选修2-3 第一章 计数原理 1.2.2 组合 第2课时 组合的综合应用
(新人教版)新版高中数学 第一章1.2 排列与组合 1.2.2 第2课时 组合的综合应用学案 新人教A版选修2-3【提
第2课时组合的综合应用学习目标 1.能应用组合知识解决有关组合的简单实际问题.2.能解决有限制条件的组合问题.知识点组合的特点(1)组合的特点是只取不排组合要求n个元素是不同的,被取出的m个元素也是不同的,即从n个不同的元素中进行m 次不放回地取出.(2)组合的特性元素的无序性,即取出的m个元素不讲究顺序,没有位置的要求.(3)相同的组合根据组合的定义,只要两个组合中的元素完全相同(不管顺序如何),就是相同的组合.类型一有限制条件的组合问题例1 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法?(1)至少有一名队长当选;(2)至多有两名女生当选;(3)既要有队长,又要有女生当选.考点组合的应用题点有限制条件的组合问题解(1)C513-C511=825(种)(2)至多有2名女生当选含有三类:有2名女生;只有1名女生;没有女生,所以共有C25C38+C15C48+C58=966(种)选法.(3)分两类:第一类女队长当选,有C412=495(种)选法,第二类女队长没当选,有C14C37+C24C27+C34C17+C44=295(种)选法,所以共有495+295=790(种)选法.反思与感悟有限制条件的抽(选)取问题,主要有两类:一是“含”与“不含”问题,其解法常用直接分步法,即“含”的先取出,“不含”的可把所指元素去掉再取,分步计数;二是“至多”“至少”问题,其解法常有两种解决思路:一是直接分类法,但要注意分类要不重不漏;二是间接法,注意找准对立面,确保不重不漏.跟踪训练1 某食堂每天中午准备4种不同的荤菜,7种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭.则每天不同午餐的搭配方法共有( )A.210种 B.420种 C.56种 D.22种考点组合的应用题点有限制条件的组合问题答案 A解析由分类加法计数原理知,两类配餐的搭配方法之和即为所求,所以每天不同午餐的搭配方法共有C24C27+C14C27=210(种).类型二与几何有关的组合应用题例2 如图,在以AB为直径的半圆周上,有异于A,B的六个点C1,C2,…,C6,线段AB上有异于A,B的四个点D1,D2,D3,D4.(1)以这10个点中的3个点为顶点可作多少个三角形?其中含C1点的有多少个?(2)以图中的12个点(包括A,B)中的4个点为顶点,可作出多少个四边形?考点组合的应用题点与几何有关的组合问题解(1)方法一可作出三角形C36+C16·C24+C26·C14=116(个).方法二可作三角形C310-C34=116(个),其中以C1为顶点的三角形有C25+C15·C14+C24=36(个).(2)可作出四边形C46+C36·C16+C26·C26=360(个).反思与感悟(1)图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算.常用直接法,也可采用间接法.(2)在处理几何问题中的组合问题时,应将几何问题抽象成组合问题来解决.跟踪训练2 空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,无四点共面,则以这些点为顶点,共可构成四面体的个数为( )A.205 B.110 C.204 D.200考点 组合的应用题点 与几何有关的组合问题 答案 A解析 方法一 可以按从共面的5个点中取0个、1个、2个、3个进行分类,则得到所有的取法总数为C 05C 45+C 15C 35+C 25C 25+C 35C 15=205.方法二 从10个点中任取4个点的方法数中去掉4个点全部取自共面的5个点的情况,得到所有构成四面体的个数为C 410-C 45=205. 类型三 分组、分配问题命题角度1 不同元素分组、分配问题例3 6本不同的书,分为3组,在下列条件下各有多少种不同的分配方法? (1)每组2本(平均分组);(2)一组1本,一组2本,一组3本(不平均分组); (3)一组4本,另外两组各1本(局部平均分组). 考点 排列组合综合问题 题点 分组分配问题解 (1)每组2本,均分为3组的方法数为C 26C 24C 22A 33=15×6×16=15.(2)一组1本,一组2本,一组3本的分组种数为C 36C 23C 11=20×3=60. (3)一组4本,另外两组各1本的分组种数为C 46C 12C 11A 22=15×22=15.反思与感悟 一般地,n 个不同的元素分成p 组,各组内元素数目分别为m 1,m 2,…,m p ,其中k 组元素数目相等,那么分组方法数是C m 1n C m 2n -m 1C m 3n -m 1-m 2…C m p m pA kk. 跟踪训练3 6本不同的书,分给甲、乙、丙3人,在下列条件下各有多少种不同的分配方法? (1)甲2本,乙2本,丙2本; (2)甲1本,乙2本,丙3本; (3)甲4本,乙、丙每人1本; (4)每人2本;(5)一人1本,一人2本,一人3本; (6)一人4本,其余两人每人1本. 考点 排列组合综合问题 题点 分组分配问题解 (1)(2)(3)中,由于每人分的本数固定,属于定向分配问题,由分步乘法计数原理得: (1)共有C 26C 24C 22=90(种)不同的分配方法;(2)共有C16C25C33=60(种)不同的分配方法;(3)共有C46C12C11=30(种)不同的分配方法.(4)(5)(6)属于不定向分配问题,是该类题中比较困难的问题.分配给3人,同一本书给不同的人是不同的分法,属于排列问题.实际上可看作两个步骤:先分为3组,再把这3组分给甲、乙、丙3人的全排列数A33即可.因此,(4)共有C26C24C22÷A33×A33=90(种)不同的分配方法;(5)共有C16C25C33×A33=360(种)不同的分配方法;(6)共有C46C12C11÷A22×A33=90(种)不同的分配方法.命题角度2 相同元素分配问题例4 将6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数.(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子.考点排列组合综合问题题点分组分配问题解(1)先把6个相同的小球排成一行,在首尾两球外侧放置一块隔板,然后在小球之间5个空隙中任选3个空隙各插一块隔板,有C35=10(种).(2)恰有一个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选2个空隙各插一块隔板,如|0|000|00|,有C25种插法,然后将剩下的一块隔板与前面任意一块并放形成空盒,如|0|000||00|,有C14种插法,故共有C25·C14=40(种).(3)恰有两个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选1个空隙各插一块隔板,有C15种插法,如|00|0000|,然后将剩下的两块隔板插入形成空盒.①这两块板与前面三块板形成不相邻的两个盒子,如||00||0000|,有C23种插法.②将两块板与前面三块板之一并放,如|00|||0000|,有C13种插法.故共有C15·(C23+C13)=30(种).反思与感悟相同元素分配问题的处理策略(1)隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作在排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”.每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法.隔板法专门解决相同元素的分配问题.(2)将n个相同的元素分给m个不同的对象(n≥m),有C m-1n-1种方法.可描述为n-1个空中插入m-1块板.跟踪训练4 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A.4种B.10种C.18种D.20种考点排列组合综合问题题点分组分配问题答案 B解析由于只剩一本书,且这些画册、集邮册分别相同,可以从剩余的书的类别进行分析.又由于排列、组合针对的是不同的元素,应从4位朋友中进行选取.第一类:当剩余的一本是画册时,相当于把3本相同的集邮册和1本画册分给4位朋友,只有1位朋友得到画册.即把4位朋友分成人数为1,3的两队,有1个元素的那队分给画册,另一队分给集邮册,有C14种分法.第二类:当剩余的一本是集邮册时,相当于把2本相同的画册和2本相同的集邮册分给4位朋友,有2位朋友得到画册,即把4位朋友分成人数为2,2的两队,一队分给画册,另一队分给集邮册,有C24种分法.因此,满足题意的赠送方法共有C14+C24=4+6=10(种).1.某乒乓球队有9名队员,其中2名是种子选手,现在挑选5名选手参加比赛,种子选手必须在内,那么不同选法共有( )A.26种 B.84种 C.35种 D.21种考点组合的应用题点有限制条件的组合问题答案 C解析从7名队员中选出3人有C37=7×6×53×2×1=35(种)选法.2.身高各不相同的7名同学排成一排照相,要求正中间的同学最高,左右两边分别顺次一个比一个低,这样的排法种数是( )A.5 040 B.36 C.18 D.20考点组合的应用题点有限制条件的组合问题答案 D解析最高的同学站中间,从余下6人中选3人在一侧只有一种站法,另3人在另一侧也只有一种站法,所以排法有C36=20(种).3.直角坐标平面xOy上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有( )A.25个 B.36个 C.100个 D.225个考点组合的应用题点与几何有关的组合问题答案 D解析从垂直于x轴的6条直线中任取2条,从垂直于y轴的6条直线中任取2条,四条直线相交得出一个矩形,所以矩形总数为C26×C26=15×15=225.4.从7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有________种.(用数字作答)考点排列组合综合问题题点分组分配问题答案140解析安排方案分为两步完成:从7名志愿者中选3人安排在周六参加社区公益活动,有C37种方法;再从剩下的4名志愿者中选3人安排在周日参加社区公益活动,有C34种方法.故不同的安排方案共有C37C34=7×6×53×2×1×4=140(种).5.正六边形顶点和中心共7个点,可组成________个三角形.考点组合的应用题点与几何有关的组合问题答案32解析不共线的三个点可组成一个三角形,7个点中共线的是:正六边形过中心的3条对角线,即共有3种情况,故组成三角形的个数为C37-3=32.1.无限制条件的组合应用题.其解题步骤为:(1)判断;(2)转化;(3)求值;(4)作答.2.有限制条件的组合应用题:(1)“含”与“不含”问题:这类问题的解题思路是将限制条件视为特殊元素和特殊位置,一般来讲,特殊要先满足,其余则“一视同仁”.若正面入手不易,则从反面入手,寻找问题的突破口,即采用排除法.解题时要注意分清“有且仅有”“至多”“至少”“全是”“都不是”“不都是”等词语的确切含义,准确把握分类标准.(2)几何中的计算问题:在处理几何问题中的组合应用问题时,应先明确几何中的点、线、面及构型,明确平面图形和立体图形中的点、线、面之间的关系,将几何问题抽象成组合问题来解决.(3)分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者即使两组元素个数相同,但因元素不同,仍然是可区分的.一、选择题1.若从1,2,3,…,9这9个整数中同时取3个不同的数,使其和为奇数,则不同的取法共有( )A.30种 B.33种 C.37种 D.40种考点组合的应用题点有限制条件的组合问题答案 D解析从1,2,3,…,9这9个数中取出3个不同的数,使其和为奇数的情况包括:(1)取出的3个数都是奇数,取法有C35=10(种);(2)取出的3个数中有2个偶数、1个奇数,取法有C24C15=30(种),根据分类加法计数原理,满足题意的取法共有10+30=40(种).2.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.24种 B.14种 C.28种 D.48种考点组合的应用题点有限制条件的组合问题答案 B解析方法一分两类完成:第1类,选派1名女生、3名男生,有C12·C34种选派方案;第2类,选派2名女生、2名男生,有C22·C24种选派方案.故共有C12·C34+C22·C24=14(种)不同的选派方案.方法二6人中选派4人的组合数为C46,其中都选男生的组合数为C44,所以至少有1名女生的选派方案有C46-C44=14(种).3.直线a∥b,a上有5个点,b上有4个点,以这九个点为顶点的三角形个数为( ) A.C25C14+C15C24B.(C25+C14)(C15+C24)C.C39-9 D.C39-C35考点组合的应用题点 与几何有关的组合问题 答案 A解析 可以分为两类:a 上取两点,b 上取一点,则可构成三角形个数为C 25C 14;a 上取一点,b 上取两点,则可构成三角形个数为C 15C 24,利用分类加法计数原理可得以这九个点为顶点的三角形个数为C 25C 14+C 15C 24,故选A.4.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法有( ) A .C 25C 26种 B .C 25A 26种 C .C 25A 22C 26A 22种D .A 25A 26种考点 排列组合综合问题 题点 排列与组合的综合应用 答案 B解析 先从5名男选手中任意选取2名,有C 25种选法,再从6名女选手中任意选择两名与选出的男选手打比赛,有C 26A 22,即A 26种.所以共有C 25A 26种.5.将标号为A ,B ,C ,D ,E ,F 的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为A ,B 的卡片放入同1个信封,则不同的放法共有( ) A .12种 B .18种 C .36种 D .54种 考点 排列组合综合问题 题点 分组分配问题 答案 B解析 由题意知,不同的放法共有C 13C 24=3×4×32=18(种).6.某地招募了20名志愿者,他们编号分别为1号,2号,…,19号,20号,如果要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的人在另一组,那么确保5号与14号入选并被分配到同一组的选取种数是( )A .16B .21C .24D .90 考点 排列组合综合问题 题点 分组分配问题 答案 B 解析 分2类:第1类,5号与14号为编号较大的一组,则另一组编号较小的有C 24=6(种)选取方法. 第2类,5号与14号为编号较小的一组,则编号较大的一组有C 26=15(种)选取方法. 由分类加法计数原理得,共有C 24+C 26=6+15=21(种)选取方法.7.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( ) A .C 1214C 412C 48 B .C 1214A 412A 48 C.C 1214C 412C 48A 33D .C 1214C 412C 48A 38考点 排列组合综合问题 题点 分组分配问题 答案 A解析 首先从14人中选出12人共C 1214种,然后将12人平均分为3组共C 412·C 48·C 44A 33种,然后这两步相乘,得C 1214·C 412·C 48A 33.将三组分配下去共C 1214·C 412·C 48种.故选A. 8.假如北京大学给中山市某三所重点中学7个自主招生的推荐名额,则每所中学至少分到一个名额的方法数为( ) A .30 B .21 C .10 D .15 考点 排列组合综合问题 题点 分组分配问题 答案 D解析 用“隔板法”.在7个名额中间的6个空位上选2个位置加2个隔板,有C 26=15(种)分配方法. 二、填空题9.在2017年的上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理6门学科中选择3门学科参加等级考试.小明同学决定在生物、政治、历史三门中至多选择一门,那么小明同学的选择方案有________种. 考点 组合的应用题点 有限制条件的组合问题 答案 10解析 ①在生物、政治、历史三门中选择1门,则在物理、化学、地理中选2门,有C 13C 23=9(种)选法;②在生物、政治、历史三门中选择0门,则物理、化学、地理全选,有C 33=1(种)选法. 共有选法9+1=10(种).10.如图所示的几何体是由一个正三棱锥P -ABC 与正三棱柱ABC -A 1B 1C 1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A 1B 1C 1不涂色),要求相邻的面均不同色,则不同的涂色方案共有______种.考点涂色问题题点涂色问题答案12解析先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12(种)不同的涂法.11.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)考点排列组合综合问题题点排列与组合的综合应用答案60解析一、二、三等奖,三个人获得,有A34=24(种).一、二、三等奖,有一个人获得2张,一个人获得1张,共有C23A24=36(种),共有24+36=60(种)不同的获奖情况.三、解答题12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,求不同取法的种数.考点组合的应用题点有限制条件的组合问题解若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色,则有C14×C14×C14=64(种),若2张同色,则有C23×C12×C24×C14=144(种),若红色卡片有1张,剩余2张不同色,则有C14×C23×C14×C14=192(种),剩余2张同色,则有C14×C13×C24=72(种),所以共有64+144+192+72=472(种)不同的取法.13.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?考点排列组合综合问题题点分组分配问题解可以分三类.精品试卷第一类,让两项工作都能胜任的青年从事英语翻译工作,有C24C23种选法;第二类,让两项工作都能胜任的青年从事德语翻译工作,有C34C13种选法;第三类,让两项工作都能胜任的青年不从事任何工作,有C34C23种选法.根据分类加法计数原理,一共有C24C23+C34C13+C34C23=42(种)不同的选法.四、探究与拓展14.20个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.考点排列组合综合问题题点分组分配问题答案120解析先在编号为2,3的盒内分别放入1,2个球,还剩17个小球,三个盒内分别至少再放入1个球,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共C216=120(种)方法.15.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?考点排列组合综合问题题点排列与组合的综合应用解(1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24(种)测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103 680(种).(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16C34A44=576(种).欢迎下载。
选修2-3第一章计数原理归纳整合
别属于不同类的两种方法是不同的方法.分步乘法计数原理的
关键是“步”,分步时首先要根据问题的特点确定一个分步的标 准;其次,分步时还要注意满足完成一件事必须并且只有连续
完成这n个步骤后,这件事才算完成,只有满足了上述条件,才
能用分步乘法计数原理.
网络构建 专题归纳 解读高考
【例1】 有3封信,4个信筒. (1)把3封信都寄出,有多少种寄信方法? (2)把3封信都寄出,且每个信筒中最多一封信,有多少种
专题二
排列组合的应用
排列组合应用题是高考的一个重点内容,常与实际问题相结 合进行考查.要认真阅读题干,明确问题本质,利用排列组 合的相关公式与方法解题.
(1)在求解排列与组合应用问题时,应注意:
①把具体问题转化或归结为排列或组合问题; ②通过分析确定运用分类计数原理还是分步计数原理;
③分析题目条件,避免“选取”时重复和遗漏;
④列出式子计算并作答. (2)处理排列组合的综合性问题,一般思想方法是先选元素(组 合),后排列,按元素的性质“分类”和按事件发生的连续过程 “分步”,始终是处理排列组合问题的基本方法和原理,通过
网络构建 专题归纳 解读高考
解题训练注意积累分类和分步的基本技能. (3)解排列组合应用题时,常见的解题策略有以下几种: ①特殊元素优先安排的策略; ②合理分类和准确分步的策略; ③排列、组合混合问题先选后排的策略; ④正难则反、等价转化的策略; ⑤相邻问题捆绑处理的策略;
本章归纳整合
知识网络
网络构建
专题归纳
解读高考
要点归纳
1.两个计数原理
分步乘法计数原理与分类加法计数原理是排列组合中解决
问题的重要手段,也是基础方法,尤其是分类加法计数原 理与分类讨论有很多相通之处,当遇到比较复杂的问题 时,用分类的方法可以有效的将之分解,达到求解的目 的.正确地分类与分步是用好两个原理的关键,即完成一 件事到底是“分步”进行还是“分类”进行,这是选用计数原 理的关键.注意有些复杂的问题往往在分步中有分类,分 类中有分步,两个原理往往交错使用.
人教版高中数学选修2-3 第一章计数原理 1-2-2-2组合的综合应用课件
【正解】 方法一:由题意,按选出女生的人数可分三类 情况:
第一类,选 1 名女生,2 名男生,有 C15·C28种选法; 第二类,选 2 名女生,1 名男生,有 C25·C18种选法; 第三类,选 3 名女生,男生不选,有 C35种选法. 故共有 C15·C28+C25·C18+C35=230 种选法. 方法二:如果没有限制条件,则有 C313种选法,而不符合 条件,即选出的全是男生(一名女生也没有)的选法是 C83种.因 此,至少要有 1 名女生的不同选法有 C313-C38=230 种.
因此分为三份,每份两本,一共有 15 种方法.
4分
(3)这是“不均匀分组”问题,一共有 C61C52C33=60 种方法.
6分
(4)在(3)的基础上再进行全排列,所以一共有 C16C25C33A33=
360 种方法.
8分
(5)可以分为三类情况:①“2、2、2 型”即(1)中的分配情
况,有 C26C24C22=90 种方法;②“1、2、3 型”即(4)中的分配 情况,有 C16C25C33A33=360 种方法;③“1、1、4 型”,有 C46A33
(1)根据分步计数原理得到:
C26C24C22=90(种).
2分
(2)分给甲、乙、丙三人,每人两本有 C62C42C22种方法,这
个过程可以分两步完成:第一步分为三份,每份两本,设学有 A33种 方法.根据分步计数原理可得:C26C24C22=xA33,所以 x=C26AC2433C22 =15.
[规律方法] 1.解排列组合的综合问题,首先要认真审 题,把握问题的实质,分清是排列还是组合问题,再注意结 合分类与分步两个原理,要按元素的性质确立分类的标准, 按事情的发生过程确定分步的顺序.
(完整版)高中选修2-3第一章计数原理知识点总结与训练
第一章:计数原理一、两个计数原理3、两个计数原理的区别二、排列与组合1、排列:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。
用符号 表示.3、排列数公式: 其中4、组合:一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
5、组合数:从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。
用符号 表示。
6、组合数公式:其中注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.7、性质: m n A m n A ()()()()!!121m n n m n n n n A m n -=+---=Λ.,,*n m N m n ≤∈并且m n C ()()()()!!!!121m n m n m m n n n n C mn -=+---=Λ.,,*n m N m n ≤∈并且mn n m nC C -=mn m n m n C C C 11+-=+三、二项式定理如果在二项式定理中,设a=1,b=x ,则可以得到公式:2、性质:02413512n n n n n n nC C C C C C -=+++=+++=L L 奇数项二项式系数和偶数项二项式系数和:注意事项:相邻问题,常用“捆绑法”不相邻问题,常用“插空法”巩固训练:1、有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:(1)男甲排在正中间;(2)男甲不在排头,女乙不在排尾;(3)三个女生排在一起;(4)三个女生两两都不相邻;2、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()3、(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?4、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?5、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?6、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?7、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有多少种?8、如图,要给地图A 、B 、C 、D 四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?9、求值与化简:1055845635425215222221)1(⋅+⋅+⋅+⋅+⋅+C C C C C 求值:。
新人教A版高二数学选修2-3第一章计数原理 1.1 第二课时 两个计数原理的综合应用
由分类加法计数原理知,有 3+4=7 种方法. 第四步:由分步乘法计数原理有 N=4×3×7=84 种不同的种植方法. 法二:(1)若 A,D 种植同种作物,则 A、D 有 4 种不同的种法,B 有 3 种种植方法,C 也有 3 种种植方法,由分步乘法计数原理,共有 4×3×3=36 种种植方法. (2)若 A,D 种植不同作物,则 A 有 4 种种植方法,D 有 3 种种植方法, B 有 2 种种植方法,C 有 2 种种植方法,由分步乘法计数原理,共有 4×3×2×2=48 种种植方法. 综上所述,由分类加法计数原理,共有 N=36+48=84 种种植方法.
• 去年高考延续了五年的总体要求并在创新上有较大的突破; • 难度把控趋于稳定,基本控制在0.55左右; • 充分体现国家意志“一核”、“四层”、 “四翼”, “一核”是总体框架
体现突 出传统文化及党的教育方针:“德智体美劳”五育并举; • 学科思维考察更加凸显,体现数学学科的理性思维特点;
(3)被 2 整除的数即偶数,末位数字可取 0,2,4,因此,可以分 两类,一类是末位数字是 0,则有 4×3=12(种)排法;一类是末 位数字不是 0,则末位有 2 种排法,即 2 或 4,再排首位,因 0 不能在首位,所以有 3 种排法,十位有 3 种排法,因此有 2×3×3 =18(种)排法.因而有 12+18=30(种)排法.即可以排成 30 个能 被 2 整除的无重复数字的三位数.
用计数原理解决涂色(种植)问题
[典例] 如图所示,要给“优”、 “化”、“指”、“导”四个区域分别涂上 3 种不同颜色中的某一种,允许同一种颜色 使用多次,但相邻区域必须涂不同的颜色, 有多少种不同的涂色方法?
[解] 优、化、指、导四个区域依次涂色,分四步. 第 1 步,涂“优”区域,有 3 种选择. 第 2 步,涂“化”区域,有 2 种选择.
选修2-3:1.2.2组合——排列组合综合应用
第二步:将甲乙两人也排一下,共有A22种排法
第三步:将甲乙等5人看成一个元素,与其余2人,一共三个元素 进行全排 由分步计数原理可知:甲、乙两人中间必须有3人的排法一共有: A53 A22A33种排法
例2. 有3名男生,4名女生,求下列各有多少种不同站法 (6)全体排成一行,男、女各不相邻. 特殊位置排列方式 第一步:将4名女生全排,共有A44种放法
乙、丙三人从左至右的顺序只是6种顺序中的一种 由此可见:甲、乙、丙三人从左至右的顺序的排法一共有:
A
7 7
A
3 种排法 3
例2. 有3名男生,4名女生,求下列各有多少种不同站法 (9)排成前后二排,前排3人,后排4人. 站成两排,其实可以理解为,站成一排后,将后面的人砍到第二 排即可
由此可知:站两排的排法一共有:A77种排法
第二步:将三名男生看成一个元素,与其余4个女生人全排,共有
A55种排法 由分步计数原理可知:3名男生站一起的排法一共有: A33×A55种排法
例2. 有3名男生,4名女生,求下列各有多少种不同站法 (5)全体排成一行,甲、乙两人中间必须有3人. 特殊元素,优先排 第一步:将甲乙中间安排3个人,共有A53种放法
这种排法是要被删掉的
第二步:将乙安排在右端,其余人全排,共有A55种放法 这种排法也是要被删掉的 但是甲在左端且乙在右端的排法有A44,这个排法被减掉2次, 要补回
注意要做到不重不漏
甲不在最左边,乙不在最右边的排法一共有:A66-2A55 +A44种排法
例2. 有3名男生,4名女生,求下列各有多少种不同站法 (1)全体排成一行,其中甲只能在左右两端.
给三个学习兴趣小组去研究,每组一个课题,共有多少种不同
的分法;
人教版高二数学选修2-3第一章计数原理《组合二》
人教版高二数学选修2-3第一章计数原理《组合二》第一章计数原理§1.2.2 组合(二)班级:高二()班学号:姓名:学习目标:1.复习组合的定义、组合数及组合数的公式;2.组合数的性质。
学习重点:组合的定义、组合数及组合数的公式,组合数的性质;学习难点:解组合的应用题.学习过程:评价:复习﹒交流﹒评价组合数的两个性质:性质1:性质2:新知﹒巩固﹒展示例1.一个口袋里装有7个白球和1个红球,从口袋中任取5个球:(1)共有多少种不同的取法?(2)其中恰有一个红球,共有多少种不同的取法?(3)其中不含红球,共有多少种不同的取法?例2.在产品质量检验时,常从产品中抽出一部分进行检查,现在从98件正品和2件次品共100件产品中,任意抽出3件检查:(1)共有多少种不同的抽法?(2)恰有一件是次品,共有多少种不同的抽法?(3)至少有一件是次品,共有多少种不同的抽法?a)b)有次品的抽法有多少种?3.从1 ,3 ,5 ,7 ,9中任取三个数字,从2 ,4 ,6 ,8 中任取两个数字,可以组成多少;c)无重复数字的五位数?d)万位,百位和个位数字是奇数的无重复数字的五位数?e)和不等的加法算式?4.有6名女生,4名男生,从中选出3名女生和2名男生:(1)组成班委会,有多少种不同的选法?(2)选出的5名学生分别担任班委会中的5种不同的工作,有多少种不同的选法?(3)女生担任班长,学习委员和文娱委员,男生担任宣传委员和体育委员,有多少种不同的选法?5.4个不同的小球放入3个分别标有1~3号的盒子中,f)不许有空盒子的放法有多少种?g)允许有空盒子的放法有多少种?6.将6名应届大学毕业生分配到3个公司,a)3个人分到甲公司,2个人分到乙公司,1个人分到丙公司,有多少种不同的分配方案?b)一个公司去3个人,另一个公司去2个人,剩下的一个公司去1个人,有多少种不同的分配方案?B组:7.设北京故宫博物院某日接待游客10000人,如果从这些游客中任意选出10名幸运游客,一共有多少种不同的选择(保留4位有效数字)?若把10份不同的纪念品发给选出的幸运游客每人一份,又有多少种不同的选择?纠错﹒归纳﹒整理评价:组合数的两个性质:性质1:性质2:。
高中数学 第一章 计数原理 1_2 排列与组合 1_2_2_1课件 新人教A版选修2-3
【解析】(1)从口袋里的8个球中任取5个球,不同取法 的种数是
8 7 6 C C 56. 3 2 1 5个球,其中恰有一个红球, (2)从口袋里的8个球中任取
5 8 3 8
可以分两步完成: 第一步,从7个白球中任取4个白球,有 第二步,把1个红球取出,有
主题2:组合数公式与组合数性质 从1,3,5,7中任取两个相除,
1.可以得到多少个不同的商?
提示: =4×3=12个不同的商.
A
2 4
2.如何用分步乘法计数原理求商的个数? 提示:第1步,从这四个数中任取两个数,有
第2步,将每个组合中的两个数排列,有
步乘法计数原理,可得商的个数为
2 C2 A 4 2
4.计算
CA
3 4
3 3
=________.
3 3 3 4
【解析】
答案:24
C A A 4 3 2 24.
3 4
5.一个口袋里装有7个白球和1个红球,从口袋中任取5 个球. (1)共有多少种不同的取法? (2)其中恰有一个红球,共有多少种不同的取法?
(3)其中不含红球,共有多少种不同的取法?
C 28得
2 n
n n 1 2
=28,所以n=8或n=-7(舍).
2.给出下面几个问题,其中是组合问题的是 ①某班选10名同学参加计算机汉字录入比赛;
(
)
②从1,2,3,4中选出2个数,构成平面向量a的坐标; ③从1,2,3,4中选出2个数分别作为实轴长和虚轴长,构
成焦点在x轴上的双曲线的方程;
4 种取法.C 7
种取法;
C1 1
故不同取法的种数是:
4 1 4 C7 C1 C7 C3 7 35. (3)从口袋里任取5个球,其中不含红球,只需从7个白球
高中数学第一章 计数原理教案 1.2.2组合选修2-3
1.2.2组合教学目标:知识与技能:理解组合的意义,能写出一些简单问题的所有组合。
明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。
过程与方法:了解组合数的意义,理解排列数m n A 与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算。
情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。
教学重点:组合的概念和组合数公式教学难点:组合的概念和组合数公式授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪内容分析:排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系. 指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示 5.排列数公式:(1)(2)(1)mn A n n n n m =---+(,,m n N m n *∈≤)6阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=. m n C7.排列数的另一个计算公式:m n A =!()!n n m - 8.提出问题:示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法? 引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合... 二、讲解新课:1组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同例1.判断下列问题是组合还是排列(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共多少个电话?问题:(1)1、2、3和3、1、2是相同的组合吗?(2)什么样的两个组合就叫相同的组合2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m n C 表示. 3.组合数公式的推导:(1)从4个不同元素,,,a b c d 中取出3个元素的组合数34C 是多少呢?启发:由于排列是先组合再排列.........,而从4个不同元素中取出3个元素的排列数34A 可以求得,故我们可以考察一下34C 和34A 的关系,如下:组 合 排列dcbcdb bdc dbc cbd bcd bcd dcacda adc dac cad acd acd dba bda adb dab bad abd abd cbabca acb cab bac abc abc ,,,,,,,,,,,,,,,,,,,,→→→→由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数34A ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有34C 个;② 对每一个组合的3个不同元素进行全排列,各有33A 种方法.由分步计数原理得:34A =⋅34C 33A ,所以,333434A A C =. (2)推广:一般地,求从n 个不同元素中取出m 个元素的排列数m n A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数mn C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C m m A ⋅. (3)组合数的公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==或)!(!!m n m n C mn -=),,(n m N m n ≤∈*且 规定: 01n C =. 三、讲解范例:例2.用计算器计算710C .解:由计算器可得例3.计算:(1)47C ; (2)710C ; (1)解: 4776544!C ⨯⨯⨯==35; (2)解法1:710109876547!C ⨯⨯⨯⨯⨯⨯==120. 解法2:71010!10987!3!3!C ⨯⨯===120. 例4.求证:11+⋅-+=m n m n C mn m C . 证明:∵)!(!!m n m n C m n -= 111!(1)!(1)!m n m m n C n m n m m n m +++⋅=⋅--+-- =1!(1)!()(1)!m n m n m n m +⋅+--- =!!()!n m n m - ∴11+⋅-+=m n m n C mn m C 例5.设,+∈N x 求321132-+--+x x x x C C 的值 解:由题意可得:⎩⎨⎧-≥+-≥-321132x x x x ,解得24x ≤≤, ∵x N +∈, ∴2x =或3x =或4x =,当2x =时原式值为7;当3x =时原式值为7;当4x =时原式值为11.∴所求值为4或7或11.例6. 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(l)这位教练从这 17 名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于( 2 ) ,守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解: (1)由于上场学员没有角色差异,所以可以形成的学员上场方案有 C }手= 12 376 (种) .(2)教练员可以分两步完成这件事情:第1步,从17名学员中选出 n 人组成上场小组,共有1117C 种选法;第2步,从选出的 n 人中选出 1 名守门员,共有111C 种选法.所以教练员做这件事情的方法数有1111711C C ⨯=136136(种). 例7.(1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?解:(1)以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有 2101094512C ⨯==⨯(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有21010990A =⨯=(条).例8.在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种?(3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有 31001009998123C ⨯⨯=⨯⨯= 161700 (种). (2)从2 件次品中抽出 1 件次品的抽法有12C 种,从 98 件合格品中抽出 2 件合格品的抽法有298C 种,因此抽出的 3 件中恰好有 1 件次品的抽法有12298C C ⋅=9506(种). (3)解法 1 从 100 件产品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有12298C C ⋅种,因此根据分类加法计数原理,抽出的3 件中至少有一件是次品的抽法有12298C C ⋅+21298C C ⋅=9 604 (种) .解法2 抽出的3 件产品中至少有 1 件是次品的抽法的种数,也就是从100件中抽出3 件的抽法种数减去3 件中都是合格品的抽法的种数,即3310098C C -=161 700-152 096 = 9 604 (种). 说明:“至少”“至多”的问题,通常用分类法或间接法求解。
选修2-3人教A数学课件:第1章 计数原理 1.2.2 第2课时
•如果你买的一注彩票与这7个数码全部一 样(不管顺序)就中特等奖,如果6个一样就 中一等奖,以此类推.有人想,这么高的 奖金为何不全部买下来呢?问题是,如果 全部买下来需要买多少注呢?每注两元, 一共要花多少钱呢?这样的问题如何计算 呢?它需要用到什么数学知识呢?这是一 个组合计数问题,如何利用组合数公式来 解决此问题呢?
• 3.在同一个平面内有一组平行线共8条, 另一组平行线共10条,这两组平行线相互 不平行. 1260
• (1)它们80共能构成________个平行四边形 ;[解析] (1)第一组中每两条与另一组中的每两条直线均能构成一个平行四边
形• ,(故2共)共有 C有28C210_=_12_60_(个_)._个交点.
• ④“含”与“不含”某元素的分类讨论思 想.
• 2.解答排列、组合综合问题的一般思路和 注意点
• (1)一般思路:“先选后排”,也就是把符 合题意的元素都选出来,再对元素或位置 进行排列.
• (2)注意点:①元素是否有序是区分排列与 组合的基本方法,元素无序是组合问题, 元素有序是排列问题.
• ②对于有多个限制条件的复杂问题,应认 真分析每个限制条件,然后再考虑是分类
D.472种
其中两张红色卡片的共有 C24C112=72 种取法,
故所求的取法共有 560-16-72=472 种.故选 D.
• 2.某班级要从4名男生、2名女生中选派4 人参加某次社区服务,如果要求至少有1A名 女生,那么不同的选派方案种数为 (
)
• •
AC[解..析]124用8间接法得不同BD选..法有24C4846-1=14 种,故选 A.
• 1.有限制条件的组合问题
• (1)解答组合应用题的总体思路
2019-2020学年人教A版高中数学选修2-3课件:第1章 计数原理1.2.2(2)
计数原理
1.2 排列与组合 1.2.2 组合(二)
课前 教材预案 课堂 深度拓展 课末 随堂演练 课后 限时作业
课前教材预案
要点 求解组合问题的常用方法
• 常用的方法分直接法与间接法两大类.所谓直接法,就是利 用分类或者分步计数原理,准确地分类或者分步,直接计算 出结果;所谓的间接法,则是采用迂回战术,先求出不受限 制条件下的组合数,再减去不符合题意的组合数的方法.
第一类,这 4 人全部入选,另一组 4 人由余下的 8 人中任选 4 人组成,有 C44C48=70 种方法;
第二类,这 4 人中恰有 3 人入选日语翻译小组,必 有 1 名“双面手”入选日语翻译小组,有 C34C12C47=280 种方法;
第三类,这 4 人中恰有 2 人入选日语翻译小组,必 有 2 名“双面手”都入选日语翻译小组,有 C24C22C46=90 种方法;
• 【例题2】 车间有11名工人,其中5名是钳工,4名是车工, 另外2名既能做钳工又能做车工,从中选出4名钳工4名车工, 问有多少种不同方法?
• 思维导引:可以从“既会钳工又会车工”的2名工人考虑分 类求解,也可以从“只会钳工”的5名工人考虑分类求解.
解析 方法一 以“既会钳工又会车工”的 2 人(记 为 A,B)来考虑分类,A,B 都不在内,有选法 C45C44=5 种;A,B 都在内时又分“都做钳工”“都做车工”“一 个做钳工一个做车工”三类,合计有选法 C22C25C44+C22C45 C24+A22C35C34=120 种;A,B 仅有一人在内,又有“做钳 工”和“做车工”两种选择,此时有选法 C12C35C44+C12C45 C34=60 种.由分类加法计数原理,合计共有不同的选法 185 种.
第三类:共线的 4 个点中没有点为三角形的顶点, 共有 C38=56 个不同的三角形.
2019_2020学年高中数学第一章计数原理1.2排列与组合1.2.2组合第2课时组合的综合应用课件新人教A版选修2_3
拓展提升 解答有限制条件的组合问题的基本方法是“直接法”和“间接法(排除 法)”,其中用直接法求解时,应依据“特殊元素优先安排”的原则,即优先 安排特殊元素,再安排其他元素.而选择间接法的原则是“正难则反”,也 就是若正面问题分类较多、较复杂或计算量较大时,不妨从反面问题入手, 试一试看是否简单些,特别是涉及“至多”“至少”等组合问题时更是如 此.此时正确理解“都不是”“不都是”“至多”“至少”等词语的确切含 义是解决这些组合问题的关键.
答案
探究2 与几何有关的组合问题 例 2 如图,在以 AB 为直径的半圆周上,有异于 A,B 的六个点 C1,C2, C3,C4,C5,C6,直径 AB 上有异于 A,B 的四个点 D1,D2,D3,D4.
问:(1)以这 10 个点中的 3 个点为顶点作三角形可作多少个?其中含 C1 点的有多少个?
2.做一做 (1)4 种不同的种子,选出 3 块不同的土地,每一块地只能种一种,则不 同的种法有________种. (2)从 3 名女生、4 名男生中选 4 人担任奥运会志愿者,若选出的 4 人中 既有男生又有女生,则不同的选法共有________种. (3)将 6 名教师分到 3 所中学任教,一所 1 名,一所 2 名,一所 3 名,则 有________种不同的分法. 答案 (1)24 (2)34 (3)360
[解] (1)第一步:选 3 名男运动员,有 C63种选法;第二步:选 2 名女运 动员,有 C24种选法,故共有 C36·C42=120 种选法.
(2)解法一:(直接法)“至少有 1 名女运动员”包括以下几种情况,1 女 4 男,2 女 3 男,3 女 2 男,4 女 1 男.
由分类加法计数原理知共有 C41·C46+C24·C63+C43·C26+C44·C61=246 种选法.
高中数学选修2-3(人教A版)第一章计数原理1.2知识点总结含同步练习及答案
1 6 7 12 C0 12 < C12 < ⋯ < C12 > C12 > ⋯ > C12 ,所以 2x − 3 ⩾ 5 且 2x ⩽ 12 解得 4 ⩽ x ⩽ 6.
高考不提分,赔付1万元,关注快乐学了解详情。
− A5 9
= =
8 × 7 × 6 × 5 × (8 + 7) 8 × 7 × 6 × 5 × (24 − 9) = 1.
2×8×7×6×5×4+7×8×7×6×5 8×7×6×5×4×3×2×1−9×8×7×6×5
(3)根据原方程,可得
3x(x − 1)(x − 2) = 2(x + 1)x + 6x(x − 1).
0 10 (1)计算:C5 10 ⋅ C10 − C10 ; m−1 (2)证明:mCm n = nCn−1 .
解:(1)原式= (2)证明:因为
10 × 9 × 8 × 7 × 6 × 1 − 1 = 252 − 1 = 251 ; 5×4×3×2×1
Cm n =
n! , m!(n − m)! (n − 1)! n(n − 1)! n m−1 n n! ⋅ = = . Cn−1 = m m (m − 1)!(n − m)! m ⋅ (m − 1)!(n − m)! m!(n − m)!
正整数 1 到 n 的连乘积,叫做 n 的阶乘,用 n! 表示.另外,我们规定 0! = 1 .所以排列数公 式还可以写成
Am n =
(n − m)!
n!
.
组合的定义 一般地,从 n 个不同元素中取出 m (m ⩽ n )个元素合成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合(combination). 组合数及组合数的公式 从 n 个不同元素中取出 m (m ⩽ n )个元素的所有不同组合的个数,叫做从 n 个不同元素中取 出 m 个元素的组合数,用符号 Cm n 表示.
高中数学选修2-3 第1章 计数原理第一章1.2.2(二)
方式.
研一研·题型解法、解题更高效
小结
本 课 时 栏 目 开 关
(1)解简单的组合应用题时, 首先要判断它是不是组合问
题, 组合问题与排列问题的根本区别在于排列问题与取出元素 之间的顺序有关,而组合问题与取出元素的顺序无关. (2)要注意两个基本原理的运用, 即分类与分步的灵活运用, 在 分类和分步时,一定要注意有无重复或遗漏.
本 课 时 栏 目 开 关
________ 90 条.
解析
2 (1)C10 =45;
(2)A2 10=90.
试一试·双基题目、基础更牢固
3.判断下列问题哪个是排列问题,哪个是组合问题,并回顾排列 和组合的区别和联系: (1)从 A、B、C、D 四个景点选出 2 个进行游览;
本 课 时 栏 目 开 关
本 课 时 栏 目 开 关
1.若集合 M={x|Cx 7≤21},则组成集合 M 的元素的个数为( C ) A.1 B. 3 C.6 D.7
试一试·双基题目、基础更牢固
2 . (1) 平面内有 10 个点,以其中每 2 个点为端点的线段共有
45 条; ________
(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有
研一研·题型解法、解题更高效
跟踪训练 1
7 名志愿者中安排 6 人在周六、周日两天参加社
区公益活动.若每天安排 3 人,则不同的安排方案共有
本 课 时 栏 目 开 关
________ 140 种.(用数字作答)
解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②α 内 2 点,β 内 1 点确定的平面,有 C2 C1 4· 6个. ③α,β 本身.
2 2 1 故所作的平面最多有 C1 · C + C C6+2=98(个) 4 6 4·
答:最多可作 98 个不同的平面.
(3)∵当等底面积,等高的情况下三棱锥体积才能相等.
内6点都无3点共线情况.由于过不共线三点的平面与点的
顺序无关,因此这是一组合问题.
(2)因为所作棱锥要最多,故α,β两平面内的点无3点
共线情况.由于一个棱锥与顶点顺序无关,所以它是组合
问题. (3) 在(2) 的基础上必须同时等底面积,等高的棱锥体 积才能相等.
【解】 (1)所作出的平面有三类:
1 2 C1 C 4 3 C2 各 1 个,另一组 2 个,分组方法有 2 种,然后将这三组 A2 1 2 C1 4C3C2 4 再加上一个空盒进行全排列,即共有 A2 · A4=144(种). 2
已知平面α∥平面 β ,在 α内有4 个点,在 β 内
有6个点,
(1)过这10个点中的3点作一平面,最多可作多少个不 同平面? (2)以这些点为顶点,最多可作多少个三棱锥? (3)上述三棱锥中最多可以有多少个不同的体积? 【分析】 (1)因为所作平面必须最多,故α内4点和β
法.
1.本题中的每一个小题都提出了一种类型的问题, 搞清楚类型的归属对解题大有裨益.要分清是分组问题还 是分配问题,这个是很关键的. 2.分组问题属于“组合”问题,常见的分组问题有 三种: (1)完全均匀分组,每组的元素个数均相等;
(2)部分均匀分组,应注意不要重复,有n组均匀,最
后必须除以n!;
【解】
2 2 2 (1)根据分步计数原理得到:C6 C4C2=90(种).
2 2 2 (2)分给甲、乙、丙三人,每人两本有 C6 C4C2种方法,这
个过程可以分两步完成:第一步分为三份,每份两本,设有 x 种方法;第二步再将这三份分给甲、乙、丙三名同学有 A3 3
2 2 3 种方法.根据分步计数原理可得:C2 C C = x A 6 4 2 3,所以 x = 2 2 C2 6C4C2 3 =1
(2)“至少”的含义是不低于,有两种解答方法,
解法一:(直接法)按选取的外科专家的人数分类:
4 ①选 2 名外科专家,共有 C2 · C 4 6种选法;
②选 3 名外科专家,共有 C3 C3 4· 6种选法;
2 ③选 4 名外科专家,共有 C4 · C 4 6种选法; 4 3 3 4 2 根据分类加法计数原理,共有 C2 · C + C · C + C C6= 4 6 4 6 4·
条件的卡片后还需排列,这是易错点.
(2010 · 湖南高考 ) 在某种信息传输过 程中,用 4 个数字的一个排列 ( 数字允许重复 ) 表示一个信
息,不同排列表示不同信息.若所用数字只有0和1,则与
的综合问题.
【解析】 分 3 类:第 1 类,当取出的 4 张卡片分别标
1 1 1 4 有数字 1,2,3,4 时,不同的排法有 C1 · C C2· C2· A4种; 2 2·
第 2 类,当取出的 4 张卡片分别标有数字 1,1,4,4 时,不 同的排法有 C2 C2 A4 2· 2· 4种; 第 3 类,当取出的 4 张卡片分别标有数字 2,2,3,3 时,不
先分类后分步的原则.明确以下三点;①整体分类.对事 件进行整体分类,从集合的意义讲,分类要做到各类的并 集等于全集,以保证分类的不遗漏,任意两类的交集等于 空集,以保证分类的不重复,计算结果是使用分类加法计
数原理;
②局部分步.整体分类以后,对每一类进行局部分步, 分步要做到步骤连续,以保证分步的不遗漏,同时步骤要
6 本不同的书,按下列要求各有多少种不同 的选法: (1)分给甲、乙、丙三人,每人两本; (2)分为三份,每份两本; (3)分为三份,一份一本,一份两本,一份三本;
(4) 分给甲、乙、丙三人,一人一本,一人两本,一
人三本;
(5)分给甲、乙、丙三人,每人至少一本.
【分析】
(1) 是平均分组问题,与顺序无关,相当
5 ②有 1 名外科专家参加,有 C1 · C 4 6种选法; 4 ③有 2 名外科专家参加,有 C2 · C 4 6种选法. 1 5 所以共有 C6 C6+C2 C4 6+C4· 4· 6=115(种)抽调方法.
解答有限制条件的组合问题的基本方法是“直接法” 和“间接法(排除法)”.其中用直接法求解时,则应坚持 “特殊元素优先选取”的原则,优先安排特殊元素的选取,
2.“至少”或“最多”含有几个元素的题型:解这
类题必须十分重视“至少”与“最多”这两个关键词的含 义,谨防重复与漏解.用直接法和间接法都可以求解,但 通常用直接法分类较繁杂时,考虑逆向思维,用间接法处 理.
1.处理排列、组合综合题时,应遵循三大原则,掌握 基本类型,突出转化思想.
三大原则是:先特殊后一般的原则、先取后排的原则、
“抗震救灾,众志成城”,在我国四川 “5·12”抗震救灾中,某医院从10名医疗专家中抽调6名
奔赴赈灾前线,其中这 10 名医疗专家中有 4 名是外科专
家.问: (1) 抽调的 6 名专家中恰有 2 名是外科专家的抽调方法 有多少种?
(2)至少有2名外科专家的抽调方法有多少种? (3)至多有2名外科专家的抽调方法有多少种?
(3)完全非均匀分组,这种分组不考虑重复现象. 3.分配问题属于“排列”问题,分配问题可以按要
求逐个分配,也可以分组后再分配.
四个不同的小球放入编号为1,2,3,4的 四个盒子中,恰有一个空盒的放法有多少种?
解: 恰有一个空盒,则另外三个盒子中小球数分别为 1,1,2,实际上可转化为先将四个不同的小球分为三组,两组
有4张分别标有数字1,2,3,4的红色卡片和4张 分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张
卡片排成一行.如果取出的4张卡片所标的数字之和等于
10,则不同的排法共有________种(用数字作答). 【分析】 取出的4 张卡片所标的数字之和等于10,
注意到:1+2+3+4=1+1+4+4=2+2+3+3=10,据 此进行分类,又取出卡片还要排序,因此这是排列与组合
1 2 3 (3)这是“不均匀分组”问题,一共有 C6 C5C3=60(种)方
法.
2 3 3 (4)在(3)的基础上再进行全排列,所以一共有 C1 C 6 5C3A3
=360(种)方法. (5)可以分为三类情况:①“2、2、2 型”即(1)中的分配
2 2 情况,有 C2 C 6 4C2=90(种)方法;②“1、2、3 型”即(4)中的 2 3 3 分配情况,有 C1 6C5C3A3=360(种)方法;③“1、1、4 型”, 3 有 C4 A 6 3=90(种)方法.所以一共有 90+360+90=540(种)方
(1)没有次品;
(2)恰有两件是次品; (3)至少有两件是次品.
解:(1)没有次品的抽法就是从 97 件正品中抽取 5 件的 抽法,共有 C5 97=64 446 024(种). (2)恰有 2 件是次品的抽法就是从 97 件正品中抽取 3 件,
2 并从 3 件次品中抽 2 件的抽法,共有 C3 C 97 3=442 320(种).
2 4 同的排法有 C2 · C A4种. 2 2·
故满足题意的所有不同的排法共有 C 1 C1 C1 C1 A4 2· 2· 2· 2· 4+
2 4 2C2 · C · A 2 2 4=432(种). 【答案】 432
本题在求解时需注意两点:一是如何分类,分成几类,
这里“数字之和为10”即为问题的突破口;二是选出满足
独立,以保证分步的不重复,计算每一类的相应结果时,
使用分步乘法计数原理:③考查顺序、无序的问题,用组 合解答;有序的问题属排列问题. 2.基本类型主要包括:排列中的“在与不在”问题, “相邻不相邻”问题,组合中的“含与不含”问题,“分
组与不分组”问题.转化思想就是把一些排列、组合问题
通过合理的分类或分步将其与基本类型相联系,从而把这 些问题转化为基本类型,然后加以解决.
2 ①α 内 1 点,β 内 2 点确定的平面,有 C1 · C 4 6个.
②α 内 2 点,β 内 1 点确定的平面,有 C2 C1 4· 6个. ③α,β 本身.
2 2 1 故所作的平面最多有 C1 · C + C C6+2=98(个) 4 6 4·
答:最多可作 98 个不同的平面.
【解】 (1)所作出的平面有三类:
(2) 以正方体的顶点为顶点,可以确定多少个四棱锥?
4 解:(1)正方体 8 个顶点可构成 C8 个四点组,其中共面
的四点组有正方体的 6 个表面和正方体相对棱分别所在 6 个 平面的四个顶点,故可以确定的四面体有 C4 8-12=58(个).
(2)由(1)知,正方体共面的四点组有 12 个,以这个四点 组构成的四边形为底面,以其余的四个点中任意一点为顶点 都可以确定一个四棱锥,故可以确定四棱锥 12C1 4=48(个).
185(种)抽调方法.
6 解法二:(间接法)不考虑是否有外科专家,共有 C10 种选
法,考虑选取 1 名外科专家参加,有 C1 C5 4· 6种选法;没有外 科专家参加,有 C6 6种选法,所以共有:
1 5 6 C6 - C · C - C 10 4 6 6=185(种)抽调方法.
(3)“至多 2 名”包括“没有”、 “有 1 名”、 “有 2 名” 三种情况,分类解答. ①没有外科专家参加,有 C6 6种选法;
第2课时
组合的综合应用
1 .进一步理解组合的定义,掌握组合数的计算公 式.
2.会解决一些简单的组合问题.
3.体会简单的排列组合综合问题.
1.“含有”或“不含有”某些元素的组合题型: “含”, 则先将这些元素取出,再由另外元素补足,“不含”,则先 将这些元素剔除,再从剩下的元素中去选取.如:现从 5 位 男同学、4 位女同学中选出 5 名代表,若男甲、女 A 都必须 当选,有多少种不同的选法?由于男甲、女 A 必须当选,只 需从剩下 7 人中任选 3 人即可满足题目的要求,故有 C3 7= 35(种)不同的选法.