2.4 实验二 探究弹力和弹簧伸长量的关系(精讲)(解析版)

合集下载

实验专题:探究弹簧弹力和弹簧伸长量的关系答案解析

实验专题:探究弹簧弹力和弹簧伸长量的关系答案解析

实验专题:探究弹簧弹力和弹簧伸长量的关系答案解析答案解析1.【答案】(1)C(2)等于【解析】(1)因为弹簧是被放在水平桌面上测得的原长,然后把弹簧竖直悬挂起来后,由于重力的作用,弹簧的长度会增大,所以图线应出现x轴上有截距,C正确,A、B、D错误.(2)如果将指针固定在A点的下方P处,在正确测出弹簧原长的情况下,再作出x随F变化的图象,则在图象上x的变化量不变,得出弹簧的劲度系数与实际值相等.2.【解析】(1)F-L图线如图所示:(2)弹簧的原长L0即弹力为零时弹簧的长度,由图象可知,L0=5×10-2m=5 cm.劲度系数为图象直线部分的斜率,k=20 N/m.(3)记录数据的表格如下表(4)优点:可以避免弹簧自身重力对实验的影响.缺点:弹簧与桌面及绳子与滑轮间存在的摩擦会造成实验误差.3.【解析】(1)在做实验的时候一般步骤为先组装器材,然后进行实验,最后数据处理,故顺序为CBDAEF.(2)①根据描点法,图象如图所示②、③根据图象,该直线为过原点的一条直线,即弹力与伸长量成正比,即F=kx=0.43x.式中的常数表示弹簧的劲度系数,即表示使弹簧伸长或者压缩1 cm所需的外力大小为0.43 N.4.【答案】(1)如图所示30F弹=30Δx(2)B(3)A【解析】(1)如图所示,直线的斜率的倒数表示弹簧的劲度系数,即k=,代入数据得kA =N/m≈30 N/m,所以弹簧的弹力大小F弹跟弹簧伸长量Δx的函数关系是F弹=30Δx.5.【解析】(1)描点作图,如图所示:(2)图象的斜率表示劲度系数,故有:k==N/m=50 N/m(3)图线与L轴的交点坐标表示弹簧不挂钩码时的长度,其数值大于弹簧原长,因为弹簧自身重力的影响.6.【答案】(1)6.93(2)A(3)弹簧受到的拉力超过了其弹性限度【解析】(1)弹簧伸长后的总长度为14.66 cm,则伸长量Δl=14.66 cm-7.73 cm=6.93 cm.(2)逐一增挂钩码,便于有规律地描点作图,也可避免因随意增加钩码过多超过弹簧的弹性限度而损坏弹簧.(3)AB段明显偏离直线OA,伸长量Δl不再与弹力F成正比,是超出弹簧的弹性限度造成的.7.【解析】(1)根据题意知,刻度尺的最小刻度为1毫米.读数时,应估读到毫米的十分位,故l5、l6记录有误.(2)按(1)中的读数规则,得l3=6.85 cm,l7=14.05 cm.(3)根据题中求差方法,可知d4=l7-l3=7.20 cm(4)根据l4-l0=4Δl=d1,l5-l1=4Δl=d2,l6-l2=4Δl=d3,l7-l3=4Δl=d4,有Δl==1.75 cm.(5)根据胡克定律F=kx得mg=kΔl,k==N/m=28 N/m8.【答案】(1)450(2)10【解析】(1)当F=0时,弹簧的长度即为原长,由胡克定律可知图象的斜率表示劲度系数大小.(2)弹簧秤的示数为3 N,则伸长量为3/50=0.06 m,则长度为10 cm.9.【解析】(1)描点作出图象,如下图所示.(2)图象跟坐标轴交点的物理意义表示弹簧原长.由图象可知,弹簧的劲度系数应等于直线的斜率,即k==200 N/m.10.【答案】(1)竖直(2)稳定L3 1 mm(3)Lx(4)4.910【解析】(1)为保证弹簧的形变只由砝码和砝码盘的重力产生,所以弹簧轴线和刻度尺均应在竖直方向.(2)弹簧静止稳定时,记录原长L0;表中的数据L3与其他数据有效位数不同,所以数据L3不规范,标准数据应读至cm位的后两位,最后一位应为估读值,精确至0.1 mm,所以刻度尺的最小分度为1 mm.(3)由题图知所挂砝码质量为0时,x为0,所以x=L-Lx(L为弹簧长度).(4)由胡克定律F=kΔx知,mg=k(L-Lx),即mg=kx,所以图线斜率即为弹簧的劲度系数k==N/m=4.9 N/m同理,砝码盘质量m==kg=0.01 kg=10 g11.【解析】(1)根据表格中的各组数据在坐标纸上标出相应的点,然后用平滑曲线连接这些点,作出的图象如图所示.(2)根据作出的图线可知,钩码质量在0~500 g范围内图线是直线,表明弹力大小与弹簧伸长量关系满足胡克定律.在这个范围内的曲线上找到相距较远的两点,利用这两点的坐标值计算弹簧的劲度系数k==N/m=25.00 N/m.12.【解析】(1)本题考查探究弹簧弹力与形变关系的实验,意在考查考生对实验步骤的识记、实验数据的处理方法、分析归纳能力.根据实验先后顺序可知,实验步骤排列为CBDAEF.(2)②由图象可得k==0.43 N/cm,所以F=0.43x(N).13.【答案】(1)10(2)200(3)b【解析】(1)当F=0时,弹簧长度为原长,由题图得,原长为10 cm.(2)由公式F=kx得k===N/m=200 N/m(3)当弹簧长度小于原长时,处于压缩状态,故是图线b14.【答案】(1)弹簧测力计刻度尺(2)kFL(3)控制变量法(4)12.5【解析】(1)用弹簧测力计测量力的大小,用刻度尺测量长度.(2)由题目所给数据分析可知:当力一定时,伸长量和长度成正比;当长度一定时,伸长量和力成正比,故有x=kFL(取一组数据验证,式中的k不为零).(3)研究伸长量与拉力、长度的关系时,可以先控制其中一个量不变,如长度不变,再研究伸长量和拉力的关系,这种方法称为控制变量法.这是物理实验中的一个重要研究方法.(4)代入表中数据把式中的k求出,得k=0.000 8 N-1,再代入已知数据,L=20 cm,x=0.2 cm,可求得最大拉力F=12.5 N.15.【答案】CBDAEFG【解析】根据实验的实验操作过程应先安装仪器,再挂钩码然后记录数据,分析数据,最后整理即可,排列先后顺序为CBDAEFG.。

2021届高考二轮复习实验精解训练 实验2:探究弹力和弹簧伸长量的关系(含解析)

2021届高考二轮复习实验精解训练 实验2:探究弹力和弹簧伸长量的关系(含解析)

2021届高考二轮复习实验精解训练实验2:探究弹力和弹簧伸长量的关系(含解析)1.某同学利用如图甲所示装置做“探究弹簧弹力大小与其形变量的关系”的实验。

(1)某次在弹簧下端挂上钩码后,弹簧下端处的指针在刻度尺上的指示情况如图乙所示,此时刻度尺的读数x=_______。

(2)根据实验数据在图丙的坐标纸上已描出了多次测量的弹簧所受弹力大小F跟弹簧长度x之间的函数关系点,请作出F x-图线。

(3)根据所作出的图线,可得该弹簧的劲度系数k=_______N/m。

(保留两位有效数字)2.“探究弹力和弹簧伸长量的关系,并测定弹簧的劲度系数”的实验装置如图1所示,所用的每个钩码的重力相当于对弹簧提供了向右恒定的拉力.实验时先测出不挂钩码时弹簧的自然L,再将5个钩码逐个挂在绳子的下端,测出每次相应的弹簧总长度L.(弹簧的弹力长度始终在弹性限度以内)(1)某同学通过以上实验测量得到6组数据,并把6组数据描点在坐标系图中,如图2所示,请在图2中作出F L-图线.(2)由此图线可得出该弹簧的原长为________cm,劲度系数为________N/m.(3)该同学实验时,把弹簧水平放置与弹簧竖直悬挂放置比较,优点在于:___________,缺点在于:______________.3.某同学用如图甲所示装置探究弹力和弹簧伸长量的关系,实验步骤如下:①测出不挂钩码时弹簧的自然长度;②将1个钩码挂在弹簧的下端,测出弹簧总长度L ; ③将2、3、4个钩码逐个挂在弹簧的下端,重复②。

(1)该同学测量后把数据描点在坐标图乙中,请你帮助该同学作出F L -图线。

(2)由此图线可得出该弹簧的原长0L =_______cm ,劲度系数k =______N/m 。

(结果保留一位小数)4.某同学做“探究弹簧弹力与形变量的关系”的实验。

步骤如下:(1)将弹簧悬挂在铁架台上,将刻度尺固定在弹簧一侧。

弹簧轴线和刻度尺都应在__________方向(填“水平”或“竖直”)。

实验2 弹力与弹簧伸长的关系

实验2 弹力与弹簧伸长的关系

3.某同学在做“探索弹力和弹簧伸长的关系”的实 验中,组成了如图所示的装置,所用的每个钩码的 质量都是30 g.他先测出不挂钩码时弹簧的自然 长度,再将5个钩码逐个挂在弹簧的下端,每次都 测出相应的弹簧总长度,将数据填在了下面的表中.(弹簧认 为是轻弹簧,弹力始终未超出弹性限度,取g=10 m/s2)
解析 由于考虑弹簧自身重力的影响,当不挂钩码时,弹簧 的伸长量x≠0,所以选C.
2.如图所示的装置测定弹簧的劲度系数,被测弹簧一端固定于 A点,另一端B用细绳绕过定滑轮挂钩码,旁边附有一竖直刻 度尺,当挂两个钩码时,绳上一定点P对应的刻度线如图中 的ab虚线所示,再增加一个钩码后,P点对应的刻度线如图 中的虚线cd所示.已知每个钩码质量均为50 g,重力加速度 g=9.8 m/s2.则被测弹簧的劲度系数为 70 N/m.
2 m长,截面积为0.05 cm2的比例系数为K2
1 m长,截面积为0.10 cm2的比例系数为K3
则K = 1
F x1 10.02 41 50 2 0N/m 6. 215 50N/m
K = 2
F x1 10.02 8 1 5 0 2 0N/m 1 26.2 5 150 N/m
1
1
∴K0=2.5×106 N/m
又金属细杆最大伸长量为xm=4×
1
1 000
m=4×10-3

m
所以金属细杆承受的最大拉力为
Fm=K0xm=2.5×106×4×10-3 N=104 N 答案 (1)正比 反比 (2)104
2.探究弹簧的弹性势能跟弹簧的形变量的关系
【例5】某同学为了研究弹簧的弹性势能Ep跟弹簧的形变量 x之间的关系,设计了这样一个实验:在固定于地面的光滑
⑤根据图线的特点,分析弹簧的弹力F与弹簧长度x的关系, 并得出实验结论. 以上步骤有3处不合理,请将不合理的地方找出来并进行修 正. 【思路剖析】 (1)弹簧的形变量是指什么? 答 指弹簧受到拉力或压力时的长度与弹簧原长的差值. (2)弹簧在使用时应注意些什么? 答 一定不能超出弹簧的弹性限度,因为超出了弹簧的弹性

实验二:探究弹力和弹簧伸长的关系实验报告

实验二:探究弹力和弹簧伸长的关系实验报告

实验二探究弹力和弹簧伸长的关系【实验原理】弹簧受到拉力会伸长,平衡时弹簧产生的弹力和外力大小相等,弹簧的伸长越大;弹力也就越大。

【实验目的】1、探索弹力与弹簧伸长的定量关系2、学习通过对实验数据的数学分析(列表法和图像法),把握弹簧产生的弹力与弹簧伸长之间的变化规律【实验器材】:弹簧一根,相同质量的砝码若干,铁架台一个(用来悬挂弹簧)。

实验中除了上述器材外,需要的器材还有:。

【实验步骤】(1)将铁架台放在实验桌上,将弹簧悬挂在铁架台上。

弹簧竖直静止时,测出弹簧的原长l0,并填入实验记录中。

(2)依次在弹簧下挂上一个砝码、两个砝码、三个砝码……。

每次,在砝码处于静止状态时,测出弹簧的总长或伸长,并填入实验记录中。

(3)根据测得的数据,以力为纵坐标,以弹簧的伸长量为横坐标,根据表中所测数据在坐标纸上描点。

(4)作弹簧的F-Δl图像。

按照坐标图中各点的分布与走向,尝试作出一条平滑的曲线(包括直线)。

所画的点不一定正好在这条曲线上,但要注意使曲线两侧的点数大致相同。

(5)以弹簧的伸长为自变量,写出曲线所代表的函数,首先尝试一次函数,如果不行则考虑二次函数……(6)解释函数表达式中常数的物理意义。

【实验纪录】弹簧原长l0=弹簧F -Δl 实验图像【实验结论】弹簧弹力大小跟弹簧伸长长度的函数表达式【问题与讨论】1、上述函数表达式中常数的物理意义2、如果以弹簧的总长为自变量,所写出的函数式应为3、某同学在做实验时得到下列一组数据,他由数据计算出弹簧的劲度系数为m N l F k /781020.35.22=⨯=∆=-试分析他对数据处理的方法是否正确?为什么?。

高考物理一轮复习 专题2.4 实验二探究弹力和弹簧伸长量的关系(精练)(含解析)-人教版高三全册物理

高考物理一轮复习 专题2.4 实验二探究弹力和弹簧伸长量的关系(精练)(含解析)-人教版高三全册物理

实验二 探究弹力和弹簧伸长量的关系1.(2019·广东某某中学模拟)某同学利用如图甲装置做“探究弹簧弹力大小与其长度的关系〞的实验.(1)在安装刻度尺时,必须使刻度尺保持________状态.(2)他通过实验得到如图乙所示的弹力大小F 与弹簧长度x 的关系图象.由此图象可得该弹簧的原长x 0=________cm ,劲度系数k =________N/m.(3)他又利用本实验原理把该弹簧做成一把弹簧测力计,当弹簧测力计上的示数如图丙所示时,该弹簧的长度x =________cm.【解析】(2)x 0为乙图中F =0时的x 值,即x 0=4 cm.k =ΔF Δx =6〔16-4〕×10-2 N/m =50 N/m. (3)测力计示数F =3.0 N ,由乙图知弹簧长度x =10 cm.【答案】(1)竖直 (2)4 50 (3)102.(2019·河北衡水第二中学模拟)为了探究弹簧弹力F 和弹簧伸长量x 的关系,李强同学选了甲、乙两根规格不同的弹簧进展测试,根据测得的数据绘出如下列图的图象.(1)从图象上看,该同学没能完全按实验要求做,使图象上端成为曲线,图象上端成为曲线是因为______________________________.(2)这两根弹簧的劲度系数分别为:甲弹簧为______ N/m ,乙弹簧为________ N/m.假设要制作一个准确度相对较高的弹簧测力计,应选弹簧________(选填“甲〞或“乙〞).【解析】(1)在弹性限度范围内弹簧的弹力与形变量成正比,超过弹簧的弹性限度范围,如此此规律不成立,所以所给的图象上端成为曲线,是因为形变量超过弹簧的弹性限度. (2)甲、乙两根弹簧的劲度系数分别为:k 甲=F 甲Δx 甲=46×10-2 N/m ≈66.7 N/m k 乙=F 乙Δx 乙=84×10-2 N/m =200 N/m 要制作一个准确程度较高的弹簧测力计,应选用一定的外力作用时形变量大的弹簧,应当选甲弹簧.【答案】(1)形变量超过弹簧的弹性限度(2)66.7 200 甲3.(2019·浙江绍兴一中模拟)在探究弹力和弹簧伸长的关系时,某同学先按图(a)对弹簧甲进展探究,然后把弹簧甲和弹簧乙并联起来按图(b)进展探究.在弹性限度内,将质量为m =50 g 的钩码逐个挂在弹簧下端,分别测得图(a)、图(b)中弹簧的长度L 1、L 2如表所示.重力加速度g =10 m/s 2,计算弹簧甲的劲度系数k =________N/m ,由表中数据________(填“能〞或“不能〞)计算出弹簧乙的劲度系数.【解析】分析图(a)中,钩码数量和弹簧伸长量的关系为每增加一个钩码,弹簧长度伸长约1 cm ,所以弹簧劲度系数k 1=ΔF Δl =mg Δl =0.50 N 0.01 m =50 N/m.分析图(b)中可得,每增加一个钩码,弹簧伸长约0.32 cm ,即k 1×0.003 2+k 2×0.003 2=mg ,根据弹簧甲的劲度系数可以求出弹簧乙的劲度系数.【答案】50 能4.(2019·长春市实验中学模拟)某实验小组探究弹簧的劲度系数k 与其长度(圈数)的关系.实验装置如图(a)所示:一均匀长弹簧竖直悬挂,7个指针P 0、P 1、P 2、P 3、P 4、P 5、P 6分别固定在弹簧上距悬点0、10、20、30、40、50、60圈处;通过旁边竖直放置的刻度尺,可以读出指针的位置,P 0指向0刻度.设弹簧下端未挂重物时,各指针的位置记为x 0;挂有质量为0.100 kg 的砝码时,各指针的位置记为x .测量结果与局部计算结果如下表所示(n 为弹簧的圈数,取重力加速度为9.80 m/s 2).实验所用弹簧总圈数为60,整个弹簧的自由长度为11.88 cm.(1)将表中数据补充完整:①________,②________.(2)以n 为横坐标,1k 为纵坐标,在图(b)给出的坐标纸上画出1k-n 图象.(3)图(b)中画出的直线可近似认为通过原点.假设从实验中所用的弹簧截取圈数为n 的一段弹簧,该弹簧的劲度系数k 与其圈数n 的关系的表达式为k =________N/m ;该弹簧的劲度系数k 与其自由长度l 0(单位为m)的关系的表达式为k =________N/m.【解析】(1)①k =mg Δx 2=0.100×9.80 N 〔5.26-4.06〕×10-2 m≈81.7 N/m. ②1k =181.7m/N ≈0.012 2 m/N. (2)描点法,画一条直线,让大局部的点都落在直线上,或均匀分布在直线两侧.(3)设直线的斜率为a ,如此有1k =an ,即k =1a ·1n ,通过计算斜率即可求得;弹簧共60圈,如此有n =60l 00.118 8,把其代入k =1a ·1n中可求得. 【答案】(1)①81.7 ②0.012 2 (2)如下列图(3)1.75×103n ⎝ ⎛⎭⎪⎫1.67×103n ~1.83×103n 均正确 3.47l 0⎝ ⎛⎭⎪⎫3.31l 0~3.62l 0均正确 5.(2019·山西大学附中模拟) (1)某同学在探究“弹力和弹簧伸长量的关系〞时,实验步骤如下:安装好实验装置,让刻度尺零刻度与弹簧上端平齐,在弹簧下端挂1个钩码,静止时弹簧长度为l 1,如图甲所示,图乙是此时固定在弹簧挂钩上的指针在刻度尺(最小分度是1毫米)上位置的放大图,示数l 1=_ cm.在弹簧下端分别挂2个、3个、4个、5个一样钩码,静止时弹簧长度分别是l 2、l 3、l 4、l 5.要得到弹簧伸长量x ,还需要测量的是_.作出F -x 曲线,得到弹力与弹簧伸长量的关系.(2)该同学更换弹簧,进展重复实验,得到如图丙所示的弹簧弹力F 与伸长量x 的关系图线,由此可求出该弹簧的劲度系数为 N/m.图线不过原点的原因是.【解析】(1)由mm 刻度尺的读数方法可知图乙中的读数为:25.85 cm ;本实验中需要是弹簧的形变量,故还应测量弹簧的原长.(2)有图象可知,斜率表示弹簧的劲度系数,k =70.035=200 N/m ;图线不过原点的原因是由于弹簧有自重,使弹簧变长.【答案】(1)25.85 弹簧原长 (2)200 弹簧有自重6.(2019·四川南充一中模拟)某同学为研究橡皮筋伸长量与所受拉力的关系,做了如下实验:①如图1所示,将白纸固定在制图板上,橡皮筋一端固定在O 点,另一端A 系一小段轻绳(带绳结);将制图板竖直固定在铁架台上.②将质量为m =100 g 的钩码挂在绳结上,静止时描下橡皮筋下端点的位置A 0;用水平力拉A 点,使A 点在新的位置静止,描下此时橡皮筋端点的位置A 1;逐步增大水平力,重复5次……③取下制图板,量出A 1、A 2……各点到O 的距离l 1、l 2……量出各次橡皮筋与OA 0之间的夹角α1、α2……④在坐标纸上做出1cos α-l 的图象如下列图. 完成如下填空:(1)重力加速度为g ,当橡皮筋与OA 0间的夹角为α时,橡皮筋所受的拉力大小为(用g 、 m 、α表示).(2)取g =10 m/s 2,由图2可得橡皮筋的劲度系数k =N/m ,橡皮筋的原长l 0= m .(结果保存2位有效数字)【解析】(1)对结点受力分析,根据共点力平衡可知mg =T cos α,解得T =mg cos α;(2)在竖直方向,合力为零,如此kl cos α=mg ,解得1cos α=kl mg ,故斜率k ′=k mg,由图象可知斜率k ′=100,故k =mgk ′=100 N/m ;由图象可知,直线与横坐标的交点即为弹簧的原长,为0.21 m.【答案】(1)mg cos α(2)1.0×1020.21 7.(2019·江西上饶一中模拟)某同学在“探究弹力和弹簧伸长量的关系〞时,将轻质弹簧竖直悬挂,弹簧下端挂一个小盘,在小盘中增添砝码,改变弹簧的弹力,通过旁边竖直放置的刻度尺可以读出弹簧末端指针的位置x ,实验得到了弹簧指针位置x 与小盘中砝码质量m 的图象如图乙所示,取g =10 m/s 2.回答如下问题.(1)某次测量如图甲所示,指针指示的刻度值为 cm.(刻度尺单位为:cm)(2)从图乙可求得该弹簧的劲度系数为 N/m.(结果保存两位有效数字)(3)另一同学在做该实验时有如下做法,其中错误的答案是.A .刻度尺零刻度未与弹簧上端对齐B .实验中未考虑小盘的重力C .读取指针指示的刻度值时,选择弹簧指针上下运动最快的位置读取D .在利用x -m 图线计算弹簧的劲度系数时舍弃图中曲线局部数据.【解析】(1)刻度尺的最小分度为0.1 cm ,故读数为18.00 cm.(2)结合mg =kx ,得x =gkm ,由图可知 k =0.08×100.42-0.15N/m≈3.0 N/m. (3)读数时开始时的零刻度应与弹簧上端对齐才能准确测量,故A 错误;本实验中可采用图象进展处理,故小盘的重力可以不考虑,故B 正确;在读指针的位置时,应让弹簧指针静止之后再读取,故C 错误;当拉力超过弹性限度时,将变成曲线,不再符合胡克定律,故应舍去,故D 正确.【答案】(1)18.00 (2)3.0 (3)AC8. (2019·湖南湘潭一中模拟)某物理实验小组在探究弹簧的劲度系数k 与其原长l 0的关系实验中,按图所示安装好实验装置,让刻度尺零刻度与轻质弹簧上端平齐,在弹簧上安装可移动的轻质指针P ,实验时的主要步骤是:①将指针P 移到刻度尺l 01=5cm 处,在弹簧挂钩上挂上200 g 的钩码,静止时读出指针所指刻度并记录下来;②取下钩码,将指针P 移到刻度尺l 02=10cm 处,在弹簧挂钩上挂上250 g 的钩码,静止时读出指针所指刻度并记录下来;③取下钩码,将指针P 移到刻度尺l 03=15cm 处,在弹簧挂钩上挂上50 g 的钩码,静止时读出指针所指刻度并记录下来;④重复③步骤,在每次重复③时,都将指针P 下移5cm ,同时保持挂钩上挂的钩码质量不变.将实验所得数据记录、列表如下:次数弹簧原长l 0/ cm 弹簧长度l / cm 钩码质量m /g 15.00 7.23 200 210.00 15.56 250 315.00 16.67 50 420.00 22.23 50 5 25.00 30.56 50根据实验步骤和列表数据(弹簧处在弹性限度内),回答如下问题:(1)重力加速度g 取10 m/s 2.在实验步骤③中,弹簧的原长为15cm 时,其劲度系数k =N/m.(2)同一根弹簧的原长越长,弹簧的劲度系数(填选项前的字母).A .不变B .越大C .越小 【解析】(1)挂50 g 钩码时,弹簧的弹力为0.5 N ,根据胡克定律得:k =F Δx =0.516.67-15.00×10-2N/m≈30 N/m.(2)对第3、4、5次数据分析,弹簧弹力相等,同一根弹簧,原长越长,形变量越大,根据胡克定律F=kx 知,弹簧的劲度系数越小,应当选C.【答案】(1)30 (2)C9.(2019·安徽蚌埠二中模拟)如图甲所示,用铁架台、弹簧和多个质量且质量相等的钩码,探究在弹性限度内弹簧弹力与弹簧伸长量的关系实验.(1)实验中还需要的测量工具有:________.(2)如图乙所示,根据实验数据绘图,纵轴是钩码质量m,横轴是弹簧的形变量x.由图可知:图线不通过原点的原因是________________;弹簧的劲度系数k=________N/m(计算结果保存2位有效数字,重力加速度g取9.8 m/s2).(3)如图丙所示,实验中用两根不同的弹簧a和b,画出弹簧弹力F与弹簧长度L的F-L图象,如下正确的答案是( )A.a的原长比b的长B.a的劲度系数比b的大C.a的劲度系数比b的小D.弹力与弹簧长度成正比【解析】(1)实验需要测量弹簧伸长的长度,故需要毫米刻度尺.(2)图线的物理意义是明确弹簧的弹力大小和弹簧伸长量大小成正比,如此k=ΔFΔx=4.9 N/m.由图可知,当F=0时,x大于零,说明没有挂重物时,弹簧有伸长,是由于弹簧自身的重力造成的,故图线不过原点的原因是弹簧有自重,实验中没有考虑(或忽略了)弹簧的自重.(3)在图象中横截距表示弹簧的原长,故b的原长比a的长,A错误;在图象中斜率表示弹簧的劲度系数k,故a的劲度系数比b的大,B正确,C错误;弹簧的弹力满足胡克定律,弹力与弹簧的形变量成正比,故D 错误.【答案】(1)毫米刻度尺(2)弹簧有重力 4.9 (3)B10.(2019·湖南长沙一中模拟)在“探究弹力和弹簧伸长量的关系〞的实验中,某同学先测出不挂钩码时弹簧下端指针所指刻度尺刻度,然后将不同数量的一样的钩码依次悬挂在竖直弹簧下端,并记录好相应读数.(1)某次测量如下列图,指针所指刻度尺读数为________cm.(2)该同学在实验过程中,发现挂前3个钩码时,钩码重力与对应的弹簧伸长量根本成正比关系,但当挂上第4个钩码时,弹簧突然向下伸长很多,和前3组数据比照,明显不再成正比关系,产生这种情况的原因是__________________________________.(3)更换新的同种弹簧后进一步探究,在挂上第3个钩码后,在弹簧伸长过程中钩码的机械能将________,弹簧的弹性势能将________.(填“增加〞、“不变〞或“减少〞)【解析】(1)刻度尺的最小分度值为1 mm,所以读数为14.15 cm;(2)钩码对弹簧的拉力超过了弹簧的弹性限度,不再满足胡克定律;(3)弹簧伸长,在不超过其弹性限度时,其弹性势能增加,而钩码下降,弹力做负功,机械能减少.【答案】(1)14.15(14.13~14.17均可) (2)钩码对弹簧的拉力超过了弹簧的弹性限度,不再满足胡克定律(3)减少增加1.(2018·全国卷Ⅰ·22)如图甲,一弹簧上端固定在支架顶端,下端悬挂一托盘;一标尺由游标和主尺构成,主尺竖直固定在弹簧左边;托盘上方固定有一能与游标刻度线准确对齐的装置,简化为图中的指针.甲乙现要测量图甲中弹簧的劲度系数.当托盘内没有砝码时,移动游标,使其零刻度线对准指针,此时标尺读数为1.950 cm ;当托盘内放有质量为0.100 kg 的砝码时,移动游标,再次使其零刻度线对准指针,标尺示数如图乙所示,其读数为________cm.当地的重力加速度大小为9.80 m/s 2,此弹簧的劲度系数为________N/m(保存3位有效数字).【解析】标尺的游标为20分度,准确度为0.05 mm ,游标的第15个刻度与主尺刻度对齐,如此读数为37 mm +15×0.05 mm=37.75 mm =3.775 cm .弹簧形变量x =(3.775-1.950)cm =1.825 cm ,砝码平衡时,mg =kx ,所以劲度系数k =mg x =0.100×9.801.825×10-2N/m ≈53.7 N/m.(保存3位有效数字) 【答案】3.775 53.72.(2018·全国卷Ⅱ·23)某同学用图甲所示的装置测量木块与木板之间的动摩擦因数.跨过光滑定滑轮的细线两端分别与木块和弹簧秤相连,滑轮和木块间的细线保持水平,在甲木块上方放置砝码.缓慢向左拉动水平放置的木板,当木块和砝码相对桌面静止且木板仍在继续滑动时,弹簧秤的示数即为木块受到的滑动摩擦力的大小.某次实验所得数据在表中给出,其中f 4的值可从图乙中弹簧秤的示数读出.甲 乙 丙砝码的质量m /kg0.05 0.10 0.15 0.20 0.25 滑动摩擦力f /N2.15 2.36 2.55 f4 2.93回答如下问题:(1)f 4=________N ;(2)在图丙的坐标纸上补齐未画出的数据点并绘出f -m 图线;(3)f 与m 、木块质量M 、木板与木块之间的动摩擦因数μ与重力加速度大小g 之间的关系式为f =________,f-m图线(直线)的斜率的表达式为k=________;(4)取g=9.80 m/s2,由绘出的f-m图线求得μ=________.(保存2位有效数字)【解析】(1)对弹簧秤进展读数得2.70 N.(2)在图象上添加(0.20 kg,2.70 N)这个点,画一条直线,使尽可能多的点落在这条直线上,不在直线上的点大致均匀分布在直线两侧,如答图所示.(3)由实验原理可得f=μ(M+m)g,f-m图线的斜率为k=μg.(4)根据图象求出k=3.9 N/kg,代入数据得μ=0.40.【答案】(1)2.70 (2)如下列图(3)μ(M+m)gμg(4)0.403.〔2016·浙江卷〕某同学在“探究弹力和弹簧伸长的关系〞的实验中,测得图中弹簧OC的劲度系数为500 N/m.如图1所示,用弹簧OC和弹簧秤a、b做“探究求合力的方法〞实验.在保持弹簧伸长1.00 cm不变的条件下:图1­7(1)假设弹簧秤a、b间夹角为90°,弹簧秤a的读数是________N(图2中所示),如此弹簧秤b的读数可能为________N.(2)假设弹簧秤a、b间夹角大于90°,保持弹簧秤a与弹簧OC的夹角不变,减小弹簧秤b与弹簧OC的夹角,如此弹簧秤a的读数________、弹簧秤b的读数________(填“变大〞“变小〞或“不变〞).【答案】 (1)3.00~3.02 3.9~4.1(有效数不作要求) (2)变大变大【根底】(1)由图可知弹簧秤a的读数是F1=3.00 N;因合力为F=kx=500×0.01 N=5 N,两分力夹角为90°,如此另一个分力为F2=F2-F21=4.0 N.(2)假设弹簧秤a、b间夹角大于90°,保持弹簧秤a与弹簧OC的夹角不变,减小弹簧秤b与弹簧OC夹角,根据力的平行四边形法如此可知,弹簧秤a的读数变大,弹簧秤b的读数变大.。

实验二探究弹力和弹簧伸长的关系

实验二探究弹力和弹簧伸长的关系

如图2所示,在弹簧下 端挂质量为m1的钩码, 量出
○ 此时弹簧的长度 l1,记录m1和l1, 填入自己设计的 表
○ 格中. ○ 图2
3.改变所挂钩码的质量,量出对应的弹簧长度,记录
m2、m3、m4、m5和相应的弹簧长度l2、l3、l4、l5,并
得钩出码每个数次弹簧长度的伸长伸长量量xx 1、x弹2、力Fx3、x4、x5.
(1)根据所测数据,在图4坐标纸上作出弹簧指针所指
的标尺刻度x与砝码质量m的关系曲线.
图4
(2)根据所测得的数据和关系曲线可以判断,在_____
范围内,弹力大小与弹簧伸长关系满足胡克定律.这种
规格弹簧劲度系数为________N/m.
思路点拨 (1)在坐标纸上 描点,然后根据各点的分
○ 布与走向,用平滑的曲线(或直线) 连接各点.
拉力F/N
长度L/cm 伸长量x/cm
50.00
100.0
200.0
直径D/mm
50.0
0.040
0.20
0.40
0.80
10.00
0.040
0.40
0.80
1.60
5.00
0.080
0.10
0.20
0.40
(3)在研究并得到上述关系的过程中,主要运用的科学
研究方法是____________________(只需写出一种).
力(拉力或
压力)时,在电脑上得到了弹簧形变量与弹
簧产生的
弹力大小的关系图象(如图乙).则下列判
断正确的是
()
图5
1
素能提升
2
A.弹簧产生的弹力和弹簧的长度成正比
B.弹簧长度的增加量与对应的弹力增加量成正比

高考物理实验2、探究弹力和弹簧伸长量的关系-L

高考物理实验2、探究弹力和弹簧伸长量的关系-L

高考物理实验2、探究弹力和弹簧伸长量的关系【实验目的】(1)通过实验探究弹力和弹簧形变量的关系。

(2)学会利用图象法处理实验数据,探究物理规律。

(3)进一步理解胡克定律,掌握以胡克定律为原理的拓展实验的分析方法.【实验原理】(1)如图所示,弹簧下端悬挂钩码时会伸长,平衡时弹簧产生的弹力与所挂钩码的重力大小相等。

(2)用刻度尺测出弹簧在不同钩码拉力下的伸长量x ,建立直角坐标系,以纵坐标表示弹力大小F ,以横坐标表示弹簧的伸长量x ,在坐标系中描出实验所测得的各组数据(x 、F)对应的点,用平滑的曲线连接起来,根据实验所得的图线,就可探知弹力大小与弹簧伸长量间的关系。

【实验器材】铁架台、毫米刻度尺、弹簧、钩码(若干)、三角板、铅笔、重垂线、坐标纸等。

【实验步骤】(1)安装:如图所示,将铁架台放在桌面上(固定好),将弹簧的一端固定于铁架台的横梁上,在靠近弹簧处将刻度尺(最小分度为1mm)固定于铁架台上,并用重垂线检查刻度尺是否竖直。

(2)记原长:记下弹簧下端不挂钩码时所对应的刻度l 0,即弹簧的原长。

(3)测F 、x :在弹簧下端挂质量为m 1的钩码,静止时测出此时弹簧的长度l 1,记录m 1和l 1,得出弹簧的伸长量x 1,将这些数据填入自己设计的表格中.。

(4)重复:改变所挂钩码的质量,测出对应的弹簧长度,记录m 2、m 3、m 4、m 5和相应的弹簧长度l 2、l 3、l 4、l 5,并得出每次弹簧的伸长量x 2、x 3、x 4、x 5.【数据处理】(1)以弹力F(大小等于所挂钩码的重力)为纵坐标,以弹簧的伸长量x 为横坐标,用描点法作图,连接各点得出弹力F 随弹簧伸长量x 变化的图线。

(2)以弹簧的伸长量为自变量,写出图线所代表的函数表达式,并解释函数表达式中常数的物理意义。

【注意事项】(1)安装实验装置:要保持刻度尺竖直并靠近弹簧. 次数内容 123456拉力F /N 弹簧总长/cm 弹簧伸长/cm(2)不要超过弹性限度:实验中弹簧下端挂的钩码不要太多,以免超过弹簧的弹性限度.(3)尽量多测几组数据:要使用轻质弹簧,且要尽量多测几组数据.(4)观察所描点的走向:不要画折线.(5)统一单位:记录数据时要注意弹力及弹簧伸长量的对应关系及单位.【误差分析】(1)钩码标值不准确、弹簧长度测量不准确带来误差。

2020-2021学年高三物理一轮复习考点专题08 实验二:探究弹力和弹簧伸长量的关系

2020-2021学年高三物理一轮复习考点专题08 实验二:探究弹力和弹簧伸长量的关系

2021年高考物理一轮复习考点专题(08)实验二探究弹力和弹簧伸长量的关系(解析版)考点一基础实验考查处理实验数据的方法1.列表分析法:分析列表中弹簧拉力F与对应弹簧的形变量Δx的关系,可以先考虑F和Δx的乘积,再考虑F和Δx的比值,也可以考虑F和(Δx)2的关系或F和Δx的关系等,结论:FΔx为常数.2.图象分析法:作出F­Δx图象,如图所示.此图象是过坐标原点的一条直线,即F和Δx成正比关系.作图的规则:(1)要在坐标轴上标明轴名、单位,恰当地选取纵轴、横轴的标度,并根据数据特点正确确定坐标起点,使所作出的图象几乎占满整个坐标图纸.(2)作图线时,尽可能使直线通过较多坐标描点,不在直线上的点也要尽可能对称分布在直线的两侧(若有个别点偏离太远,则是因偶然误差太大所致,应舍去).(3)要注意坐标轴代表的物理量的意义,注意分析图象的斜率、截距的意义.题型1 对实验操作的考查【典例1】如图(a)所示,一弹簧上端固定在支架顶端,下端悬挂一托盘;一标尺由游标和主尺构成,主尺竖直固定在弹簧左边;托盘上方固定有一能与游标刻度线准确对齐的装置,简化为图中的指针.现要测量图(a)中弹簧的劲度系数.当托盘内没有砝码时,移动游标,使其零刻度线对准指针,此时标尺读数为1.950 cm;当托盘内放有质量为0.100 kg的砝码时,移动游标,再次使其零刻度线对准指针,标尺示数如图(b)所示,其读数为________ cm.当地的重力加速度大小为9.80 m/s2,此弹簧的劲度系数为________N/m(保留3位有效数字).【答案】3.775 53.7【解析】标尺的游标为20分度,精确度为0.05 mm,游标的第15个刻度与主尺刻度对齐,则读数为37 mm +15×0.05 mm=37.75 mm=3.775 cm.弹簧形变量x=(3.775-1.950) cm=1.825 cm,砝码平衡时,mg =kx , 所以劲度系数k =mg x =0.100×9.801.825×10-2N/m =53.7 N/m.【变式1】(1)某次研究弹簧所受弹力F 与弹簧长度L 的关系实验时得到如图甲所示的F ­L 的图象.由图象可知:弹簧原长L 0=________ cm ,由此求得弹簧的劲度系数k =________ N/m.(2)如图乙的方式挂上钩码(已知每个钩码重G =1 N),使(1)中研究的弹簧压缩,稳定后指针指示如图乙,则指针所指刻度尺示数为________ cm.由此可推测图乙中所挂钩码的个数________个. 【答案】(1)3.0 200 (2)1.50 3【解析】(1)由题图甲可知,弹簧原长L 0=3.0 cm.由胡克定律F =kx 得k =F x =12 N0.09 m -0.03 m=200 N/m.(2)由题图乙可知,指针所指刻度尺示数为L =1.50 cm.设钩码个数为n ,由胡克定律得nG =k (L 0-L ),解得n =k L 0-L G =200 N/m ×0.03 m -0.015 m1 N=3. 题型2 对数据处理和误差的考查【典例2】某同学做实验探究弹力和弹簧伸长量的关系,并测量弹簧的劲度系数是k .他先将待测弹簧的一端固定在铁架台上,然后将分度值是毫米的刻度尺竖直放在弹簧一侧,并使弹簧另一端的指针恰好落在刻度尺面上.当弹簧自然下垂时,指针指示的刻度数值记作L 0;弹簧下端挂一个50 g 的砝码时,指针指示的刻度数值记作L 1;弹簧下端挂两个50 g 的砝码时,指针指示的刻度数值记作L 2;…;挂七个50 g 的砝码时,指针指示的刻度数值记作L 7.(1)下表记录的是该同学已测出的6个数值,其中有两个数值在记录时有误,它们的代表符号分别是________和________.代表符号 L 0L 1L 2L 3 L 4L 5L 6L 7刻度数值/cm1.703.405.108.6010.312.1(2)37(3)为充分利用测量数据,该同学将所测得的数值按如下方法逐一求差,分别计算出了三个差值:d 1=L 4-L 0=6.90 cm ,d 2=L 5-L 1=6.90 cm ,d 3=L 6-L 2=7.00 cm.请你给出第四个差值:d 4=________=________ cm.(4)根据以上差值,可以求出每增加50 g 砝码,弹簧平均伸长量ΔL .ΔL 用d 1、d 2、d 3、d 4表示的式子为:ΔL =________.代入数据解得ΔL =________cm.(5)计算弹簧的劲度系数k =________ N/m.(取g =9.8 m/s 2)【答案】(1)L 5 L 6 (2)6.85(6.84~6.86均可) 14.05(14.04~14.06均可) (3)L 7-L 3 7.20(7.18~7.22均可) (4)d 1+d 2+d 3+d 44×41.75 (5)28【解析】(1)通过对6个值的分析可知记录有误的是L 5、L 6(估读位不正确).(2)用分度值是毫米的刻度尺测量时,应正确读数并记录到毫米的下一位,由题图知L 3=6.85 cm ,L 7=14.05 cm.(3)利用逐差法并结合已求差值可知第四个差值d 4=L 7-L 3=14.05 cm -6.85 cm =7.20 cm. (4)ΔL =d 1+d 2+d 3+d 44×4=6.90+6.90+7.00+7.2016cm =1.75 cm.(5)ΔF =k ·ΔL ,又ΔF =mg ,所以k =ΔF ΔL =mg ΔL =0.050×9.80.017 5 N/m =28 N/m.【变式2】某同学探究弹力与弹簧伸长量的关系.(1)将弹簧悬挂在铁架台上,将刻度尺固定在弹簧一侧.弹簧轴线和刻度尺都应在________(填“水平”或“竖直”)方向.(2)弹簧自然悬挂,待弹簧________时,长度记为L 0;弹簧下端挂上砝码盘时,长度记为L x ;在砝码盘中每次增加10 g 砝码,弹簧长度依次记为L 1至L 6.数据如下表:(3)如图所示是该同学根据表中数据作的图,纵轴是砝码的质量,横轴是弹簧长度与________(填“L 0”或“L x ”)的差值.(4)由图可知弹簧的劲度系数为________ N/m ;通过图和表可知砝码盘的质量为________.(结果保留两位有效数字,重力加速度取9.8 m/s 2)【答案】(1)竖直 (2)静止 L 3 1 mm (3)L x (4)4.9 10 g【解析】(1)为保证弹簧的形变只由砝码和砝码盘的重力引起,所以弹簧轴线和刻度尺均在竖直方向. (2)弹簧静止时,记录原长L 0;表中的数据L 3与其他数据有效数字位数不同,所以数据L 3不规范,标准数据应读至厘米位的后两位,最后一位应为估计值,所以刻度尺的分度值为1 mm. (3)由题图知所挂砝码质量为0,x 为0,所以x 应为弹簧长度与L x 的差值.(4)由胡克F =k Δx 知,mg =k (L -L x ),即mg =kx ,所以图线斜率即为劲度系数k =ΔmgΔx=60-10×10-3×9.812-2×10-2N/m =4.9 N/m.同理,砝码盘质量m =kL x -L 0g =4.9×27.35-25.35×10-29.8kg =0.01 kg =10 g. 考点二 创新实验考查本实验需要测量的物理量是弹力和弹簧的伸长量,命题创新的方向有: 1.运用k =ΔFΔx来处理数据 (1)将“弹力变化量”转化为“质量变化量”; (2)将“弹簧伸长量”转化为“弹簧长度变化量”. 2.将弹簧平放在桌面上,消除弹簧自身重力的影响.3.利用计算机及传感器技术,得到弹簧弹力和弹簧形变量的关系图象. 4.将弹簧换为橡皮条.题型 探究弹簧的劲度系数与其长度的关系【典例3】某实验小组探究弹簧的劲度系数k 与其长度(圈数)的关系.实验装置如图甲所示:一均匀长弹簧竖直悬挂,7个指针P 0、P 1、P 2、P 3、P 4、P 5、P 6分别固定在弹簧上距悬点0、10、20、30、40、50、60圈处;通过旁边竖直放置的刻度尺,可以读出指针的位置,P 0指向0刻度.设弹簧下端未挂重物时,各指针的位置记为x 0;挂有质量为0.100 kg 的砝码时,各指针的位置记为x .测量结果及部分计算结果如下表所示(n 为弹簧的圈数,取重力加速度为9.80 m/s 2).已知实验所用弹簧总圈数为60,整个弹簧的自由长度为11.88 cm.P 1P 2P 3P 4P 5P 6x 0(cm) 2.04 4.06 6.06 8.05 10.03 12.01 x (cm) 2.64 5.26 7.81 10.30 12.93 15.41 n 10 20 30 40 50 60 k (N/m)163 ① 56.043.633.828.81k(m/N) 0.006 1②0.017 9 0.022 9 0.029 6 0.034 7(1)(2)以n 为横坐标,1k 为纵坐标,在图乙给出的坐标纸上画出1k­n 的图象.(3)图乙中画出的直线可近似认为通过原点.若从实验中所用的弹簧截取圈数为n 的一段弹簧,该弹簧的劲度系数k 与其圈数n 的关系表达式为k =________ N/m ;该弹簧的劲度系数k 与其自由长度l 0(单位为m)的关系表达式为k =________ N/m.【答案】(1)81.7 0.012 2 (2)见解析图 (3)1.75×103n 3.47l 0【解析】(1)根据胡克定律有mg =k (x -x 0),解得k =mg x -x 0=0.100×9.805.26-4.06×10-2 N/m ≈81.7 N/m ,1k≈0.012 2.(2)1k­n 图象如图所示.(3)根据图象可知,k 与n 的关系表达式为k =1.75×103n N/m ,由于60匝弹簧的总长度为11.88 cm ,则n 匝弹簧的原长满足n l 0=6011.88×10-2,代入k=1.75×103nN/m ,可得k =3.47l 0N/m.【变式3】某研究性学习小组要研究弹簧的劲度系数与绕制弹簧的金属丝直径间的关系,为此他们选择了同种材料制成的不同直径的钢丝来绕制弹簧.(1)进行此项实验需要采用控制变量法,除了材料相同外,你认为还应控制哪些因素相同(写出两项即可)______________________________________________.(2)用游标卡尺测量绕制弹簧的钢丝直径,某次测量示数如图所示,则该钢丝的直径为________mm.(3)根据下表中相关数据,分析可得:在其他条件相同的情况下,弹簧的劲度系数与其所用钢丝直径的________次幂成正比.可)(2)1.4 (3)4【解析】(1)弹簧的自然长度、总匝数、弹簧圈的直(半)径或弹簧的粗细或弹簧的横截面积等. (2)由图知,该钢丝的直径为1 mm +4×0.1 mm =1.4 mm.(3)由表可得弹簧的劲度系数与其所用钢丝直径的几次幂的比值,1320.9=146.7,4141.2=345,1321.11=118.9,4140.83=498.8,1320.81=162.9,4141.44=287.5,1320.73=180.8,4141.73=239.3,1320.66=200,4142.07=200,故在其他条件相同的情况下,弹簧的劲度系数与其所用钢丝直径的4次幂成正比.。

实验二:探究弹力和弹簧伸长量的关系实验报告

实验二:探究弹力和弹簧伸长量的关系实验报告

实验二:探究弹力和弹簧伸长量的关系实验报告一、实验背景弹力,又称内弹力,是构成物体的物质间的内部相互作用。

当物体遭受外力的刺激时,在物体内部的分子及其成分之间会产生弹力,使物体返回到原来的形状,这样形成的弹力就是弹力。

弹力能够恢复物体原来的形状,是物体具有自保能力的根本原因[1]。

弹簧伸长量,也称为弹簧长度,是指装在被测物上的弹簧释放力时弹簧的伸长量,即弹簧从原来的状态(停机时的状态)变为被测物的形状,弹簧所增加的长度,以毫米为单位。

二、实验目的、实验材料、实验程序实验目的:探究普通小弹簧的弹力与伸长量的关系,为今后的科研提供参考依据。

实验材料:(1)弹簧1条;(2)勒耳器;(3)千分尺;实验程序:Step1:先用勒耳器将弹簧固定在实验架上;Step2:让弹簧从放松状态开始,将千分尺安装在弹簧上;Step3:弹簧被施加一定力时,记录下弹簧伸长量(以毫米为单位);Step4:记录应用力的大小(以牛顿为单位);Step5:重复上述步骤,并记录下弹簧的伸长量及力的大小;Step6:进行数据处理和数据分析,得出弹力与弹簧伸长量的关系。

三、实验数据及结果表1 力与弹簧伸长量的关系应用力/N 弹簧伸长量/mm0 01 0.54 2.05 2.56 3.07 3.59 4.5从上表可知,随着力的大小增加,弹簧伸长量也在增加,当力达到9牛时,弹簧伸长量达到了4.5mm。

从上图中可以看出,随着施加的力的增大,弹簧的伸长量呈正比增大,可以解释弹力大小与弹簧伸长量之间的正比例关系。

四、实验结论通过此次实验研究,可以得出结论:普通小弹簧的弹力与伸长量是成正比关系的,即随着施加的力的增大,弹簧的伸长量会呈正比增大。

让物体返回原来的形状,这样形成的弹力就是弹力,可以用正比例模型来描述它们之间的关系。

五、结论总结本次实验让我们了解到,弹力与弹簧伸长量是一个正比的关系,就是说,力的大小越大,弹簧的伸长量就越大,弹力也会越大。

本次实验为今后的科研提供了参考,也提升了我们实践能力。

实验:探究弹力与弹簧伸长量的关系 Word版含解析

实验:探究弹力与弹簧伸长量的关系 Word版含解析

第5节实验:探究弹力与弹簧伸长量的关系验证力的平行四边形定则一、探究弹力和弹簧伸长量的关系1.实验目的知道弹力与弹簧伸长量的定量关系,学会利用列表法、图象法、函数法处理实验数据.2.实验原理弹簧受力会发生形变,形变的大小与受到的外力有关,沿弹簧轴线的方向拉弹簧,当形变稳定时,弹簧产生的弹力与使它发生形变的拉力在数值上是__相等的__,用悬挂法测量弹簧的弹力,运用的正是弹簧的弹力与挂在弹簧下面的砝码的重力__相等__.弹簧的长度可用刻度尺直接测出,伸长量可以由__拉长后的长度减去弹簧原来的长度__进行计算.这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系.3.实验器材弹簧、毫米刻度尺、铁架台、钩码若干、__坐标纸__.4.实验步骤(1)将弹簧的一端挂在铁架台上,让其自然下垂,用刻度尺测出弹簧__自然伸长状态时的长度L0__,即原长.(2)如图所示,将已知质量的钩码挂在弹簧的下端,在平衡时测量__弹簧的总长__并计算__钩码的重力__,填写在记录表格里.(3)(4)以弹力F(大小等于__所挂钩码的重力__)为纵坐标,以__弹簧的伸长量x__为横坐标,用描点法作图.根据点的分布情况和走向,作出一条直线,让尽可能多的点在这条直线上,其他点均匀分布在直线两旁,得出弹力F随弹簧伸长量x变化的图线.(5)以__弹簧的伸长量__为自变量,写出曲线所代表的函数.首先尝试一次函数,如果不行则考虑二次函数.(6)得出弹力和弹簧伸长量之间的定量关系,解释函数表达式中常数的物理意义.二、验证力的平行四边形定则1.实验目的验证互成角度的两个力合成时的平行四边形定则.2.实验原理等效法:使一个力F′的作用效果和两个力F1、F2的作用效果相同,就是__让同一条一端固定的橡皮条伸长到同一点__,所以这一个力F′就是两个力F1和F2的合力,作出F′的图示,再根据__平行四边形定则__作出力F1和F2的合力F的图示,比较F和F′的大小和方向是否都相同.3.实验器材方木板,白纸,弹簧测力计(两只),__橡皮条(一条)__,细绳套(两个),三角板,刻度尺,图钉(几个).4.实验步骤(1)用图钉把白纸钉在水平桌面的方木板上.(2)用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套.(3)用两只弹簧测力计分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长到某一位置O,如图所示,记录__两弹簧测力计的读数__,用铅笔描下__O点的位置__及此时两__细绳的方向__.(4)用铅笔和刻度尺从结点O沿两条细绳方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以__F1和F2为邻边__用刻度尺作平行四边形,过__O点__画平行四边形的对角线,此对角线即为合力F的图示.(5)只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下__弹簧测力计的读数__和__细绳的方向__,用刻度尺从O点按同样的标度沿记录的方向作出这只弹簧测力计的拉力F′的图示.(6)比较一下,力F′与用平行四边形定则求出的合力F在大小和方向上是否相同.(7)改变两个力F1与F2的大小和夹角,再重复实验两次.“验证力的平行四边形定则”实验注意事项:1.同一实验中的两只弹簧测力计的选取方法是:将两只弹簧测力计调零后互钩对拉,若两只弹簧测力计在对拉过程中读数相同,则可选;若读数不同应调整或另换,直至相同为止.2.在同一次实验中,使橡皮条拉长时的结点O位置一定要相同.3.用两只弹簧测力计钩住绳套互成角度地拉橡皮条时,夹角不宜太大也不宜太小,在60°~100°之间为宜.4.读数时应注意使弹簧测力计与木板平行,并使细绳套与弹簧测力计的轴线在同一条直线上,避免弹簧测力计的外壳与弹簧测力计的限位卡之间有摩擦.读数时眼睛要正视弹簧测力计的刻度,在合力不超过量程及橡皮条弹性限度的前提下,拉力的数值尽量大些.5.细绳套应适当长一些,便于确定力的方向.不要直接沿细绳套的方向画直线,应在细绳套末端用铅笔画一个点,去掉细绳套后,再将所标点与O点连接,即可确定力的方向.6.在同一次实验中,画力的图示所选定的标度要相同,并且要恰当选取标度,使所作力的图示稍大一些.)【变式1】在“探究弹力和弹簧伸长量的关系”实验中,以下说法正确的是() A.弹簧被拉伸时,能超出它的弹性限度B.用悬挂钩码的方法给弹簧施加拉力,应保证弹簧位于竖直位置且处于平衡状态C.用直尺测得弹簧的长度即为弹簧的伸长量D.用几个不同的弹簧,分别测出几组拉力与伸长量,得出拉力与伸长量之比相等[解析] 弹簧被拉伸时,不能超出它的弹性限度,否则弹簧会损坏,故A错误.用悬挂钩码的方法给弹簧施加拉力,要保证弹簧位于竖直位置,使钩码的重力等于弹簧的弹力,要待钩码平衡时再读数,故B正确.弹簧的长度不等于弹簧的伸长量,故C错误.拉力与伸长量之比是劲度系数,由弹簧决定,同一弹簧的劲度系数是不变的,不同的弹簧的劲度系数不一定相同,故D错误.故选B.[答案] B【变式2】验证“力的平行四边形定则”,如图所示,实验步骤如下:①用两个相同的弹簧测力计互成角度拉细绳套,使橡皮条伸长,结点到达纸面上某一位置,记为O1;②记录两个弹簧测力计的拉力F1和F2的大小和方向;③只用一个弹簧测力计,将结点仍拉到位置O1,记录弹簧测力计的拉力F3的大小和方向;④按照力的图示要求,作出拉力F1、F2、F3;⑤根据力的平行四边形定则作出F1和F2的合力F;⑥比较F3和F的一致程度.(1)下列说法中正确的是________.A.应使橡皮条与两绳夹角的平分线在同一直线上B.为了便于计算合力大小,两绳间夹角应取30°、45°、90°等特殊角度C.系在橡皮条末端的两绳要一样长D.同时改变两个弹簧测力计拉力的大小和方向,结点可能保持在位置O1(2)改变F1、F2,重复步骤①至⑥进行第二次实验,记下结点位置O2,位置O2________(选填“必须”或“不必”)与位置O1相同.[解析] (1)F1、F2方向间夹角大小适当即可,不一定要橡皮条和两绳套夹角的角平分线在一条直线上,故A错误;两细线拉橡皮条时,只要确保拉到同一点即可,两绳间夹角不一定要取30°、45°、90°等特殊角度,故B错误;细线的作用是能显示出力的方向,所以不必等长,故C错误;同时改变两个弹簧测力计的拉力,结点可能保持在位置O1,故D正确.(2)重复实验时,O2不必与O1位置相同.[答案] (1)D(2)不必数据处理、误差分析3某学习小组探究弹簧的伸长与形变的关系,在操作的同时记录数据,其步骤如下:(1)测出钩码的质量为m0.把弹簧平放在水平桌面上,测出弹簧的原长l0.(2)将该弹簧悬吊在铁架台上,让弹簧自然下垂,如图甲所示.挂上一个钩码,测出此时弹簧的长度为l1.(3)之后逐渐增加钩码的个数,并测出弹簧对应的长度分别为l2、l3…….(4)撤去实验装置,将以上过程中记录的数据汇总,并作出钩码质量m与伸长量x的关系图如图乙所示.已知m =im 0,x =l i -l 0,其中i 是钩码个数,重力加速度为g.请根据以上操作、记录和图象回答以下问题:①m -x 图象的横截距为1.00 cm ,你认为产生的原因是________(填字母代号).A .数据计算错误B .水平放置弹簧测量原长C .选择的弹簧是损坏的D .选择的弹簧是轻弹簧②m -x 图线在伸长量x >5.00 cm 之后变弯曲,说明了________(填字母代号).A .此弹簧已被损坏B .悬挂钩码过多C .钩码下端触地D .添加钩码后,钩码在竖直方向振动,且选择钩码到最高点读数l i③从图乙上看,该弹簧水平放置使用时的弹性限度________(填“大于”“等于”或“小于”)5m 0g.④已知钩码的质量m 0=0.2 kg ,重力加速度g =9.8 m /s 2,利用图乙求弹簧的劲度系数k =________ N /m .[解析] ①m -x 图象的横截距为1.00 cm ,产生的原因是测量弹簧原长时是水平放置的,应该让弹簧竖直放置测量原长,故选B .②m -x 图线在伸长量x >5.00 cm 之后变弯曲,说明了弹簧已被损坏,或者是悬挂钩码过多,弹簧超出了弹性限度,故选AB .③从图乙上看,该弹簧水平放置使用时,当弹力大于5m 0g 时图象发生了弯曲,可知弹簧的弹性限度等于5m 0g.④利用图乙求得弹簧的劲度系数k =5m 0g Δl =5×0.2×9.8(5-1)×10-2N /m =245 N /m . [答案] ①B ②AB ③等于 ④245“探究弹力与弹簧伸长量的关系”实验注意事项:1.所挂钩码不要过重,以免弹簧被过分拉伸而超出它的弹性限度,要注意观察,适可而止.2.每次所挂钩码的质量差尽量大一些,从而使坐标上描的点的间距尽可能大,这样作出的图线更精确.3.测弹簧长度时,一定要在弹簧竖直悬挂且处于平衡状态时测量,以免增大误差.4.描点画线时,所描的点不一定都落在一条直线上,但应注意一定要使各点均匀分布在直线的两侧.5.记录数据时要注意弹力及弹簧伸长量的对应关系及单位.)4小明通过实验“验证力的平行四边形定则”.(1)实验记录纸如图甲所示,O点为橡皮筋被拉伸后伸长到的位置,两弹簧测力计共同作用时,拉力F1和F2的方向分别过P1和P2点;一个弹簧测力计拉橡皮筋时,拉力F3的方向过P3点.三个力的大小分别为:F1=3.30 N、F2=3.85 N和F3=4.25 N.请根据图中给出的标度作图求出F1和F2的合力.(2)仔细分析实验,小明怀疑实验中的橡皮筋被多次拉伸后弹性发生了变化,影响实验结果.他用弹簧测力计先后两次将橡皮筋拉伸到相同长度,发现读数不相同,于是进一步探究了拉伸过程对橡皮筋弹性的影响.实验装置如图乙所示,将一张白纸固定在竖直放置的木板上,橡皮筋的上端固定于O 点,下端N挂一重物.用与白纸平行的水平力缓慢地移动N,在白纸上记录下N的轨迹.重复上述过程,再次记录下N的轨迹.乙丙两次实验记录的轨迹如图丙所示.过O点作一条直线与轨迹交于a、b两点,则实验中橡皮筋分别被拉伸到a和b时所受水平力F a、F b的大小关系为________.(3)根据(2)中的实验,可以得出的实验结果有________.(填写选项前的字母)A.橡皮筋的长度与受到的拉力成正比B.两次受到的拉力相同时,橡皮筋第2次的长度较长C.两次被拉伸到相同长度时,橡皮筋第2次受到的拉力较大D.两次受到的拉力相同时,拉力越大,橡皮筋两次的长度之差越大(4)根据小明的上述实验探究,请对验证力的平行四边形定则实验提出两点注意事项.________________________________________________________________________ ________________________________________________________________________[解析] 根据力的合成法则及平衡条件解题.(1)作出的图示如图所示.(2)重物受力情况如图所示,由于重力不变,两次实验时,橡皮筋弹力T的方向相同,故水平拉力F大小相等,即F a=F b.(3)根据题图丙可知,选项B 、D 正确,选项A 、C 错误.(4)橡皮筋拉伸不宜过长,选用新橡皮筋等可减小误差.[答案] (1)如图所示(F 合=4.60~4.90 N 都算对)(2)F a =F b (3)BD(4)橡皮筋拉伸不宜过长;选用新橡皮筋(或:拉力不宜过大;选用弹性好的橡皮筋;换用弹性好的弹簧)【变式3】 在做“探究弹簧弹力与弹簧形变的关系”实验时:(1)甲同学将弹簧水平放置测出其自然长度,然后竖直悬挂让其自然下垂,在其下端施加竖直向下的外力F ,通过实验得出弹簧弹力与弹簧形变量的关系,此操作对实验结果产生影响的原因是__________________.(2)乙同学按正确操作步骤进行实验,但未测量弹簧原长和形变量,而是每次测出弹簧的总长度L ,并作出外力F 与弹簧总长度L 的关系图线如图a 所示,由图可知,该弹簧的原长为________cm ;该弹簧的劲度系数为________N /m .(3)丙同学通过实验得出弹簧弹力与弹簧形变量的关系图线如图b 所示,造成图线后来弯曲的原因是____________________________________.[解析] (1)由于弹簧自身重力的影响,弹簧竖直悬挂时,弹簧在没有外力的情况下已经伸长了一段距离,故作出的F -x 图象不过坐标原点;(2)由图线和坐标轴交点的横坐标表示弹簧的原长可知弹簧的原长为10 cm ;当拉力为10 N 时,弹簧的形变量为x =(30-10) cm =20 cm =0.2 m ,由胡克定律F =kx 得:k =F x =100.2=50 N /m ;(3)丙图,当弹力达到一定范围时,出现拉力与形变量不成正比,说明弹力超出最大限度.[答案] (1)弹簧自身有重量(2)1050(3)外力已超过弹性限度【变式4】用等效代替法验证力的平行四边形定则的实验情况如下图甲所示,其中A 为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳,图乙是白纸上根据实验结果画出的图.(1)本实验中“等效代替”的含义是________.A.橡皮筋可以用细绳替代B.左侧弹簧测力计的作用效果可以替代右侧弹簧测力计的作用效果C.右侧弹簧测力计的作用效果可以替代左侧弹簧测力计的作用效果D.两弹簧测力计共同作用的效果可以用一个弹簧测力计的作用效果替代(2)图乙中的F与F′两力中,方向一定沿着AO方向的是________,图中________是F1、F2合力的理论值,______是合力的实验值.(3)(多选)完成该实验的下列措施中,能够减小实验误差的是________.A.拉橡皮筋的绳细一些且长一些B.拉橡皮筋时,弹簧秤、橡皮筋、细绳应贴近木板且与木板面平行C.拉橡皮筋的细绳要长些,标记同一细绳方向的两点要远些D.使拉力F1和F2的夹角很小[解析] (1)该实验采用了“等效法”,即用两个弹簧秤拉橡皮筋的效果和用一个弹簧秤拉橡皮筋的效果是相同的,即要求橡皮筋的形变量相同,故ABC错误,D正确.(2)F是通过作图的方法得到的合力的理论值,在平行四边形的对角线上,而F′是通过一个弹簧称沿AO方向拉橡皮条,使橡皮条伸长到O点,使得一个弹簧称的拉力与两个弹簧称的拉力效果相同,测量出的合力,因此其方向沿着AO方向.(3)为减小实验误差,拉橡皮筋的绳细一些且长一些,故A正确;为减小实验误差,拉橡皮筋时,弹簧秤、橡皮筋、细绳应贴近木板且与木板面平行,故B正确;拉橡皮筋的细绳要长些,标记同一细绳方向的两点要远些,故C正确;使拉力F1和F2的夹角适当大些,故D 错误.[答案] (1)D (2)F′ F F′ (3)ABC实验的改进与创新5 如图所示为某物理兴趣小组测定弹簧劲度系数的实验装置.弹簧下端固定在水平桌面上,上端连接一托盘P ,在托盘P 下方和桌面上方同一竖直线上安装有光电测距仪A 和B ,通过数据线可以将二者间的距离信息输入到电脑,距离测量精度可达到0.1 mm .实验时,小组同学将6个规格为m =50 g 的砝码逐个放在托盘P 上,每加放一个砝码待系统静止后均打开光电测距电路开关进行测距,测距结果直接输入电脑,测距完成关闭测距开关,然后将对应的托盘上放置砝码的数目信息输入电脑,形成一组测量数据.实验过程中弹簧始终保持竖直且在弹性限度内.实验完成后小组同学在电脑上对坐标轴和坐标轴所表示物理量的单位进行了设置,纵轴表示托盘P 上砝码的总重力F 与单个砝码重力mg 的比值;横轴表示A 、B 间的距离h ,单位设置为 cm .设置完成后,电脑系统根据实验数据自动拟合出F mg-h 图象如图所示,已知当地的重力加速度为9.8 m /s 2.(1)根据图象可求出弹簧的劲度系数k =__________ N /m .(结果保留一位小数)(2)输入电脑的数据没有托盘和弹簧的重力,这一疏漏对测量结果__________(选填“有影响”或“无影响”).(3)针对实验小组在电脑上的设置操作,请你提出一条提高测量精度的改进建议:____________________________________________________________.[审题指导] 根据弹簧弹力和形变量的正比例关系,可知,砝码盘的质量遗漏对实验结果无影响,根据图象的函数关系,得到图象的斜率为-k mg,利用图象可计算出劲度系数k.横轴若改为mm ,在数据处理时会提高计算的准确度.[解析] (1)由图象可知,托盘上无砝码时,弹簧的长度为0.28 m ,每次添加砝码后系统静止,由平衡关系可得,托盘上砝码总重力F =k(0.28-h),即n =F mg =k mg(0.28-h),故该图象的斜率为-k mg ,即0-6.50.28=-k mg,解得劲度系数k ≈11.4 N /m ; (2)输入电脑的数据没有托盘和弹簧的重力,这一疏漏对测量无影响,因为弹簧的形变和受力成正比,满足k =ΔFΔx .(3)为了提高实验的精度,可将轴h 的单位设置成mm ,提高h 的显示精度.[答案] (1)11.4 N /m (2)无影响 (3)将横轴h 的单位设置成mm6 某小组为了验证力的平行四边形定则,设计了如图甲所示的实验:在一个半圆形刻度盘上安装两个可以沿盘边缘移动的拉力传感器A 、B ,两传感器的挂钩分别系着轻绳,轻绳的另一端系在一起,形成结点O ,并使结点O 位于半圆形刻度盘的圆心.在O 点挂上重G =2.00 N 的钩码,记录两传感器A 、B 的示数F 1、F 2及轻绳与竖直方向的夹角θ1、θ2,用力的图示法即可验证力的平行四边形定则.(1)当F 1=1.00 N 、F 2=1.50 N ,θ1=45°、θ2=30°时,请在图乙中用力的图示法作图,画出两绳拉力的合力F ,并求出合力F =________N .(结果保留三位有效数字)(2)该组同学在实验中,将传感器A 固定在某位置后,再将传感器B 从竖直位置的P 点缓慢顺时针旋转,得到了一系列B 传感器的示数F 2和对应的角度θ2,作出了如图丙所示的F 2-θ2图象,由图丙可知A 传感器所处位置的角度θ1=________.[解析] (1)先画出力的标度,根据题中所给的数据,利用平行四边形定则画出力的图示并求合力F =2.01 N .(2)由题图丙可知,当θ2=π3和0时,F 2的读数都为2.0 N ,根据平行四边形定则,画出如图所示的三角形,由图中几何关系,可得θ1=π3.[答案] (1)如图所示 2.01(1.97~2.05) (2)π3【变式5】 某实验小组进行测量动摩擦因数大小实验.(1)实验时,小明同学先在竖直方向上对弹簧测力计调零,然后用弹簧测力计拉着物体沿水平方向做匀速直线运动,那么弹簧测力计的示数与物体所受摩擦力相比________(选填“偏大”或“偏小”).(2)弹簧测力计正确调零后,小明同学设计了如图所示两种实验方案,来测量物体A 与长木板B 之间的滑动摩擦力大小.方案1:如图甲所示,把长木板B 固定在水平面上,匀速拉动物体A ;方案2:如图乙所示,把长木板B 放在水平面上,拉动长木板B.以上两种实验方案,你认为方案________更为合理;这是因为____________________________________.(3)小王同学利用合理的实验装置进行实验.在物体A 上放橡皮泥,准确测得物体A 和橡皮泥的总重量G ,实验中待弹簧测力计指针稳定后,将其读数记作F.改变物体A 上橡皮泥重量,重复多次,得到实验数据如表格所示:②由图线可以测得物体A 与长木板B 之间的动摩擦因数μ=________.[解析] (1)因为弹簧自身重力的作用,所以当在竖直方向上对弹簧测力计调零后,再在水平方向上测拉力的大小,指针的位置会有一定的回缩,至使所测出的摩擦力小于实际摩擦力的大小.(2)由图示实验可知,方案1中用弹簧测力计拉动A,需要控制A做匀速直线运动,难于控制A做匀速直线运动,另一方面弹簧测力计是运动的,难于准确读数;方案2中拉动物体B,不需要控制物体B做匀速直线运动,且弹簧测力计静止,便于弹簧测力计读数;因此2方案更合理.(3)①根据表格中的数据在坐标纸上作出F-G图线.如图所示:②由题意可知,稳定时,弹簧秤的示数F等于滑块与木板间的滑动摩擦力f,根据图线的斜率等于滑块与木板间的动摩擦因数得:μ=fF N =FG=0.90-03.00-0=0.3.[答案] (1)偏小(2)2摩擦力的测量更加方便、准确(3)①见解析图②0.30【变式6】如图所示的实验装置可以用来验证力的平行四边形定则,带有滑轮的方木板竖直放置,为了便于调节绳子拉力的方向,滑轮可以安放在木板上的多个位置.(1)请把下面的实验步骤补写完整.①三段绳子各自悬挂一定数目的等质量钩码,调整滑轮在木板上的位置,使得系统静止不动.②把一张画有等间距同心圆的厚纸紧贴木板放置在绳子与木板之间,使得圆心位于绳子结点O 处,有足够多等间距同心圆作为画图助手,这样做为的是方便作出力的图示.你认为本实验有必要测量钩码所受的重力大小吗?答________(选填“有”或“没有”,不必说明理由).③记录____________________以及__________________________.④三段绳子上的拉力F A 、F B 、F C 才可用钩码数量来表示,根据记录的数据作出力的图示F A 、F B 、F C .⑤以F A 、F B 为邻边,画出平行四边形,如果平行边形的对角线所表示的力与________(选填“F A ”“F B ”或“F C ”)近似相等,则在实验误差允许的范围内验证了力的平行四边形定则.(2)在图中A 、B 、C 三段绳子上分别悬挂了5、4、5个钩码而静止不动,图中OA 、OB 两段绳子与竖直方向的夹角分别为α、β,如果本实验是成功的,那么sin αsin β应接近于__________.[解析] (1)②实验中钩码都是相同的,一个钩码受到的重力为一个单位力,只要计钩码的个数即可,故没有必要测量钩码的重力;③该实验采用等效法,需要记录三段绳子上挂的钩码数,以及三段绳子的方向;⑤以F A 、F B 为邻边,画出平行四边形,如果F A 、F B 所夹的对角线与F C ,近似共线等长,说明F A 、F B 所夹的对角线表示的力即为F A 、F B 的合力,即验证了力的平行四边形定则.(2)作图几个力的关系如图所示:根据正弦定理有:F B sin α=F A sin β,且F A =5mg ,F B =4mg ,解得:sin αsin β=F B F A =45. [答案] (1)②没有 ③三段绳子悬挂的钩码个数 三段绳子的方向 ⑤F C (2)45。

2022届高考物理一轮复习 第2章 实验2 探究弹力与弹簧伸长的关系 过关检测习题(含解析)

2022届高考物理一轮复习 第2章 实验2 探究弹力与弹簧伸长的关系 过关检测习题(含解析)
[3]斜率为劲度系数,即
(3)[4][5]竖直测量弹簧原长时由于重力影响,测得 比水平面测量时偏大一些,但弹簧的劲度系数是通过图象的斜率 测得的, 的大小只影响横轴截距的大小,不影响斜率的计算。(答出劲度系数与斜率有关即给分)
5.15.94 12.5 25不会
【详解】
(1)[1]由于刻度尺最小分度为1mm,读数要估读到0.1mm,指针示数为15.94cm。
10.某同学用图a的装置完成“探究弹力和弹簧伸长的关系”的实验,部分实验步骤如下:
A.将铁架台固定于桌子上,并将弹簧的一端系于横梁上,在弹簧附近竖直固定一刻度尺
B.记下弹簧不挂钩码时,其下端在刻度尺上的刻度L0
C.依次在弹簧下端挂上1个、2个、3个、4个……钩码,并分别记下钩码静止时,弹簧下端所对应的刻度并记录在表格内,然后取下钩码
4.某同学用如图甲所示的装置来探究弹簧弹力F和长度x的关系,把弹簧上端固定在铁架台的横杆上,记录弹簧自由下垂时下端所到达的刻度位置。然后,在弹簧下端悬挂不同质量的钩码,记录每一次悬挂钩码的质量和弹簧下端的刻度位置。实验中弹簧始终未超过弹簧的弹性限度。通过分析数据得出实验结论。
(1)图丙是该同学某次测量的弹簧长度,该长度是_________cm。
优点在于:___________。
缺点在于:___________。
9.某兴趣小组同学想探究橡皮圈中的张力与橡皮图的形变量是否符合胡克定律,若符合胡克定律,则进一步测量其劲度系数(圈中张力与整圈形变量之比)。他们设计了如图甲所示实验:橡皮圈上端固定在细绳套上,结点为O,刻度尺竖直固定在一边,0刻度与结点O水平对齐,橡皮圈下端悬挂钩码,依次增加钩码的个数,分别记录下所挂钩码的总质量m和对应橡皮圈下端P的刻度值x,如下表所示:

专项02探究弹簧弹力与伸长量间关系(解析版)-2022届高考物理实验专项突破

专项02探究弹簧弹力与伸长量间关系(解析版)-2022届高考物理实验专项突破

专项02探究弹簧弹力与伸长量间关系(解析版)-2022届高考物理实验专项突破2022届高考物理实验专项突破--探究弹簧弹力与伸长量间的关系1.(2022·重庆九龙坡区·高三期中)某同学在家中找到两根一样的轻弹簧P和Q、装有水总质量1kgm的矿泉水瓶、刻度尺、量角器和细绳等器材,设计如下实验验证力的平行四边形定则,同时测出弹簧的劲度系数k。

其操作如下:a.将弹簧P上端固定,让其自然下垂,用刻度尺测出此时弹簧P的长度012.50cmL;b.将矿泉水瓶通过细绳连接在弹簧P下端,待矿泉水瓶静止后用刻度尺测出此时弹簧P的长度1L,且117.50cmL;c.在细绳和弹簧Q的挂钩上涂抹少许润滑油,将细绳搭在挂钩上,缓慢地拉起弹簧Q,使弹簧P偏离竖直方向夹角为60,测出弹簧Q的长度为2L及其轴线与竖直方向夹角为,如图乙所示;(1)取重力加速度210m/g,则弹簧P的劲度系数k________;(2)若要验证力的平行四边形定则,2L和需满足的条件是2L________cm,________。

【答案】200N/m17.5060【详解】(1)[1]弹簧P的劲度系数210N/m200N/m17.5012.5010mgkl(2)[2][3]由平衡条件可知TPTQco60coFFmg,TPTQin60inFF因为细绳搭在弹簧Q的挂钩上,所以TPFmg联立解得TQFmg,60则2117.50cmLL2.(2022·全国高三专题练习)某同学制作了一个可用电流表直接显示拉力大小的拉力器,原理如图。

R1是一根长20cm、阻值20Ω的均匀电阻丝,劲度系数为1.0某103N/m的轻弹簧左端固定,右端连接金属滑片P和拉环,拉环不受拉力时,滑片P恰好处于a端。

闭合S,在弹簧弹性限度内,对拉环施加水平拉力,使滑片P滑到b端,调节阻箱电R使电流表恰好满偏。

已知电源电动势E=6V,内阻r=1Ω,电流表的量程为0~0.6A,内阻不计,P与R1接触良好且不计摩擦。

实验2 探究弹力和弹簧伸长量的关系

实验2 探究弹力和弹簧伸长量的关系

实验溯本求源
2.用悬挂法测量弹簧的弹力所运用的正是弹簧的弹力与挂在弹簧下面的钩码的
重力 相等 这一原理. 3.弹簧的长度可用刻度尺直接测出,伸长量可以由拉长后的长度减去弹簧原来的 长度进行计算,这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系了. 三、实验器材 毫米刻度尺 轻质弹簧(一根)、钩码(一盒)、铁架台、铅垂线、坐标纸、 .
������ 1.6 k= = ������ 0.08
N/m=20 N/m.(3)根据该同学以上的实验情况,记录实验数据
钩码个数 0 弹力F/N 弹簧长度 1 2 3 5
的表格为: (4)优点在于可以避免弹簧自身重力对实验的 影响,缺点在于弹簧与桌面及绳子与滑轮间存 在的摩擦会造成实验误差.
L/(10-2 m)
实验热点探究
变式 把两根轻质弹簧串联起来测量它们各自的劲度系数,如图S2-3甲所示.
甲Hale Waihona Puke 乙 图S2-3丙实验热点探究
(1)未挂钩码之前,指针B指在刻度尺如图乙所示的位置上,记为 cm; (2)将质量为50 g的钩码逐个挂在弹簧Ⅰ的下端,逐次记录两弹簧各自的伸长量;所 挂钩码的质量m与每根弹簧的伸长量x的关系图像如图丙所示,由图像可计算出弹 簧Ⅱ的劲度系数k2= N/m;(重力加速度g取9.8 m/s2) (选填“有”
(3)图丙中,当弹簧Ⅰ的伸长量超过17 cm时其图线为曲线,由此可知,挂上第
个钩码时,已经超过它的弹性限度,这对测量弹簧Ⅱ的劲度系数 或“没有”)影响.(弹簧Ⅱ的弹性限度足够大)
实验热点探究
[答案] (1)11.50(11.48~11.52) (2)28 (3)5 没有
[解析] (1)指针 B 在刻度尺上正对 11.50 cm. (2)弹簧Ⅱ的劲度系数 k2=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二探究弹力和弹簧伸长量的关系【考情分析】1.了解弹力与弹簧伸长量的定量关系。

2.会用列表法、图象法、函数法处理实验数据。

【重点知识梳理】【实验目的】1.探究弹力和弹簧伸长的定量关系。

2.学会利用列表法、图象法研究物理量之间的关系。

【实验原理】1.弹簧受力会发生形变,形变的大小与受到的外力有关.沿着弹簧的方向拉弹簧,当形变稳定时,弹簧产生的弹力与使它发生形变的拉力在数值上是相等的。

2.用悬挂法测量弹簧的弹力,运用的正是弹簧的弹力与挂在弹簧下面的钩码的重力相等。

3.弹簧的长度可用刻度尺直接测出,伸长量可以由拉长后的长度减去弹簧原来的长度进行计算.这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系.即寻求F=kx的关系。

【实验器材】弹簧、毫米刻度尺、铁架台、钩码若干、坐标纸。

【实验步骤】1.将弹簧的一端挂在铁架台上,让其自然下垂,用刻度尺测出弹簧自然伸长状态时的长度l0,即原长。

2.如图2-4-1所示,将已知质量的钩码挂在弹簧的下端,在平衡时测量弹簧的总长度并测出钩码的重力,填写在记录表格里。

3.改变所挂钩码的质量,重复前面的实验过程多次。

【实验数据的处理】1.以弹力F(大小等于所挂钩码的重力)为纵坐标,以弹簧的伸长量x为横坐标,用描点法作图.连接各点,得出弹力F随弹簧伸长量x变化的图线。

2.以弹簧的伸长量为自变量,写出曲线所代表的函数.首先尝试一次函数,如果不行则考虑二次函数。

3.得出弹力和弹簧伸长之间的定量关系,解释函数表达式中常数的物理意义。

【实验误差的来源】1.弹簧长度的测量误差。

2.描点画线的作图误差。

【注意事项】1.所挂钩码不要过重,以免弹簧被过分拉伸,超出它的弹性限度.要注意观察,适可而止。

2.每次所挂钩码的质量差尽量大一些,从而使坐标上描的点尽可能稀,这样作出的图线更精确。

3.测弹簧长度时,一定要在弹簧竖直悬挂且处于平衡状态时测量,以免增大误差。

4.描点画线时,所描的点不一定都落在一条曲线上,但应注意一定要使各点均匀分布在曲线的两侧.5.记录数据时要注意弹力及弹簧伸长量的对应关系及单位。

【方法规律】(1)列表法将测得的F、x填入设计好的表格中,可以发现弹力F与弹簧伸长量x的比值在误差允许范围内是相等的。

(2)图象法以弹簧伸长量x为横坐标,弹力F为纵坐标,描出F、x各组数据相应的点,作出的拟合曲线,是一条过坐标原点的直线。

(3)函数法弹力F与弹簧伸长量x满足F=kx的关系。

2.注意事项(1)不要超过弹性限度:实验中弹簧下端挂的钩码不要太多,以免弹簧被过分拉伸,超过弹簧的弹性限度。

(2)尽量多测几组数据:要使用轻质弹簧,且要尽量多测几组数据。

(3)观察所描点的走向:本实验是探究性实验,实验前并不知道其规律,所以描点以后所作的曲线是试探性的,只是在分析了点的分布和走向以后才决定用直线来连接这些点。

(4)统一单位:记录数据时要注意弹力及弹簧伸长量的对应关系及单位。

3.误差分析(1)钩码标值不准确、弹簧长度测量不准确带来误差。

(2)画图时描点及连线不准确也会带来误差。

【典型题分析】高频考点一实验原理与操作例1.(2020·广东茂名一中模拟)如图甲所示,用铁架台、弹簧和多个已知质量且质量相等的钩码探究在弹性限度内弹簧弹力与弹簧伸长量的关系.(1)为完成实验,还需要的实验器材有:。

(2)实验中需要测量的物理量有:。

(3)图乙是弹簧弹力F与弹簧伸长量x的F-x图线,由此可求出弹簧的劲度系数为N/m.图线不过原点的原因是由于。

(4)为完成该实验,设计的实验步骤如下:A.以弹簧伸长量为横坐标,以弹力为纵坐标,描出各组(x,F)对应的点,并用平滑的曲线连接起来。

B.记下弹簧不挂钩码时其下端在刻度尺上的刻度l0。

C.将铁架台固定于桌子上,并将弹簧的一端系于横梁上,在弹簧附近竖直固定一把刻度尺。

D.依次在弹簧下端挂上1个、2个、3个、4个……钩码,并分别记下钩码静止时弹簧下端所对应的刻度,并记录在表格内,然后取下钩码。

E.以弹簧伸长量为自变量,写出弹力与伸长量的关系式.首先尝试写成一次函数,如果不行,则考虑二次函数。

F.解释函数表达式中常数的物理意义。

G.整理仪器。

请将以上步骤按操作的先后顺序排列出来:.【解析】(1)根据实验原理可知还需要刻度尺来测量弹簧原长和形变量.(2)根据实验原理,实验中需要测量的物理量有弹簧的原长、弹簧挂不同个数的钩码时所对应的伸长量(或对应的弹簧长度).(3)取图象中(0.5,0)和(3.5,6)两个点,代入F=kx可得k=200 N/m,由于弹簧自身存在重力,使得弹簧不加外力时就有形变量.(4)根据完成实验的合理性可知先后顺序为CBDAEFG.【答案】(1)刻度尺(2)弹簧原长、弹簧挂不同个数的钩码时所对应的伸长量(或对应的弹簧长度)(3)200弹簧自身存在重力(4)CBDAEFG【变式探究】(2020·安徽安庆一中模拟)(1)在“探究弹力和弹簧伸长量的关系”的实验中,以下说法正确的是()A.弹簧被拉伸时,不能超出它的弹性限度B.用悬挂钩码的方法给弹簧施加拉力,应保证弹簧位于竖直位置且处于平衡状态C.用直尺测得弹簧的长度即为弹簧的伸长量D.用几个不同的弹簧,分别测出几组拉力与伸长量,得出拉力与伸长量之比相等(2)某同学做“探究弹力和弹簧伸长量的关系”的实验,他先把弹簧平放在桌面上使其自然伸长,用直尺测出弹簧的原长L0,再把弹簧竖直悬挂起来,挂上钩码后测出弹簧伸长后的长度L,把L-L0作为弹簧的伸长量x,这样操作,由于弹簧自身重力的影响,最后画出的图线可能是下列选项中的()【解析】(1)实验中应以所研究的一根弹簧为实验对象,在弹性限度内通过增减钩码的数目来改变对弹簧的拉力,以探究弹力和弹簧伸长量的关系,并且拉力与重力平衡,所以选A、B.(2)由于考虑到弹簧自身重力的影响,当不挂钩码时,弹簧的伸长量x>0所以选C.【答案】(1)AB(2)C【举一反三】(2020·黑龙江哈尔滨三中模拟)某同学做“探究弹力和弹簧形变量的关系”的实验。

(1)图甲是不挂钩码时弹簧下端指针所指的标尺刻度,其示数为7.73 cm;图乙是在弹簧下端悬挂钩码后指针所指的标尺刻度,此时弹簧的形变量Δl为cm;(2)本实验通过在弹簧下端悬挂钩码的方法来改变弹簧的弹力,关于此操作,下列选项中规范的做法是;(填选项前的字母)A.逐一增挂钩码,记下每增加一只钩码后指针所指的标尺刻度和对应的钩码总重B.随意增减钩码,记下增减钩码后指针所指的标尺刻度和对应的钩码总重(3)图丙是该同学描绘的弹簧的形变量Δl与弹力F的关系图线,图线的AB段明显偏离直线OA,造成这种现象的主要原因是。

【答案】(1)6.93(2)A(3)超过弹簧的弹性限度【解析】(1)Δl=14.66 cm-7.73 cm=6.93 cm。

(2)应逐一增挂钩码,不能随意增减,A项正确。

(3)弹簧下端钩码过多时,对弹簧的拉力过大,使弹簧形变量超过了弹簧的弹性限度,弹簧的形变量不再是线性变化。

高频考点二实验数据的处理例2.(2018·课标Ⅰ)如图(a),一弹簧上端固定在支架顶端,下端悬挂一托盘;一标尺由游标和主尺构成,主尺竖直固定在弹簧左边;托盘上方固定有一能与游标刻度线准确对齐的装置,简化为图中的指针。

现要测量图(a)中弹簧的劲度系数。

当托盘内没有砝码时,移动游标,使其零刻度线对准指针,此时标尺读数为1.950 cm;当托盘内放有质量为0.100 kg的砝码时,移动游标,再次使其零刻度线对准指针,标尺示数如图(b)所示,其读数为cm。

当地的重力加速度大小为9.80 m/s2,此弹簧的劲度系数为N/m(保留3位有效数字)。

【答案】3.77553.7【解析】本题考查游标卡尺的读数方法和胡克定律。

此标尺为二十分度的标尺,精度为0.05 mm,所以读数为37 mm+15×0.05 mm=37.75 mm=3.775 cm。

当托盘中放入砝码稳定时,弹簧的伸长量Δx=3.775 cm-1.950 cm=1.825 cm。

由平衡条件得F=mg,由胡克定律得F=k·Δx,联立得k=53.7 N/m。

【方法技巧】(1)F-x(x为弹簧伸长量,下同)图像和F-l(l为弹簧长度,下同)图像中图线的斜率均表示弹簧的劲度系数。

(2)F-x图线理论上应是一条过原点的直线,但弹簧自重对实验造成的影响可引起F-x图线发生平移。

(3)F-l图线与l轴交点的横坐标表示弹簧原长。

【变式探究】(2020·北京四中模拟)某实验小组探究弹簧的劲度系数k与其长度(圈数)的关系.实验装置如图甲所示:一均匀长弹簧竖直悬挂,7个指针P0、P1、P2、P3、P4、P5、P6分别固定在弹簧上距悬点0、10、20、30、40、50、60圈处;通过旁边竖直放置的刻度尺,可以读出指针的位置,P0指向0刻度.设弹簧下端未挂重物时,各指针的位置记为x0;挂有质量为0.100 kg的砝码时,各指针的位置记为x.测量结果及部分计算结果如下表所示(n为弹簧的圈数,取重力加速度为9.80 m/s2).已知实验所用弹簧总圈数为60,整个弹簧的自由长度为11.88 cm.(1)将表中数据补充完整:① ;② .(2)以n 为横坐标,1k 为纵坐标,在图给出的坐标纸上画出1k -n 图象.(3)图乙中画出的直线可近似认为通过原点.若从实验中所用的弹簧截取圈数为n 的一段弹簧,该弹簧的劲度系数k 与其圈数n 的关系的表达式为k = N/m ;该弹簧的劲度系数k 与其自由长度l 0(单位为m)的关系的表达式为k = N/m.【解析】 (1)①k =mg Δx =0.100×9.80(5.26-4.06)×10-2 N/m =81.7 N/m ;②1k =181.7 m/N =0.012 2 m/N. (2)1k-n 图象如图所示.(3)由作出的图象可知直线的斜率为5.72×10-4 m/N ,故直线方程满足1k=5.72×10-4n m/N ,即k =1.75×103n N/m(在1.67×103n ~1.83×103n 之间均正确).由于60圈弹簧的原长为11.88 cm ,则n 圈弹簧的原长满足n l 0=6011.88×10-2,代入数值,得k =3.47l 0(在3.31l 0~3.62l 0之间均正确). 【答案】(1)①81.7 ②0.012 2 (2)图见解析(3)1.75×103n (在1.67×103n ~1.83×103n 之间均正确) 3.47l 0(在3.31l 0~3.62l 0之间均正确)【变式探究】(2020·山东淄博一中模拟)某同学探究弹力与弹簧伸长量的关系.①将弹簧悬挂在铁架台上,将刻度尺固定在弹簧一侧,弹簧轴线和刻度尺都应在 方向(填“水平”或“竖直”).②弹簧自然悬挂,待弹簧 时,长度记为L 0,弹簧下端挂上砝码盘时,长度记为L x ;在砝码盘中每次增加10 g 砝码,弹簧长度依次记为L 1至L 6,数据如下表:表中有一个数值记录不规范,代表符号为 ,由表可知所用刻度尺的最小分度为 .③图是该同学根据表中数据作的图,纵轴是砝码的质量,横轴是弹簧长度与 的差值(填“L 0或L x ”).④由图可知弹簧的劲度系数为 N/m ;通过图和表可知砝码盘的质量为 g(结果保留两位有效数字,重力加速度取9.8 m/s 2).【解析】 (1)用铁架台,一定是竖直悬挂,所以弹簧轴线和刻度尺都应在竖直方向; (2)由于弹簧自身有重力,悬挂后,当弹簧稳定后,记下弹簧的长度;(3)用毫米刻度尺测量长度是要估读到分度值的下一位,记录数据的最后一位是估读位,故数据L 3记录不规范,由表可知所用刻度尺的最小分度为1mm ;(4)若纵轴是砝码的质量,没有考虑砝码盘的重力的影响,所以横轴是弹簧长度与悬挂砝码盘时的长度L x 的差.(5)根据胡克定律公式ΔF =k Δx ,有k =ΔF Δx =60×10-3×9.8(39.30-27.35)×10-2N/kg≈4.9 N/kg ;由表格得到,弹簧原长为:L 0=25.35 cm ;挂砝码盘时:L x =27.35 cm ;根据胡克定律,砝码盘质量为:M =k (L x -L 0)g=4.9×(27.35-25.35)×10-29.8kg =0.01 kg =10 g.【答案】竖直 稳定 L 3 1 mm L x 4.9 10 高频考点三 实验的改进与创新例3.(2020·宁夏银川一中模拟) 在探究弹力和弹簧伸长量的关系时,某同学先按图(a)对弹簧甲进行探究,然后把弹簧甲和弹簧乙并联起来按图(b)进行探究.在弹性限度内,将质量为m =50 g 的钩码逐个挂在弹簧下端,分别测得图(a)、图(b)中弹簧的长度L 1、L 2如表所示.已知重力加速度g =10 m/s 2,计算弹簧甲的劲度系数k = N/m.由表中数据 (填“能”或“不能”)计算出弹簧乙的劲度系数.【解析】分析表中L 1的长度变化量与钩码数量的关系.钩码数量和弹簧常量的关系为钩码逐增加一个,弹簧长度伸长约1 cm ,所以弹簧劲度系数k 1=ΔF Δl =mg Δl =0.50 N 0.01 m =50 N/m.分析图(b)中可得,每增加一个钩码,弹簧伸长约0.3 cm ,即k 1×0.003+k 2×0.003=mg ,根据弹簧甲的劲度系数可以求出弹簧乙的劲度系数.【答案】50 能 创新角度 实验装置/原理图创新解读实验原理创新1.弹簧水平放置,消除弹簧自身重力对实验的影响2.改变弹簧的固定方式,研究弹簧弹力大小与压缩量之间的大小关系实验 器材 创新1.用橡皮筋代替弹簧做实验2.拉力传感器显示的拉力F 与橡皮筋的弹力并不相等,仅为橡皮筋弹力在水平方向的分力实验 过程 创新1.利用固定在弹簧上的7个指针,探究弹簧的劲度系数k 与弹簧长度的关系2.利用“化曲为直”的思想,将探究劲度系数k 与弹簧圈数的关系,转化为探究1k 与n 的关系【变式探究】(2020·山西临汾一中模拟)在探究弹力和弹簧伸长量的关系并测量弹簧的劲度系数的实验中,所使用的实验装置如图甲所示,所用的每个钩码的重力相当于对弹簧提供了向右恒定的拉力,实验时先测出不挂钩码时弹簧的自然长度,再将5个钩码逐个挂在绳子的下端,每次测量相应的弹簧的总长度.(1)某同学通过以上实验测量后把6组实验数据描点在坐标系图乙中,请作出F -L 图线. (2)由此图线可得出该弹簧的原长L 0= cm ,劲度系数k = N/m.(3)试根据该同学以上的实验情况,帮助他设计一个记录实验数据的表格(不必填写其实验测得的具体数据).(4)该同学实验时,把弹簧水平放置与弹簧悬挂放置相比较 优点在于: ; 缺点在于: . 【解析】(1)F -L 图线如图所示(2)图象的横截距表示弹力为零时的弹簧的长度,此时弹簧的长度为原长,所以弹簧的原长L 0=5 cm ,图象的斜率表示弹簧的劲度系数,故有k =ΔF Δx =1.60.08N/m =20 N/m. (3)根据该同学以上的实验情况,记录实验数据的表格为:(4)优点在于:可以避免弹簧自身重力对实验的影响.缺点在于:弹簧与桌面及绳子与滑轮间存在的摩擦会造成实验误差.【答案】(1)如图所示 (2)5 20 (3)见解析 (4)可以避免弹簧自身重力对实验的影响 弹簧与桌面及绳子与滑轮间存在的摩擦会造成实验误差。

相关文档
最新文档