﹣∞,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,﹣2)必在l2上.所以l2的斜率k PC=﹣2,而,所以.由于,故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.点评:此题考查学生掌握直线与圆的位置关系,灵活运用点到直线的距离公式及两点间的距离公式化简求值,考查了分类讨论的数学思想,以及会利用反证法进行证明,是一道综合题.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(Ⅰ)由圆的方程找出圆心坐标,设出圆心关于直线l的对称点的坐标,由直线l的斜率,根据两直线垂直时斜率的乘积为﹣1求出直线C1C2的斜率,由圆心及对称点的坐标表示出斜率,等于求出的斜率列出一个关系式,然后利用中点坐标公式,求出两圆心的中点坐标,代入直线l的方程,得到另一个关系式,两关系式联立即可用m表示出a与b,把表示出的a与b代入圆C2的方程即可;(Ⅱ)由表示出的a与b消去m,得到a与b的关系式,进而得到圆C2的圆心在定直线上;分公切线的斜率不存在和存在两种情况考虑,当公切线斜率不存在时,容易得到公切线方程为x=0;当公切线斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,根据点到直线的距离公式表示出圆心(a,b)到直线y=kx+b的距离d,当d等于圆的半径2|m|,化简后根据多项式为0时各项的系数为0,即可求出k与b的值,从而确定出C2所表示的一系列圆的公切线方程,这样得到所有C2所表示的一系列圆的公切线方程.解答:解:(Ⅰ)∵圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,∴圆心为(2,3m),设它关于直线l:y=x+m﹣1的对称点为(a,b),则,解得a=2m+1,b=m+1,∴圆C2的圆心为(2m+1,m+1),∴圆C2的方程为:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2,∴C1关于l对称的圆C2的方程:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2.(Ⅱ)根据(Ⅰ)得圆C2的圆心为(2m+1,m+1),令,消去m得x﹣2y+1=0,它表示一条直线,故C2的圆心在一条定直线上,①当公切线的斜率不存在时,易求公切线的方程为x=0;②当公切线的斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,∴=2|m|,即:(1﹣4k)m2+2(2k﹣1)(k+b﹣1)m+(k+b﹣1)2=0∵直线y=kx+b与圆系中的所有圆都相切,所以上述方程对所有的m值都成立,∴所以有:,解得,∴C2所表示的一系列圆的公切线方程为:y=,∴故所求圆的公切线为x=0或y=.点评:此题考查了直线与圆的位置关系,以及关于点与直线对称的圆的方程.此题的综合性比较强,要求学生审清题意,综合运用方程与函数的关系,掌握直线与圆相切时圆心到直线的距离等于半径,在作(Ⅱ)时先用消去参数的方法求定直线的方程,然后采用分类讨论的数学思想分别求出C2所表示的一系列圆的公切线方程.。
【精品】2018最新学年湖北省武汉市部分重点中学联考高二上学期期中数学试卷和解析文科
A.40 B.42 C.44 D.46 5. (5 分)执行如图所示的程序框图,则输出的结果是( )
A.5
B.7
C.9
D.11 )
6. (5 分)在区间[0,2]上随机取两个数 x,y 其中满足 y≥2x 的概率是( A. B. C. D. )
7. (5 分)在下列各数中,最大的数是(
A.85(9)
19. (12 分)一次学科测试成绩的频率分布直方图都受到不同程度的污损,可见部分如图.已 知 50~60 分的有两个数,60~70 分的有 7 个数,70~80 分的有 10 个数, (1)求参加测试的总人数及分数在[80,90)之间的人数,补齐频率分布直方图;
(2)请由频率分布直方图估计平均成绩和该组数据的中位数.
B.200(6) C.68(11近似计算由曲线 y=x2 及直线 y=1 所围成部分的面积 S.利用计算机 产生 N 组数,每组数由区间[0,1]上的两个均匀随机数 a1=RAND,b=RAND 组成,然后对 a1 进 行变换 a=2(a1﹣0.5) ,由此得到 N 个点(xi,yi) (i=1,2,…,N) .再数出其中满足 xi2≤yi≤1 (i=1,2,…,N)的点数 N1,那么由随机模拟方法可得到的近似值为( A. B. C. D. )
20. (13 分)已知⊙C 的圆心 C(3,1) ,被 x 轴截得的弦长为 4 (Ⅰ)求圆 C 的方程;
.
(Ⅱ)若圆 C 与直线 x﹣y+a=0 交于 A,B 两点,且 OA⊥OB,求 a 的值. 21. (14 分)如图,圆 O:x2+y2=4 与坐标轴交于点 A,B,C. (1)求与直线 AC 垂直的圆的切线方程; (2)设点 M 是圆上任意一点(不在坐标轴上) ,直线 CM 交 x 轴于点 D,直线 BM 交直线 AC 于 点 N, ①若 D 点坐标为(2 ,0) ,求弦 CM 的长;
2017-2018学年湖北省宜昌市示范校高二(上)期中数学试卷(文科)
2017-2018学年湖北省宜昌市示范校高二(上)期中数学试卷(文科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是满足题目要求的.)1.(5分)直线2x+y+1=0的斜率为k,在y轴上的截距为b,则()A.k=2,b=1B.k=﹣2,b=﹣1C.k=﹣2,b=1D.k=2,b=﹣12.(5分)已知a∥α,b⊂α,则直线a与直线b的位置关系是()A.平行B.相交或异面C.异面D.平行或异面3.(5分)已知直线3x+4y﹣3=0与直线6x+my+14=0平行,则它们之间的距离是()A.B.C.8D.24.(5分)原点O和点P(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是()A.a<0或a>2B.a=0或a=2C.0<a<2D.0≤a≤2 5.(5分)已知直线方程为(2+m)x+(1﹣2m)y+4﹣3m=0.这条直线恒过一定点,这个定点坐标为()A.(﹣2m,﹣m﹣4)B.(5,1)C.(﹣1,﹣2)D.(2m,m+4)6.(5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+47.(5分)圆C1:(x﹣m)2+(y+2)2=9与圆C2:(x+1)2+(y﹣m)2=4内切,则m的值()A.﹣2B.﹣1C.﹣2或﹣1D.2或18.(5分)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题正确的是()A.若m⊂α,n⊂β,m⊥n,则α⊥βB.若α∥β,m⊥α,n∥β,则m⊥nC.若α⊥β,m⊥α,n∥β,则m∥n D.若α⊥β,α∩β=m,n⊥m,则n⊥β9.(5分)圆:x2+y2﹣2x﹣2y+1=0上的点到直线x﹣y=2的距离最大值是()A.2B.C.D.10.(5分)已知圆锥的母线长为4cm,圆锥的底面半径为1cm,一只蚂蚁从圆锥的底面A点出发,沿圆锥侧面爬行一周回到点A,则蚂蚁爬行的最短路程长为()A.4B.C.2πD.π11.(5分)已知M(3,0)是圆x2+y2﹣8x﹣2y+10=0内一点,过M点的最长弦和最短弦所在直线方程分()A.x﹣y﹣3=0,x+y﹣3=0B.x﹣y﹣3=0,x﹣y﹣3=0C.x+y﹣3=0,x﹣y﹣3=0D.x+y﹣3=0,x﹣y﹣3=012.(5分)若圆(x﹣3)2+(y+5)2=r2上有且只有两个点到直线4x﹣3y﹣2=0的距离等于1,则半径r的取值范围是()A.(4,6)B.[4,6]C.(4,5)D.(4,5]二、填空题(本大题共4个小题,每小题5分,共计20分,将答案填在答题纸上)13.(5分)某球的体积与表面积的数值相等,则球的半径是.14.(5分)已知圆C1:x2+y2+2x+8y﹣8=0与圆C2:x2+y2﹣4x﹣4y﹣2=0相交,则圆C1与圆C2的公共弦所在的直线的方程为.15.(5分)过点(1,2)且在两坐标轴上的截距相等的直线的方程.16.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为.三、解答题(本大题共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)如图,在平行四边形OABC中,点C(1,3),A(3,0).(Ⅰ)求OC所在直线的方程;(Ⅱ)过点C作CD⊥AB于点D,求CD所在直线的方程及D点坐标.18.(12分)已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为.(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点P(2,3)向圆引切线,求切线方程.19.(12分)如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC边上的高,沿AD把△ABD折起,使∠BDC=90°.(Ⅰ)证明:平面ADB⊥平面BDC;(Ⅱ)E为BC的中点,求AE与底面BCD所成角的正切值.20.(12分)若x,y满足,求:(Ⅰ)z=2x+y的最小值;(Ⅱ)的最大值;(Ⅲ)x2+y2的最小值.21.(12分)如图,三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.(Ⅰ)求证:DM∥平面APC;(Ⅱ)求证:BC⊥平面APC;(Ⅲ)若BC=4,AB=10,求三棱锥D﹣BCM的体积.22.(12分)已知方程x2+y2﹣2x﹣4y+m=0(Ⅰ)若此方程表示圆,求m的取值范围?(Ⅱ)当m变化时,是否存在这样的圆:与直线x+2y﹣4=0相交于M,N两点,且OM⊥ON(O为坐标原点),如果存在,求出m的值,如果不存在,请说明理由.2017-2018学年湖北省宜昌市示范校高二(上)期中数学试卷(文科)参考答案与试题解析一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是满足题目要求的.)1.(5分)直线2x+y+1=0的斜率为k,在y轴上的截距为b,则()A.k=2,b=1B.k=﹣2,b=﹣1C.k=﹣2,b=1D.k=2,b=﹣1【分析】由直线方程2x+y+1=0化为斜截式:y=﹣2x﹣1,即可得出【解答】解:由直线方程2x+y+1=0化为斜截式:y=﹣2x﹣1.可得斜率k=﹣2,在y轴上的截距为b=﹣1.故选:B.【点评】本题考查了直线的斜截式、斜率与截距,属于基础题.2.(5分)已知a∥α,b⊂α,则直线a与直线b的位置关系是()A.平行B.相交或异面C.异面D.平行或异面【分析】由直线a∥平面α,直线b在平面α内,知a∥b,或a与b异面.【解答】解:∵直线a∥平面α,直线b在平面α内,∴a∥b,或a与b异面,故选:D.【点评】本题考查平面的基本性质及其推论,解题时要认真审题,仔细解答.3.(5分)已知直线3x+4y﹣3=0与直线6x+my+14=0平行,则它们之间的距离是()A.B.C.8D.2【分析】根据两平行直线的斜率相等,在纵轴上的截距不相等,求出m,利用两平行直线间的距离公式求出两平行直线间的距离.【解答】解:∵直线3x+4y﹣3=0与直线6x+my+14=0平行,∴=≠,∴m=8,故直线6x+my+14=0 即3x+4y+7=0,故两平行直线间的距离为=2,故选:D.【点评】本题考查两直线平行的性质,两平行直线间的距离公式的应用.4.(5分)原点O和点P(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是()A.a<0或a>2B.a=0或a=2C.0<a<2D.0≤a≤2【分析】因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,由此能求出a的取值范围.【解答】解:因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,解得0<a<2,故选:C.【点评】本题考查二元一次不等式的几何意义,解题时要认真审题,注意公式的灵活运用.5.(5分)已知直线方程为(2+m)x+(1﹣2m)y+4﹣3m=0.这条直线恒过一定点,这个定点坐标为()A.(﹣2m,﹣m﹣4)B.(5,1)C.(﹣1,﹣2)D.(2m,m+4)【分析】由直线(2+m)x+(1﹣2m)y+4﹣3m=0变形为m(x﹣2y﹣3)+(2x+y+4)=0,令,即可求出定点坐标.【解答】解:由直线(2+m)x+(1﹣2m)y+4﹣3m=0变形为m(x﹣2y﹣3)+(2x+y+4)=0,令,解得,∴该直线过定点(﹣1,﹣2),故选:C.【点评】本题考查了直线系过定点问题,考查学生的计算能力,属于基础题.6.(5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4【分析】由已知中的三视图可得,该几何体是以俯视图为底面的半圆柱,底面半径为1,高为2,代入柱体表面积公式,可得答案.【解答】解:由已知中的三视图可得,该几何体是以俯视图为底面的半圆柱,底面半径为1,高为2,故该几何体的表面积S=2×π+(2+π)×2=3π+4,故选:D.【点评】本题考查的知识点是柱体的体积和表面积,简单几何体的三视图,难度中档.7.(5分)圆C1:(x﹣m)2+(y+2)2=9与圆C2:(x+1)2+(y﹣m)2=4内切,则m的值()A.﹣2B.﹣1C.﹣2或﹣1D.2或1【分析】根据两个圆相内切,可得两个圆的圆心距等于它们的把半径之差,求得m的值.【解答】解:由题意可得,两个圆的圆心分别为(m,﹣2)、(﹣1,m),半径分别为3、2,根据两个圆相内切,可得两个圆的圆心距等于它们的把半径之差,即=3﹣2,求得m=﹣2,或m=﹣1,故选:C.【点评】本题主要考查圆和圆的位置关系的判断方法,两点间的距离公式,属于基础题..8.(5分)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题正确的是()A.若m⊂α,n⊂β,m⊥n,则α⊥βB.若α∥β,m⊥α,n∥β,则m⊥nC.若α⊥β,m⊥α,n∥β,则m∥n D.若α⊥β,α∩β=m,n⊥m,则n⊥β【分析】在A中,α与β相交或平行;在B中,推导出m⊥β,所以m⊥n;在C 中,m与n相交、平行或异面;在D中,n与β相交、平行或n⊂β.【解答】解:由m,n是两条不同的直线,α,β是两个不同的平面,知:在A中,若m⊂α,n⊂β,m⊥n,则α与β相交或平行,故A错误;在B中,若α∥β,m⊥α,n∥β,则m⊥β,所以m⊥n,故B正确;在C中,若α⊥β,m⊥α,n∥β,则m与n相交、平行或异面,故C错误;在D中,若α⊥β,α∩β=m,n⊥m,则n与β相交、平行或n⊂β,故D错误.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.9.(5分)圆:x2+y2﹣2x﹣2y+1=0上的点到直线x﹣y=2的距离最大值是()A.2B.C.D.【分析】先将圆x2+y2﹣2x﹣2y+1=0转化为标准方程:(x﹣1)2+(y﹣1)2=1,明确圆心和半径,再求得圆心(1,1)到直线x﹣y=2的距离,最大值则在此基础上加上半径长即可.【解答】解:圆x2+y2﹣2x﹣2y+1=0可化为标准形式:(x﹣1)2+(y﹣1)2=1,∴圆心为(1,1),半径为1圆心(1,1)到直线x﹣y=2的距离,则所求距离最大为,故选:B.【点评】本题主要考查直线与圆的位置关系,当考查圆上的点到直线的距离问题,基本思路是:先求出圆心到直线的距离,最大值时,再加上半径,最小值时,再减去半径.10.(5分)已知圆锥的母线长为4cm,圆锥的底面半径为1cm,一只蚂蚁从圆锥的底面A点出发,沿圆锥侧面爬行一周回到点A,则蚂蚁爬行的最短路程长为()A.4B.C.2πD.π【分析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:由题意知,底面圆的直径为2,故底面周长等于2π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得,2π=,解得n=90°,所以展开图中圆心角为90°,根据勾股定理求得到点A的最短的路线长是:.故选:B.【点评】本题考查蚂蚁爬行的最短路程长的求法,考查圆锥的展开图等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.11.(5分)已知M(3,0)是圆x2+y2﹣8x﹣2y+10=0内一点,过M点的最长弦和最短弦所在直线方程分()A.x﹣y﹣3=0,x+y﹣3=0B.x﹣y﹣3=0,x﹣y﹣3=0C.x+y﹣3=0,x﹣y﹣3=0D.x+y﹣3=0,x﹣y﹣3=0【分析】圆x2+y2﹣8x﹣2y+10=0的圆心C(4,1),M(3,0)是圆x2+y2﹣8x﹣2y+10=0内一点,过M点的最长弦所在直线为直线CM,最短弦所在直线是过M且垂直于CM的直线.【解答】解:圆x2+y2﹣8x﹣2y+10=0的圆心C(4,1),M(3,0)是圆x2+y2﹣8x﹣2y+10=0内一点,∴过M点的最长弦所在直线方程为:,整理,得:x﹣y﹣3=0.k CM==1,∴最短弦所在直线的斜率k=﹣1,∴最短弦所在直线方程为y=﹣(x﹣3),即x+y﹣3=0.故选:A.【点评】本题考查直线方程的求法,考查直线、圆、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.12.(5分)若圆(x﹣3)2+(y+5)2=r2上有且只有两个点到直线4x﹣3y﹣2=0的距离等于1,则半径r的取值范围是()A.(4,6)B.[4,6]C.(4,5)D.(4,5]【分析】求出圆心P(3,﹣5)到直线4x﹣3y=2的距离等于5,由|5﹣r|<1,能求出半径r的取值范围.【解答】解:∵圆心P(3,﹣5)到直线4x﹣3y=2的距离等于=5,由|5﹣r|<1,解得4<r<6,∴半径r的取值范围是(4,6).故选:A.【点评】本题考查圆的半径的取值范围的求法,考查圆、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.二、填空题(本大题共4个小题,每小题5分,共计20分,将答案填在答题纸上)13.(5分)某球的体积与表面积的数值相等,则球的半径是3.【分析】设出球的半径,求出球的体积和表面积,利用相等关系求出球的半径即可.【解答】解:设球的半径为r,则球的体积为:,球的表面积为:4πr2因为球的体积与其表面积的数值相等,所以=4πr2解得r=3,故答案为:3.【点评】本题考查球的体积与表面积的计算,是基础题.14.(5分)已知圆C1:x2+y2+2x+8y﹣8=0与圆C2:x2+y2﹣4x﹣4y﹣2=0相交,则圆C1与圆C2的公共弦所在的直线的方程为x+2y﹣1=0.【分析】利用圆系方程,求出公共弦所在直线方程.【解答】解:圆C1:x2+y2+2x+8y﹣8=0…①和C2:x2+y2﹣4x﹣4y﹣2=0…②①﹣②得公共弦所在的直线方程为:6x+12y﹣6=0,即x+2y﹣1=0.故答案为x+2y﹣1=0.【点评】本题考查相交弦所在直线的方程,考查计算能力,是基础题.15.(5分)过点(1,2)且在两坐标轴上的截距相等的直线的方程2x﹣y=0或x+y﹣3=0.【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x+y=a,把已知点坐标代入即可求出a的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把已知点的坐标代入即可求出k的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【解答】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,2)代入所设的方程得:a=3,则所求直线的方程为x+y=3即x+y﹣3=0;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,2)代入所求的方程得:k=2,则所求直线的方程为y=2x即2x﹣y=0.综上,所求直线的方程为:2x﹣y=0或x+y﹣3=0.故答案为:2x﹣y=0或x+y﹣3=0【点评】此题考查学生会根据条件设出直线的截距式方程和点斜式方程,考查了分类讨论的数学思想,是一道综合题.16.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为.【分析】画出图形,求异面直线CE与BD所成角的余弦,可以想着去求向量,夹角的余弦,而,,设正四面体ABCD的棱长为2,可求出CE=2,从而得到=,进行数量积的运算即可求出cos,从而可得出异面直线CE与BD所成角的余弦值.【解答】解:如图,设正四面体的棱长为2,则CE=;∴cos===;∴异面直线CE与BD所成角的余弦值为.故答案为:.【点评】考查用向量的方法求异面直线所成角,清楚正四面体的概念,向量加法的平行四边形法则,以及向量减法的几何意义,向量夹角的余弦公式,向量数量积的运算.三、解答题(本大题共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)如图,在平行四边形OABC中,点C(1,3),A(3,0).(Ⅰ)求OC所在直线的方程;(Ⅱ)过点C作CD⊥AB于点D,求CD所在直线的方程及D点坐标.【分析】(Ⅰ)根据原点坐标和已知的C点坐标,利用直线的斜率k=,求出直线OC的斜率,利用点斜式方程解答;(Ⅱ)根据平行四边形的两条对边平行得到AB平行于OC,又CD垂直与AB,所以CD垂直与OC,由(1)求出的直线OC的斜率,根据两直线垂直时斜率乘积为﹣1,求出CD所在直线的斜率,然后根据求出的斜率和点C的坐标写出直线CD的方程即可.【解答】解:(Ⅰ)k OC=3,则直线OC:y=3x.(Ⅱ)∵AB∥OC,∴OC⊥CD,则由点斜式,得:即直线CD:x+3y﹣10=0,而直线AB:3x﹣y﹣9=0,解方程组得:,则点.【点评】此题考查学生会根据两点的坐标求出过两点直线方程的斜率,掌握两直线平行时斜率所满足的条件,会根据一点和斜率写出直线的点斜式方程,是一道综合题.18.(12分)已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为.(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点P(2,3)向圆引切线,求切线方程.【分析】(Ⅰ)根据题意设出圆C的标准方程,由圆心到直线的距离d和半径r、弦长AB的关系,求出r的值,从而写出圆的标准方程;(Ⅱ)讨论切线的斜率不存在和斜率存在时,求出对应切线的方程.【解答】解:(Ⅰ)设圆C的标准方程为:(x﹣1)2+(y﹣1)2=r2(r>0),则圆心C(1,1)到直线x+y﹣1=0的距离为:,…(2分)则,∴圆C的标准方程:(x﹣1)2+(y﹣1)2=1;…(5分)(Ⅱ)①当切线的斜率不存在时,切线方程为:x=2,此时满足直线与圆相切;…(6分)②当切线的斜率存在时,设切线方程为:y﹣3=k(x﹣2),即y=kx﹣2k+3;则圆心C(1,1)到直线kx﹣y﹣2k+3=0的距离为:,…(8分)化简得:4k=3,解得,∴切线方程为:3x﹣4y+6=0;…(11分)综上,切线的方程为:x=2和3x﹣4y+6=0.…(12分)【点评】本题考查了直线与圆的位置关系的应用问题,是中档题.19.(12分)如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC边上的高,沿AD把△ABD折起,使∠BDC=90°.(Ⅰ)证明:平面ADB⊥平面BDC;(Ⅱ)E为BC的中点,求AE与底面BCD所成角的正切值.【分析】(Ⅰ)推导出AD⊥BD,AD⊥CD,从而AD⊥平面BDC,由此能证明平面ADB⊥平面BDC.(Ⅱ)连接DE,DE是AE在平面BCD的射影,从而∠AED是AE与底面BCD所成角,由此能求出AE与底面BCD所成角的正切值.【解答】证明:(Ⅰ)由△ABC中,AD是BC边上的高,得AD⊥BD,AD⊥CD,∵BD、CD⊂平面BDC,BD∩CD=D,∴AD⊥平面BDC,又AD⊂平面ADB,∴平面ADB⊥平面BDC.…(6分)解:(Ⅱ)连接DE,由(Ⅰ)知AD⊥平面BDC,∴DE是AE在平面BCD的射影,∴∠AED是AE与底面BCD所成角,令BD=a,则,AB=2a,CD=3a,,在RT△ADE中,,∴AE与底面BCD所成角的正切值为.…(12分)【点评】本题考查面面垂直的证明,考查线面角的正切值的求法,考查空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.20.(12分)若x,y满足,求:(Ⅰ)z=2x+y的最小值;(Ⅱ)的最大值;(Ⅲ)x2+y2的最小值.【分析】(Ⅰ)化目标函数为直线方程的斜截式,数形结合求出最优解,得到最优解的坐标,代入目标函数得答案;(Ⅱ)由的几何意义,即可行域内动点与定点连线的斜率求解;(Ⅲ)由x2+y2的几何意义,即可行域内动点到原点距离的平方求解最小值即可.【解答】解:如图,作出x,y满足的可行域为△ABC内(及边界)区域,其中A(1,2),B(2,1),C(3,4).(Ⅰ)目标函数z=2x+y,表示直线l:y=﹣2x+z,z表示该直线纵截距,当l过点A(1,2)时纵截距有最小值,故z min=4.(Ⅱ)目标函数z=+1,记k=.则k表示区域中的点与坐标原点连线的斜率,当直线过点A时,斜率最大,即k max=2,即z max=()max=3.(Ⅲ)目标函数z=x2+y2表示区域内的点到坐标系点的距离的平方,又原点O到AB的距离d==且垂足是D(,)在线段AB上,故x2+y2的最小值为:OD2=.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.21.(12分)如图,三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.(Ⅰ)求证:DM∥平面APC;(Ⅱ)求证:BC⊥平面APC;(Ⅲ)若BC=4,AB=10,求三棱锥D﹣BCM的体积.【分析】(I)根据中位线定理可得DM∥AP,故而结论得证;(II)证明AP⊥平面PBC得出AP⊥BC,结合BC⊥PC得出BC⊥平面APC;(III)利用等边三角形的性质得出DM,PC,代入棱锥的体积公式计算.【解答】证明:(Ⅰ)∵M为AB,D为PB中点,∴DM∥AP,而DM⊄平面APC,AP⊂平面APC∴DM∥平面APC.(Ⅱ)∵△PMB为正三角形,且D为PB中点.∴MD⊥PB又由(Ⅰ)知MD∥AP,∴AP⊥PB,又AP⊥PC,PB⊂平面PBC,PC⊂平面PBC,PB∩PC=P,∴AP⊥平面PBC,∴AP⊥BC,又∵AC⊥BC,AP,AC⊂平面PBC,AP∩AC=A,∴BC⊥平面APC,解:(Ⅲ)∵AB=10,∴MB=PB=5,又BC=4,,∴,又MD=,而DM⊥平面BCD,=V M﹣BCD=.∴V D﹣BCM【点评】本题考查了线面平行,线面垂直的判定,棱锥的体积计算,属于中档题.22.(12分)已知方程x2+y2﹣2x﹣4y+m=0(Ⅰ)若此方程表示圆,求m的取值范围?(Ⅱ)当m变化时,是否存在这样的圆:与直线x+2y﹣4=0相交于M,N两点,且OM⊥ON(O为坐标原点),如果存在,求出m的值,如果不存在,请说明理由.【分析】(Ⅰ)把此圆的方程化为标准式,根据半径大于零,求得m的取值范围.(Ⅱ)当m变化时,根据OM⊥ON,求得16﹣8(y1+y2)+5y1y2=0 ①,把直线x+2y﹣4=0代入圆的方程,由△大于零求得m的范围,再把它代入①得m的值.【解答】解:(Ⅰ)原方程可化为:(x﹣1)2+(y﹣2)2=5﹣m,∵此方程表示圆,∴5﹣m>0,解得:m<5.(Ⅱ)设M(x1,y1),N(x2,y2),则x1=4﹣2y1,x2=4﹣2y2,∴OM⊥ON,∴x1x2+y1y2=0,∴16﹣8(y1+y2)+5y1y2=0 ①,由得,5y2﹣16y+m+8=0,由△=162﹣20(8+m)>0,解得,∴,,代入①得,满足,即存在满足条件的圆,且.【点评】本题主要考查圆的一般方程和标准方程,直线和圆相交的性质,属于中档题.第21页(共21页)。
2017-2018学年湖北省黄冈市黄梅二中高二上学期期中数学试卷与解析(文科)
2017-2018学年湖北省黄冈市黄梅二中高二(上)期中数学试卷(文科)一、选择题(每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)命题“∃x0∈R,x”的否定形式是()A.∃x0∈R,x B.∃x0∈R,xC.∀x∈R,x2=1 D.∀x∈R,x2≠12.(5分)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球3.(5分)如图的程序图,运行相应的程序,则输出S的值为()A.2 B.4 C.6 D.84.(5分)已知x,y的取值如表所示,若y与x线性相关,且=0.5x+a,则a=()A.3.5 B.2.2 C.4.8 D.3.25.(5分)某班对一次实验成绩进行分析,利用随机数表法抽取样本时,先将50个同学按01,02,03…50进行编号,然后从随机数表第9行第11列的数开始向右读,则选出的第7个个体是()(注:表为随机数表的第8行和第9行)A.02 B.13 C.42 D.446.(5分)为了大力弘扬中华优秀传统文化,某校购进了《三国演义》、《水浒传》、《红楼梦》和《西游记》若干套,如果每班每学期可以随机领取两套不同的书籍,那么该校高一(1)班本学期领到《三国演义》和《水浒传》的概率为()A.B.C.D.7.(5分)已知直线l1:x+y+1=0,l2:2x+2y﹣3=0,则l1,l2之间的距离为()A.B.C.D.8.(5分)与圆x2+y2=1及圆x2+y2﹣8x﹣65=0都内切的圆的圆心的轨迹为()A.椭圆B.双曲线一支C.抛物线D.圆9.(5分)若“x∈{a,3}”是“不等式2x2﹣5x﹣3≥0成立”的一个充分不必要条件,则实数a的取值范围是()A.(﹣∞,﹣]∪[3,+∞)B.(3,+∞)C.(﹣∞,﹣]∪(3,+∞)D.(﹣∞,﹣]10.(5分)直线(m+1)x+(m﹣1)y﹣2=0与圆(x﹣1)2+y2=1的位置关系是()A.相交B.相切C.相离D.相交或相切11.(5分)“3<a<5”是“方程表示椭圆”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要12.(5分)在平面直角坐标系xOy中,P是椭圆+=1上的一个动点,点A (1,1),B(0,﹣1),则|PA|+|PB|的最大值为()A.5 B.4 C.3 D.2二、填空题(每小题5分,共20分)13.(5分)已知椭圆﹣=1,长轴在y轴上,若焦距为4,则m等于.14.(5分)一个袋子中有5个大小相同的球,其中3个白球与2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为.15.(5分)已知圆C:x2+y2=9,过点P(3,1)作圆C的切线,则切线方程为.16.(5分)给出下列命题:①点P(﹣1,4)到直线3x+4y=2的距离为3.②过点M(﹣3,5)且在两坐标轴上的截距互为相反数的直线方程为x﹣y+8=0.③命题“∃x∈R,使得x2﹣2x+1<0”的否定是真命题;④“x≤1,且y≤1”是“x+y≤2”的充要条件.其中不正确命题的序号是.(把你认为不正确命题的序号都填上)三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知p:“∀x∈[1,2],x2﹣a≥0”,q:“∃x∈R,x2+2ax+2﹣a=0”.若命题p∧q是真命题,求a的取值范围.18.(12分)已知方程C:x2+y2﹣2x﹣4y+m=0,(1)若方程C表示圆,求实数m的范围;(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|=,求m的值.19.(12分)已知椭圆C的两焦点分别为,长轴长为6,(1)求椭圆C的标准方程;(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度.20.(12分)已知集合Z={(x,y)|x∈[0,2],y∈[﹣1,1]}.(1)若x,y∈Z,求x+y≥0的概率;(2)若x,y∈R,求x+y≥0的概率.21.(12分)某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点.不包括右端点.如第一组表示收入在[1000,1500)(1)求居民收入在[3000,3500)的频率;(2)根据频率分布直方图算出样本数据的中位数及样本数据的平均数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2500,3000)的这段应抽取多少人?22.(12分)已知直线l:y=﹣x+3与椭圆C:mx2+ny2=1(n>m>0)有且只有一个公共点P(2,1).(I)求椭圆C的标准方程;(II)若直线l′:y=﹣x+b交C于A,B两点,且PA⊥PB,求b的值.2017-2018学年湖北省黄冈市黄梅二中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)命题“∃x0∈R,x”的否定形式是()A.∃x0∈R,x B.∃x0∈R,xC.∀x∈R,x2=1 D.∀x∈R,x2≠1【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x0∈R,x”的否定形式是:∀x∈R,x2≠1.故选:D.2.(5分)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解答】解:从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球1个白球;1个红球2个白球;3个球全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项C中,事件“至少有一个红球”与事件“至少有一个白球”的交事件为“2个红球1个白球”与“1个红球2个白球”;选项D中,事件“恰有一个红球”与事件“恰有二个红球”互斥不对立.故选:D.3.(5分)如图的程序图,运行相应的程序,则输出S的值为()A.2 B.4 C.6 D.8【解答】解:第一次判断后:不满足条件,S=2×4=8,n=2,i>4,第二次判断不满足条件n>3:第三次判断满足条件:S>6,此时计算S=8﹣6=2,n=3,第四次判断n>3不满足条件,第五次判断S>6不满足条件,S=4.n=4,第六次判断满足条件n>3,故输出S=4,故选:B.4.(5分)已知x,y的取值如表所示,若y与x线性相关,且=0.5x+a,则a=()A.3.5 B.2.2 C.4.8 D.3.2【解答】解:由图表知,=2,=4.5,代入=0.5x+a,得.5=0.5×2+a,解得a=3.5.故选:A.5.(5分)某班对一次实验成绩进行分析,利用随机数表法抽取样本时,先将50个同学按01,02,03…50进行编号,然后从随机数表第9行第11列的数开始向右读,则选出的第7个个体是()(注:表为随机数表的第8行和第9行)A.02 B.13 C.42 D.44【解答】解:找到第9行第11列数开始向右读,符合条件的是07,42,44,38,15,13,02,故选出的第7个个体是02,故选:A.6.(5分)为了大力弘扬中华优秀传统文化,某校购进了《三国演义》、《水浒传》、《红楼梦》和《西游记》若干套,如果每班每学期可以随机领取两套不同的书籍,那么该校高一(1)班本学期领到《三国演义》和《水浒传》的概率为()A.B.C.D.【解答】解:∵每班每学期可以随机领取两套不同的书籍,∴共有C42=6种方法,该校高一(1)班本学期领到《三国演义》和《水浒传》,有1种方法,∴所求概率为,故选:D.7.(5分)已知直线l1:x+y+1=0,l2:2x+2y﹣3=0,则l1,l2之间的距离为()A.B.C.D.【解答】解:∵直线l1:x+y+1=0,l2:2x+2y﹣3=0,∴直线l1转化为:2x+2y+2=0,∴l1,l2之间的距离d==.故选:B.8.(5分)与圆x2+y2=1及圆x2+y2﹣8x﹣65=0都内切的圆的圆心的轨迹为()A.椭圆B.双曲线一支C.抛物线D.圆【解答】解:由x2+y2﹣8x﹣65=0,得(x﹣4)2+y2=81,又圆x2+y2=1,如图,设动圆圆心为M,半径为r,则|MC|=9﹣r,|MO|=r﹣1,则|MC|+|MO|=8>4,由椭圆定义可知,与圆x2+y2=1及圆x2+y2﹣8x﹣65=0都内切的圆的圆心的轨迹为椭圆.故选:A.9.(5分)若“x∈{a,3}”是“不等式2x2﹣5x﹣3≥0成立”的一个充分不必要条件,则实数a的取值范围是()A.(﹣∞,﹣]∪[3,+∞)B.(3,+∞)C.(﹣∞,﹣]∪(3,+∞)D.(﹣∞,﹣]【解答】解:不等式2x2﹣5x﹣3≥0解得:x≥3或x≤﹣.∵“x∈{a,3}”是“不等式2x2﹣5x﹣3≥0成立”的一个充分不必要条件,则实数a的取值范围是或a>3.故选:C.10.(5分)直线(m+1)x+(m﹣1)y﹣2=0与圆(x﹣1)2+y2=1的位置关系是()A.相交B.相切C.相离D.相交或相切【解答】解:由,得(2m2+2)y2+2(m﹣1)2y﹣4m=0,故△=4[(m﹣1)4+4m(2m2+2)]=4(m+1)4≥0,故直线和圆相切或相交,故选:D.11.(5分)“3<a<5”是“方程表示椭圆”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要【解答】解:根据题意,对于方程,若其表示椭圆,则有a﹣3>0,5﹣a>0,且a﹣3≠5﹣a,解可得3<a<5,且a≠4;故3<a<5”是“方程表示椭圆”的必要条件;方程中,若3<a<5,则a﹣3>0,5﹣a>0,当a=4时,a﹣3=5﹣a,方程表示圆,当a≠4时,a﹣3≠5﹣a,方程表示椭圆,则3<a<5”是“方程表示椭圆”的不充分条件;综合可得,3<a<5”是“方程表示椭圆”的必要不充分条件;故选:B.12.(5分)在平面直角坐标系xOy中,P是椭圆+=1上的一个动点,点A (1,1),B(0,﹣1),则|PA|+|PB|的最大值为()A.5 B.4 C.3 D.2【解答】解:∵椭圆+=1,∴焦点坐标为B(0,﹣1)和B'(0,1),连接PB'、AB',根据椭圆的定义,得|PB|+|PB'|=2a=4,可得|PB|=4﹣|PB'|,因此|PA|+|PB|=|PA|+(4﹣|PB'|)=4+(|PA|﹣|PB'|)∵|PA|﹣|PB'|≤|AB'|∴|PA|+|PB|≤2a+|AB'|=4+1=5.当且仅当点P在AB'延长线上时,等号成立.综上所述,可得|PA|+|PB|的最大值为5.故选:A.二、填空题(每小题5分,共20分)13.(5分)已知椭圆﹣=1,长轴在y轴上,若焦距为4,则m等于8.【解答】解:根据题意,椭圆﹣=1,长轴在y轴上,则其标准方程为+=1,且有m﹣2>10﹣m>0,解可得3<m<10,若椭圆的焦距为4,即c=2,则有(m﹣2)﹣(10﹣m)=4,即2m﹣12=4,解可得:m=8;故答案为:8.14.(5分)一个袋子中有5个大小相同的球,其中3个白球与2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为.【解答】解:一个袋子中有5个大小相同的球,其中3个白球与2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为:P==.故答案为:.15.(5分)已知圆C:x2+y2=9,过点P(3,1)作圆C的切线,则切线方程为x=3或4x+3y﹣15=0.【解答】解:圆心坐标为(0,0),半径为3,∵点P(3,1)在圆外,∴若直线斜率k不存在,则直线方程为x=3,圆心到直线的距离为3,满足相切.若直线斜率存在设为k,则直线方程为y﹣1=k(x﹣3),即kx﹣y+1﹣3k=0,则圆心到直线kx﹣y+1﹣3k=0的距离等于半径1,即d==1,解得k=﹣,此时直线方程为4x+3y﹣15=0,综上切线方程为x=3或4x+3y﹣15=0,故答案为:x=3或4x+3y﹣15=016.(5分)给出下列命题:①点P(﹣1,4)到直线3x+4y=2的距离为3.②过点M(﹣3,5)且在两坐标轴上的截距互为相反数的直线方程为x﹣y+8=0.③命题“∃x∈R,使得x2﹣2x+1<0”的否定是真命题;④“x≤1,且y≤1”是“x+y≤2”的充要条件.其中不正确命题的序号是①②④.(把你认为不正确命题的序号都填上)【解答】解:对于①,点P(﹣1,4)到直线3x+4y=2的距离为d==.故不正确;对于②,过点M(﹣3,5)且在两坐标轴上的截距互为相反数,当截距为0,所求直线斜率为﹣,方程为y=﹣x,即为5x+3y=0;当截距不为0,设所求直线方程为x﹣y=a,代入M的坐标,可得a=﹣3﹣5=﹣8,即有直线方程为x﹣y+8=0.综上可得所求直线方程为5x+3y=0或x﹣y+8=0.故不正确;对于③,命题“∃x∈R,使得x2﹣2x+1<0”的否定是“∀x∈R,使得x2﹣2x+1≥0”是真命题.故正确;对于④,“x≤1,且y≤1”可得“x+y≤2”,反之,不成立,比如x=4,y=﹣3,故“x≤1,且y≤1”是“x+y≤2”的充分不必要条件,故不正确.其中不正确的命题为①②④.故答案为:①②④.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知p:“∀x∈[1,2],x2﹣a≥0”,q:“∃x∈R,x2+2ax+2﹣a=0”.若命题p∧q是真命题,求a的取值范围.【解答】解:p:∀x∈[1,2],x2﹣a≥0,只要(x2﹣a)min≥0,x∈[1,2],又y=x2﹣a,x∈[1,2]的最小值为1﹣a,所以1﹣a≥0,a≤1.q:∃x∈R,x2+2ax+2﹣a=0,所以△=4a2﹣4(2﹣a)≥0,a≤﹣2或a≥1,由p且q为真可知p和q为均真,所以a≤﹣2或a=1,∴a的取值范围是{a|a≤﹣2或a=1}.18.(12分)已知方程C:x2+y2﹣2x﹣4y+m=0,(1)若方程C表示圆,求实数m的范围;(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|=,求m的值.【解答】解:(1)∵方程C:x2+y2﹣2x﹣4y+m=0表示圆,∴D2+E2﹣4F>0,即4+16﹣4m>0解得m<5,∴实数m的取值范围是(﹣∞,5).(6分)(2)∵方程C:x2+y2﹣2x﹣4y+m=0,∴(x﹣1)2+(y﹣2)2=5﹣m,圆心(1,2)到直线x+2y﹣4=0的距离d==,(8分)∵圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|=,∴,解得m=4.(14分)19.(12分)已知椭圆C的两焦点分别为,长轴长为6,(1)求椭圆C的标准方程;(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度.【解答】解:(1)由,长轴长为6,得:c=2,a=3,∴b=,∴椭圆方程为y2=1;(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=x+2,联立,得10x2+36x+27=0,∴,,∴|AB|=•|x1﹣x2|=•==.20.(12分)已知集合Z={(x,y)|x∈[0,2],y∈[﹣1,1]}.(1)若x,y∈Z,求x+y≥0的概率;(2)若x,y∈R,求x+y≥0的概率.【解答】解:(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[﹣1,1],即y=﹣1,0,1.则基本事件有:(0,﹣1),(0,0),(0,1),(1,﹣1),(1,0),(1,1),(2,﹣1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,∴P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,∵x∈[0,2],y∈[﹣1,1],则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.基本事件如图四边形ABCD区域S=4,事件B包括的区域如阴影部分S′=S﹣=∴P(B)==.21.(12分)某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点.不包括右端点.如第一组表示收入在[1000,1500)(1)求居民收入在[3000,3500)的频率;(2)根据频率分布直方图算出样本数据的中位数及样本数据的平均数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2500,3000)的这段应抽取多少人?【解答】解:(1)月收入在[3000,3500)的频率为0.0003×500=0.15;(2)从左数第一组的频率为0.0002×500=0.1;第二组的频率为0.0004×500=0.2;第三组的频率为0.0005×500=0.25;∴中位数位于第三组,设中位数为2000+x,则x×0.0005=0.5﹣0.1﹣0.2=0.2⇒x=400.∴中位数为2400(元)由1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400,样本数据的平均数为2400(元);(3)月收入在[2500,3000)的频数为0.25×10000=2500(人),∵抽取的样本容量为100.∴抽取比例为=,∴月收入在[2500,3000)的这段应抽取2500×=25(人).22.(12分)已知直线l:y=﹣x+3与椭圆C:mx2+ny2=1(n>m>0)有且只有一个公共点P(2,1).(I)求椭圆C的标准方程;(II)若直线l′:y=﹣x+b交C于A,B两点,且PA⊥PB,求b的值.【解答】解:(I)联立直线l:y=﹣x+3与椭圆C:mx2+ny2=1(n>m>0),可得(m+n)x2﹣6nx+9n﹣1=0,由题意可得△=36n2﹣4(m+n)(9n﹣1)=0,即为9mn=m+n,又P在椭圆上,可得4m+n=1,解方程可得m=,n=,即有椭圆方程为+=1;(II)设A(x1,y1),B(x2,y2),联立直线y=b﹣x和椭圆方程,可得3x2﹣4bx+2b2﹣6=0,判别式△=16b2﹣12(2b2﹣6)>0,x1+x2=,x1x2=,y1+y2=2b﹣(x1+x2)=,y1y2=(b﹣x1)(b﹣x2)=b2﹣b(x1+x2)+x1x2=,由PA⊥PB,即为•=(x1﹣2)(x2﹣2)+(y1﹣1)(y2﹣1)=x1x2﹣2(x1+x2)+4+y1y2﹣(y1+y2)+1=﹣2•+﹣+5=0,解得b=3或,代入判别式,b=3不成立.则b=.。
湖北省襄阳市四校2017-2018学年高二上学期期中联考数学(文)试题Word版含答案(打印版)
2017——2018学年度上学期高二期中考试数学试题(文科)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知直线3330x y --=,则该直线的倾斜角为A. 30B. 60C. 120D.1502.一个球的内接正方体的表面积为72,则球的体积为A. 27πB. 18πC. 36πD.54π3.已知变量,x y 的取值如下表所示:如果y 与x 线性相关,且线性回归方程为ˆˆ2y bx =-,则ˆb 的值为A. 2.5B. 2C. 1.2D. 14.下列命题中,,m n 表示两条不同的直线,,αβ表示两个不同的平面:①若,m n αα⊥⊂,则m n ⊥ ②若//,m n αα⊂,则//m n③若,m αβα⊥⊂,则m β⊥ ④若//,m αβα⊂,则//m β正确的命题是A. ①③B. ②③C. ①④D. ②④5.某中学从高二甲、乙两个班中各选出7名学生参加数学竞赛,他们取得成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数为85,乙班学生成绩的中位数为88,则xy 的值为A. 30B. 24C. 48D. 406.直线3410x y -+=与圆()2211x y +-=交于E,F 两点,则EOF ∆(O 是坐标原点)的面积为A. 35B. 825C. 45D. 4257.在区间[]2,2-上随机地选取两个数,x y ,则221x y +<满足的概率为A.16πB. 8πC. 4πD.2π8.一个几何体的三视图如图所示,则该几何体的表面积为A. 922+1122+ C. 72+42+9.设变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,设目标函数3z x y =-的最大值为m ,最小值为n ,则m n +的值为A. 92-B. 92C.152-D.15210.如下框图所示,已知集合{}|A x x =框图中输出的值集合{}|B y y =框图中输出的值,当0x =时,A B =A. {}0,1,3B. {}1,3,5C. {}1,3,5,7D. {}0,1,3,511.已知直线210kx y k -+-=恒过定点A,点A 也在直线20mx ny ++=上,其中,m n 均为正数,则12m n+的最小值为 A. B. C. D.12.已知在平面直角坐标系中,点()()4,0,0,3A B 到直线l 的距离分别为1,6,则直线l 的条数为A. 3B. 2C. 1D. 0二、填空题:本大题共4小题,每小题5分,共20分.13.已知某单位有职工120名,男职工80名,现采用分层抽样(按男女分层)抽取一个样本,若已知样本中有24名男职工,则样本容量为 .14.已知在空间直角坐标系中,点()1,0,1A 关于坐标平面yoz 的对称点为A ',则点A '与点间()2,1,1B -的距离为 .15.将边长为2的正方形ABCD 沿对角线AC 折起,使得BD=2,则三棱锥D-ABC 的体积为 .16.过圆224x y +=外一点()6,8A -引圆的两条切线,切点为12,T T ,则直线12T T 的方程为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分10分)已知直线1:260l ax y ++=和直线()22:310l x a y a +-+-= (1)当12l l ⊥时,求a 的值;(2)在(1)的条件下,若直线32//l l ,且3l 过点()1,3A -,求直线3l 的一般方程.18.(本题满分12分)一个袋中装有四个完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取两个球,求取出的球的编号之和不小于5的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求1n m -≤的概率.19.(本题满分12分)如图,已知ABCD 是边长为2的正方形,EA ⊥平面,//ABCD FC EA ,设1, 2.EA FC == (1)求证:平面EACF ⊥平面BDF ;(2)求四棱锥D EACF -的体积.20.(本题满分12分)今年“十一”期间,福银高速公路车辆较多.某调查公司在襄阳收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔60辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速()/km h 分为六段[)[)[)[)[)[]60,65,65,70,70,75,75,80,80,85,85,90后,得到如图所示的频率分布直方图.(1)求这40辆小型汽车车速的众数和中位数的估计值;(2)若从这40辆车速在[)60,70的小型汽车中任意抽取2辆,求抽出的2辆车车速都在[)65,70的概率.21.(本题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,点E 是棱PC 的中点,平面ABE 与棱PD 交于点F(1)求证:点F 是棱PD 的中点;(2)若PA AD =,且平面PAD ⊥平面ABCD ,求证:AF ⊥平面PCD .22.(本题满分12分)已知圆C 的圆心为坐标原点,且与直线1:220l x y --=相切(1)求直线2:4350l x y -+=被圆C 所截得的弦AB 长;(2)若与直线1l 垂直的直线l 与圆C 交于不同的两点P,Q ,若POQ ∠为锐角,求直线l 纵截距的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年湖北省部分重点中学联考高二(上)期中数学试卷(文科)一、选择题(5×12=60分)1.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面2.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()A.40 B.30 C.20 D.123.已知直线l⊥平面α,直线m⊂平面β,给出下列命题①α∥β=l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是()A.①②③ B.②③④ C.①③D.②④4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?5.有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为(()A.B.C.D.6.如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m为数字0﹣9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小不确定7.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1 B.2 C.3 D.48.两条异面直线a,b所成的角是60°,A为空间一定点,则过点A作一条与直线a,b均成60°的直线,这样的直线能作几条()A.1条B.2条C.3条D.4条9.如图是正方体的平面展开图.在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③ B.②④C.③④D.②③④10.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,给出以下四个命题:①异面直线C1P与CB1所成的角为定值;②二面角P﹣BC1﹣D的大小为定值;③三棱锥D﹣BPC1的体积为定值;其中真命题的个数为()A.0 B.1 C.2 D.311.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为=0.8x﹣155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为)12.已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC 的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.二、填空题(5×4=20分)13.已知A表示点,a,b,c表示直线,M,N表示平面,给出以下命题:①a⊥M,若M⊥N,则a∥N②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b③a⊥M,b⊄M,若b∥M,则b⊥a④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b.其中命题成立的是.14.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为.15.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是.16.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,则有一艘船停靠泊位时必需等待一段时间的概率为.三、解答题(10+12×5=70分)17.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.18.已知:四棱锥P﹣ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点,PA=a,∠PDA=45°(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求点D到平面PCE的距离.19.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)509020.已知四棱锥P﹣GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(Ⅰ)求异面直线GE与PC所成角的余弦值;(Ⅱ)若F点是棱PC上一点,且DF⊥GC,PF:FC=k,求k的值.21.等边三角形ABC的边长为2沿平行于BC的线段PQ折起,使平面APQ⊥平面PBCQ,设点A到直线PQ的距离为x,AB的长为d.(Ⅰ)x为何值时,d2取得最小值,最小值是多少;(Ⅱ)若∠BAC=θ,求cosθ的最小值.22.如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.2016-2017学年湖北省部分重点中学联考高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(5×12=60分)1.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面【考点】平面的基本性质及推论.【分析】根据公理2以及推论判断A、B、D,再根据空间四边形判断C.【解答】解:A、根据公理2知,必须是不共线的三点确定一个平面,故A不对;B、根据一条直线和直线外的一点确定一个平面知,故B不对;C、比如空间四边形则不是平面图形,故C不对;D、两两相交且不共点的三条直线,则三个交点不共线,故它们确定一个平面,由公理1知三条直线都在此平面内,故D正确.故选D.2.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()A.40 B.30 C.20 D.12【考点】系统抽样方法.【分析】系统抽样中,分段的间隔(抽样距)=【解答】解:抽样距==40.故选A3.已知直线l⊥平面α,直线m⊂平面β,给出下列命题①α∥β=l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是()A.①②③ B.②③④ C.①③D.②④【考点】平面与平面之间的位置关系.【分析】由两平行平面中的一个和直线垂直,另一个也和平面垂直得直线l⊥平面β,再利用面面垂直的判定可得①为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,故②为假命题;由两平行线中的一条和平面垂直,另一条也和平面垂直得直线m⊥平面α,再利用面面垂直的判定可得③为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,如果直线m 在平面α内,则有α和β相交于m,故④为假命题.【解答】解:l⊥平面α且α∥β可以得到直线l⊥平面β,又由直线m⊂平面β,所以有l⊥m;即①为真命题;因为直线l⊥平面α且α⊥β可得直线l平行与平面β或在平面β内,又由直线m⊂平面β,所以l与m,可以平行,相交,异面;故②为假命题;因为直线l⊥平面α且l∥m可得直线m⊥平面α,又由直线m⊂平面β可得α⊥β;即③为真命题;由直线l⊥平面α以及l⊥m可得直线m平行与平面α或在平面α内,又由直线m⊂平面β得α与β可以平行也可以相交,即④为假命题.所以真命题为①③.故选C.4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 1/第一圈2 4 是第二圈3 11 是第三圈4 26 是第四圈5 57 否故退出循环的条件应为k>4故答案选A.5.有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为(()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】由组合数公式可得从5根木棒中任取3根的情况数目,由三角形的三边关系分析可得取出的三根可以搭成三角形的情况数目,由等可能事件的概率公式,计算可得答案.【解答】解:根据题意,从5根木棒中任取3根,有C53=10种情况,其中能构撘成三角形的有3、5、7,3、7、9,5、7、9,共3种情况,则能搭成三角形的概率为;故选D.6.如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m为数字0﹣9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小不确定【考点】众数、中位数、平均数;茎叶图.【分析】由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,根据样本平均数的计算公式,代入数据可以求得甲和乙的平均分,把两个平均分进行比较,得到结果.【解答】解:由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,代入数据可以求得甲和乙的平均分,,∴a2>a1故选B.7.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1 B.2 C.3 D.4【考点】极差、方差与标准差.【分析】由题意知这组数据的平均数为10,方差为2可得到关于x,y的一个方程组,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出|x﹣y|,利用换元法来解出结果.【解答】解:由题意这组数据的平均数为10,方差为2可得:x+y=20,(x﹣10)2+(y﹣10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出|x﹣y|,设x=10+t,y=10﹣t,由(x﹣10)2+(y﹣10)2=8得t2=4;∴|x﹣y|=2|t|=4,故选D.8.两条异面直线a,b所成的角是60°,A为空间一定点,则过点A作一条与直线a,b均成60°的直线,这样的直线能作几条()A.1条B.2条C.3条D.4条【考点】空间中直线与直线之间的位置关系.【分析】过P作a′∥a,b′∥b,设直线a′、b′确定的平面为α,异面直线a、b成60°角,直线a′、b′所成锐角为60°,过点P与a′、b′都成60°角的直线,可以作3条.【解答】解:过P作a′∥a,b′∥b,设直线a′、b′确定的平面为α,∵异面直线a、b成60°角,∴直线a′、b′所成锐角为60°.①当直线l在平面α内时,若直线l平分直线a′、b′所成的钝角,则直线l与a、b都成60°角;②当直线l与平面α斜交时,若它在平面α内的射影恰好落在直线a′、b′所成的锐角平分线上时,直线l与a、b所成角相等.此时l与a′、b′所成角的范围为[30°,90°],适当调整l的位置,可使直线l与a、b也都成60°角,这样的直线l有两条.综上所述,过点P与a′、b′都成60°角的直线,可以作3条.∵a′∥a,b′∥b,∴过点P与a′、b′都成60°角的直线,与a、b也都成60°的角.故选:C.9.如图是正方体的平面展开图.在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③ B.②④C.③④D.②③④【考点】棱柱的结构特征.【分析】正方体的平面展开图复原为正方体,不难解答本题.【解答】解:由题意画出正方体的图形如图:显然①②不正确;③CN与BM成60°角,即∠ANC=60°正确;④DM⊥平面BCN,所以④正确;故选C.10.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,给出以下四个命题:①异面直线C1P与CB1所成的角为定值;②二面角P﹣BC1﹣D的大小为定值;③三棱锥D﹣BPC1的体积为定值;其中真命题的个数为()A.0 B.1 C.2 D.3【考点】棱柱的结构特征.【分析】对于①由题意及图形利用异面直线所成角的概念及求异面直线间的方法及可求解;对于②由题意及平面具有延展性可知实质为平面ABC1D1与平面BDC1所成的二面角;对于③由题意及三棱锥的体积的算法中可以进行顶点可以轮换性求解体积,和点P的位置及直线AD1与平面BDC1的位置即可判断正误.【解答】解:对于①因为在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,有正方体的及题意易有B1C⊥平面ABC1D1,而C1P⊂平面ABC1D1,所以B1C⊥C1P,故这两个异面直线所成的角为定值90°,所以①正确;对于②因为二面角P﹣BC1﹣D的大小,实质为平面ABC1D1与平面BDC1所成的二面角而这两的平面为固定的不变的平面所以夹角也为定值,故②正确;对于③三棱锥D﹣BPC1的体积还等于三棱锥的体积P﹣DBC1的体积,而平面DBC1为固定平面且大小一定,又因为P∈AD1,而AD1∥平面BDC1,所以点A到平面DBC1的距离即为点P到该平面的距离,所以三棱锥的体积为定值,故③正确.故选D.11.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为=0.8x﹣155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为)【考点】线性回归方程.【分析】根据回归直线经过样本数据中心点,求出x、y的平均数,即可求出m值.【解答】解:根据题意,计算=×=200,=×(1+3+6+7+m)=,代入回归方程=0.8x﹣155中,可得=0.8×200﹣155=25,解得m=8.故选:D.12.已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC 的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【考点】异面直线及其所成的角.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB 与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选B.二、填空题(5×4=20分)13.已知A表示点,a,b,c表示直线,M,N表示平面,给出以下命题:①a⊥M,若M⊥N,则a∥N②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b③a⊥M,b⊄M,若b∥M,则b⊥a④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b.其中命题成立的是②③④.【考点】命题的真假判断与应用.【分析】根据空间线面之间的位置关系及几何特征,逐一分析四个命题的真假,可得答案.【解答】解:①a⊥M,若M⊥N,则a∥N,或a⊂N,故错误;②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b,故正确;③a⊥M,b⊄M,若b∥M,则b⊥a,故正确;④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b,故正确.故答案为:②③④14.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为8.【考点】循环结构.【分析】由已知中的程序框图及已知中输入8,可得:进入循环的条件为i<8,即i=2,4,6模拟程序的运行结果,即可得到输出的s值.【解答】解:当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4;当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i<8”,退出循环,则输出的s=8故答案为:815.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是90°.【考点】异面直线及其所成的角.【分析】以D为坐标原点,建立空间直角坐标系,利用向量的方法求出与夹角求出异面直线A1M与DN所成的角.【解答】解:以D为坐标原点,建立如图所示的空间直角坐标系.设棱长为2,则D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),=(0,2,1),=(﹣2,1,﹣2)•=0,所以⊥,即A1M⊥DN,异面直线A1M与DN所成的角的大小是90°,故答案为:90°.16.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,则有一艘船停靠泊位时必需等待一段时间的概率为.【考点】几何概型.【分析】分析知如两船到达的时间间隔超过了停泊的时间则不需要等待,要求一艘船停靠泊位时必须等待一段时间的概率;即计算一船到达的时间恰好另一船还没有离开,此即是所研究的事件.【解答】解:设甲船在x点到达,乙船在y点到达,必须等待的事件需要满足如下条件:,画出不等式组表示的平面区域如图所示;所以p(A)=1﹣=;所以一艘船停靠泊位时必须等待一段时间的概率是.故答案为:.三、解答题(10+12×5=70分)17.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.【考点】古典概型及其概率计算公式.【分析】(I)利用频率分布直方图,求出频率,进而根据频数=频率×样本容量,得到答案;(II)先计算从参加社区服务时间不少于90小时的学生中任意选取2人的情况总数,再计算所选学生的参加社区服务时间在同一时间段内的情况数,代入古典概型概率计算公式,可得答案.【解答】解:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为20×0.04×5=4(人),参加社区服务在时间段[95,100]的学生人数为20×0.02×5=2(人).所以参加社区服务时间不少于90小时的学生人数为4+2=6(人).…(Ⅱ)设所选学生的服务时间在同一时间段内为事件A.由(Ⅰ)可知,参加社区服务在时间段[90,95)的学生有4人,记为a,b,c,d;参加社区服务在时间段[95,100]的学生有2人,记为A,B.从这6人中任意选取2人有ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB共15种情况.事件A包括ab,ac,ad,bc,bd,cd,AB共7种情况.所以所选学生的服务时间在同一时间段内的概率.…18.已知:四棱锥P﹣ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点,PA=a,∠PDA=45°(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求点D到平面PCE的距离.【考点】平面与平面垂直的判定;直线与平面平行的判定;点、线、面间的距离计算.【分析】(1)取PC的中点G,连接FG、EG,证出AF∥EG,由线面平行的判定定理,即可证出:AF∥平面PCE.(2)先证出AF⊥平面PCD,再由(1),可证EG⊥平面PCD,由面面垂直的判定定理即可证出平面PCE⊥平面PCD;(3)过点D作DH⊥PC于H,DH的长为点D到平面PEC的距离.【解答】(1)证明:取PC的中点为G,连结FG、EG∵FG∥DC,FG=DC,DC∥AB,AE=AB∴FG∥AE且FG=A∴四边形AFGE为平行四边形,∴AF∥EG.又∵AF⊄平面PCE,EG⊂平面PCE,∴AF∥平面PCE…(2)证明:∵PA⊥平面ABCD,AD⊥D,∴PD⊥DC∴∠PDA为二面角P﹣CD﹣B的平面角,∴∠PDA=45°,即△PAD为等腰直角三角形又∵F为PD的中点,∴AF⊥PD ①由DC⊥AD,DC⊥PD,AD∩PD=D,得:DC⊥平面PAD.而AF⊂平面PAD,∴AF⊥DC ②由①②得AF⊥平面PDC.而EG∥AF∴EG⊥平面PDC,又EG⊂平面PCE,∴平面PCE⊥平面PDC…(3)解:过点D作DH⊥PC于H.∵平面PCE⊥平面PDC,∴DH⊥平面PEC.即DH的长为点D到平面PEC的距离.在Rt△PAD中,PA=AD=a,PD= a在Rt△PDC中,PD=a,CD=a,PC=a,DH=a.即:点D到平面PCE的距离为a…19.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)5090【考点】用样本的频率分布估计总体分布;频率分布直方图;众数、中位数、平均数.【分析】(1)由频率分布直方图的性质可10(2a+0.02+0.03+0.04)=1,解方程即可得到a的值;(2)由平均数加权公式可得平均数为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05,计算出结果即得;(3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在[50,90)之外的人数.【解答】解:(1)依题意得,10(2a+0.02+0.03+0.04)=1,解得a=0.005;(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分);(3)数学成绩在[50,60)的人数为:100×0.05=5,数学成绩在[60,70)的人数为:,数学成绩在[70,80)的人数为:,数学成绩在[80,90)的人数为:,所以数学成绩在[50,90)之外的人数为:100﹣5﹣20﹣40﹣25=10.20.已知四棱锥P﹣GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(Ⅰ)求异面直线GE与PC所成角的余弦值;(Ⅱ)若F点是棱PC上一点,且DF⊥GC,PF:FC=k,求k的值.【考点】异面直线及其所成的角.【分析】(Ⅰ)直接作出异面直线所成角的平面角,通过余弦定理求解.(Ⅱ)由线线垂直转化为线面垂直及面面垂直然后建立比例关系,最后求参数的值.【解答】解:(Ⅰ)在平面ABCD内,过C点作CH∥EG交AD于H,连结PH,则∠PCH(或其补角)就是异面直线GE与PC所成的角.在△PCH中,由余弦定理得,cos∠PCH=∴异面直线GE与PC所成角的余弦值为.(Ⅱ)在平面GBCD内,过D作DM⊥GC,M为垂足,连结MF,又因为DF⊥GC ∴GC⊥平面MFD,∴GC⊥FM由平面PGC⊥平面GBCD,∴FM⊥平面GBCD∴FM∥PG由得GM⊥MD,∴GM=GD•cos45°=∵,∴k=321.等边三角形ABC的边长为2沿平行于BC的线段PQ折起,使平面APQ⊥平面PBCQ,设点A到直线PQ的距离为x,AB的长为d.(Ⅰ)x为何值时,d2取得最小值,最小值是多少;(Ⅱ)若∠BAC=θ,求cosθ的最小值.【考点】直线与平面垂直的判定;余弦定理.【分析】(I)如图(1)为折叠前对照图,图(2)为折叠后的空间图形.利用面面垂直和线面垂直的判定与性质定理和二次函数的单调性即可得出;(II)在等腰△ADC中,使用余弦定理和利用余弦函数的单调性即可得出.【解答】解:(Ⅰ)如图(1)为折叠前对照图,图(2)为折叠后的空间图形.∵平面APQ⊥平面PBCQ,又∵AR⊥PQ,∴AR⊥平面PBCQ,∴AR⊥RB.在Rt△BRD中,BR2=BD2+RD2=,AR2=x2.故d2=BR2+AR2=.∴当时,d2取得最小值.(Ⅱ)∵AB=AC=d,BC=2,∴在等腰△ADC中,由余弦定理得,即,∴当时,cosθ取得最小值.22.如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.【考点】棱锥的结构特征.【分析】(1)分别作出三角形的高,求出四个三角形的面积,然后求三棱锥D﹣ABC的表面积;(2)要证AC⊥平面DEF,先证AC⊥DE,再证AC⊥EF,即可.(3)M为BD的中点,连CM,设CM∩DE=O,连OF,只要MN∥OF即可,求出CN.【解答】解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D﹣ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.2016年11月26日。