代数经典试题及答案

合集下载

代数式经典测试题附答案解析

代数式经典测试题附答案解析

代数式经典测试题附答案解析一、选择题1.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.2.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ).A .1B .4C .x 6D .8x 3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.5.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=-【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.6.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个( )A .400B .401C .402D .403 【答案】D【解析】【分析】 由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n 个图形有9+5×(n-1)=5n+4个边长为1的小正方形,由此求得答案即可.【详解】解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n 个图形边长为1的小正方形有9+5×(n-1)=5n+4个,当5n+4=2019时,解得n=403所以第403个图形中边长为1的小正方形的个数为2019个.故选:D .【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.7.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .0(51)1=D .61200 = 6.12×10 4【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.8.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-, 23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.9.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2【答案】C【解析】试题解析:A.a 2与a 3不是同类项,故A 错误;B.原式=a 5,故B 错误;D.原式=a 2b 2,故D 错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.10.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.12.下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第n 个图形中五角星的个数为( )A .31n -B .3nC .31n +D .32n +【答案】C【解析】【分析】 根据前4个图形中五角星的个数得到规律,即可列式得到答案.【详解】观察图形可知:第1个图形中一共是4个五角星,即4311=⨯+,第2个图形中一共是7个五角星,即7321=⨯+,第3个图形中一共是10个五角星,即10331=⨯+,第4个图形中一共是13个五角星,即13341=⨯+,L ,按此规律排列下去,第n 个图形中一共有五角星的个数为31n +,故选:C.【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.13.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.15.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.16.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .17.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.18.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=3.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.19.若(x+4)(x﹣1)=x2+px+q,则()A.p=﹣3,q=﹣4 B.p=5,q=4C.p=﹣5,q=4 D.p=3,q=﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x+4)(x﹣1)=x2+3x﹣4∴p=3,q=﹣4故选:D.【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.20.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。

数学数与代数试题答案及解析

数学数与代数试题答案及解析

数学数与代数试题答案及解析1.已知a=3×4,那么()A.a有2个因数B.a有3个因数C.a有4个因数D.a有6个因数【答案】D【解析】先计算可知a=3×4=12,由于求一个数的约数的方法:用这个数分别除以自然数1,2,3,4,5,6…,一直除到商和除数互换位置结束,把能整除的商和除数按从小到大顺序写出来,就是这个数的约数,重复的只写一个,据此写出求出12的因数,数出即可.解:a=3×4=12,12的因数有:1,2,3,4,6,12,一共有6个.故选:D.点评:本题主要考查因数的意义及求因数的方法.2.下面的数,因数个数最少的是()A.16B.36C.40【答案】A【解析】根据找一个数因数的方法分别找出16、36、40的因数,然后数出个数,比较即可.解:16的因数有:1、2、4、8、16,共5个;36的因数有:1、2、3、4、6、9、12、18、36,共9个;40的因数有:1、2、4、5、8、10、20、40,共8个;故选:A.点评:根据找一个数的因数的方法,找出各个数的因数的个数,即可得出结论.3.两个素数相乘的积的因数有()A.2个B.3个C.4个D.无数个【答案】C【解析】任意两个不同的素数相乘的积的因数有:这个两个素数、1,这两个数的积,可以举例说明.解:2和3这两个质数的积是6,6的因数有;1、2、3、6共计4个,所以任意两个不同的素数相乘的积有:这个两个素数、1,这两个数的积,共计4个因数;故选:C.点评:本题主要考察两个素数的积的因数的个数,注意积的因数有4个:这个两个素数、1,这两个数的积.4.要用木地板铺边长是42分米的正方形卧室地面,最好选用长()分米,宽()分米的木地板.A.4,6B.7,3C.12,5D.9,2【答案】B【解析】先根据找一个数因数的方法,列举出42所有的因数,进而结合选项,看哪个选项中的两个数是42的因数即可.解:42的因数有:1、2、3、6、7、14、21、42;结合选项可知:最好选用长为7分米、宽3分米的木地板;故选:B.点评:本题考查了找一个数因数的方法,应灵活运用.5.【答案】要求的长度是150米【解析】要求的数量是单位“1”,它的(1+)对应的数量是200米,由此用除法求出要求的数量.解:200÷(1+),=200÷,=150(米);答:要求的长度是150米.点评:先理解题意,找出单位“1”,再找出基本数量关系,列式解答.6.【答案】明明的爸爸跑了1350米【解析】根据题意,爷爷跑了900÷2米,又知爸爸跑的是爷爷的3倍,那么爸爸跑了900÷2×3米,解决问题.解:900÷2×3,=450×3,=1350(米);答:明明的爸爸跑了1350米.点评:此题考查了倍数关系应用题,要看清谁是谁的倍数,然后确定用除法还是用乘法计算.7.田径队有多少人?【答案】田径队有80人【解析】根据题意,先求出合唱队的人数,再求体操队的人数,最后求出田径队有多少人,即:(12+8)×2+40,解:(12+8)×2+40,=20×2+40,=40+40,=80(人);答:田径队有80人.点评:此题应从问题出发,看看要求的是什么,然后根据题中的数量关系,列式解答.8.,一共有多少名学生?【答案】一共有学生104人【解析】由线段图可知,某年级共有男生26人,男生人数是女生的,根据分数除法的意义可知,女生有26人,则共有学生26+26人.解:26+26=26+78,=104(人).答:一共有学生104人.点评:完成本题的关健是要认真分析所给线段图,弄清数量之间的关系,然后列出正确算式.9.看图列方程.方程:.【答案】x+21=175【解析】根据示意图,孩子身高+21厘米=爸爸身高,设孩子身高为x厘米,由题意得:x+21=175,解决问题.解:设孩子身高为x厘米,由题意得:x+21=175,x=175﹣21,x=154;答:孩子身高为154厘米.故答案为:x+21=175.点评:先看懂示意图,找出等量关系,据此列方程解答.10.先按要求看图和圈图,再填写横式和竖式.有13只小猪,5只分一组,一共有组,还剩只.横式:竖式:【答案】2,3【解析】根据题意,有13只小猪,5只分一组,要求一共有几组,用除法计算.余下的不到5只,作为余数.解:有13只小猪,5只分一组,一共有(2)组,还剩(3)只;横式:13÷5=2(组)…3(只).竖式:故答案为:2,3.点评:此题考查了有余数的除法,在列竖式计算时,注意数位对齐.11. 321+250的和是数;27和9的最大公因数是,最小公倍数是.【答案】质,9,27【解析】(1)根据质数与合数的意义作答;(2)根据“当两个数成倍数关系时,较大的那个数,是这两个数的最小公倍数,较小的那个数,是这两个数的最大公因数;进行解答即可.解:(1)因为321+250=571,571除了1和它本身外,没有别的因,所以571是质数;(2)因为27÷9=3,即27和9是倍数关系,则9和27最大公因数是9,最小公倍数是27;故答案为:质,9,27.点评:此题主要考查了质数的意义及求两个数为倍数关系时的最大公因数和最小公倍数:两个数为倍数关系,最大公因数为较小的数,较大的那个数,是这两个数的最小公倍数.12.一次数学竞赛,结果参赛的学生中有得优,得良,得中,其余得差,已知参加竞赛的学生不满50人,得差的学生的人数是几人?【答案】1人【解析】首先把全班人数看作单位“1”,再把,,,进行通分,首先找分母7、3、2的最小公倍数,2、3、7又两两互质所以7、3、2的最小公倍数是2×3×7=42,再通分,又知学生数不满50人,得出总人数,由此可求出得差的学生的人数.解:首先找分母7、3、2的最小公倍数,++=++=,1﹣=又因为总人数不到50人,人数只能为整数获下的占;所以总人数为42人,42×=1(人);答:得差的学生的人数是的为1人.点评:此题主要是把全班人数看作单位“1”,再求出题里分数中分母的最小公倍数,从而求出得差占的几分之几,一定要注意不满50人,就解决了.13.求36,108,126的最大公约数和最小公倍数.【答案】18;756【解析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积,对于三个数来说:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.解:36=2×2×3×3,108=2×2×3×3×3,126=2×3×3×7,所以36、108、126的最大公因数是:2×3×3=18;36、108、126的最小公倍数是:2×2×3×3×3×7=756.点评:此题主要考查求三个数的最大公约数与最小公倍数的方法:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.14.中心校五年级一班的同学参加劳动,按4人一组分余1人,按5人一组分余1人,按6人一组分余1人.这个班有多少个同学?【答案】61个【解析】求这个班有多少个同学,即求4、5、6的最小公倍数多1,先求出4、5、6的最小公倍数,然后加上1即可.解:4=2×2,6=2×3,4、5、6三个数的最小公倍数是2×2×3×5=60,则这个班有:60+1=61(人);答:这个班有61个同学.点评:此题主要考查求三个数的最小公倍数的方法:三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.15.甲每4天来校一次,乙每6天来校一次,丙每8天来校一次,如果4月1日三人同时到校,求下次三人同时到校的时间.【答案】4月25日【解析】甲每4天来校一次,乙每6天来校一次,丙每8天来校一次,他们4月1日三人同时到校,那么三人下次同时来校时相隔的时间应是4,6,8的最小公倍数,因此只要求出4,6,8的最小公倍数即能知道三人下次三人同时来校的时间是哪天.解:4=2×2,6=2×3,8=2×2×2,所以4,6,8的最小公倍数为:2×3×2×2=24.所以下次三人同时到校的时间是1+24=25,即4月25日.答:下次三人同时到校的时间为4月25日.点评:本题是通过分解质因数来求几个数的最小公倍数的.16.求下列每组数的最小公倍数.3,7和1130,45和90.【答案】231;90【解析】最小公倍数是共有质因数与独有质因数的连乘积,对于三个数来说:三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.解:(1)3,7和11最小公倍数为:3×7×11=231;(2)30=2×3×5,45=3×3×5,90=2×3×3×5,30,45和90最小公倍数为:2×3×3×5=90;点评:三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.17.写出下面每组数的最大公因数和最小公倍数.(3,15)=(9,10)=(45,60)=(45,18)=(6,10)= [3,15]= [9,10]= [45,60]= [45,18]= [6,10]=.【答案】3;1;15;9;2;15;90;180;90;30【解析】求两个数的最大公因数和最小公倍数,首先判断两个的关系,如果两个是互质数,最大公因数就是1,最小公倍数数这两个数的乘积;如果两个是倍数关系,那么最大公因数是较小的数,最小公倍数是较大的数;两个是一般关系,利用分解质因数的方法,公有质因数的乘积是它们的最大公因数,公有质因数和各自独有质因数的连乘积是它们的最小公倍数;由此解答.解:3和15是倍数关系,最大公因数是3;最小公倍数是15;9和10是互质数,最大公因数是1;最小公倍数是90;45和60,先把它们分解质因数:45=3×3×5,60=2×2×3×5,45和60的最大公因数是3×5=15;最小公倍数是3×5×3×2×2=180;45和18,先把它们分解质因数:45=3×3×5,18=2×3×3,45和18的最大公因数是3×3=9;45和18的最小公倍数是3×3×5×2=90;62和10,先把它们分解质因数:6=2×3,10=2×5,62和10的最大公因数是2;6和10的最小公倍数是2×3×5=30;故答案为:3;1;15;9;2;15;90;180;90;30.点评:此题主要考查求两个数的最大公因数和最小公倍数的方法.如果两个是互质数,最大公因数就是1,最小公倍数数这两个数的乘积;如果两个是倍数关系,那么最大公因数是较小的数,最小公倍数是较大的数;两个是一般关系,利用分解质因数的方法解答.18.有一些大小相等的长方形纸,每张长12厘米,宽8厘米,要把它们拼成一个最小的正方形,需几张这样的长方形纸?【答案】6张【解析】用每张长12厘米,宽8厘米,要把它们拼成一个正方形,正方形的边长既是12的倍数也是8的倍数,要拼成最小的正方形,就是边长是12和8的最小公倍数,求出边长看每边有几个长,几个宽,就得出一共几张这样的长方形纸.解:12的倍数有:12,24,36,48,60…,8的倍数有:8,16,24,32,40,48,56…,12和8的最小公倍数是24,即拼成的最小的正方形的边长是24厘米,24÷12=2(张),24÷8=3(张),需要张数:2×3=6(张);答:需6张这样的长方形纸.点评:本题关键是利用公倍数求出拼成的最小的正方形的边长.19.一堆桃子,3个3个数多1个,5个5个数也多1个,7个7个数还是多一个,请问这堆桃子至少有多少个?【答案】106个【解析】只要求出3、5、7的最小公倍数,然后再加上1,即可得解.解:3、5、7两两互质,所以3、5、7的最小公倍数是3×5×7=105,105+1=106(个),答:这堆桃子至少有106个.点评:灵活应用求几个数的最小公倍数的方法来解决实际问题.20.新图书馆开馆了,小红每隔3天去图书馆一次,小灵每隔4天去一次,请问小红和小灵某天在图书馆相遇后,请问经过几天她们有可能会在图书馆再次相遇?【答案】12天【解析】由题意可知:求小红和小灵经过多少天她们有可能会在图书馆再次相遇,即求3和4的最小公倍数,因为3、4是互质数,它们的最小公倍数,即这这两个数的乘积.解:3和4互质,所以3和4的最小公倍数是它们的乘积:3×4=12(天);答:经过12天她们有可能会在图书馆再次相遇.点评:此题考查了当两个数互质时的最小公倍数的方法:两个数互质,这两个数的最小公倍数,即这两个数的连乘积.21.求下列各组数的最小公倍数和最大公因数.(1)16和24 (2)72和27.【答案】48,8;216,9【解析】求最大公因数也就是这几个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积,即可得解.解:(1)16=2×2×2×2,24=2×2×2×3,所以16和24的最小公倍数是2×2×2×2×3=48,最大公因数是2×2×2=8.(2)72=2×2×2×3×3,27=3×3×3,所以72和27的最小公倍数是3×3×3×2×2×2=216,最大公因数是3×3=9.点评:考查了求几个数的最大公因数的方法与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数;两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.22.有一堆苹果,3个3个地数余2个,4个4个地数余3个,5个5个地数余4个.这堆苹果最少有多少个?【答案】59个【解析】可以把题目换一个说法,3个3个地数差1个,4个4个地数差1个,5个5个的数差1个,求这堆苹果最少有多少个?只要求出3、4、5的最小公倍数,然后减去1,即可得解.解:因为3、4、5互质,所以它们的最小公倍数是:3×4×5=60,60﹣1=59;答:这堆苹果最少有59个.点评:灵活应用最小公倍数解决同余问题.23.甲乙两数的最大公约数是3,最小公倍数是30.如果甲数是6,那么乙数是;如果乙数是30,那么甲数是.【答案】15,3【解析】根据最大公因数和最小公倍数的意义,两个数公有的因数中最大的一个就是这两个数的最大公因数;两个数的公倍数中最小的一个就是这两个数的最小公倍数;因此,先把30分解质因数,然后把它的质因数适当调整计算即可.解:把30分解质因数:30=2×3×5,(1)其中甲数是2×3=6,则乙数是3×5=15;(2)其中乙数是2×3×5=30,则甲数是3.故答案为:15,3.点评:此题考查的目的是使学生理解最大公因数和最小公倍数的意义,掌握求最大公因数和最小公倍数的方法.24.一枚围棋子36克,一枚象棋子27克,至少枚围棋子与枚象棋子的总质量相等.【答案】3,4【解析】根据题意,要先求出36和27的最小公倍数,进而用最小公倍数除以一枚围棋子的克数,即可得出围棋子的数量;用最小公倍数除以一枚象棋子的克数,即可得出象棋子的数量.解:因为36=2×2×3×3,27=3×3×3,所以36和27的最小公倍数是:3×3×2×2×3=108,围棋子的数量:108÷36=4(枚),象棋子的数量:108÷27=4(枚);答:至少3枚围棋子与4枚象棋子的总质量相等.故答案为:3,4.点评:此题考查求两个数最小公倍数的方法:先把两个数分解质因数,再用两个数公有的质因数与每个数独有的质因数相乘的积就是它们的最小公倍数.25.一次数学竞赛,设有一、二、三等奖.有很多同学获奖,其中获得一等奖的人数占参加竞赛总人数的,获得二等奖的人数占参加竞赛总人数的,获得三等奖的人数占参加竞赛总人数的.至少有名同学参加竞赛.【答案】42【解析】根据题意可知:获得一等奖、二等奖、三等奖人数的比是:7:3:2,实际就是求7、3和2的最小公倍数,因为这三个数两两互质,这三个数的最小公倍数即这三个数的乘积,由此解答.解:7、3和2的最小公倍数是:7×3×2=42;答:至少有42名同学参加比赛.故答案为:42.点评:此题考查了求几个数的最小公倍数的方法,当三个数两两互质时,其最小公倍数就是这三个数的乘积.26.如果(a、b都是不为0的自然数)a÷b=2,那么是的约数,a和b的最小公倍数是.【答案】b,a,a【解析】(1)根据因数和倍数的意义:如果数a能被数b整除(b≠0),a就叫做b的倍数,b 就叫做a的因数;进行解答;(2)因为a÷b=2,即a和b是倍数关系,求两个数为倍数关系时的最大公约数:两个数为倍数关系,最小公倍数为较大的数;由此解答问题即可.解:如果a、b都是不为0的自然数)a÷b=2,那么b是a的约数,a和b的最小公倍数是a;故答案为:b,a,a.点评:解答此题用到的知识点:(1)因数和倍数的意义;(2)求两个数为倍数关系时的最小公倍数:两个数为倍数关系,最小公倍数为较大的数.27.已知5A=B,且A和B都是非0自然数,这两个数的最大公因数是,最小公倍数是.【答案】A,B【解析】根据5A=B,可知B÷A=5,说明B和A有因数和倍数关系;当两个数有倍数关系时,它们的最大公因数是较小数,最小公倍数是较大数.解:因为5A=B,所以B÷A=5,说明B和A有因数和倍数关系,B是较大数,A是较小数,因此这两个数的最大公因数是A,最小公倍数是B;故答案为:A,B.点评:此题考查求两个数有倍数和因数关系时的最大公因数和最小公倍数的方法.28.两个质数的积是65,这两个质数的最大公约数和最小公倍数的和是.【答案】66【解析】将65分解质因数可求这两个质数,再根据互质的两个数最大公因数是1;最小公倍数是它们的乘积求解.解:65=5×13,这两个质数是5,13,5,13的最小公倍数是5×13=65,最大公约数是1,65+1=66.答:这两个质数的最大公约数和最小公倍数的和是66.故答案为:66.点评:此题考查分解质因数和互质数的特点:互质的两个数最大公因数是1;最小公倍数是它们的乘积.29.甲、乙两数的最小公倍数是315,最大公因数是15.如果甲数是15,乙数是.【答案】315【解析】根据两个数成倍数关系,它们的最大公约数是较小的那个数,它们的最小公倍数是较大的那个数,进而得出.解:315÷15=21,21×15=315;故答案为:315;点评:解答此题应根据最小公倍数和最大公约数的关系进行解答即可.30. a=2×2×2×3,b=2×2×3×3,a与b的最大公因数是,最小公倍数是.【答案】12,72【解析】最大公约数就是几个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积,据此即可得解.解:a=2×2×2×3,b=2×2×3×3,所以a和b的最大公因数是2×2×3=12,最小公倍数是2×3×2×2×3=72,故答案为:12,72.点评:考查了求两个数的最大公因数与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数;两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.31.把自然数A和B分解质因数得:A=a×5,B=b×5×7,如果A和B的最小公倍数是210,那么最大公约数是.【答案】5【解析】根据最小公倍数的意义,最小公倍数就是A和B公倍数中最小的一个,即最小公倍数是A和B都含有的质因数的乘积,再乘上A和B独自含有的质因数,所得的积就是它们的最小公倍数.所以A和B的最小公倍数是:5×7×ab;据此求出ab;根据最大公约数的意义,最大公约数就是A和B公约数中最大的一个,即最大公约数是A和B都含有的质因数的乘积,所得的积就是它们的最大公约数,从而得解.解:由A=a×5,B=b×5×7,可知A和B的最小公倍数是:5×7×a×b=210,35ab=210,ab=6;由A=a×5,B=b×5×7,可知A和B都含有的质因数是5,所以A和B的最大公约数是:5.故最大公约数是5.故答案为:5.点评:本题主要考查最大公因数和最小公倍数的意义.注意最大公约数是两个数都含有的约数的乘积,最小公倍数是两个数都含有的质因数的乘积,再乘上独自含有的质因数.32.已知(A,40)=8,[A,40]=80,那么A=.【答案】16【解析】求最大公因数也就是这几个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积,此题是求最大公因数和最小公倍数的逆运算,首先用80除以40得到另一个数的独有因数,然后用最大公因数8乘另一个数的独有因数,即可得解.解:80÷40=2,8×2=16;答:两个数的最大公因数是8,最小公倍数是80,其中一个数40,另一个数是16.故答案为:16.点评:已知两个数的最大公因数和最小公倍数,又知道其中一个数,求另一个数,可以先求出这个数的独有因数,用两个数的最小公倍数÷已知的一个数,然后独有因数乘最大公因数,即为所要求的另一个数.33. 30和15的最大公因数是,最小公倍数是.【答案】15,30【解析】因为30÷15=2,即30和15成倍数关系,根据“当两个数成倍数关系时,较小的那个数是这两个数的最大公约数,较大的那个数是这两个数的最小公倍数”;进行解答即可.解:30÷15=2,即30和15成倍数关系,则30和15的最大公因数是15,最小公倍数是30.故答案为:15,30.点评:此题主要考查求两个数为倍数关系时的最大公约数和最小公倍数:两个数为倍数关系,最大公约数为较小的数,较大的那个数是这两个数的最小公倍数.34.(2009•江安县模拟)A和B都是自然数,分解质因数A=2×5×C;B=3×5×C.如果A和B的最小公倍数是60,那么C=.A和B的最大公约数是.【答案】2,10【解析】(1)根据最小公倍数的意义,最小公倍数就是A和B公倍数中最小的一个,即最小公倍数是A和B都含有的质因数的乘积,再乘上A和B独自含有的质因数,所得的积就是它们的最小公倍数.所以A和B的最小公倍数是2×3×5×c=60,据此求出C;(2)根据最大公约数的意义,最大公约数就是A和B公约数中最大的一个,即最大公约数是A和B都含有的质因数的乘积,所得的积就是它们的最大公约数;所以A和B的最大公约数是:5×C,因为C已求出,问题得解.解:(1)由A=2×5×C;B=3×5×C,可知A和B都含有的质因数是5和C,A独自含有的质因数是2,B独自含有的质因数是3,所以A和B的最小公倍数是:2×3×5×c=60,C=60÷(2×3×5)=2;(2)由A=2×5×C;B=3×5×C,可知A和B都含有的质因数是5和C,所以A和B的最大公约数是:5×C,C=2所以:5×C=5×2=10;故答案为:2,10.点评:本题主要考查最大公因数和最小公倍数的意义.注意最大公约数是两个数都含有的约数的乘积,最小公倍数是两个数都含有的质因数的乘积,再乘上独自含有的质因数.35.(2012•德江县模拟)如果m+1=n,(m,n均为非零自然数)那么m和n的最大公约数是,最小公倍数是.【答案】1,mn【解析】求两个数的最大公因数和最小公倍数,要看两个数之间的关系:(1)如果两个数是互质数,则最大公因数是1,最小公倍数是这两个数的乘积;(2)如果两个数为倍数关系,则最大公因数是较小数,最小公倍数为较大的数;(3)如果两个数有公因数关系,则最大公因数是两个数公有质因数的乘积,最小公倍数是两个数公有质因数与独有质因数的连乘积;由此解答即可.解:因为m+1=n,可知m和n是相邻的两个自然数,它们是互质数,所以m和n的最大公约数是1,最小公倍数是mn.故答案为:1,mn.点评:此题考查求两个数的最大公因数和最小公倍数的方法,要根据两个数之间的关系确定方法.36.(2012•宜丰县模拟)自然数a是自然数b的3倍,a和b的最大公因数是,a和b的最小公倍数是.【答案】b,a【解析】求两个数为倍数关系时的最大公因数:两个数为倍数关系,最大公因数为较小的数,最大公倍数为较大数;由此解答问题即解:因为自然数a是自然数b的3倍,所以a和b的最大公因数是b,a和b的最小公倍数是a;故答案为:b,a.点评:此题主要考查求两个数为倍数关系时的最大公因数与最小公倍数:两个数为倍数关系,最大公因数为较小的数,最大公倍数为较大数.37.两个自然数的和是72,它们的最大公因数与最小公倍数的和是216.这两个数分别是和.【答案】30,42【解析】可设两个数为ax,bx.x为最大公约数,则有ax+bx=72;x+abx=216.(abx为最小公倍数)由第一式可知x为72的约数,列出72的所有约数,逐个代入,舍去非整数解,可得a=5,b=7,x=6.所以这两个数为30和42.解:设两个数为ax,bx.x为最大公约数,则有ax+bx=72;x+abx=216.(abx为最小公倍数)则x为72的约数,72的所有约数有:1,2,3,4,6,8,9,12,18,24,36,72,分别代入,舍去非整数解,可得a=5,b=7,x=6.ax=30,bx=42.所以两个自然数是30和42.故答案为:30,42.点评:此题较难,关键是明白最小公倍数与最大公因数的约数与倍数关系,根据题意找到关系利用方程解答.38.对于18和24来说,它们的相同点很多,请你写出两条:都是、都是,这两个数的最大公约数是,最小公倍数是.【答案】偶数、合数,6,72【解析】根据18和24的特点找出它们的相同点,根据求几个数的最大公因数的方法是:这几个数的公有的质因数的乘积就是这几个数的最大公因数;求几个数的最小公倍数的方法:这几个数的公有的因数和它们独有的质因数的连乘积就是它们的最小公倍数.由此可以解得.解:对于18和24来说,它们的相同点很多:都是偶数、都是合数,18=2×3×3,24=2×2×2×3,所以18和24的最大公因数是2×3=6;18和24的最小公倍数是2×2×2×3×3=72.故答案为:偶数、合数,6,72.点评:此题考查了求几个数的最大公因数和最小公倍数的方法.39.(2013•广州模拟)如果A=60,B=42,那么A、B的最大公因数是,最小公倍数是.【答案】6,420【解析】先把60和42进行分解质因数,这两个数的最大公约数也就是这两个数的公有质因数的连乘积,最小公倍数是这两个数的公有质因数与独有质因数的连乘积,由此解决问题即可.解:A=2×2×3×5,B=2×3×7,A、B的最大公因数是:2×3=6,最小公倍数是:2×2×3×5×7=420;故答案为:6,420.点评:此题主要考查求两个数的最大公约数与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.40.甲、乙两数中一个能被另一个整除,其中甲数是奇数,乙数是偶数,则甲、乙两数的最小公倍数是()A.甲数B.乙数C.甲数×乙数D.甲数+乙数【答案】B【解析】由“甲、乙两数中一个能被另一个整除”,说明甲、乙两数有因数和倍数关系,再根据“甲数是奇数,乙数是偶数”,可知乙数是被除数,甲数是除数;再根据两个数为倍数关系时,则最小公倍数为较大的数得解.解:甲、乙两数中一个能被另一个整除,其中甲数是奇数,乙数是偶数,说明甲、乙两数有因数和倍数关系,被除数是乙数,即较大数,除数是甲数;所以甲、乙两数的最小公倍数是乙数;故选:B.点评:此题主要考查求两个数为倍数关系时两个数的最小公倍数:两个数为倍数关系,则最小公倍数为较大的数.41.有84朵黄花和48朵兰花,搭配成同样的花束(正好用完,没有剩余)最多能扎成()束.A.11B.6C.12【答案】C【解析】求最多能扎成多少束?即求出84和48的最大公因数,先把84和48进行分解质因数,这两个数的公有质因数连乘积是最大公约数,由此解决问题即可.解:84=2×2×3×7,48=2×2×2×2×3,。

代数式经典测试题及答案

代数式经典测试题及答案

代数式经典测试题及答案一、选择题1.若(x +1)(x +n )=x 2+mx ﹣2,则m 的值为( )A .﹣1B .1C .﹣2D .2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x 的多项式,再将它与x 2+mx-2作比较,即可分别求得m ,n 的值.【详解】解:∵(x+1)(x+n)=x 2+(1+n)x+n ,∴x 2+(1+n)x+n=x 2+mx-2, ∴12n m n +=⎧⎨=-⎩, ∴m=-1,n=-2.故选A .【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.2.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅=【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -=D .(﹣2a )3=﹣8a 3 【答案】D【解析】 【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案. 【详解】 A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是( )A .B .C .D .无法确定 【答案】A【解析】【分析】 利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】 =(AB-a )·a+(CD-b )(AD-a )=(AB-a )·a+(AD-a )(AB-b )=(AB-a )(AD-b )+(CD-b )(AD-a )=(AB-a )(AD-b )+(AB-b )(AD-a )∴-=(AB-a )(AD-b )+(AB-b )(AD-a )-(AB-a )·a-(AD-a )(AB-b )=(AB-a )(AD-a-b)∵AD <a+b , ∴-<0, 故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.13.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.14.下列运算正确的是( )A .2352x x x +=B .()-=23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.15.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .16.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .17.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意.故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.20.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。

代数式真题汇编含答案解析

代数式真题汇编含答案解析

代数式真题汇编含答案解析一、选择题1.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1 B.1 C.﹣2 D.2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x的多项式,再将它与x2+mx-2作比较,即可分别求得m,n的值.【详解】解:∵(x+1)(x+n)=x2+(1+n)x+n,∴x2+(1+n)x+n=x2+mx-2,∴12n m n+=⎧⎨=-⎩,∴m=-1,n=-2.故选A.【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∴2101=(250)2•2=2a 2,∴原式=2a 2-a .故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n+1-2.3.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .4.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.5.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.6.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A【解析】 试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.7.观察下列图形:( )它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为( ) A .20B .21C .22D .23【答案】C【解析】【分析】设第n 个图形共有a n (n 为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n =3n +1(n 为正整数)”,再代入n =7即可得出结论.【详解】解:设第n 个图形共有a n (n 为正整数)个五角星,∵a 1=4=3×1+1,a 2=7=3×2+1,a 3=10=3×3+1,a 4=13=3×4+1,…,∴a n =3n +1(n 为正整数),∴a 7=3×7+1=22.故选:C .【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n =3n +1(n 为正整数)”是解题的关键.8.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.9.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n 个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n 个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.11.若(x+4)(x﹣1)=x2+px+q,则()A.p=﹣3,q=﹣4 B.p=5,q=4C.p=﹣5,q=4 D.p=3,q=﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x+4)(x﹣1)=x2+3x﹣4∴p=3,q=﹣4故选:D.【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.12.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是() A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,又∵展开式中不含x2与x3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A.13.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.14.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%).故选B .15.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2222+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a-÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、2,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.16.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.17.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.18.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.19.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.20.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。

(完整word版)线性代数经典试题4套及答案

(完整word版)线性代数经典试题4套及答案

线性代数经典试题4套及答案试卷1一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

代数式基础测试题及答案

代数式基础测试题及答案
根据题意,每个选项进行计算,即可判断.
【详解】
解:A、当a=3,b=2时,y= = =1,符合题意;
B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;
C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;
D、当a=4,b=2时,y= = = ,不符合题意.
故选:A.
【点睛】
A.400B.401C.402D.403
【答案】D
【解析】
【分析】
由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n个图形有9+5×(n-1)=5n+4个边长为1的小正方形,由此求得答案即可.
【详解】
解:第1个图形边长为1的小正方形有9个,
A.2a2-2aB.2a2-2a-2C.2a2-aD.2a2+a
【答案】C
【解析】
【分析】
由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.
【详解】
解:∵2+22=23-2;
2+22+23=24-2;
2+22+23+24=25-2;

∴2+22+23+…+2n=2n+1-2,

代数式经典测试题附答案

代数式经典测试题附答案

A.7
B.12
C.13
D.25
【答案】C
【解析】
【分析】
设正方形 A 的边长为 a,正方形 B 的边长为 b,根据图形列式整理得 a2+b2−2ab=1,2ab
=12,求出 a2+b2 即可.
【详解】
解:设正方形 A 的边长为 a,正方形 B 的边长为 b,
由图甲得:a2−b2−2(a−b)b=1,即 a2+b2−2ab=1, 由图乙得:(a+b)2−a2−b2=12,即 2ab=12, 所以 a2+b2=13,即正方形 A,B 的面积之和为 13, 故选:C. 【点睛】 本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.
7.下列运算正确的是 ( )
A. a2 a3 a6
B. a6 a3 a2
C. 2a2 2a2
D. a2 3 a6
【答案】D 【解析】 【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最 后进一步判断即可. 【详解】
A: a2 a3 a5 ,计算错误;
11.若 x+y=3+2 2 ,x﹣y=3﹣2 2 ,则 x2 y2 的值为( )
A.4 2
【答案】B 【解析】
B.1
【分析】
根据二次根式的性质解答.
【详解】
解:∵x+y=3+2 2 ,x﹣y=3﹣2 2 ,
C.6
D.3﹣2 2
∴ x2 y2 (x y)(x y) (3 2 2)(3 2 2) =1.
4.下列图形都是由面积为 1 的正方形按一定的规律组成的,其中,第 1 个图形中面积为 1 的正方形有 9 个,第 2 个图形中面积为 1 的正方形有 14 个,……,按此规律,则第几个图 形中面积为 1 的正方形的个数为 2019 个( )

初中数学代数式经典测试题含答案

初中数学代数式经典测试题含答案
6.若 与 是同类项.则()
A. B. C. D.
【答案】B
【解析】
【分析】
根据同类项的定义列出关于m和n的二元一次方程组,再解方程组求出它们的值.
【详解】
由同类项的定义,得:
,解得 .
故选B.
【点睛】
同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.
【点睛】
本题考查了多项式乘多项式,熟练掌握其运算方法: 是解题的关键.
2.下列各运算中,计算正确的是( )
A.2a•3a=6aB.(3a2)3=27a6
C.a4÷a2=2aD.(a+b)2=a2+ab+b2
【答案】B
【解析】
试题解析:A、2a•3a=6a2,故此选项错误;
B、(3a2)3=27a6,正确;
故选:A.
点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.
15.图为“ ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.
19.若(x+4)(x﹣1)=x2+px+q,则( )
A.p=﹣3,q=﹣4 B.p=5,q=4
C.p=﹣5,q=4 D.p=3,q=﹣4
【答案】D
【解析】
【分析】
根据整式的运算法则即可求出答案.
【详解】
解:∵(x+4)(x﹣1)=x2+3x﹣4

代数式单元测试题及答案

代数式单元测试题及答案
16. 代数式 \( 3x^2 - 6x + 2 \) 可以分解为 \( 3x(x - 1) +
代数式单元测试题及答案
一、选择题(每题2分,共20分)
1. 下列代数式中,不是单项式的是:
A. -3x²
B. 5y
C. 7z
D. xy
2. 代数式 \( a^3b^2 - 2ab^3 + 5 \) 可以分解为:
A. \( a^2b - ab^2 + 5 \)
B. \( a^2b + ab^2 - 5 \)
D. \( 3x(x - 1) - 2 \)
8. 若 \( a = 2 \),\( b = 3 \),代数式 \( a^2 - b \) 的值为:
A. 1
B. 4
C. 5
D. 7
9. 代数式 \( 4x^3 - 27 \) 可以分解为:
A. \( (2x - 3)(2x^2 + 3x + 9) \)
13. 代数式 \( 2x^2 - 5x + 3 \) 的次数是 _________。
14. 代数式 \( 4x^3 - 8x^2 + 6x - 1 \) 的项数是 _________。
15. 若 \( a = -1 \),\( b = 2 \),代数式 \( a^2 - b \) 的值为 _________。
C. \( a^2b - ab^2 - 5 \)
D. \( a^2b + ab^2 + 5 \)
3. 若 \( x = -2 \) 时,代数式 \( 3x - 2 \) 的值为:
A. 4
B. -4
C. 6
D. -6
4. 下列代数式中,是同类项的是:

代数式经典测试题

代数式经典测试题

代数式经典测试题一、选择题1.下列计算正确的是()A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2yC.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【答案】D【解析】A选项:2x2·2xy=4x3y,故是错误的;B选项:3x2y和5xy2不是同类项,不可直接相加减,故是错误的;C.选项:x-1÷x-2=x ,故是错误的;D选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的.故选D.2.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.10【答案】A【解析】【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值.【详解】解:根据勾股定理可得a2+b2=9,四个直角三角形的面积是:12ab×4=9﹣1=8,即:ab=4.故选A.考点:勾股定理.3.如果多项式4x4+ 4x2+A是一个完全平方式,那么A不可能是().A.1 B.4 C.x6D.8x3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.4.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.5.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.6.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.7.计算 2017201817(5)()736-⨯ 的结果是( ) A .736- B .736 C .- 1 D .367【答案】A【解析】【分析】根据积的乘方的逆用进行化简运算即可.【详解】2017201817(5)()736-⨯ 20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯ 736=- 故答案为:A .【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.11.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意;3−2=19,故选项D 不合题意. 故选:B .【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.12.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.13.下列运算正确的是( )A .2352x x x +=B .()-=23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.14.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+- =1()()2x y x y -+ =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.15.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .16.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A .42B .43C .56D .57【答案】B【解析】【分析】 根据题意得出得出第n 个图形中菱形的个数为n 2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.17.计算1.252 017×2?01945⎛⎫⎪⎝⎭的值是( )A.45B.1625C.1 D.-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.又∵2019是奇数,201925283=⨯+,∴数到2019时对应的指头是中指.故选:B .【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.19.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.20.观察下列图形:( )它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为( ) A .20B .21C .22D .23 【答案】C【解析】【分析】设第n 个图形共有a n (n 为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n =3n +1(n 为正整数)”,再代入n =7即可得出结论.【详解】解:设第n 个图形共有a n (n 为正整数)个五角星,∵a 1=4=3×1+1,a 2=7=3×2+1,a 3=10=3×3+1,a 4=13=3×4+1,…,∴a n=3n+1(n为正整数),∴a7=3×7+1=22.故选:C.【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n=3n+1(n为正整数)”是解题的关键.。

初中代数竞赛试题及答案

初中代数竞赛试题及答案

初中代数竞赛试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 2C. x = 3D. x = 4答案:A2. 如果一个数的平方等于其本身,那么这个数是:A. 0或1B. 0或-1C. 1或-1D. 0或2答案:A3. 计算下列表达式的值:(3x^2 - 2x + 1) - (2x^2 - 4x + 3)A. x^2 - 2x - 2B. x^2 + 2x - 2C. x^2 - 6x + 4D. x^2 + 6x - 4答案:A4. 一个二次方程ax^2 + bx + c = 0的判别式为:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A5. 一个数列的前三项为2, 4, 8,那么第四项是:A. 16B. 32C. 64D. 128答案:C二、填空题(每题4分,共20分)6. 一个数的立方等于其本身,这个数是______。

答案:0, 1, -17. 一个等差数列的前三项为3, 7, 11,那么第五项是______。

答案:198. 一个等比数列的前两项为2, 8,那么第三项是______。

答案:329. 如果一个数的相反数是-5,那么这个数是______。

答案:510. 一个二次方程的系数为a = 1, b = -6, c = 9,那么这个方程的判别式是______。

答案:0三、解答题(每题10分,共60分)11. 解方程:3x^2 - 5x - 2 = 0。

答案:x = (5 ± √(5^2 - 4 * 3 * (-2))) / (2 * 3) = 2, 1/3 12. 计算数列的通项公式:数列的前三项为1, 4, 9,求第n项的公式。

答案:an = n^213. 已知一个等差数列的前三项为2, 5, 8,求这个数列的通项公式。

答案:an = 2 + 3(n - 1) = 3n - 114. 已知一个等比数列的前两项为3, 9,求这个数列的通项公式。

小学代数知识试题及答案

小学代数知识试题及答案

小学代数知识试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是正确的等式?A. 2 + 3 = 5B. 4 × 2 = 6C. 6 ÷ 2 = 3D. 8 - 4 = 2答案:C2. 如果一个数的3倍是15,那么这个数是多少?A. 3B. 4C. 5D. 6答案:B3. 一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?A. 25B. 50C. 75D. 100答案:B4. 下列哪个分数是最大的?A. 1/2B. 2/3C. 3/4D. 4/5答案:D5. 一个数加上10等于20,这个数是多少?A. 10B. 5C. 15D. 20答案:A6. 下列哪个选项是正确的不等式?A. 7 > 8B. 6 < 5C. 9 ≥ 9D. 4 ≤ 3答案:C7. 一个数的一半是5,这个数是多少?A. 10B. 15C. 20D. 25答案:A8. 一个数的3倍减去2等于10,这个数是多少?A. 4B. 3C. 2D. 1答案:A9. 一个数乘以3再加上4等于19,这个数是多少?A. 5B. 6C. 7D. 8答案:A10. 下列哪个选项是正确的比例?A. 2:4 = 6:12B. 3:6 = 9:18C. 4:8 = 2:4D. 5:10 = 1:2答案:A二、填空题(每题3分,共30分)1. 一个数与5的和是10,这个数是______。

答案:52. 一个数的4倍是32,这个数是______。

答案:83. 一个数的一半加上3等于8,这个数是______。

答案:54. 一个数除以2再减去3等于4,这个数是______。

答案:115. 一个数的3倍加上5等于23,这个数是______。

答案:66. 一个数的4倍减去8等于12,这个数是______。

答案:77. 一个数乘以3再除以2等于9,这个数是______。

答案:68. 一个数加上它的2倍等于18,这个数是______。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案1. 题目:矩阵运算题目描述:给定两个矩阵A和B,计算它们的乘积AB。

答案解析:矩阵A的维度为m x n,矩阵B的维度为n x p,则矩阵AB的维度为m x p。

矩阵AB中的每个元素都可以通过矩阵A的第i行与矩阵B的第j列的内积来计算,即AB(i,j) =∑_{k=1}^{n}A(i,k)B(k,j)。

2. 题目:矩阵转置题目描述:给定一个矩阵A,求其转置矩阵AT。

答案解析:如果矩阵A的维度为m x n,则转置矩阵AT的维度为n x m。

转置矩阵AT中的每个元素都可以通过矩阵A的第i行第j列的元素来计算,即AT(j,i) = A(i,j)。

3. 题目:线性方程组求解题目描述:给定一个线性方程组Ax = b,其中A是一个m x n的矩阵,x和b是n维向量,求解x的取值。

答案解析:假设矩阵A的秩为r,则根据线性代数的理论,线性方程组有解的条件是r = rank(A) = rank([A | b])。

若方程组有解,则可以通过高斯消元法、LU分解等方法求解。

4. 题目:特征值与特征向量题目描述:给定一个矩阵A,求其特征值和对应的特征向量。

答案解析:设λ为矩阵A的特征值,若存在非零向量x,满足Ax = λx,则x为矩阵A对应于特征值λ的特征向量。

特征值可以通过解特征方程det(A - λI) = 0求得,其中I为单位矩阵。

5. 题目:行列式计算题目描述:给定一个方阵A,求其行列式det(A)的值。

答案解析:行列式是一个方阵的一个标量值。

行列式的计算可以通过Laplace展开、初等行变换等方法来进行。

其中,Laplace展开是将行列式按矩阵的某一行或某一列展开成若干个代数余子式的和。

6. 题目:向量空间与子空间题目描述:给定一个向量空间V和它的子集U,判断U是否为V的子空间。

答案解析:子空间U必须满足三个条件:(1)零向量属于U;(2)对于U中任意两个向量u和v,它们的线性组合u+v仍然属于U;(3)对于U中的任意向量u和标量c,它们的数乘cu仍然属于U。

大学高等代数试题及答案

大学高等代数试题及答案

大学高等代数试题及答案一、单项选择题(每题2分,共10分)1. 设矩阵A为3阶方阵,且|A|=1,则矩阵A的逆矩阵的行列式是()。

A. 0B. 1C. -1D. 32. 若线性方程组有唯一解,则该方程组的系数矩阵的秩与增广矩阵的秩()。

A. 不相等B. 相等C. 相差1D. 相差23. 以下哪个矩阵是正交矩阵?()A. \[\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\]B. \[\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\]C. \[\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\]D. \[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\]4. 矩阵A的特征值是λ,那么矩阵A的转置的特征值是()。

A. λB. -λC. 0D. 不确定5. 设A是n阶方阵,且A^2=I(I是单位矩阵),则A的行列式是()。

A. 1B. -1C. 0D. 不确定二、填空题(每题3分,共15分)6. 若矩阵A的秩为2,则A的行最简形矩阵中非零行的个数为_________。

7. 设A是3×3矩阵,且A的迹等于3,则A的对角线元素之和为_________。

8. 若线性方程组的系数矩阵A和增广矩阵B的秩相等,则该方程组有_________解。

9. 设矩阵A的特征多项式为f(λ)=λ^2-5λ+6,则A的特征值为_________。

10. 若矩阵A与B相似,则A与B有相同的_________。

三、解答题(每题10分,共20分)11. 给定矩阵\[A=\begin{pmatrix} 2 & 1 \\ 1 & 2\end{pmatrix}\],求矩阵A的特征值和特征向量。

代数式经典测试题含答案

代数式经典测试题含答案

3.如图,由 4 个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积 是 9,小正方形面积是 1,直角三角形较长直角边为 a,较短直角边为 b,则 ab 的值是 ()
A.4
B.6
C.8
D.10
【答案】A
【解析】
【分析】
根据勾股定理可以求得 a2+b2 等于大正方形的面积,然后求四个直角三角形的面积,即可
C、2a﹣2=
2 a2
,故此选项错误;
D、(﹣2a)3=﹣8a3,正确.
故选 D.
【点睛】
此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运
算法则是解题关键.
8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑
了,得到正确的结果变为 4a2 12ab ( ),你觉得这一项应是( )
内,若两张边长分别为 和 ( )的正方形纸片按图 1,图 2 两种
方式放置(图 1,图 2 中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸
片覆盖的部分用阴影表示,若图 1 中阴影部分的面积为 ,图 2 中阴影部分的面积和为
,则关于 , 的大小关系表述正确的是( )
A.
B.
C.
D.无法确定
加了 15%,则 5 月份的产值是( )
A.( -10%)( +15%)万元
B. (1-10%)(1+15%)万元
C.( -10%+15%)万元
D. (1-10%+15%)万元
【答案】B
【解析】
列代数式.据 3 月份的产值是 a 万元,用 a 把 4 月份的产值表示出来 a (1-10%),从而
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数经典试题及答案一(完卷时间:90分钟,满分:100分)一、填空题(本题共12小题,每小题2分,满分24分) 1.2-的相反数是 .2.如果分式242--x x 的值为零,那么x =3.不等式7—2x >1的正整数解是 .4.点Q (-3,4)关于原点对称的点的坐标是 . 5.函数1-=x x y 的定义域是 .6.如果正比例函数的图像经过点(2,4),那么这个函数的解析式为 . 7.三峡水库的库容量可达393000000000立方米,这个数用科学记数法表示为 .8.方程2+x =-x 的解是 .9.甲、乙两人比赛飞镖,两人所得平均环数相同,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10.那么成绩较为稳定的是 (填“甲”或“乙”). 10.如果x =1是方程032=+-x ax 的根,那么a = .11.如果方程0242=+-x x 的两个实数根分别是x 1、x 2,那么21x x = .12.平价大药房大幅度降低药品价格,某种常用药品原来价格为m 元,那么降价30%后的价格为 元.二、选择题:(本题共6小题,每小题2分,满分12分)【本题每小题列出的四个答案中,只有一个是正确的,把正确答案的代号填入括号内】 13.15-的一个有理化因式是 ( )(A )5 (B ) 51- (C )51+ (D )15-14.如果用换元法解方程0213122=+---x xx x ,设x x y 12-=,那么原方程可化为( )(A )0232=+-y y (B )0232=-+y y (C )0322=+-y y (D )0322=-+y y 。

15.下列说法正确的是 ( ).(A )无理数都是实数 (B )无限小数都是无理数 (C )正数的平方根都是无理数 (D )无理数都是开方所得的数 16.在数轴上表示实数a 和b 的点的位置如图所示,那么下列各式成立的是 ( ).(A )b a < (B )b a > (C )0>ab (D )b a >17.化简23)2(x 所得的结果是 ( )(A )52x ; (B )54x ; (C )62x ; (D )64x .18.一元二次方程032=-+a x ax 的根的情况是 ( ) (A )有两个不相等的实数根; (B )有两个相等的实数根; (C )没有实数根; (D )无法判断. 三、(本大题共4题,每题6分,满分24分) 19.计算:21232()222x x x x x++÷+-+.20. 计算:3118213)14.3(-⎪⎭⎫⎝⎛+-+--π.21. 解方程组:⎩⎨⎧=+=-.54,522y x y x22.已知函数()f x =,求函数的定义域及)4(f .23.解方程:5146=++-x x .24.某校640名学生参加了“爱我中华”作文竞赛.为了解这次作文竞赛的基本情况,从中随机抽取部分作文成绩汇总制成直方图(如右图),其中分数段与等第的关系如下表:(每组可含最低值,不含最高值)(1)抽取的作文数量为 篇;(2)抽取的作文中,80分及80分以上的作文数量所占的百分比是 ;(3)根据抽样情况估计,这次作文竞赛成绩的中位数落在等第组中; (4)估计参加作文竞赛的640名学生的作文成绩为A 等的人数约为 名.四、(本大题共4题,每题10分,满分40分) 25.已知抛物线2(3)1y x n x n =+-++经过坐标原点O . (1)求这条抛物线的顶点P 的坐标;(2)设这条抛物线与x 轴的另一个交点为A ,求以直线PA 为图像的一次函数解析式.等第26.关于x 的方程0122=-+-k kx x 的两个实数根为a 、b ,且点()1,1--b a 在反比例函数xy 2=的图像上,求k 的值.27.如图6,二次函数22-+=bx ax y 的图像与正比例函数x y 2-=的图像相交于A 、B 两点,与y 轴相交于点C ,已知AC //x 轴,OB=2OA . 求:(1)点A 的坐标;(2)二次函数的解析式.28.已知:二次函数k h x y +--=2)(图像的顶点P 在x 轴上,且它的图像经过点A (3,-1),与y 轴相交于点B ,一次函数b ax y +=的图像经过点P 和点A ,并与y 轴的正半轴相交.求:(1)k 的值;(2)这个一次函数的解析式; (3)∠PBA 的正弦值.图6参考答案一、填空题:(本题共12小题.每小题2分,满分24分) 1.2 ; 2.-2; 3.1,2; 4.(3,-4);5.x >1 ; 6.y =2x ; 7.111093.3⨯; 8.x =-1; 9.甲; 10. -2; 11. 2; 12. 0.7m . 二、选择题:(本题共6小题,每小题2分,满分12分) 13.C ; 14.D ; 15.A ; 16.B ;17.D ; 18.A ; 三、(本大题共6题,每题4分,满分24分)19.解:原式=22432(2)(2)(2)x x x x x x x -+++÷+-+ (2分) =32(2)(2)(2)32x x x x x x ++⋅+-+ (1分) =2-x x. (1分) 20.解:原式=1+3+2-2 (1分,1分,1分,1分)=4.21.解:由①得 52-=x y ③代入②得 5)5(22=-+x x .整理,得 01522=-+x x . (1分)解得 51-=x ,32=x . (1分)∴51-=y ,12-=y . (1分)∴原方程组的解为⎩⎨⎧-=-=,5,511y x 223,1,x y =⎧⎨=-⎩ (1分)22.解:20,60.x x ->⎧⎨-≥⎩2,6.x x >⎧⎨≤⎩(1分)定义域为:26x <≤.(1分)(4)f =(2分)23.解5=41256x x +=-- , (1分)6x =- ,22443612x x x -=-+, (1分)28120,x x -+= (1分)126, 2,x x ==经检验: 126, 2,x x ==都是原方程的根, (1分)所以原方程的根是126, 2x x ==.24.解:(1)64;(2)37.5%;(3)C 组;(4)80名. (1分,1分,1分,1分)四、(本大题共4题,每题10分,满分40分)25.解:(1)∵抛物线2(3)1y x n x n =+-++经过原点,∴10n +=. (1分)∴1n =-. (1分)得x x y 42-=,即224(2)4y x x x =-=--.∴抛物线的顶点P 的坐标为(2,-4). (3分)(2)根据题意,得点A 的坐标为(4,0). (1分)设所求的一次函数解析式为y =kx +b . (1分)根据题意,得⎩⎨⎧+=-+=.24,40b k b k (1分)解得⎩⎨⎧-==.8,2b k (1分)∴所求的一次函数解析式为y =2x -8. (1分)26.解: ∵a 、b 方程0122=-+-k kx x 的两个实数根,∴2, 1.a b k ab k +==- (2分)∵点()1,1--b a 在反比例函数xy 2=的图像上,∴211b a -=-, (2分)()12ab a b -++=, (1分)∴2112,k k --+= (1分)220,k k --= (1分)121, 2.k k =-= (1分)当1k =-时,符合题意;当2k =时,原方程没有实数根. (1分) ∴k 的值为1-. (1分)27.解:∵二次函数22-+=bx ax y 的图像与y 轴相交于点C ,∴点C 的坐标为(0,2-), (1分)∵AC //x 轴,∴点A 的纵坐标为2. (1分)∵点A 在正比例函数x y 2-=的图像上,∴点A 的坐标为 (1,2-). (1分)过点B 作BD //x 轴, 交y 轴于D , 由BD //AC 得.OAOBOC OD = (1分)又∵OB=2OA ,OC =2,∴OD=2OC=4. (1分)∵点B 在正比例函数x y 2-=的图像上,∴点B 的坐标是(-2,4).(1分)∵点A 、B 在两次函数的图像上,据题意得4422,2 2.a b a b =--⎧⎨-=+-⎩(2分)解得1,1.a b =⎧⎨=-⎩(1分)∴二次函数的解析式是22y x x =--. (1分)28.解:(1)∵二次函数k h x y +--=2)(图像的顶点P 在x 轴上,∴k =0. (1分) (2)∵二次函数2)(h x y --=的图像经过点A (3,-1),∴2)3(1h --=-.∴21=h ,42=h .∴点P 的坐标为(2,0)或(4,0). (1分)(i )当点P 的坐标为(2,0)时,∵一次函数b ax y +=的图像经过点P 和点A ,∴⎩⎨⎧+=-+=.31,20b a b a 解得⎩⎨⎧=-=.2,1b a (1分) (ii )当点P 的坐标为(4,0)时,∵一次函数b ax y +=的图像经过点P 和点A ,∴⎩⎨⎧+=-+=.31,40b a b a 解得⎩⎨⎧-==.4,1b a (1分) ∵一次函数的图像与y 轴的正半轴相交,∴⎩⎨⎧-==.4,1b a 不符合题意,舍去. (1分) ∴所求的一次函数解析式为2+-=x y . (1分)(3)∵点P 的坐标为(2,0),点A 的坐标为(3,-1),点B 的坐标为(0,-4), ∴52=BP ,23=AB ,2=AP . (1分) ∴20)2()23(2222=+=+AP AB ,202=BP .∴222BP AP AB =+.∴∠BAP =90°. (1分) ∴1010522sin ==∠PBA . (2分)。

相关文档
最新文档