最新版精选2019高中数学单元测试《导数及其应用》专题完整题(含标准答案)
最新版精选2019高中数学单元测试《导数及其应用》专题完整考题(含答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为(2012新课标理)2.曲线12e x y =在点2(4e ),处的切线与坐标轴所围三角形的面积为______________二、填空题3.(文)已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________ .4.已知函数()x f 的导函数为()f x ',且满足()()2322f x x xf =+',则()5f '= .5.函数f (x )=x 3﹣2x 2的图象在点(1,﹣1)处的切线方程为 y=﹣x .(4分)6.函数3()45f x x x =++的图像在1x =处的切线在x 轴上的截距为__ ▲_____. 7.若曲线1y x α=+(α∈R)在点(1,2)处的切线经过坐标原点,则α=_________.(2013年高考江西卷(文))8.若3()3f x ax x =-在R 上是单调函数,则a 的取值范围为_____▲ __9.若函数32()4f x x x ax =+--在区间()1,1-恰有一个极值点,则实数a 的取值范围为 。
10.若函数f (x )=ax 3+3x 2-x (a ≠0)恰有三个单调区间,那么a 的取值范围是_____________. 11.已知函数12)(,1)(332++-=++=a a x x g a xx x f 若存在,)1(,1,21>⎥⎦⎤⎢⎣⎡∈a a a ξξ,使得12|()()|9f g ξξ-≤,则a 的取值范围是 ▲ .12.不过原点的直线l 是曲线x y ln =的切线,且直线l 与x 轴、y 轴的截距之和为0,则直线l 的方程为 .13.已知函数)(x f 在1=x 处的导数为1,则xf x f x 2)1()1(lim-+→=___________14. 函数y =f (x )的图像在点M (1, f (1))处的切线方程是y =3x -2,则f (1)+ f ′(1)= ▲ .15.若曲线21x y x -=+在1x =处的切线与直线10ax y ++=平行,则实数a 等于16.已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,0)()(2>-'x x f x f x )(0>x ,则不等式0)(2>x f x 的解集是 .三、解答题17.设函数f (x )=lnx ﹣ax ,a ∈R .(1)当x=1时,函数f (x )取得极值,求a 的值;(2)当a >0时,求函数f (x )在区间[1,2]的最大值.(12分)18.已知函数c x bx ax x f +-+=2)(23在2-=x 时有极大值6,在1=x 时有极小值. (1)求)(x f 的解析式;(2)求)(x f 在区间[]3,3-上的最大值和最小值. (本题满分14分)19.已知函数||ln )(2x x x f =, (1)判断函数)(x f 的奇偶性; (2)求函数)(x f 的单调区间;(3)若关于x 的方程1)(-=kx x f 有实数解,求实数k 的取值范围.(本题满分14分)20.已知函数2()f x x =,()ln g x a x =,a ∈R . (1)若1x ∃≥,()()f x g x <,求实数a 的取值范围;(2)证明:“方程()()f x g x ax -=(0)a >21.已知函数21()2g x x a =-,()2()1h x x g x =⋅+,若对任意x ∈恒成立,(1)求实数a 的取值范围;(2)在区间[,1]t t +上满足不等式()1h x ≥的解有且只有一个,求实数t 的取值范围(直接写答案,不必写过程);(3)若()f x =2()2h x x x -+, 试判断在区间(0,)m 内是否存在一个实数b ,使得函数()f x 的图像在x b =处的切线的斜率等于21m m --,并说明理由.22.函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线3x +y +2=0.(1)求a ,b 的值; (2)求函数的极大值与极小值的差.一、填空题(本大题共14小题,每小题5分,共计70分)1.3a ≤; 2.{|11}x x x ><-或; 3.4; 4.5-;因此,当x =0时,f (x )有极大值f (0)=c ;当x =2时,f (x )有极小值f (2)=c -4.所以,所求的极大值与极小值之差为c -(c -4)=4.23.已知函数322()3(1)24f x kx k x k =-+-+,若()f x 的单调减区间恰为(0,4)。
新版精选2019高考数学《导数及其应用》专题完整题(含参考答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设f 0(x )=sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2005(x )=( ) A .sinx B .-sinx C .cos x D .-cosx (2005湖南理)2.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( )(2007江苏9) A .3B .52 C .2 D .323.函数x x y ln =在)5,0(上是( ). A .单调增函数 B .单调减函数C .在)1,0(e 上单调递增,在)5,1(e 上单调递减;D .在)1,0(e 上单调递减,在)5,1(e上单调递增.答案 D4.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )(全国二文)A .1B .2C .3D .4二、填空题5.已知曲线()ln 1f x a x bx =++在点(1,(1))f 处的切线斜率为-2,且23x =是函数()y f x =的极值点,则a b -= .6.已知函数()sin f x x =的导数为()f x ',则(0)f '= . 7. 已知函数bx ax x x f -+=2331)((R b a ∈,),若)(x f y =在区间[]2,1-上是单调减函数,则b a +的最小值为 ▲ .8. 直线12y x b =+能作为下列函数()y f x =的切线有 ▲ .(写出所有正确....的函数的序号) ①1()f x x=②()ln f x x = ③()sin f x x = ④()x f x e =-9.已知函数()2ln bx x a x f -=图象上一点P(2,f (2))处的切线方程为22ln 23++-=x y , 则a b +=______3_____ . 三、解答题10.中天钢铁公司为一家制冷设备厂设计生产某种型号的长方形薄钢板,要求其周长为4米.这种薄钢板须沿其对角线折叠后使用,如图所示,()ABCD AB AD >为钢板,沿AC 折叠,AB 折过去后,交DC 于P ,已知图中ADP ∆的面积最大时最节能,多边形/ACB PD 的面积最大时制冷效果最好.设AB x =米, (1)用x 表示图中DP 的长度;(2)要获得最好的节能效果,应怎样设计钢板的长和宽; (3)要获得最好的制冷效果,应怎样设计钢板的长和宽.11.设函数()|1||1|f x x ax =+++,已知(1)(1)f f -= ,且11()()f f a a-=(a ∈R ,且a ≠0),函数32()g x ax bx cx =++(b ∈R ,c 为正整数)有两个不同的极值点,且该函数图象上取得极值的两点A 、B 与坐标原点O 在同一直线上。
精选最新2019高考数学《导数及其应用》专题完整考题(含参考答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是( )答案 D2.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为 A .3B .52C .2D .32(江苏) 二、填空题 3.设曲线y =e ax 有点(0,1)处的切线与直线x +2y +1=0垂直,则a =_________. 24.在实数集R 上定义运算:()().(),x x y x a y a f x e ⊗=-=为实常数若(),x g x e x -=+令()()().F x f x g x =⊗若函数))0(,0()(F P x F 在点处的切线斜率为1,则此切线方程为________________.5.设曲线(1)x y ax e =-在点A 01(,)x y 的切线为1l ,曲线1x x y e-=在点B 02(,)x y 的切线为2l ,若存在013[,]22x ∈-,使得12l l ⊥,则实数a 的取值范围是_______6. 函数21ln 2y x x =-的单调递减区间为 __________________. 7.曲线()ln f x x x =在点1x =处的切线方程为 ▲ .(第11题图)8.设函数()2ln f x x x =+,若曲线()y f x =在点()()1,1f 处的切线方程为y ax b =+,则a b += .9.函数y =2x x 2+1的极大值为______,极小值为______. [答案] 1 -1[解析] y ′=2(1+x )(1-x )(x 2+1)2, 令y ′>0得-1<x <1,令y ′<0得x >1或x <-1,∴当x =-1时,取极小值-1,当x =1时,取极大值1.10.如图,函数)(x f y =的图象在点P 处的切线是l ,则(2)(2)f f '+= ☆ .11.已知函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为_________.12.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++的值为 . (2009陕西卷理)13.若函数2()(2)1f x m m x m =--+-在(,)-∞+∞上单调递减,则实数m 的取值范围是 .14.若函数()ln a f x x x =-在[1,]e 上的最小值为32,则实数a 的值为 ▲ .15.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为______________.16.在曲线106323-++=x x x y 的切线中斜率最小的切线方程是____________.17.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -= ▲ . (江苏)三、解答题18.(1)求f (x )=x 3-x 2+1在点(1,1)处的切线方程 (2)求f (x )=x 3-x 2+1过点(1,1)的切线方程(本题满分15分)19.已知函数2332)(ax x x f -=, x x x g 63)(2-=,又函数)(x f 在)1,0(单调递减,而在),1(+∞单调递增.(1)求a 的值;(2)求M 的最小值,使对∀[]2,221-∈x x 、,有M x g x f ≤-)()(21成立;(3)是否存在正实数m ,使得)()()(x mg x f x h +=在)2,2(-上既有最大值又有最小值?若存在,求出m 的取值范围;若不存在,请说明理由. (本小题共16分)20.已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=. ⑵ 函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;(文)21.已知函数()a x x x x f +++-=9323. (1)求()x f 的单调递减区间;(2)若()x f 在区间[]2,2-上的最大值为20,求它在该区间上的最小值.22.燕子每年秋天都要从北方飞到南方过冬。
(完整)最新版精选2019高考数学《导数及其应用》专题完整考试题(含参考答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、填空题1.曲线32242y x x x =--+在点(13)-,处的切线方程是 . 答案 520x y +-=2.若函数f (x )=ax 4+bx 2+c 满足(1) 2f '=,则(1)f '-= . 3.函数f (x )=12x -sin x 在区间[0,π]上的最小值为 .4.已知A 、B 、C 是直线l 上的三点,向量,,OA OB OC u u u r u u u r u u u r满足()[2'(1)]ln OA f x f x OB x OC =+-⋅u u u r u u u r u u u r,则函数()y f x =的表达式为 ▲ .5.设函数()2ln f x x x =+,若曲线()y f x =在点()()1,1f 处的切线方程为y ax b =+,则a b += .6.给出下列命题:①函数)(x f y =的图象与函数3)2(+-=x f y 的图象一定不会重合; ②函数)32(log 221++-=x x y 的单调区间为),1(∞+;③ππ---=+⎰edx e x x 1)(cos 0;④双曲线的渐近线方程是x y 43±=,则该双曲线的离心率是45.其中正确命题的序号是 (把你认为正确命题的序号都填上). 答案 ③7.已知函数f(x)= ()2f π'sinx+cosx ,则()4f π= .8.函数()sin ln f x x x =+的导函数()f x '= ▲ .二、解答题9.已知函数()f x 的导函数()f x '是二次函数,且()0f x '=的两根为1±.若()f x 的极大值与极小值之和为0,(2)2f -=. (1)求函数()f x 的解析式;(2)若函数在开区间(99)m m --, 上存在最大值与最小值,求实数m 的取值范围. (3)设函数()()f x x g x =⋅,正实数a ,b ,c 满足()()()0ag b bg c cg a ==>,证明:a b c ==.10.已知函数21()2,()log 2a f x x x g x x ==-(a >0,且a ≠1),其中为常数.如果()()()h x f x g x =+ 是增函数,且()h x '存在零点(()h x '为()h x 的导函数).(Ⅰ)求a 的值;(Ⅱ)设A (x 1,y 1)、B (x 2,y 2)(x 1<x 2)是函数y =g (x )的图象上两点,21021()y y g x x x -'=-(()g'x 为()g x 的导函数),证明:102x x x <<.11.过点A (2,1)作曲线()f x =l . (Ⅰ)求切线l 的方程;(Ⅱ)求切线l ,x 轴及曲线所围成的封闭图形的面积S .12.设函数()32221f x x mx m x m =---+-(其中2m >-)的图象在2x =处的切线与直线512y x =-+平行。
最新版精选2019高考数学《导数及其应用》专题考核题完整版(含参考答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( ) (A )-9 (B )-3 (C )9 (D )15(2011山东文4) 二、填空题2.函数()ln f x x =的图象在点()e ,(e)f 处的切线方程是3. 若对任意的x D ∈,均有()()()12f x f x f x ≤≤成立,则称函数()f x 为函数()1f x 到函数()2f x 在区间D 上的“折中函数”.已知函数()()()11,0,f x k x g x =--= ()()1ln h x x x =+,且()f x 是()g x 到()h x 在区间[]1,2e 上的“折中函数”,则实数k 的取值范围为 .4.若对任意的x D ∈,均有()()()12f x f x f x ≤≤成立,则称函数()f x 为函数()1f x 到函数()2f x 在区间D 上的“折中函数”.已知函数()()()11,0,f x k x g x =--= ()()1ln h x x x =+,且()f x 是()g x 到()h x 在区间[]1,2e 上的“折中函数”,则实数k 的取值为 ▲5.,则曲线过点)4,2(P 的切线方程为6.函数xe x a xf 32sin )(+=,若7)0('=f , 则a 的值是 ▲7.在实数集R 上定义运算:()().(),x x y x a y a f x e ⊗=-=为实常数若(),xg x ex -=+令()()().F x f x g x =⊗若函数))0(,0()(F P x F 在点处的切线斜率为1,则此切线方程为________________.8.已知函数()cos(2)(0)f x x θθπ=+<<,若'()()y f x f x =的图象关于6x π=对称,则θ= .9. 如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增; ②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值.则上述判断中正确的是__________. 三、解答题10.设函数f (x )=ax 3+bx 2+cx ,在x =1和x =-1处有极值,且f (1)=-1,求a 、b 、c 的值,并求出相应的极值. [解析] f ′(x )=3ax 2+2bx +c .∵x =±1是函数的极值点,∴-1、1是方程f ′(x )=0的根,即有又f (1)=-1,则有a +b +c =-1,此时函数的表达式为f (x )=12x 3-32x .∴f ′(x )=32x 2-32.令f ′(x )=0,得x =±1.当x 变化时,f ′(x ),f (x )变化情况如下表:由上表可以看出,当x =-1时,函数有极大值1;当x =1时,函数有极小值-111.若函数1)1(2131)(23+-+-=x a ax x x f 在区间(1,4)内为减函数,在区间(6,+∞)上为增函数。
新版精编2019高中数学单元测试《导数及其应用》专题完整考试题(含参考答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.曲线2ln y x x =-在点(1,2)处的切线方程是 .2.若()ln f x x x x 2=-2-4,则'()f x >0的解集为A. (,)0+∞B. -+10⋃2∞(,)(,)C. (,)2+∞D. (,)-103.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12nx x x ⋅⋅⋅的值为( )A.1nB.11n +C. 1nn + D.1答案 B 二、填空题 4.曲线2xy x =+在点(-1,-1)处的切线方程为 ▲ 。
5.函数1222-+-=a ax x y 在),(1-∞上是减函数,则实数a 的取值范围是______________ 6.已知函数d cx bx x x f +++=2331)(,设曲线)(x f y =在与x 轴交点处的切线为124-=x y ,)(x f y '=为)(x f 的导函数,满足)()2(x f x f '=-'.(1)求)(x f ;(2)设)()(x f x x g '=,m >0,求函数)(x g 在[0,m ]上的最大值;(3)设)(ln )(x f x h '=,若对于一切]1,0[∈x ,不等式)22()1(+<-+x h t x h 恒成立,求实数t 的取值范围.7.已知函数2()()(0)xf x ax bx c e a =++>的导函数'()y f x =的两个零点为-3和0. 若()f x 的极小值为-1,则()f x 的极大值为35e8.设函数f (x )=ax +sin x +cos x .若函数f (x )的图象上存在不同的两点A ,B ,使得曲线y =f (x )在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ .[-1,1]9. 已知函数()y f x =在定义域[4,6]-内可导,其图象如图,记()y f x =的导函数为'()y f x =,则不等式'()0f x ≥的解集为_____ 411[4,][1,]33-- ___.10.已知2112{|lg 0},{|222,}x M x x N x x Z -+===<<∈,则MN = .11.函数32)21()(+-=x x x f 的单调减区间为 ),21(+∞ .12.已知函数x ax x f ln )(+=,其中a 为实常数,设e 为自然对数的底数.若)(x f 在区间],0(e 上的最大值为3-,则a 的值为13.函数11y x x =-+在[1,3]x ∈上的最小值为_______________ 14. 函数()x f x e =在1x =处的切线方程是 ▲ .15.定积分⎰dx x |sin |230π的值是 .答案 316.已知方程3x =x -4的解在区间(21,+k k )内,k 是21的整数倍,则实数k 的值是17.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别 为,M m ,则M m -= . 答案 3218.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为______________.三、解答题19.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式2)6(103-+-=x x ay ,其中63<<x , a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. ⑴求a 的值;⑵若该商品的成本为3元/千克, 试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.20. (本题满分16分)设函数x ae x x f +=41121)((其中a 是非零常数,e 是自然对数的底),记1()()n n f x f x -'=(2≥n ,n ∈N*)(1)求使满足对任意实数x ,都有)()(1x f x f n n -=的最小整数n 的值(2≥n ,n ∈N*);(2)设函数)()()()(54x f x f x f x g n n +⋯++=,若对5≥∀n ,n ∈N*,)(x g y n =都存在极值点n t x =,求证:点))(,(n n n n t g t A (5≥n ,n ∈N*)在一定直线上,并求出该直线方程;(注:若函数)(x f y =在0x x =处取得极值,则称0x 为函数)(x f y =的极值点.) (3)是否存在正整数()4k k ≥和实数0x ,使0)()(010==-x f x f k k 且对于n ∀∈N*,)(x f n 至多有一个极值点,若存在,求出所有满足条件的k 和0x ,若不存在,说明理由.21.已知某公司生产某品牌服装的年固定成本为10万元,每生产千件需另投入2.7万元,设该公司年内共生产该品牌服装x 千件并全部销售完,每千件的销售收入为()R x 万元,且⎪⎪⎩⎪⎪⎨⎧>-≤<-=)10(31000108)100(3018.10)(22x x xx x x R .(1)写出年利润W (万元)关于年产品x (千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大? (注:年利润=年销售收入-年总成本)22.经销商用一辆J 型卡车将某种水果运送(满载)到相距400km 的水果批发市场。
精选最新2019高考数学《导数及其应用》专题完整考题(含标准答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.1(2)+⎰xex dx 等于( )(A )1 (B )e-1 (C )e (D )e+1(2011福建理5)2.(2009天津卷理)设函数1()ln (0),3f x x x x =->则()y f x = A 在区间1(,1),(1,)e e 内均有零点。
B 在区间1(,1),(1,)e e 内均无零点。
C 在区间1(,1)e 内有零点,在区间(1,)e 内无零点。
D 在区间1(,1)e内无零点,在区间(1,)e 内有零点。
【考点定位】本小考查导数的应用,基础题。
3. 设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x = 处的切线的斜率为( ) A .15- B .0C .15D .5二、填空题4. 设()f x 是定义在R 上的可导函数,且满足()()0f x xf x '+>,则不等式f f >的解集为 .5. 设()ln ,()()()f x x g x f x f x '==+.则()g x 的单调减区间为 ▲ . 6.若曲线1y x α=+(α∈R)在点(1,2)处的切线经过坐标原点,则α=_________.(2013年高考江西卷(文)) 7. 函数21ln 2y x x =-的单调递减区间为 __________________. 8. 曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为_________.9.已知函数()f x 的导函数()f x '是二次函数,右图是()y f x '=的图象,()x '(第34题图)(第11题图)若()f x 的极大值与极小值之和为23,则(0)f 的值为 .10.若函数f(x)= x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围为__________11.如图,函数)(x f y =的图象在点P 处的切线是l ,则(2)(2)f f '+= ☆ .12.设直线3y x b =-+是曲线323y x x =-的一条切线,则实数b 的值是三、解答题13.已知函数()2ln pf x px x x=--. ⑴若2p =,求曲线()f x 在点(1,(1))f 处的切线方程;⑵若函数()f x 在其定义域内为增函数,求正实数p 的取值范围; ⑶设函数2()eg x x=,若在[]1,e 上至少存在一点0x ,使得00()()f x g x >成立,求实数p 的取值范围.(2010北京石景山模拟)关键字:对数;求一点处的切线方程;求切线方程;已知单调性;求参数的取值范围;不等式的有解问题;存在性问题14.已知函数2222()2()21t f x x t x x x t =-++++,1()()2g x f x =.(I )证明:当t <时,()g x 在R 上是增函数; (II )对于给定的闭区间[]a b ,,试说明存在实数k ,当t k >时,()g x 在闭区间[]a b ,上是减函数;(III )证明:3()2f x ≥.(辽宁理 本小题满分12分) 15.某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形高科技工业园区。
(完整版)最新2019高考数学《导数及其应用》专题完整考试题(含答案),推荐文档
x2 )
0
,而
f
(x1 )
0 ,不合题意
若1 x1 x2 , 则对任意的 x [x1, x2 ] 有 x x1 0, x x2 0,
则
f
(x)
1 3
x(x
x1 )(x
x2 )
0
又
f
(x1 )
0 ,所以函数
f
(x)
在
x [x1,
x2 ] 的最小
值为0,于是对任意的 x [x1, x2 ] ,
17.设函数 f (x) x(x 1)2 , x 0 . ⑴求 f (x) 的极值;
⑵设 0 a ≤1,记 f (x) 在 0, a上的最大值为 F (a) ,求函数 G(a) F (a) 的最小值;
a ⑶设函数 g(x) ln x 2x2 4x t ( t 为常数),若使 g(x) ≤ x m ≤ f (x) 在 (0, ) 上 恒成立的实数 m 有且只有一个,求实数 m 和 t 的值.
8.已知函数f(x)=
f ( ) sinx+cosx,则
f( )=
.
2
4
9.设曲线 y xn1(n N *) 在点(1,1)处的切线与x轴的交点的横坐标为 xn ,令
an lg xn ,则 a1 a2 a99 的值为
. (2009陕西卷理)
10.函数 y sin x与y cos x在[0, ] 内的交点为P,它们在点P处的两条切线与x轴所围 2
1
2. 已知a > 0,方程x2-2ax-2alnx=0有唯一解,则a = .
2
3. 曲线 f (x) 1 x2 cos x 在 x 0 处的切线的斜率为 3
4.若函数f(x)=ax4+bx2+c满足 f (1) 2 ,则 f (1)
精选最新版2019高考数学《导数及其应用》专题完整考题(含答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.函数xe x xf )3()(-=的单调递增区间是 ( )A. )2,(-∞B.(0,3)C.(1,4)D. ),2(+∞ w.w.w.k.s.5.u.c.o.m (2009广东文)2.函数2sin 2xy x =-的图象大致是3.已知函数()21xf x =-,对于满足1202x x <<<的任意12,x x ,给出下列结论:(1)[]2121()()()0x x f x f x --<;(2)2112()()x f x x f x <;(3)2121()()f x f x x x ->-;(4)1212()()()22f x f x x xf ++>,其中正确结论的序号是( )A. (1)(2)B. (1)(3)C. (2)(4)D. (3)(4) 答案C4.设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,则f (x )的图象的一条对称轴的方程是( )A .9π=xB .6π=xC .3π=x D .2π=x答案 C5.已知函数=y )(x f 是定义在R 上的奇函数,且当)0,(-∞∈x时不等式0)()('<+x xf x f 成立, 若)3(33.03.0f a =,),3(log )3(log ππf b =)91(log )91(log 33f c =,则c b a ,,的大小关系是( )A .c b a >>B .a b c >>C .c a b >>D .b c a >> 答案 C6.已知()f x 与()g x 是定义在R 上的连续函数,如果()f x 与()g x 仅当0x =时的函数值为0,且()()f x g x ≥,那么下列情形不可能...出现的是 ( )A .0是()f x 的极大值,也是()g x 的极大值B .0是()f x 的极小值,也是()g x 的极小值C .0是()f x 的极大值,但不是()g x 的极值D .0是()f x 的极小值,但不是()g x 的极值 答案 C 二、填空题 7.曲线12ex y =在点2(4e ),处的切线与坐标轴所围三角形的面积为8.对于函数()y f x =,若存在区间[,]a b ,当[,]x a b ∈时的值域为[,]ka kb (0)k >,则称()y f x =为k 倍值函数.若()ln f x x x =+是k 倍值函数,则实数k 的取值范围是9.定义函数集合()(){}()(){},0,0>''=>'=x f x f N x f x f M (其中()x f '为()x f 的导函数,()x f ''为()x f '的导函数),N M D ⋂=,以下5个函数中① ()x e x f =,②()x x f ln =,③()()0,,2∞-∈-=x x x f ,④()()+∞∈+=,1,1x x x x f ,⑤()⎪⎭⎫⎝⎛∈=2,0,cos πx x x f属于集合D 的有 ①③④10.曲线2ln y x x =-在点(1,2)处的切线方程为 11.设()ln f x x x =,若0'()2f x =,则0x =12.函数32()23121f x x x x =--++在区间[,1]m 上的最小值为-17,则m = 13.计算定积分=+⎰-dx x x 112)sin (___________。
精选最新2019高中数学单元测试《导数及其应用》专题完整版考核题(含参考答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.对于R 上可导的任意函数()f x ,若满足(1)()0x f x '-≥,则必有(C ) A.(0)(2)2(1)f f f +< B.(0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥D.(0)(2)2(1)f f f +>2.曲线=xy e 在点A (0,1)处得切线斜率为( ) A .1 B .2 C .e D .1e(2011江西文4) 3.如下图,已知()32()0,f x ax bx cx d a =+++≠记()243,b ac ∆=-则当00()a f x ∆≤>且时,的大致图象为( ).答案 C4.下列图像中有一个是函数1)1(31)(223+-++=x a ax x x f)0,(≠∈a R a 的导数)(x f ' 的图像,则=-)1(f( )A .31B .31-C .37D .31-或35答案 B二、填空题 5.曲线12ex y =在点2(4e ),处的切线与坐标轴所围三角形的面积为6.若曲线1y x α=+(α∈R)在点(1,2)处的切线经过坐标原点,则α=_________.(2013年高考江西卷(文))7. 函数)1lg()3lg()(x x x f -++=的单调增区间为____________。
8. 如果函数y =f (x )的导函数的图象如图所示,给出下列判断: ①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增; ②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值.则上述判断中正确的是__________. 9.点()00,y x P 是曲线C :xy 1=(x >0)上的一个动点,曲线C 在点P 处的切线与x 轴、y 周分别交与B A ,两点,点O 是坐标原点。
最新2019高考数学《导数及其应用》专题完整题(含参考答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .12- D .2-(2008全国1理)D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==---- 2.设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为 A .4 B .14-C .2D .12- (2009江西卷理) 二、填空题3.设二次函数f (x )=ax 2+bx +c (a ,b ,c 为常数)的导函数为f′(x ).对任意x ∈R ,不等式f (x )≥f′(x )恒成立,则b 2a 2+c 2的最大值为 ▲ .4.奇函数32()f x ax bx cx =++在1x =-处有极值,则3a b c ++的值为 ▲ . 5.曲线2y 21x x =-+在点(1,0)处的切线方程为________ 6.函数xe x a xf 32sin )(+=,若7)0('=f , 则a 的值是 ▲7.若存在过点(1,0)的直线与曲线3y x =和229y ax x =+-都相切,则a = . 8.函数32()23121f x x x x =--++在区间[,1]m 上的最小值为-17,则m = 9.曲线()ln f x x x =在点1x =处的切线方程为 ▲ .10.若函数()2xf x e x k =--在R 上有两个零点,则实数k 的取值范围为_____________11.y=x 3+ax +1的一条切线方程为y =2x +1,则a = .12.与直线2-=x y 平行且与曲线x x y ln 2-=相切的直线方程为 ▲ .三、解答题13.已知函数()1ln ()f x x a x a R =--∈.(1)若曲线()y f x =在1x =处的切线的方程为330x y --=,求实数a 的值; (2)求证:0)(≥x f 恒成立的充要条件是1a =;(3)若0a <,且对任意(]1,0,21∈x x ,都有121211|()()|4||f x f x x x -≤-,求实数a 的取值范围.另14.如图:设工地有一个吊臂长15DF m =的吊车,吊车底座FG 高1.5m ,现准备把一个底半径为3m 高2m 的圆柱形工件吊起平放到6m 高的桥墩上,问能否将工件吊到桥墩上?0.58,0.81≈≈)15.设函数321()(1)4243f x x a x ax a =--++,其中常数a>1(Ⅰ)讨论f(x)的单调性;(Ⅱ)若当x≥0时,f(x)>0恒成立,求a 的取值范围。
最新版精选2019高考数学《导数及其应用》专题完整考题(含标准答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象 可能是( )答案 D2.已知函数)(()(x f x f x y ''=其中的图象如右图所示))(的导函数是函数x f ,下面四个图象中)(x f y =的图象大致是( )(2005江西理)二、填空题3. 2sin y x x =+在[]ππ,2上的最大值是 ▲ 。
4.若函数xe y x=在0x x =处的导数值与函数值互为相反数,则0x 的值________5.曲线2y 21x x =-+在点(1,0)处的切线方程为________6.若函数f (x )=x - p x +p2在(1,+∞)上是增函数,则实数p 的取值范围是___________________.7.如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是__________.三、解答题8.函数f(x)=x 3-3ax 2+3bx 的图象与直线12x+y-1=0相切于点(1,-11). (1)求a 、b 的值;(2)方程f(x)=c 有三个不同的实数解,求c 的取值范围.9.设函数2()ln(1)f x x b x =++,其中0b ≠.(Ⅰ)当12b >时,判断函数()f x 在定义域上的单调性;(Ⅱ)求函数()f x 的极值点;(Ⅲ)证明对任意的正整数n ,不等式23111ln 1n n n⎛⎫+>- ⎪⎝⎭都成立.(山东理)10. 已知函数()ln(1)(1),xf x a e a x =+-+(其中0a >) ,点1,12233(()),(,()),(,())A x f x B x f x C x f x 从左到右依次是函数()y f x =图象上三点,且2132x x x =+.(Ⅰ) 证明: 函数()f x 在R 上是减函数; (Ⅱ)求证:⊿ABC 是钝角三角形;(Ⅲ) 试问,⊿ABC 能否是等腰三角形?若能,求⊿ABC 面积的最大值;若不能,请说明理由.11.设常数0a ≥,函数2()ln 2ln 1f x x x a x =-+-((0,))x ∈+∞.(1)令()()g x xf x '=(0)x >,求()g x 的最小值,并比较()g x 的最小值与零的大小; (2)求证:()f x 在(0,)+∞上是增函数;(3)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.12.如图:设工地有一个吊臂长15DF m =的吊车,吊车底座FG 高1.5m ,现准备把一个底半径为3m 高2m 的圆柱形工件吊起平放到6m 高的桥墩上,问能否将工件吊到桥墩上?0.58,0.81≈≈)13.已知函数f (x )=ln x +1-xax ,其中a 为大于零的常数.(1)若函数f (x )在区间[1,+∞)内不是单调函数,求a 的取值范围; (2)求函数f (x )在区间[e ,e 2]上的最小值.14.已知函数2*()2cos πln (f x x a k x k =-⋅∈N ,a ∈R ,且0a >). (1)讨论函数()f x 的单调性;(2)若2010k =,关于x 的方程()2f x ax =有唯一解,求a 的值.15.已知函数22()ln (1)1x f x x x=+-+,2()2(1)ln(1)2g x x x x x =++--.(1)证明:当(0)x ∈+∞,时,()0g x <; (2)求函数()f x 的的极值.16.已知0,1a a >≠且函数()log (1)xa f x a =-。
精选最新2019高中数学单元测试《导数及其应用》专题完整考题(含答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、填空题1.在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________ 关键字:动点;求切线方程;求导数;求最值2.设()sin (,)44f x x x x ππ⎡⎤=+∈-⎢⎥⎣⎦, ()f x 的最大值为 。
3.直线1+=kx y 与曲线b ax x y ++=3相切于点)3,1(A ,则b 的值为 .4.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是5.函数sin xy e x =⋅在[0,]π上的单调递增区间是 .6.设函数223()cos 4sin3()2x f x x t t t x =++-∈R ,其中||1t <,将()f x 的最小值记为(),()g t g t 则函数的单调递增区间为 ______ .7.在平面直角坐标系xoy 中,点P 在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 . 解析 考查导数的几何意义和计算能力。
231022y x x '=-=⇒=±,又点P 在第二象限内,2x ∴=-点P 的坐标为(-2,15)答案 : 1>a【命题立意】:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象解答.8.已知函数32()(6)1f x x ax a x =++++有三个单调区间,则实数a 的取值范围是______________9.函数()sin 2xf x x =+的导函数()f x '= 10.已知三次函数32()()32a b f x x x cx d a b =+++<在R 上单调递增,则a b cb a++-的最小 值为 ▲ .关键字:多项式函数;含多参;已知单调性;求最值;整体换元;分式函数11.若不等式29ln bx c x x ++≤对任意的()0+x ∈∞,,()03b ∈,恒成立,则实数c 的取值范围是 ▲ .12.设函数e x y =的图象在点(e )k a k a ,处的切线与x 轴的交点的横坐标为1k a +,其中*k ∈N ,10a =,则135a a a ++= ▲ .13. 已知函数bx ax x x f -+=2331)((R b a ∈,),若)(x f y =在区间[]2,1-上是单调减函数,则b a +的最小值为 ▲ .14.曲线y=x 3-x+3在点(1,3)处的切线方程为 .15.已知函数x x mx x f 2ln )(2-+=在定义域内是增函数,则实数m 的取值范围 ☆ ;16.若曲线()2f x ax Inx =+存在垂直于y 轴的切线,则实数a 的取值范围是 .解析17. 若存在实常数k 和b ,使函数()f x 和()g x 对其定义域上的任意实数x 恒有:()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知2(),()2ln h x x x e x ϕ==,则可推知(),()h x x ϕ的“隔离直线”方程为 ▲ . 18. 过坐标原点作函数ln y x =图像的切线,则切线斜率为 .19.曲线12e x y =在点2(4e ),处的切线与坐标轴所围三角形的面积为20. 直线12y x b =+能作为下列函数()y f x =的切线有 ▲ .(写出所有正确....的函数的序号) ①1()f x x=②()ln f x x = ③()sin f x x = ④()x f x e =- 二、解答题21.已知函数2()()e x f x x a =-在2x =时取得极小值. (1)求实数a 的值;(2)是否存在区间[],m n ,使得()f x 在该区间上的值域为44[e ,e ]m n ?若存在,求出m ,n 的值;若不存在,说明理由.22.如图,已知海岸公路BC 长为100km ,海岛A 到海岸公路BC 的距离AB 为50km .现欲在海岸公路边某处建一港口H ,使得从C 到A ,可以先乘汽车从C 处到H处,再从H 处换乘轮船抵达A 处.已知汽车速度为50km/h ,轮船速度为25km/h .设AHB θ∠=,从C 处出发经过H 处抵达A 处的总时间为y .(Ⅰ) 把y 表示为θ的函数;(Ⅱ) 试确定H 点的位置,使得y 最小.23.已知函数,m ∈R .(1)若,求证:函数f (x )是R 上的奇函数;(2)若函数f (x )在区间(1,2)没有零点,求实数m 的取值范围.(14分)MBA24.已知函数()ln f x x x =. (I )求函数()f x 的单调递减区间;(II )若2()6f x x ax ≥-+-在(0,)+∞上恒成立,求实数a 的取值范围; (III )过点2(,0)A e --作函数()y f x =图像的切线,求切线方程.25.现有一张长为80cm ,宽为60cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失。
新版精编2019高中数学单元测试《导数及其应用》专题完整考题(含答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,2)(>'x f ,则f (x )>2x+4的解集为( )(A )(-1,1) (B )(-1,+∞) (C )(-∞,-1) (D )(-∞,+∞)(2011辽宁理11)2.设球的半径为时间t 的函数()R t 。
若球的体积以均匀速度c 增长,则球的表面积的增长速度与球半径A.成正比,比例系数为CB. 成正比,比例系数为2CC.成反比,比例系数为CD. 成反比,比例系数为2C9.二、填空题3.若不等式29ln bx c x x ++≤对任意的()0+x ∈∞,,()03b ∈,恒成立,则实数c 的取值范围是 ▲ .4.曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为5.(文)已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________ .6.已知函数f (x )= 对任意x 1≠x 2,都有>0成立,则实数k 的取值范围是 [,1) .(4分)7.设ax x x x f 22131)(23++-=(20<<a ),若)(x f 在]4,1[上的最小值为316-,则)(x f 在区间]4,1[上的最大值为 .8.已知(0)1,()(1)()f f n nf n n N +==-∈,则(4)f = ▲ .9.已知32()'(1)3'(1)f x x x f xf =++-,则'(1)'(1)f f +-的值为___▲___.10.已知函数432()2f x x ax x b =+++(x R ∈),其中R b a ∈,.若函数()f x 仅在0x =处有极值,则a 的取值范围为11. 函数()x f x e =在1x =处的切线方程是 ▲ .12.函数3()12f x x x =-在区间[33]-,上的最小值是 .答案 16-13.01-⎰(x 2+2 x +1)dx =_________________.13三、解答题14.已知函数ax x a a x x f 2ln )2143(21)(22-++= (1)当21-=a 时,求)(x f 的极值点; (2)若)(x f 在'()f x 的单调区间上也是单调的,求实数a 的范围.15.某种新型快艇在某海域匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:3113(0120).144000360y x x x =-+<≤该海域甲、乙两地相距120千米.(I )当快艇以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(II )当快艇以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少约为多少升?(精确到0.1升).16.已知函数22(),[1,)x x a f x x x ++=∈+∞,(1)当12a =时,求()f x 函数的最小值;(2)若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围是[0,]4π,则点P 横坐标的取值范围是( )A.1[1,]2--B.[1,0]-C.[0,1]D.1[,1]2(2008辽宁理)2.设函数()f x 在R 上可导,其导函数为,()f x ,且函数)(')1(x f x y -=的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f3.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12nx x x ⋅⋅⋅的值为( )A.1nB.11n +C. 1nn + D.1答案 B二、填空题4.已知三次函数3221()(41)(1527)23f x x m x m m x =--+--+在()x ∈-+,∞∞上是增函数,则m 的取值范围为.5.函数x x y cos 2+=在(0,)π上的单调递减区间为 .6.已知2112{|lg 0},{|222,}x M x x N x x Z -+===<<∈,则MN = .7. 点P 在曲线73+-=x x y 上移动,设点P 处切线的倾斜角为α,则角α的取值范围是 .8.若函数()2xf x e x k =--在R 上有两个零点,则实数k 的取值范围为_____________9.由曲线2613y x x =-+与直线3y x =+所围成的封闭区域的面积为 .10.函数f (x )=x 3–3bx +3b 在(0,1)内有极小值,则b 的取值范围是___________________0<b <1 三、解答题11.设函数21()(1)2x f x x e x =--,求函数()f x 的单调区间. 12.已知函数c bx x ax x f -+=44ln )((x>0)在x = 1处取得极值c --3,其中a,b,c 为常数。
(1)试确定a,b 的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式22)(c x f -≥恒成立,求c 的取值范围。
(重庆理) 关键字:已知极值;讨论单调性;不等式;恒成立问题;参变分离;求最值13.已知函数2()ln f x x a x =-和()g x x =-1x =处的切线平行.(Ⅰ)试求函数()f x 和()g x 的单调增区间;(Ⅱ)设13b <<,求证:ln 2b b +<.14.已知函数x bx x a y ++=2ln 在1=x 和2=x 处有极值,求a ,b 的值。
15.某旅游用品商店经销某种奥运会记念品,每件产品的成本为3元,并且每件产品需向税务部门上交a 元(36a ≤≤)的税收,预计当每件产品的售价为x 元(1116x ≤≤)时,一年的销售量为2(18)x -万件.(Ⅰ)求该商店一年的利润L(万元)与每件产品的售价x 的函数关系式;(Ⅱ)当每件产品的售价为多少元时,该商店一年的利润L 最大,并求出L 的最大值)(a Q . 分析:08是奥运年,以奥运为背景的应用题必将受到命题专家们的青睐.本题是函数(导数)在日常生活中的应用,解决一类最值问题.选择这道题的另一个意图就是求()L x '时,不应该将()L x 展开,而应直接利用复合函数的求导方法求出()L x ',这样有利于发现()0L x '=的根,体现运算方向在简化运算中的重要性.本题另一个难点是分类讨论,为何引起讨论,如何正确讨论是解决本题的核心.解答:(Ⅰ)商店一年的利润L(万元)与售价x 的函数关系式为:2(3)(18)L x a x =---,[11, 16]x ∈.(无定义域扣1分)(Ⅱ)2(3)(18)L x a x =---=22(18)(3)(18)x x a x --+-2()(18)2(18)2(3)(18)L x x x x a x '=---++-=(18)(2423)x a x -+-.令0='L 得283x a =+或18x =(不合题意,舍去). ∵36a ≤≤,∴2108123a ≤+≤.在283x a =+两侧)(x L '的值由正变负. 所以(1)当2108113a ≤+<,即293<≤a 时,m a x (11)49(8)49(8)L L a a ==-=-.(2)当2118123a ≤+≤即962a ≤≤时,23max 2221(8)(83)[18(8)]4(5)3333L L a a a a a =+=+---+=-,所以=)(a Q 3949(8),32194(5),632a a a a ⎧-≤≤⎪⎪⎨⎪-≤≤⎪⎩.答:若293<≤a ,则当每件售价为11元时,商店一年的利润L 最大,最大值()49(8)Q a a =-(万元);若962a ≤≤,则当每件售价为2(8)3a +元时,商店一年的利润L 最大,最大值31()4(5)3Q a a =-(万元).说明:本小题考查函数、导数及其应用、分类讨论等知识,考查运用数学知识分析和解决实际问题的能力.它是根据07年福建高考题改编(四川省广安地区08届一模采用了高考原题),是苏州市零模考试应用题的原题.有一定的时代气息,考查导数方法解决函数问题,体现分类讨论、数形结合等常用思想方法.16.设函数()()()()221ln 1,.f x x m x h x x x a =+-+=++(1) 当0a =时,()()f x h x ≥在()0,+∞上恒成立,求实数的取值范围;(2) 当2m =时,若函数()()()k x f x h x =-在[]0,2上恰有两个不同的零点,求实数a 的取值范围;(3) 是否存在常数m ,使函数()f x 和函数()h x 在公共定义域上具有相同的单调性?若存在,求出m 的值;若不存在,请说明理由。
17.已知a R ∈,函数()()()2,x f x x ax e x R e =-+∈为自然数的底数, (1) 当2a =时,求函数()f x 的单调区间;(2) 若函数()f x 在()1,1-上单调递增,求a 的取值范围;(3) 函数()f x 是否为R 上的单调函数?若是,求出a 的取值范围,若不是,请说明理由。
18.设2()(1)xf x e ax x =++,且曲线y =f (x )在x =1处的切线与x 轴平行。
(I ) 求a 的值,并讨论f (x )的单调性; (II )证明:当[0,]f(cos )f(sin )22πθθθ∈-<时, (2009辽宁卷文)(本小题满分12分)19.设函数2()ln f x ax b x =+,其中0ab ≠.证明:当0ab >时,函数()f x 没有极值点;当0ab <时,函数()f x 有且只有一个极值点,并求出极值.证明:因为2()ln 0f x ax b x ab =+≠,,所以()f x 的定义域为(0)+∞,.()f x '222b ax bax x x+=+=. 当0ab >时,如果00()0()a b f x f x '>>>,,,在(0)+∞,上单调递增;如果00()0()a b f x f x '<<<,,,在(0)+∞,上单调递减. 所以当0ab >,函数()f x 没有极值点.当0ab <时,2()a x x f x x⎛+ ⎝⎭⎝⎭'=令()0f x '=,得1(0)x =+∞,(舍去),2)x =+∞,,当00a b ><,时,()()f x f x ',随x 的变化情况如下表:从上表可看出,函数()f x 有且只有一个极小值点,极小值为1ln 22b b f a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦.当00a b <>,时,()()f x f x ',随x 的变化情况如下表:从上表可看出,函数()f x 有且只有一个极大值点,极大值为1ln 22b b f a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦.综上所述,当0ab >时,函数()f x 没有极值点; 当0ab <时,若00a b ><,时,函数()f x 有且只有一个极小值点,极小值为1l n 22b b a ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦.若00a b <>,时,函数()f x 有且只有一个极大值点,极大值为1l n 22b b a ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦.20.已知函数2()|ln 1|f x x a x =+-,()||22ln 2,0g x x x a a =-+->. (Ⅰ)当1a =时,求函数()f x 在区间[1,]e 上的最大值; (Ⅱ)若3(),[1,)2f x a x ≥∈+∞恒成立,求a 的取值范围;(Ⅲ)对任意1[1,)x ∈+∞,总存在惟一的...2[2,)x ∈+∞,使得12()()f x g x =成立,求a 的取值范围.21.已知关于的方程两根为,试求的极值。
22.已知函数()()2ln ,f x x a x x a R =+-∈ (1)若1,a =-求证()f x 有且仅有一个零点;(2)若对于[]1,2x ∈函数()f x 图像上任意一点处的切线的倾斜角都不大于4π,求实数a 的取值范围;(3)若()f x 存在单调递减区间,求实数a 的取值范围。
23.已知函数()2ln pf x px x x=--.⑴若2p =,求曲线()f x 在点(1,(1))f 处的切线方程;⑵若函数()f x 在其定义域内为增函数,求正实数p 的取值范围; ⑶设函数2()eg x x=,若在[]1,e 上至少存在一点0x ,使得00()()f x g x >成立,求实数p 的取值范围.(2010北京石景山模拟)关键字:对数;求一点处的切线方程;求切线方程;已知单调性;求参数的取值范围;不等式的有解问题;存在性问题24.已知函数()ln f x x x =. (I )求函数()f x 的单调递减区间;(II )若2()6f x x ax ≥-+-在(0,)+∞上恒成立,求实数a 的取值范围; (III )过点2(,0)A e --作函数()y f x =图像的切线,求切线方程.25.如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线1l 排,在路南侧沿直线2l 排,现要在矩形区域ABCD 内沿直线将1l 与2l 接通.已知AB =60m ,BC =80m ,公路两侧排管费用为每米1万元,穿过公路的EF 部分的排管费用为每米2万元,设EF 与AB 所成的小于90︒的角为α.(Ⅰ)求矩形区域ABCD 内的排管费用W 关于α的函数关系式; (Ⅱ)求排管的最小费用及相应的角α.(本小题满分16分)l 2l 126.已知函数3221(313f x x mx m x =+-+)(0)m >. (1)若1m =,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)若函数)(x f 在区间(21,1)m m -+上单调递增,求实数m 的取值范围.27.如图,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,∠BAC =90°,O 为BC 中点.(1)证明:SO ⊥平面ABC ;(2)求二面角A —SC —B 的余弦值.(理)28. 已知二次函数)(x g y =的导函数的图像与直线2y x =平行,且)(x g y =在x =-1处取得最小值m -1(m 0≠).设函数xx g x f )()(=(1)若曲线)(x f y =上的点P 到点Q (0,2)的距离的最小值为,求m 的值(2) )(R k k ∈如何取值时,函数kx x f y -=)(存在零点,并求出零点.29.已知函数()ln f x x x a x =--.(1)若a =1,求函数()f x 在区间[1,]e 的最大值; (2)求函数()f x 的单调区间;(3)若()0f x >恒成立,求a 的取值范围.30.设函数()3233f x x bx cx =++在两个极值点12x x 、,且12[10],[1,2].x x ∈-∈,(I )求b c 、满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(),b c 的区域;(II)证明:()21102f x -≤≤-分析(I )这一问主要考查了二次函数根的分布及线性规划作可行域的能力。