山西省长治市七年级上学期数学12月月考试卷
-七年级上12月月考数学试题含答案.doc
七年级十二月份月考数学卷(满分120分,考试时间90分钟)班级姓名总分一、选择题(共10小题,每小题3分,满分30分)1、下列方程为一元一次方程的是( )A.y+3= 0 B.x+2y=3 C.x2=2x D.2、方程6x﹣8=8x﹣4的解是( )A.2 B.﹣2 C.6 D.﹣63、方程的解是()A. 1;B. 无数个;C. 0;D. 无解;4、某同学骑车从学校到家,每分钟行150米,某天回家时,速度提高到每分钟200米,结果提前5分钟到家,设原来从学校到家骑x分钟,则列方程为()A. 150x =200(x+5);B. 150x =200(x-5);C. 150(x+5) =200x;D. 150(x-5)=200x;5、下列说法正确的是()A. 棱柱的侧面可以是正方形,也可以是三角形。
B. 一个几何体的表面不可能只有曲面组成。
C. 棱柱的各条棱都相等。
D. 圆锥是由平面和曲面组成的几何体。
6、在墙壁上固定一根横放的木条不会摇动,则至少需要钉子的枚数是 ( )A.1枚 B.2枚 C.3枚 D.任意枚7、已知∠AOB=50°,∠COB=30°,则∠AOC等于()A. 80°;B.20°;C. 80°或20°;D. 无法确定;8、下列结论中,不正确的是()A.两点确定一条直线 B. 两点之间,直线最短C.等角的余角相等 D. 等角的补角相等9、下列作图语句正确的是()A. 延长线段AB到C,使AB=BC;B. 延长射线AB;C. 过点A作AB//CD//EF;D. 作AOB的平分线OC。
10、X+2X+3X+4X+5X+…………+97X+98X+99X+100X=5050,X的解是()A.0B.1C.-1D.10二、填空题(本大题6小题,每小题4分,共24分)11、如下图,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的倍。
七年级上册数学12月月考试卷(有答案)
2019年七年级上册数学12月月考试卷(有答案) 以下是查字典数学网为您推荐的2019年七年级上册数学12月月考试卷(有答案),希望本篇文章对您学习有所帮助。
2019年七年级上册数学12月月考试卷(有答案)数学科试卷注:l、本卷共4页,满分:100分,考试时间:90分钟;2、解答写在答题卷上,监考教师只收答题卷。
一、选择题(10小题,每小题3分,共30分、每小题四个选项中,只有一个是正确的,请将正确的选项序号填在右边的圆括号内、)1、假如收入300元记作+300元,那么支出180元记作()、A、+180元B。
﹣80元 C、 +80元 D。
﹣180元2。
某市2月份某天的最高气温是15℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是()。
A、-12℃B。
18℃ C、-18℃ D、12℃3、用一个平面去截一个几何体,截面是三角形,这个几何体不估计是( )A、三棱柱B、正方体C、圆锥D、圆柱4、如图,C、D是线段AB上两点,若BC=3cm,BD=5cm,且D是AC的中点,则AC的长等于( )A、2cmB、4cm C。
8cm D、13cm5。
假如代数式与是同类项,那么m的值是( )A、0B。
1 C。
D、36、如图,在数轴上点A表示的数估计是()A、﹣2B、-2、5C、—3、5 D、﹣2。
97、如图,将正方体的平面展开图重新折成正方体后,岛字对面的字是( )A、钓B、属 C。
中D、国8、有资料表明,被称为地球之肺的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为( )A。
B、C、 D、9、2时30分,时针与分针所夹的锐角是( )A、 B。
C、 D、10、观察下列算式: , 依照上述算式中的规律,您认为的末位数字是( )。
A、2 B、4 C、6 D。
8二、填空题(5小题,每小题3分,共15分。
)11、单项式的系数为________________。
12、比较大小: (用、或=填写)13、如图,不同的角的个数共有___________个、14、把一根木条固定在墙上,至少要钉2颗钉子,这是依照。
山西省七年级上学期数学12月月考试卷
山西省七年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2021·东丽模拟) 计算的值是()A .B . 6C .D . 122. (2分)(2021·射阳模拟) 下列运算正确的是()A .B .C .D .3. (2分)若x=y,且a≠0,这下列各式中不一定正确的是()A . ax=ayB . x+a=y+aC . =D . =4. (2分) (2020七上·利川月考) 关于的方程的解为,则的值为()A .B .C .D .5. (2分)为做一个如图所示的试管架,在一根长为acm的木条上钻了4个圆孔,每个孔的直径为2cm,则x 等于()A . cmB . cmC . cmD . cm6. (2分) (2021七上·西安期末) 如图为正方体的展开图,每个面都标有汉字,那么在原正方体中与“文”字所在面相对面上的字为()A . 创B . 建C . 西D . 安7. (2分)(2018·北京) 下列几何体中,是圆柱的为()A .B .C .D .8. (2分)如图,从左面看圆柱,则图中圆柱的投影是()A . 圆B . 矩形C . 梯形D . 圆柱二、填空题 (共8题;共9分)9. (1分)(2019·广西模拟) 3-2 的相反数是,的倒数是10. (1分)(2017·景泰模拟) 据了解,地下综合管廊是建于城市地下用于敷设市政公用管线的公用设施,该系统不仅解决城市交通拥堵问题,还极大方便了电力、通信、燃气、供排水等市政设施的维护和检修.2015年4月8日,白银市被国家确定为全国地下综合管廊试点城市,8月9日,项目采取政府和社会资本合作的PPP模式开工建设,项目总投资22.38亿元.请将22.38亿元用科学记数法表示并保留3个有效数字为元.11. (1分)下列四个方程x-1=0 ,a+b=0, 2x=0 , =1中,是一元一次方程的有。
七年级上(12月)月考数学试卷(含答案)
七年级上(12月)月考数学试卷(含答案)一、选择题1.﹣的相反数是()A.2 B.﹣2 C.D.﹣2.单项式﹣3xy2的系数和次数分别为()A.3,1 B.﹣3,1 C.3,3 D.﹣3,33.下列各组中的两个单项式不属于同类项的是()A.3m2n3和﹣m2n3B.﹣1和 C.a3和x3D.﹣和25xy4.下面图形中,三棱柱的平面展开图为()A.B.C.D.5.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦6.将方程﹣=2进行变形,结果正确的是()A.﹣=2 B.﹣=20C.﹣=20 D.5(x+4)﹣2(x﹣3)=27.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元8.由一些大小相同的小正方体搭成的几何体的主视图与左视图如图所示,搭成这个几何体的小正方体的个数不可能为()A.10 B.9 C.8 D.7二、填空题9.比较大小:.10.2016年“双十一”购物活动中,某电商平台全天总交易额达1207亿元,用科学记数法表示为元.11.已知x=2是方程11﹣2x=ax﹣1的解,则a=.12.若单项式ax2y n+1与﹣ax m y4的差仍是单项式,则m﹣2n=.13.已知整式x2﹣2x+6的值为9,则6﹣2x2+4x的值为.14.一个立体图形的三视图如图所示,请你根据图中给出的数据求出这个立体图形的表面积为.15.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲总共做了多少小时?设甲共计做了x小时,可列方程为.16.已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm.则线段AC=cm.17.有一个程序机(如图),若输入4,则输出值是2,记作第一次操作;将2再次输入,则输出值是1,记作第二次操作…,则第2016次操作输出的数是.18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的16个点最多可确定条直线.三、解答题(共96分)19.(8分)计算:(1)(﹣+)×45(2)﹣24﹣2×(﹣3)+|2﹣5|﹣(﹣1)2013.20.(8分)解方程:(1)x﹣(7﹣8x)=3(x﹣2)(2)﹣=﹣1.21.(8分)先化简,再求值:4ab﹣a2﹣[2(a2+ab)﹣3(a2﹣b2)],其中(a+)2+|b﹣3|=0.22.如图,A、B、C、D四点不在同一直线上,读句画图.(1)画射线DA;(2)画直线CD;(3)连结AB、BC;(4)延长BC,交射线DA的反向延长线于E.23.如图,在直线l上找一点P,使得PA+PB的和最小,并简要说明理由.(保留作图痕迹)24.(8分)如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB的长度.25.(10分)如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加个小正方体.26.(10分)用一元一次方程解决问题:爸爸买了一箱苹果回家,小芳想分给家里的每一个人,如果每人分3个,就剩下3个苹果分不完,如果每人分4个,则还差2个苹果才够分,问小芳家有几个人?爸爸买了多少个苹果?小刚与小明分别用两种设未知数的方法都解决了上述问题,请你将两种方法都详细的写出来.27.(10分)当m为何值时,关于x的方程3x+m=2x+7的解比关于x的方程4(x﹣2)=3(x+m)的解大9?28.(12分)我市城市居民用电收费方式有以下两种:(甲)普通电价:全天0.53元/度;(乙)峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度.估计小明家下月总用电量为200度,(1)若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)请你帮小明计算,峰时电量为多少度时,两种方式所付的电费相等?(3)到下月付费时,小明发现那月总用电量为200度,用峰谷电价付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?29.(14分)已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.七年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题1.﹣的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.单项式﹣3xy2的系数和次数分别为()A.3,1 B.﹣3,1 C.3,3 D.﹣3,3【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3xy2的系数和次数分别为:﹣3,3.故选:D.【点评】此题主要考查了单项式,正确把握单项式的次数与系数的定义是解题关键.3.下列各组中的两个单项式不属于同类项的是()A.3m2n3和﹣m2n3B.﹣1和 C.a3和x3D.﹣和25xy【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:A 字母相同,且相同的字母的指数也相同,故A是同类项;B 常数项也是同类项,故B是同类项;C 字母不同,故C不是同类项;D 字母相同,且相同的字母的指数也相同,故D是同类项;故选:C.【点评】本题考查了同类项,注意常数项也是同类项.4.下面图形中,三棱柱的平面展开图为()A.B.C.D.【考点】几何体的展开图.【分析】根据三棱柱的展开图的特点作答.【解答】解:A、是三棱柱的平面展开图,故选项正确;B、不是三棱柱的展开图,故选项错误;C、不是三棱柱的展开图,故选项错误;D、两底在同一侧,也不符合题意.故选:A.【点评】熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.5.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选:D.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.将方程﹣=2进行变形,结果正确的是()A.﹣=2 B.﹣=20C.﹣=20 D.5(x+4)﹣2(x﹣3)=2【考点】解一元一次方程.【分析】方程整理后,去分母得到结果,即可做出判断.【解答】解:方程﹣=2进行变形得:﹣=2,即5(x+4)﹣2(x﹣3)=2,故选:D.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.7.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【考点】一元一次方程的应用.【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x 元, 由题意得:330×0.8﹣x=10%x ,解得:x=240,即这种商品每件的进价为240元. 故选:A .【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.8.由一些大小相同的小正方体搭成的几何体的主视图与左视图如图所示,搭成这个几何体的小正方体的个数不可能为( )A .10B .9C .8D .7【考点】由三视图判断几何体.【分析】根据三视图的知识,主视图是由5个小正方形组成,而左视图是由5个小正方形组成,故这个几何体的底层最少有4个,最多有6个小正方体,第2层有2个小正方体,第三层有1个.【解答】解:根据左视图和主视图,这个几何体的底层最少有4个小正方体,最多有6个小正方体,第二层有2个小正方体,第三层有1个,所以最多有6+2+1=9个小正方体,最少有4+2+1=7个小正方体, 故选:A .【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.二、填空题9.比较大小:>.【考点】有理数大小比较.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.【解答】解:∵|﹣|==,|﹣|==,而<,∴﹣>﹣.故答案为:>.【点评】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.10.2016年“双十一”购物活动中,某电商平台全天总交易额达1207亿元,用科学记数法表示为 1.27×1011元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:1207亿=1.27×1011.故答案为:1.27×1011.【点评】此题考查科学记数法的表示方法.关键要正确确定a的值以及n的值.11.已知x=2是方程11﹣2x=ax﹣1的解,则a=4.【考点】一元一次方程的解.【分析】根据一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解,故把方程的解x=2代入原方程,得到一个关于a的方程,再解出a的值即可得答案.【解答】解:∵x=2是方程11﹣2x=ax﹣1的解,∴11﹣2×2=a×2﹣1,11﹣4=2a﹣1,2a=8,a=4,故答案为:4.【点评】此题主要考查了一元一次方程的解,关键是把握准一元一次方程的解的定义.12.若单项式ax2y n+1与﹣ax m y4的差仍是单项式,则m﹣2n=﹣4.【考点】合并同类项.【分析】根据差是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的减法,可得答案.【解答】解:∵单项式与的差仍是单项式,∴单项式与是同类项,m=2,n+1=4,n=3,m﹣2n=2﹣2×3=﹣4,故答案为:﹣4.【点评】本题考查了合并同类项,先根据差是单项式,得出它们是同类项,求出m、n的值,再求出答案.13.已知整式x2﹣2x+6的值为9,则6﹣2x2+4x的值为0.【考点】代数式求值.【分析】先将x2﹣2x+6=9进行适当的变形,然后代入原式即可求出答案.【解答】解:∵x2﹣2x+6=9,∴x2﹣2x=3,∴原式=6﹣2(x2﹣2x)=6﹣6=0,故答案为:0【点评】本题考查代数式求值,涉及整体的思想.14.一个立体图形的三视图如图所示,请你根据图中给出的数据求出这个立体图形的表面积为8π.【考点】由三视图判断几何体.【分析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积.【解答】解:∵正视图和俯视图是矩形,左视图为圆形,∴可得这个立体图形是圆柱,∴这个立体图形的侧面积是2π×3=6π,底面积是:π•12=π,∴这个立体图形的表面积为6π+2π=8π;故答案为:8π.【点评】此题考查了由三视图判断几何体,根据三视图的特点描绘出图形是解题的关键,掌握好圆柱体积公式=底面积×高.15.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲总共做了多少小时?设甲共计做了x小时,可列方程为+=1.【考点】由实际问题抽象出一元一次方程.【分析】设甲共计做了x小时,等量关系为:甲完成的工作量+乙完成的工作量=1,依此列出方程即可.【解答】解:设甲共计做了x小时,根据题意得+=1.故答案为+=1.【点评】本题考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.16.已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm.则线段AC=20或10cm.【考点】两点间的距离.【分析】根据题意画正确图形:分两种情况①点C在点B的左边;②点C在点B的右边.【解答】解:①由图示可知AC=AB﹣BC=15﹣5=10(cm);②由图示可知AC=AB+BC=15+5=20(cm)故答案是:10或20.【点评】本题考查了两点间的距离,属于基础题,正确的画图是解答的基础.17.有一个程序机(如图),若输入4,则输出值是2,记作第一次操作;将2再次输入,则输出值是1,记作第二次操作…,则第2016次操作输出的数是4.【考点】代数式求值.【分析】根据运算程序计算出每一次输出的结果,然后根据每3次为一个循环组依次循环,用2016除以3,根据商和余数的情况确定答案即可.【解答】解:第一次输出:×4=2,第二次输出:×2=1,第三次输出:1+3=4,第四次输出:×4=2,第五次输出:×2=1,…,每3次输出为一个循环组依次循环,∵2016÷3=672,∴第2016次操作输出的数是第672个循环组的第3次输出,结果是4.故答案为:4.【点评】本题考查了代数式求值,根据运算程序计算出每3次为一个循环组依次循环是解题的关键.18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的16个点最多可确定120条直线.【考点】直线的性质:两点确定一条直线.【分析】根据每两个点之间有一条直线,可得n个点最多直线的条数:.【解答】解:若平面内的不同的16个点最多可确定=120条直线,故答案为:120.【点评】本题考查了直线、射线、线段,熟记n个点最多直线的条数:是解题关键.三、解答题(共96分)19.计算:(1)(﹣+)×45(2)﹣24﹣2×(﹣3)+|2﹣5|﹣(﹣1)2013.【考点】有理数的混合运算.【分析】(1)应用乘法分配律,求出算式的值是多少即可.(2)根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:(1)(﹣+)×45=×45﹣×45+×45=5﹣30+27=2(2)﹣24﹣2×(﹣3)+|2﹣5|﹣(﹣1)2013=﹣16+6+3﹣(﹣1)=﹣10+3+1=﹣6【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.解方程:(1)x﹣(7﹣8x)=3(x﹣2)(2)﹣=﹣1.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7+8x=3x﹣6,移项合并得:6x=1,解得:x=;(2)去分母得:9x+3﹣5x+3=﹣6,移项合并得:4x=﹣12,解得:x=﹣3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.先化简,再求值:4ab﹣a2﹣[2(a2+ab)﹣3(a2﹣b2)],其中(a+)2+|b﹣3|=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=4ab﹣a2﹣2a2﹣2ab+3a2﹣3b2=2ab﹣3b2,∵(a+)2+|b﹣3|=0,∴a=﹣,b=3,则原式=﹣3﹣27=﹣30.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.如图,A、B、C、D四点不在同一直线上,读句画图.(1)画射线DA;(2)画直线CD;(3)连结AB、BC;(4)延长BC,交射线DA的反向延长线于E.【考点】直线、射线、线段.【分析】根据直线、线段和射线的画法按要求画出图形即可.【解答】解:如图:【点评】本题考查了直线、射线、线段的概念及表示方法:直线用一个小写字母表示,如:直线l,或用两个大些字母(直线上的)表示,如直线AB;射线是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA;线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).23.如图,在直线l上找一点P,使得PA+PB的和最小,并简要说明理由.(保留作图痕迹)【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质,可得答案.【解答】解:如图.理由:两点之间,线段最短.【点评】本题考查了线段的性质,利用线段的性质是解题关键.24.如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB 的长度.【考点】两点间的距离.【分析】由BC=6cm,BD=10cm,可求出DC=BD﹣BC=4cm,再由点D是AC的中点,则求得DA=DC=4cm,从而求出线段AB的长度.【解答】解:已知BC=6cm,BD=10cm,∴DC=BD﹣BC=4cm,又点D是AC的中点,∴DA=DC=4cm,所以AB=BD+DA=10+4=14(cm).答:线段AB的长度为14cm.【点评】本题考查了两点间的距离,利用线段差及中点性质是解题的关键.25.(10分)(2016秋•河西区校级期末)如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为28;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加2个小正方体.【考点】作图-三视图;几何体的表面积.【分析】(1)有顺序的计算上下面,左右面,前后面的表面积之和即可;(2)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;(3)根据保持这个几何体的主视图和俯视图不变,可知添加小正方体是中间1列前面的2个,依此即可求解.【解答】解:(1)(4×2+6×2+4×2)×(1×1)=(8+12+8)×1=28×1=28故该几何体的表面积(含下底面)为28.(2)如图所示:(3)由分析可知,最多可以再添加2个小正方体.故答案为:28;2.【点评】考查了作图﹣三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.26.(10分)(2016秋•扬州月考)用一元一次方程解决问题:爸爸买了一箱苹果回家,小芳想分给家里的每一个人,如果每人分3个,就剩下3个苹果分不完,如果每人分4个,则还差2个苹果才够分,问小芳家有几个人?爸爸买了多少个苹果?小刚与小明分别用两种设未知数的方法都解决了上述问题,请你将两种方法都详细的写出来.【考点】一元一次方程的应用.【分析】设小芳家有x个人,根据苹果总数不变及“如果每人分3个,就剩下3个苹果分不完,如果每人分4个,则还差2个苹果才够分”列出方程,解方程即可.【解答】解:方法一:设小芳家有x人3x+3=4x﹣2x=53x+3=18答:小芳家有5人,爸爸买了18个苹果;方法二:设爸爸买了y个苹果y=18答:小芳家有5人,爸爸买了18个苹果.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.(10分)(2016秋•扬州月考)当m为何值时,关于x的方程3x+m=2x+7的解比关于x 的方程4(x﹣2)=3(x+m)的解大9?【考点】一元一次方程的解.【分析】分别解两个方程求得方程的解,然后根据关于x的方程3x+m=2x+7的解比关于x的方程4(x﹣2)=3(x+m)的解大9,即可列方程求得m的值.【解答】解:解方程3x+m=2x+7,得x=7﹣m,解方程4(x﹣2)=3(x+m),得x=3m+8,根据题意,得7﹣m﹣(3m+8)=9,解得m=﹣.【点评】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解,也考查了一元一次方程的解法.28.(12分)(2014秋•故城县期末)我市城市居民用电收费方式有以下两种:(甲)普通电价:全天0.53元/度;(乙)峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度.估计小明家下月总用电量为200度,(1)若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)请你帮小明计算,峰时电量为多少度时,两种方式所付的电费相等?(3)到下月付费时,小明发现那月总用电量为200度,用峰谷电价付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?【考点】一元一次方程的应用.【分析】(1)根据两种收费标准,分别计算出每种需要的钱数,然后判断即可.(2)设峰时电量为x度时,收费一样,然后分别用含x的式子表示出两种收费情况,建立方程后求解即可.(3)设那月的峰时电量为x度,根据用峰谷电价付费方式比普通电价付费方式省了14元,建立方程后求解即可.【解答】解:(1)按普通电价付费:200×0.53=106元.按峰谷电价付费:50×0.56+(200﹣50)×0.36=82元.∴按峰谷电价付电费合算.能省106﹣82=24元()(2)0.56x+0.36 (200﹣x)=106解得x=170∴峰时电量为170度时,两种方式所付的电费相等.(3)设那月的峰时电量为x度,根据题意得:0.53×200﹣[0.56x+0.36(200﹣x)]=14解得x=100∴那月的峰时电量为100度.【点评】本题考查了一元一次方程的应用,解答本题的关键是正确表示出两种付费方式下需要付的电费,注意方程思想的运用.29.(14分)(2016秋•扬州月考)已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.【考点】一元一次方程的应用;数轴.【分析】利用行程问题的基本数量关系,以及数轴直观解决问题即可.【解答】解:(1)设x秒后甲与乙相遇,则4x+6x=34,解得x=3.4,4×3.4=13.6,﹣24+13.6=﹣10.4.故甲、乙在数轴上的﹣10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.①AB之间时:4y+(14﹣4y)+(14﹣4y+20)=40解得y=2;②BC之间时:4y+(4y﹣14)+(34﹣4y)=40,解得y=5.(3)①设x秒后原点O是甲蚂蚁P与乙蚂蚁Q两点的中点,则24﹣12x=10﹣6x,解得x=(舍去);②设x秒后乙蚂蚁Q是甲蚂蚁P与原点O两点的中点,则24﹣12x=2(6x﹣10),解得x=;③设x秒后甲蚂蚁P是乙蚂蚁Q与原点O两点的中点,则2(24﹣12x)=6x﹣10,解得x=;综上所述,秒或秒后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
长治市七年级上学期数学12月月考试卷
长治市七年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·海门模拟) 下列运算正确的是()A . (a2)5=a7B . (x﹣1)2=x2﹣1C . 3a2b﹣3ab2=3D . a2•a4=a62. (2分)(2016·河北) 计算:-(-1)=()A . ±1B . -2C . -1D . 13. (2分)(2017·宁波模拟) 李克强总理在2017年政府工作报告中指出,今年公路水运投资为1.8万亿元,其中“1.8万亿元”用科学记数法表示为()A . 1.8×108元B . 1.8×1012元C . 18×1011元D . 0.18×1012元4. (2分) (2019七下·嘉兴期末) 计算:(12x3-8x2+16x)÷(-4x)的结果是()A . -3x2+2x-4B . -3x2-2x+4C . -3x2+2x+4D . 3x2-2x+45. (2分)(2019·大同模拟) 寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是()A . 20B . 22C . 25D . 20或256. (2分) (2019七上·滨江期末) 下列计算正确的是()A .B .C .D .7. (2分) (2019七上·萧山月考) 通过估算,估计的大小应在()A . 7~8之间B . 8.0~8.5之间C . 8.5~9.0之间D . 9~10之间8. (2分) (2019七上·萧山月考) 一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x天,由题意得方程()A . + =1B . + =1C . + =1D . + =19. (2分) (2019七上·萧山月考) 对于有理数如果则下列各式成立的是()A .B .C .D .10. (2分) (2019七上·滨江期末) 有两桶水,甲桶装有升水,乙桶中的水比甲桶中的水多3升.现将甲桶中倒一半到乙桶中,然后再将此时乙桶中总水量的倒给甲桶,假定桶足够大,水不会溢岀.我们将上述两个步骤称为一次操作,进行重复操作,则()A . 每操作一次,甲桶中的水量都会减小,最后甲桶中的水会全部倒入乙桶B . 每操作一次,甲桶中的水量都会减小,但永远倒不完C . 每操作一次,甲桶中的水量都会增加,反复操作,最后甲桶中的水会比乙桶多D . 每操作一次,甲桶中的水量都会增加,但永远比乙桶中的水量要少二、填空题 (共6题;共7分)11. (1分)(2016·云南模拟) 计算: =________12. (1分) (2019七上·偃师期中) 将多项式按的升幂排列:________.13. (2分) (2019七上·杭州期末) 有理数a、b、c在数轴上的位置如图,则 ________.14. (1分) (2019七上·萧山月考) 某公司有甲、乙两类经营收入,其中去年乙类收入为万元,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.今年该公司的年总收入比去年增加________万元(用字母来表示).15. (1分) (2019七上·萧山月考) 已知关于x的方程(m+2)x|m+4|+x+18=0是一元一次方程,m=________.16. (1分) (2019七上·萧山月考) 从大拇指开始,按照大拇指→食指→中指→无名指→小指→无名指→中指→食指→大拇指→食指……的顺序,依次数整数1、2、3、4、5,6、7、…,当数到4019时对应的手指为________;当第n次数到无名指时,数到的数是________(用含n的代数式表示).三、解答题 (共7题;共71分)17. (10分)(2017·重庆模拟) 一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0,b≠0),若N的“团结数”与N之差为24,求N的值.18. (10分) (2019七上·西湖期末) 解下列方程:(1)(2)19. (10分) (2019七上·萧山月考)(1)已知a=﹣2,b=﹣1,求(6a2+4ab)﹣2(3a2+ab﹣ b2)的值;(2)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,求2x2+6xy﹣4y2的值.20. (10分) (2019七上·萧山月考) 先阅读下列解题过程,然后解答问题⑴、⑵,解方程:。
山西省2021-2022年七年级上学期数学12月月考试卷A卷
山西省2021-2022年七年级上学期数学12月月考试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列说法中,正确的是()A . 最小的正数是1B . 最小的有理数是0C . 离原点越远的数越大D . 最大的负整数是-12. (2分)(2011·淮安) 据第六次全国人口普查数据公报,淮安市常住人口约为480万人.480万(4800000)用科学记数法可表示为()A . 4.8×104B . 4.8×105C . 4.8×106D . 4.8×1073. (2分) (2017八上·无锡开学考) 如表所示,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2016个格子中的数为()A . 3B . 2C . 0D . ﹣14. (2分)(2018·锦州) 下列计算正确的是()A . 7a-a=6B . a2·a3=a5C . (a3)3=a6D . (ab)4=ab45. (2分)给出下面四个方程及变形:(1)4x+10=0,变形为2x+5=0,(2)x+7=5﹣3x,变形为4x=12,(3),变形为2x=15,(4)16x=﹣8,变形为x=﹣2;其中变形正确的编号组为()A . (1)(2)B . (1)(2)(3)(4)C . (1)(3)D . (1)(2)(3)6. (2分) (2020七上·广汉期中) 一艘船从甲码头到乙码头顺流而行,全程需7个小时,逆流航行全程需要9小时,已知水流速度为每小时3千米.若设两个码头间的路程为x千米,则所列方程为()A .B .C .D .7. (2分)下列各式中与多项式2x-(-3y-4z)相等的是()A . 2x+(-3y+4z)B . 2x+(3y-4z)C . 2x+(-3y-4z)D . 2x+(3y+4z)8. (2分) (2017七上·乐昌期末) 关于x的方程2x+4=3m和x﹣1=m有相同的解,则m的值是()A . 6B . 5C .D . ﹣9. (2分) (2020八上·广西月考) 把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A . a2﹣b2=(a+b)(a﹣b)B . (a+b)2=a2+2ab+b2C . (a﹣b)2=a2﹣2ab+b2D . (a+2b)(a﹣b)=a2+ab+b210. (2分) (2019七上·郑州月考) 观察下列算式:观察下列算式:21-2=0,22-2=2,23-2=6,24-2=14,25-2=30,26-2=62,27-2=126,28-2=254,…根据上述算式中的规律,你认为22017-2的末位数字是()A . 6B . 0C . 2D . 8二、填空题 (共7题;共10分)11. (3分)(2019·东台模拟) 的倒数是________.12. (1分)的最小值是,的最大值是 ,则 ________.13. (1分) (2020七上·大理期中) 数轴上和原点的距离等于3.5点表示的有理数是________.14. (1分) (2019七下·北京期末) 定义一种新运算“ ”的含义为:当时,,当时,.例如:,(1) ________;(2),则 ________.15. (1分)一个物体沿着南北方向在运动,若规定向南记作正,向北记作负,则该物体:原地不动记作________米16. (2分) (2019八下·上蔡期末) 正方形A1B1C1O,正方形A2B2C2C1 ,正方形A3B3C3C2 ,按如图所示的方式放置在平面直角坐标系中,若点A1、A2、A3和C1、C2、C3…分别在直线y=x+1和x轴上,则点B2019的坐标是________.17. (1分) (2019七上·余杭月考) 已知数轴上点A,B,C所表示的数分别是-2,+8,x,点D是线段AB的中点,则点D所表示的数为________;若CD=3.5,则x=________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省长治市七年级上学期数学12月月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)墨尔本与北京的时差是+3小时(即同一时刻墨尔本时间比北京时间早3小时),班机从墨尔本飞到北京需用12小时,若乘坐从墨尔本8:00(当地时间)起飞的航班,到达北京机场时,当地时间是()
A . 15:00
B . 17:00
C . 20:00
D . 23:00
2. (2分)(2018·成都模拟) 下列运算正确的是()
A .
B .
C .
D .
3. (2分)下列说法正确的是()
A . 有理数包括正整数、零和负分数
B . ﹣a不一定是整数
C . ﹣5和+(﹣5)互为相反数
D . 两个有理数的和一定大于每一个加数
4. (2分) (2019七上·潮安期末) 如果收入25元记作元,那么支出30元记作元.
A .
B .
C .
D .
5. (2分)(2017·东莞模拟) ﹣5的绝对值是()
A .
B . ﹣5
C . 5
D . ﹣
6. (2分)已知有理数a ,b在数轴上表示的点如图所示,则下列式子中不正确的是()
A . <0
B . a-b>0
C . a+b>0
D . ab<0
7. (2分)如图,Rt△APC的顶点A,P在反比例函数y=的图象上,已知P的坐标为(1,1),tanA=(n≥2的自然数);当n=2,3,4…2010时,A的横坐标相应为a2 , a3 , a4 ,…,a2010 ,则=()
A .
B . 2021054
C . 2022060
D .
8. (2分) (2017七下·淅川期末) 为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()
A . 31元
B . 30.2元
C . 29.7元
D . 27元
9. (2分)解方程y+ = 去分母正确的是()
A . y+3=2(2﹣y)
B . 6y+3=2(2﹣y)
C . 6y+3=4﹣y
D . 6y+3=2﹣y
10. (2分) (2017七下·金山期中) 某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()
A . 40%
B . 33.4%
C . 33.3%
D . 30%
二、填空题 (共5题;共6分)
11. (1分)已知m , n满足│m+1│+( n-3)2=0,化简(x-m)(x-n)=________.
12. (1分)甲乙两运输队,甲队32人,乙队28人,若从乙队调走x人到甲队,那么甲队人数恰好是乙队人数的2倍,列出方程(32+x)=2(28﹣x)所依据的相等关系是________ .(填写题目中的原话)
13. (1分)某种商品如果以240元售出,则可以获得20%的利润,则该商品的实际进价为________ 元.
14. (1分) (2019七上·丹东期末) “*”是规定的一种运算法则:a*b=a2﹣ab﹣3b.若(﹣2)*(﹣x)=7,那么x=________.
15. (2分)(2019·铁岭模拟) 如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,使点的对应点落在直线上……,依次进行下去,若点的坐标是(0,1),点的坐标是 ,则点的横坐标是________.
三、解答题 (共8题;共70分)
16. (10分) (2018七上·邗江期中) 计算:
(1)
(2)
17. (2分) (2019七上·利辛月考) 如图所示是一个长方形。
(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;
(2)若x=3,求S的值
18. (5分) (2018七上·无锡期中) 先化简再求值:
,其中,.
19. (5分) (2016七上·黄岛期末) A、B两城市间有一条300千米的高速公路,现有一长途客车从A城市开往B城市,平均速度为85千米/时,有一小汽车同时B城市开往A城市平均速度是115千米/时,问两车相遇时离A 城市有多远?
20. (15分) (2020七上·大安期末) 第66路公交车沿东西方向行驶,如果把车站的起点记为0,向东行驶记为正,向西行驶记为负,其中一辆车从车站出发以后行驶的路程如下表(单位:km):
序号1234567
路程+5﹣3+10﹣8﹣6+12﹣10(1)该车最后是否回到了车站?为什么?
(2)该辆车离开出发点最远是多少千米?
(3)若每千米耗油0.2升,每升油价是7.5元,则从O地出发到收工时油费是多少元?
21. (7分) (2019七上·遵义月考) 在数轴上、两点分别表示有理数和,我们用表示
到之间的距离;例如表示7到3之间的距离.
(1)当时,的值为________.
(2)如何理解表示的含义?
(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.
22. (16分)(2017·抚州模拟) 用同样大小的黑色棋子按如图所示的规律摆放:
(1)
第5个图形有多少黑色棋子?
(2)
第几个图形有2013颗黑色棋子?请说明理由.
23. (10分) (2019七上·荣昌期中) 任何一个整数N,可以用一个多项式来表示:
,例如:325=3×102+2×10+5.
一个正两位数的个位数字是x,十位数字是y.
(1)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除;
(2)若试求出符合条件的所有两位数.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共5题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
三、解答题 (共8题;共70分)
16-1、
16-2、17-1、17-2、
18-1、19-1、20-1、
20-2、
20-3、21-1、
21-2、21-3、
22-1、22-2、23-1、23-2、。