高中数学必修五公式方法总结
高中数学必修五第一章《解三角形》知识点知识讲解
高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
高中数学必修五知识点总结
高中数学必修五知识点总结一、代数部分:1.多项式的基本概念与运算:包括多项式的定义、次数、系数、单项式、多项式的加减乘除等。
2.因式分解与提取公因式:掌握对多项式进行因式分解与提取公因式的方法,包括一元二次、三项完全平方差、简单三项和复杂多项式的因式分解。
3.方程与不等式:掌握一元二次方程与一元二次不等式的解法,包括配方法、公式法、图像法和根与系数关系等。
4.等差数列与等比数列:了解等差数列和等比数列的概念、公式及其应用,包括求和公式、通项公式、项数和值与项数关系等。
二、函数部分:1.函数的基本概念与性质:掌握函数的定义、函数图像、值域、定义域、奇偶性等基本性质。
2.一次函数与二次函数:了解一次函数和二次函数的定义、图像、性质和特征等,包括函数的增减性、最值、交点、轴对称点等内容。
3.三角函数:熟练掌握正弦函数、余弦函数和正切函数的定义、图像、性质和应用,包括变化规律、周期、幅值、对称性和反函数等。
4.指数函数与对数函数:了解指数函数和对数函数的定义、性质和应用,包括指数函数的增减性和指数函数与对数函数的互逆关系等。
三、几何部分:1.平面向量与坐标表示:了解平面向量的定义、平移、线性运算和坐标表示方法,包括平面向量的加减、数量积和向量共线的判定等。
2.绝对值与不等式:熟练掌握绝对值的性质和变形,以及利用绝对值解决各种绝对值不等式的方法。
3.平面几何应用:包括相似三角形的判定与性质、三角形的三边、两边一角和正弦定理、余弦定理及其应用等内容。
四、概率与统计部分:1.事件与概率:了解事件和概率的基本概念和性质,包括样本空间、事件的发生、概率公理及其应用等。
2.随机变量与概率分布:掌握离散型和连续型随机变量及其概率分布的定义、性质和应用,包括离散型随机变量的期望和方差的计算等。
3.抽样与统计推断:了解统计样本、样本估计和假设检验的基本原理和方法,包括样本均值、样本比例的估计和显著性检验等。
五、数学建模部分:1.数学建模的基本步骤:掌握数学建模中的问题分析和模型假设、模型建立、模型求解和模型评价等基本步骤。
高中数学必修5知识点总结归纳(人教版最全)
高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
人教版高中数学必修1至必修5公式
必修二:
直线与方程
1)直线的倾斜角
3
人教版高中数学必修一至必修五公式(必会)
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与 x 轴平行或重合时,我们规定它的倾
斜角为 0 度。因此,倾斜角的取值范围是 0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用 k 表示。即 k tan 。斜
log a m n log am b n
n log a m
n m
log a
b
(a、b、m
0,n
R, 且a
1)
,
log a
b
log c log c
b a
(a、b、c
0, 且a、c
1)
(换底公式)
函数图像(必须熟)
表1
y ax a 0, a 1
指数函数
定义域 值域
xR
y 0,
对数数函数 y log a x a 0, a 1
○1 在任一直线上任取一点,再转化为点到直线的距离进行求解。
d C1 C2 ( A、B都相等)
○2 设直线 l1 Ax By C1 0, l2 Ax By C2 ; 则两点间的距离为
A2 B2
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
(a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac (a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac
高中数学必修5用构造法求数列的通项公式
用结构法求数列的通项公式在高中数学教材中,有好多已知等差数列的首项、公比或公差 (或许经过计算能够求出数列的首项 ,公比 ),来求数列的通项公式。
但实质上有些数列其实不是等差、等比数列,给出数列的首项和递推公式 ,要求出数列的通项公式。
而这些题目常常能够用结构法,依据递推公式结构出一个新数列,进而间接地求出原数列的通项公式。
关于不一样的递推公式,我们自然能够采纳不一样的方法结构不一样的种类的新数列。
下边给出几种我们常有的结构新数列的方法:一.利用倒数关系结构数列。
比如:数列 { a n } 中,若 a12,114(n N ), 求a n an 1an设b n 1 , 则b n 1b n+4,a n即 b n 1b n=4,{b n}是等差数列。
能够经过等差数列的通项公式求出b n,然再求后数列{ a n}的通项。
练习: 1)数列 { a n } 中, a n≠0,且知足a111N ), 求a n , a n11, (n23a nn}中, a11, a n 2a n n通项公式。
2)数列 { a1a n, 求a 2n}中 , a11, a n0,且a n2a n a n 1a n1 0(nn3)数列 { a2, n N ), 求 a .二.结构形如 b n a n2的数列。
例:正数数列 { a n } 中,若 a15, a n 12a n24(n N ), 求a n解:设 b n a n 2 , 则b n1bn4,即b n1b n4数列 { b n } 是等差数列,公差是4, b1225 a1b n25(n 1)( 4)294n即 a n 24n29a n294n , (1n7, n N )练习:已知正数数列 { a n } 中, a1 2, a n 2 a n 1 (n2, n N ) ,求数列 { a n } 的通项公式。
三.结构形如 b n lg a n的数列。
例:正数数列 { a} 中,若 a =10,且lg a n lg a n 1 , (n2, n N ), 求a .n11n2解:由题意得:lg a n1,可设 b n lg a n,lg a n 12即b n1,bn 12b n是等比数列,公比为1, b1 lg 10 12b n 1 (1) n 1(1)n 1 ,(n N) .22(1) n 1 , a n( 1 )n 1即 lg a n10 22练习:(选自 2002 年高考上海卷)数列 { a n } 中,若 a1=3, a n 1a n2 ,n 是正整数,求数列 { a n } 的通项公式。
高中数学必修5全部公式
高中数学必修5全部公式高中学生学习数学必修5课本内容牢记公式很重要。
那么数学必修5公式有哪些呢?下面店铺为大家整理高中数学必修5公式,希望对大家有所帮助!高中数学必修5公式高中数学提分技巧循序渐进,防止急躁由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振.学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度.学习上要学会积极归因,树立自信心,如:取得一点成绩及时体会成功,强化学习能力;遇到挫折及时调整学习方法、策略,更加努力改变挫折。
学习是一项循序渐进,长期积累的过程,要有恒心、决心,有一颗拼搏的心,要防止急躁心里,这样才能取得最后的成功。
研究学科特点,寻找最佳学习方法数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任.它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高.学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法.华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理.方法因人而异,但学习的五个环节:预习、上课、复习、作业、总结是少不了的.多交流,多反思解疑,化解分化点高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点.对易分化的地方要采用多次反复解疑,认真反思,总结规律,多阅读参考书等方法,多和同学交流,多向老师请教,多开展变式练习,化解分化点,以达到灵活掌握知识、运用知识的目的。
只要学习科学得法,有恒心,有信心,有拼搏心,克服急躁心里,克服“小聪明”,多交流,多反思,养成良好的学习习惯,就能顺利度过高中数学学习适应期,就能在今后的数学成绩图飞猛进。
高一数学必修五知识点总结归纳
必修五知识点总结归纳(一)解三角形1、正弦定理:在 C 中,a、 b 、c分别为角、、C的对边, R为 C 的外接圆的半径,则有a b c2R .sin sin sin C正弦定理的变形公式:①a2R sin, b2R sin, c2Rsin C ;② sin a, sin b, sin C c;2R2R2R③a : b : c sin: sin: sin C ;④a b c a b c.sin sin sin C sin sin sin C2、三角形面积公式:S C 1bc sin1ab sin C1ac sin.2223C中,有a b c2bc cos b a c2ac cos,、余弦定理:在222,222 c2a2b22ab cosC .4、余弦定理的推论:cos b2c2a2,cosa2c2b2a2b2c2 2bc2ac,cosC2ab.5、射影定理:a b cosC c cos B,b a cosC c cos A, c a cosB b cos A6、设a、b、c是 C 的角、、 C 的对边,则:①若a2b2c2,则 C90;②若 a2b2c2,则 C90 ;③若 a2b2c2,则 C 90 .(二 )数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第 2 项起,每一项都不小于它的前一项的数列.a n 1a n06、递减数列:从第 2 项起,每一项都不大于它的前一项的数列.a n 1a n07、常数列:各项相等的数列.8、摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列.9、数列的通项公式:表示数列a n的第 n 项与序号 n 之间的关系的公式.10、数列的递推公式:表示任一项a n与它的前一项a n 1(或前几项)间的关系的公式.11、如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.12、由三个数a,, b 组成的等差数列可以看成最简单的等差数列,则称为 a 与b的等差中项.若 b a c,则称 b 为a与c的等差中项.213、若等差数列a n的首项是 a1,公差是d,则 a n a1n 1 d .14、通项公式的变形:①a n a m n m d ;② a1a n n 1 d ;③d a n a1 ;a n a1a n am .n1④ n1;⑤ dd n m15、若a n是等差数列,且 m n p q(m、n、 p 、q*),则 a m a n a p a q;若 a n是等差数列,且2n p q (n、 p 、q*),则 2a n a p a q.16、等差数列的前n 项和的公式:①S n n a1a n;② S n na1n n 1d .2217、等差数列的前n 项和的性质:①若项数为*,则 S2 n n a n a n 12n n,且S偶S奇nd ,S奇a n.S偶a n1②若项数为2n 1 n*,则 S2 n 12n 1 a n,且 S奇S偶 a n,S奇nS偶n1(其中 S奇na n, S偶n 1 a n).18、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.19、在a与b中间插入一个数G ,使a, G , b 成等比数列,则G 称为a与 b 的等比项.若 G2ab ,则称 G 为a与 b 的等比中项.注意: a 与b的等比中项可能是G 20、若等比数列a n的首项是a1,公比是q,则a n a1q n 1.21、通项公式的变形:①a n a m q n m;② a1 a n q n 1;③ q n 1an ;④q n man.a1a m22、若a n m n p q (m、n、 p 、q *a n a p a q;是等比数列,且),则 a m 若 a n是等比数列,且2n p q (n、 p 、q*),则 a n2a p a q.23、等比数列a n的前 n 项和的公式:S n24、等比数列的前n 项和的性质:①若项数为na1q1a11q n a a q.1n q 11q1q2n n*,则S偶q .S奇② S n m S n q n S m.③ S n, S2 n S n, S3n S2n成等比数列(S n0 ).(三)不等式1、a b 0 a b ; a b 0a b ; a b 0 a b .2① a b b a ;②a b,b c a c;③ a b a c b c ;、不等式的性质:④ a b,c 0ac bc , a b, c0ac bc ;⑤ a b, c d a c b d ;⑥ a b 0, c d 0ac bd ;⑦a b0a n b n n, n 1 ;⑧ a b 0n a n b n, n 1 .3、一元二次不等式:只含有一个未知数,并且未知数的最高次数是 2 的不等式.4、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式b24ac000二次函数y ax2bx ca0 的图象一元二次方程 ax 2bx 有两个相异实数根有两个相等实数根x b x1x2b没有实数根12c 0a0 的根1,22a x x2aax2bx c0x x x1或 x x2x x bR一元二次a02a 不等式的解集ax2bx c0x x1x x2a0若二次项系数为负,先变为正5、设a、b是两个正数,则ab称为正数 a 、b的算术平均数,ab 称为正数 a 、b的2几何平均数.6若 a0, b0,则a b2ab,即abab.、均值不等式定理:27、常用的基本不等式:①a2b22ab a, b R;② ab a2b2a, b R ;220;④ a2b22③ ab a b a0,b a b a,b R .2228x、y 都为正数,则有、极值定理:设⑴若 x y s (和为定值),则当 x y 时,积 xy 取得最大值s2.4⑵若 xy p (积为定值),则当 x y 时,和 x y 取得最小值2p .。
高中数学必修五知识点归纳
高中数学必修五知识点归纳高中数学必修五知识点归纳(上)一、三角函数三角函数是数学中重要的一类函数,包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。
它们的定义可以通过直角三角形中三边之间的关系得到。
在解决直角三角形问题,以及在物理、工程、计算机科学等领域中的应用中经常会涉及到三角函数。
1. 正弦函数:正弦函数的定义为:$y=\sinx=\dfrac{\text{对边}}{\text{斜边}}$,其定义域为实数集合,值域为 $[-1,1]$ 。
2. 余弦函数:余弦函数的定义为:$y=\cosx=\dfrac{\text{邻边}}{\text{斜边}}$,其定义域为实数集合,值域为 $[-1,1]$ 。
3. 正切函数:正切函数的定义为:$y=\tanx=\dfrac{\text{对边}}{\text{邻边}}$,当邻边为 $0$ 时,正切函数无定义。
正切函数的定义域为 $\left\{x\midx\ne\dfrac{\pi}{2}+k\pi ,k\in \bold{Z}\right\}$ ,值域为实数集合。
4. 余切函数:余切函数的定义为:$y=\cotx=\dfrac{\text{邻边}}{\text{对边}}$,当对边为 $0$ 时,余切函数无定义。
余切函数的定义域为 $\left\{x\mid x\ne k\pi ,k\in \bold{Z}\right\}$ ,值域为实数集合。
5. 正割函数:正割函数的定义为:$y=\secx=\dfrac{\text{斜边}}{\text{邻边}}$ ,当邻边为 $0$ 时,正割函数无定义。
正割函数的定义域为 $\left\{x\midx\ne\dfrac{\pi}{2}+k\pi ,k\in \bold{Z}\right\}$ ,值域为 $(-\infty, -1]\cup [1, +\infty)$ 。
6. 余割函数:余割函数的定义为:$y=\cscx=\dfrac{\text{斜边}}{\text{对边}}$,当对边为 $0$ 时,余割函数无定义。
新课标高中数学必修1-5公式大全
数学必修1-5常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个; 6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R二、函数的奇偶性1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减三、二次函数y = ax 2 +bx + c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 四、指数与指数函数1、幂的运算法则:(1)a m • a n = a m + n ,(2)nm nmaa a -=÷,(3)( a m ) n = a m n (4)( ab ) n = a n • b n(5) n n nb a b a =⎪⎭⎫ ⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=- (8)m n mna a =(9)m n m naa 1=-2、根式的性质(1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.4、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>.五、对数与对数函数1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N= N (6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N (8)log a N b = b log a N (9)换底公式:log a N =aNb b log log(10)推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A(其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a 的图象:(1) 根据 a例如:y = x 221x x y ==11-==x xy 七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题3如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
高中数学必修5等差数列知识点总结和题型归纳
等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示知识点2、等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列知识点3、等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数知识点4、等差数列的前n 项和:⑤2)(1n n a a n S +=⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数知识点5、等差中项:⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2ba A +=或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1nn S aS a +=奇偶.②若项数为()*21n n -∈N,则()2121n n Sn a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .523.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( )A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直03=--y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( ) (A )12 (B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=-,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( )A .7 B. 6 C. 3 D. 2 5、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( ) (A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)12 7、设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=519、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和 1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q --+++=,则其前n 项和n S = .2、等差数列 ,4,1,2-的前n 项和为 ( )A. ()4321-n nB. ()7321-n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( ) A. 0991>+a a B. 0991<+a a C. 0991=+a a D. 5050=a4、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S ,则=n 。
高中数学必修五数列通项公式常见求法
求数列通项公式的方法1. 叠加法a n 1 a n f (n) ,且 f (1) f (2)f (n) 比较好求 .【例题】数列a n 的首项为 3 ,b n 为等差数列且 b n a n 1 a n (nN *) .若则 b 32 ,b1012 ,则 a 8.★练习 已知数列a n 知足 a 11 a n1a n 的通项公式 ., a n 1n 2 ,求数列2n2. 叠乘法a n 1 f (n)a n ,且 f (1) f (2) f (n) 比较好求 .【例题】在数列{ a n }中, a 1 =1, (n+1) ·a n 1 =n ·a n ,则 a n 的通项公式为.★练习 在数列{ a n }中, a 1 =1,a n 1 = 2n ·a n ,则 a n 的通项公式为.3. 待定系数法(1) a n =qa n-1 +p(q 、 p 为常数 ,q ≠1且 p ≠0),可化为 a n +λ=q(a n-1+λ).结构出一个以 q 为公比的等比数列 { a n +λ},而后化简用待定系数法求 λ,进而求出 a n .(2) 关于 a n 1qa n f (n)(此中 q 为常数 ) 这类形式 ,一般我们议论两种状况:①当 f(n)为多项式时,可化为 an 1g n1 q a n +g n的形式来求通项,此中g(n)是f(n)的齐次式 .【例题】设数列 a n 中, a 1 1,a n 1 3a n 2n 1 ,求 a n 的通项公式 . ★练习 设数列a 中, a 1 1,a n 1 2a n n 2 n ,求 a的通项公式 .nn②当 f( n)为指数幂即递推公式为 a n 1qa n r p n (q 、 r 、 p 为常数 ) ,可两边同时除以 p n 1 化为a n 1q a nra n的通项公式,进而求出 a n .p n 1p p n的形式,能够求出数列p np【例题】设数列 a n 中, a 1 1,a n 1 4a n 2n ,求 a n 的通项公式 .★练习 设数列a n 中, a 11,a n 1 3a n 2 3n ,求 a n 的通项公式 .4. 倒数法a n1,能够两边取倒数; a n a n 1a n 1 a n,能够两边同时除以 a n a n 1.a nka n 1ba n 1【例题】已知数列a n知足: a11,a n3a n 1,求a n的通项公式. 1★练习在数列 { a n } 中,a11a nan 1a n 1 a n,求数列{ a n}的通项公式.,35. 对数法a n 1qa n p (q、 p为常数 ) ,两边分别取对数,进行降次.【例题】已知数列a n知足:a13, a n1a n2,求 a n的通项公式 .★练习已知数列a n知足:a12, a n1a n22a n,求a n的通项公式 .6. 特点方程法(1) a n+2=A a n+1 +B a n (A 、 B 是常数),特点方程为 x2-A x-B=0,①当方程有两个相异的实根p、q 时,有:a n c1 p n c2 q n,此中c1与 c2由 a1和 a2确立;②当方程有两个同样的实根p 时,有a n(c1n c2 ) p n,此中c1与 c2由 a1和 a2确立.【例题】已知数列 { a n } 知足 a12, a23,a n23a n 12a n (n N * ) ,求 { a n } 的通项公式.★练习已知数列 { a n } 知足a1=2,a2=3, a n22a n1a n,求 { a n} 的通项公式.(2) a n 1 a a n b( a、 b、 c、 d 为常数),特点方程为x ax b ,c a nd cx d①当方程有两个相异的实根a n p a1p a cpp、q 时,数列是以a1为首项,为公比的a n q q a cq等比数列;②当方程有两个同样的实根p 时,数列1p 是以a11为首项,2c为公差的等差a n p a d数列 .【例题】已知数列{ a n} 知足 a12, a n an 12( n2) ,求数列 { a n} 的通项 a n.2a n11。
(word完整版)高中数学必修五数列求和方法总结附经典例题和答案详解,推荐文档
数列专项之求和-4(一)等差等比数列前n 项求和1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nnn 项求和② 数列{}n a 为等差数列,数列{}n b 为等比数列,则数列{}n n a b ⋅的求和就要采用此法. ②将数列{}n n a b ⋅的每一项分别乘以{}n b 的公比,然后在错位相减,进而可得到数列{}n n a b ⋅的前n 项和.此法是在推导等比数列的前n 项和公式时所用的方法.例23. 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S )0(≠x例24.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.一般地,当数列的通项12()()n ca anb an b =++ 12(,,,a b b c 为常数)时,往往可将na 变成两项的差,采用裂项相消法求和.可用待定系数法进行裂项:设12n a an b an b λλ=-++,通分整理后与原式相比较,根据对应项系数相等得21cb b λ=-,从而可得12211211=().()()()c c an b an b b b an b an b -++-++常见的拆项公式有: ①111(1)1n n n n =-++; ②1111();(21)(21)22121n n n n =--+-+③1a b=-- ④11;m m mn n n C C C -+=- ⑤!(1)!!.n n n n ⋅=+- ⑥])2)(1(1)1(1[21)2)(1(1++-+=+-n n n n n n n…… 例25. 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.例26. 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组.例27. 求数列{n(n+1)(2n+1)}的前n 项和. 例28. 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。
(完整版)高中数学人教版必修五不等式知识点最完全精炼总结,推荐文档
△>0
Байду номын сангаас
ax
b(a
x 0)
x
b
a b
(a (a
0) 0)
a
△=0
△<0
y=ax2+bx+c
y
的图象
(a>0)
x1 O
x2x
y
O x1
x
y x
O
ax2+bx+c=0 有两相异实根 (a>0)的根 x1, x2 (x1<x2)
有两相等实根
x1=x2=
b 2a
ax2+bx+c>0 {x|x<x1,或 x>x2} {x|x≠ b }
一.不等式知识要点
1.两实数大小的比较
a b a b 0 a b a b 0 a b a b 0
2.不等式的性质:8条性质.
3.基 本不 等式 定理
且且且且 且且且且 且且且且 且且且且
a 2 b 2 2ab
a2
b2
1 (a b)2 2
值。
z ax by z x2 y2
z y x
6
练习:1.求满足 | x | + | y | ≤4 的整点(横、纵坐标为整数)的
个数。
2.且且且且且且且f
(x)
2
log2
x
1 log2
x
(0
x
1)
34.f(x)=x+ 1 且x4且且且且且 x1
4.求函数 f ( x) ( x 1)2 4 ( x 1) 的最小值.
(5)一元二次方程根的分布问题: 方法:依据二次函数的图像特征从:开口方向、判别式、对称 轴、
高中数学必修五公式方法总结
高中数学必修五公式方法总结第一章 解三角形一、正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径)变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C = 二、余弦定理:变形:三、三角形面积公式:111sin sin sin .222===ABC S bc A ac B ab C △ 第二章 数列一、等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()n1n 1d a a =+-或()nmn m d a a =+-3.求和公式:()()1n n 1n n n 1n d22a a S a +-==+4.重要性质(1)a a a a qpnmq p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二、等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n11-∙=或q a a mn mn-∙=3.求和公式:1n n 11n na ,q 1S a (1q )a a q ,q 11q 1q =⎧⎪=--⎨=≠⎪--⎩2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab +-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)m,2m,32--m m m S S S S S 仍成等比数列三、数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑分组求和法、错位相减法等转化为等差或等比数列再求和, 常见的拆项公式: 111(1)n(n 1)n n 1=-++第三章:不等式一、解一元二次不等式三步骤: 222(1)ax bx c 0ax bx c 0(a 0).(2)ax bx c 0.(3).⎧++>++<>⎪++=⎨⎪⎩化不等式为标准式或计算的值,确定方程的根根据图象写出不等式的解集∆ 特别地:若二次项系数a 为正且有两根时写解集用口诀:不等号大于0取两边,小于0取中间二、分式不等式的求解通法:(1)标准化:①右边化零,②系数化正.(2)转 换:化为一元二次不等式(依据:两数的商与积同号)三、二元一次不等式Ax+By+C >0(A ,B 不同时为0),确定其所表示的平面区域用口诀:同上异下(A与不等式的符号)(注意:包含边界直线用实线,否则用虚线)四、线性规划问题求解步骤:画(可行域),移(平行线),求(交点坐标,最优解,最值),答. 五、基本不等式:0,0)2a ba b +≥≥≥(当且仅当a=b 时,等号成立).1111(2)()n(n k)k nn k=-++1111(3)()(2n 1)(2n 1)22n 12n 1=--+-+1111(4[]n(n 1)(n 2)2n(n 1)(n 1)(n 2)=-+++++)=()10()()0()()(2)0()()0()0()()()30()()>⇔>≥⇔≥≠≥⇔-≥f x f x g x g x f x f x g x g x g x f x f x a a g x g x 常用的解分式不等式的同解变形法则为()且(),再通分2a b (1)a b (2)ab ().2++≥≤变形;变形(和定积最大) 利用基本不等式求最值应用条件:一正数 ; 二定值 ; 三相等。
高中数学必修1-5公式总结 (1)
高中数学必修课本常用公式及结论1.集合12{,,,}n a a a 的子集个数共有2n个;真子集有21n-个;非空子集有21n-个;非空的真子集有22n-个2、二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3)零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)30)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <;4、则复合函数)]([x g f y =满足同则增异则减5、奇偶函数的图象特征:奇函数()()f x f x -=-;偶函数()()f x f x -=奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数6、若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象7、几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2))0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ; 8、分数指数幂(1)m na =0,,a m n N *>∈,且1n >)(2)1mnm naa-=(0,,a m n N *>∈,且1n >)9、根式的性质(1)n =(2)当n a =;当n ,0||,a a a a a ≥⎧==⎨-<⎩10、有理指数幂的运算性质(1) (0,,)rsr s a a aa r s Q +⋅=>∈(2) ()(0,,r s rsa a a r s Q =>∈(3)()(0,0,r r rab a b a b r Q =>>∈11、指数式与对数式的互化式: log b a N b a N =⇔=(0,1,a a N >≠>12、对数的换底公式 :log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >) 对数恒等式:log a Na N =(0a >,且1a ≠, 0N >)推论 log log m na a nb b m=(0a >,且1a ≠, 0N >) 13、对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log aa a MM N N=-;(3)log log ()n a a M n M n R =∈; (4) log log (,m na a nN N n m R m=∈14、平均增长率的问题(负增长时0p <)如果原来产值的基础数为N ,平均增长率为p ,则对于 时间x 的总产值y ,有 (1)y N p =+15、数列的通项公式与前n 项的和的关系:11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ )16、等差数列的通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为:1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d =+-17、等比数列的通项公式:1*11()n n n a a a q q n N q-==⋅∈;其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩18、同角三角函数的基本关系式 :22sin cos 1θθ+=,tan θ=θθcos sin ,19、正弦、余弦的诱导公式(奇变偶不变,符号看象限)212(1)sin ,()sin()2(1)s ,()n n n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数,212(1)s ,()s()2(1)sin ,()n n co n n co n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数 20、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=)21、二倍角公式及降幂公式sin 2sin cos ααα=21tan α=+2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan α=+2tan 21tan αα=-221cos 21cos 2sin ,cos 22αααα-+==22、三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T ω=23、正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径) 2sin ,2sin ,2sin a R A b R B c R C ⇔===::sin :sin :sin a b c A B C ⇔=24、余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-25、面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高) (2)111sin sin sin 222S ab C bc A ca B ===26、实数与向量的积的运算律:设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ) a;(2)第一分配律:(λ+μ) a =λa +μa;(3)第二分配律:λ(a +b )=λa+λb不共线的向量1e 、2e叫做表示这一平面内所有向量的一组基底.27、向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0 ,则a b (b ≠0)1221x y x y ⇔-=28、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ 29、a ·b的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.30、平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,x x y y ++(2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,x x y y --(3)设A 11(,)x y ,B22(,)x y ,则2121(,AB OB OA x x y y =-=--(4)设a =(,),x y R λ∈,则λa=(,x y λλ(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212(x x y y+31、两向量的夹角公式cos ||||a ba b θ⋅==⋅ (a=11(,)x y ,b =22(,)x y)32、平面两点间的距离公式,A B d=||AB = =11(,)x y ,B 22(,)x y ) 33、向量的平行与垂直 :设a=11(,)x y ,b =22(,)x y ,且b ≠0 ,则a ||b ⇔b =λa1221x y x y ⇔-=a ⊥b (a ≠0 )⇔ a ·b=01212x x y y ⇔+=34、设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==(2)O 为ABC ∆的重心OA OB OC ⇔++=(3)O 为ABC ∆的垂心OA OB OB OC OC ⇔⋅=⋅=⋅(4)O 为ABC ∆的内心aOA bOB cOC ⇔++=35、常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). 36、斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y )37、直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距)(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (1212,x x y y ≠≠))两点式的推广:211211()()()()0x x y y y y x x -----=(无任何限制条件!)(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,00a b ≠≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0)38、两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠; ②1212l l k k ⊥⇔=-(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 39、点到直线的距离 :d =(点00(,)P x y ,直线l :0Ax By C ++=)40、 圆的四种方程(1)圆的标准方程 22()()x a y b r -+-=(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0) 41、直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d42、空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB ==43、球的半径是R ,则其体积343V R π=,其表面积24S R π=. 44、柱体、锥体的体积V Sh =柱体(S 是柱体底面积、h 是柱体高)13V Sh =锥体(S 是锥体底面积、h 是锥体高)。
高中数学必修五第一章知识点总结
高中数学必修五第一章知识点总结一.正弦定理(重点)1.正弦定理(1)在一个三角形中,各边和它所对角的正弦的比相等,即==sin sin sin a b c A B C=2R(其中R是该三角形外接圆的半径) (2)正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2.正弦定理的应用(重难点)(1)已知任意两角与一边:有三角形的内角和定理,先算出第三个角,再有正弦定理计算出另两边(2)已知任意两边与其中一边的对角:先应用正弦定理计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边与角(注意:这种情况可能出现解的个数的判断问题,一解,两解,或无解)(3)面积公式111s i n s i n s i n222C S b c a b C a c ∆A B =A ==B 二余弦定理(重点)1.余弦定理三角形中任何一边的平方等于其它两边的平方和减去这两边与它们的夹角的余弦的积的两倍.即2222cos a b c bc =+-A , 2222cos b a c ac =+-B ,2222cos c a b ab C =+-.应用:已知三角形的两边及其夹角可以求出第三边2.推论 222cos 2b c a bc+-A =, 222cos 2a c b ac+-B =, 222cos 2a b c C ab+-=应用:(1)已知三边可以求出三角形的三个角(2)已知三边可以判断三角形的形状:先求出最大边所对的角的余弦值,若大于0,则该三角形为锐角三角形若大于0,则该三角形为直角三角形若小于0,则该三角形为钝角三角形跟踪练习1.在△ABC 中,若=++=A c bc b a 则,222_________2.在△ABC 中,若=2sin b a B ,则A= 3.在ABC ∆中, 若21cos ,3-==A a ,则ABC ∆的外接圆的半径为 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =____________ 5.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形6.在△ABC 中,若a = 2 ,b =030A = , 则B 等于( )A .60B .60或 120C .30D .30或1507.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( )A .直角三角形B .等边三角形C.等腰三角形 D.不能确定8.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( )A .090B .060C .0135D .01509.在△ABC 中,0120,ABC A a S ==,求c b ,。
高中数学必修五 等差等比数列以及基础知识点总结
高中数学必修五 等差等比数列基础知识点(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa qa a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk nn k nn k kkkaa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkkaa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2ndS S =-奇偶 二、巩固习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )(A )13+=n a n(B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( ) (A )21(B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n(B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z--=-,则 ( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )18、数列1⋯,1617,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( )(A )97 (B )78(C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为 ( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是 ( )A .数列{}n a 是等差数列的充要条件是q pn a n+=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n nab aD .如果一个数列{}n a 的前n 项和c ab S n n+=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n na S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题 17、已知数列{}n a 是公差d 不为零的等差数列,数列{}nb a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
天津高二数学必修五知识点
天津高二数学必修五知识点必修五是天津高中二年级数学课程的一部分,主要涉及数列与数学归纳法、排列与组合、概率与统计等内容。
下面将对这些知识点做一简要介绍。
一、数列与数学归纳法数列是指按照一定顺序排列的一组数。
常见的数列有等差数列和等比数列。
其中,等差数列的通项公式为An = A1 + (n-1)d,其中A1为首项,d为公差;等比数列的通项公式为An = A1 * q^(n-1),其中A1为首项,q为公比。
数学归纳法是一种证明方法,可用于证明数学命题的正确性。
其基本思想是:先证明命题在某个特定条件下成立,然后说明如果命题对于某一个正整数n成立,那么它也对于n+1成立。
由此可推知,命题对于一切正整数都成立。
二、排列与组合排列与组合是研究对象的选择或者排列方式的数学分支。
它们在实际问题中有着广泛的应用。
排列是指从给定对象中按一定顺序选取若干个对象进行排列。
对于n个不同的对象,取出m(m≤n)个进行排列的方法数记作A(n, m)或者P(n, m)。
其中,A(n, m) = n! / (n-m)!,P(n, m) = n! / (n-m)!表示排列的计算公式。
组合是指从给定对象中选取若干个对象,不考虑排列顺序的方法数。
对于n个不同的对象,取出m(m≤n)个进行组合的方法数记作C(n, m)。
其中,C(n, m) = n! / [m! * (n-m)!] 表示组合的计算公式。
三、概率与统计概率是数学中研究随机事件发生可能性的学科。
在概率中,我们常用事件发生的频率来描述其概率。
概率的取值范围是0到1之间,表示事件发生的可能性大小。
常见的概率运算有概率的加法原理和乘法原理。
统计是研究通过对数据进行收集、整理和分析来获得有关事物特征的学科。
统计学中常用的两个分支是描述统计和推断统计。
描述统计是通过对样本数据进行收集、整理和分析,来描述事物特征的统计方法。
常见的描述统计方法有平均数、中位数、众数和标准差等。
推断统计是通过对样本数据进行收集、整理和分析,来对总体特征进行推断的统计方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修五公式方法总结
第一章 解三角形
一.正弦定理:
2(sin sin sin a b c
R R A B C
===为三角形外接圆半径)
变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧
==⎪⎪
⎪
==⎨⎪
⎪
==⎪⎩
推论:::sin :sin :sin a b c A B C =
二.余弦定理:
三.三角形面积公式:111
sin sin sin ,222
ABC S bc A ac B ab C ∆=
== 第二章 数列
一.等差数列: 1.定义:a n+1-a n =d (常数)
2.通项公式:()n
1
n 1d a a =+-或()n
m
n m d a a =+-
3.求和公式:
()()1n n 1n n n 1n d
2
2
a a S a +-=
=+
4.重要性质(1)a a a a q
p
n
m
q p n m +=+⇒+=+
(2)
m,2m,32m m m S S S S S --仍成等差数列
二.等比数列:1.定义: )0(1
≠=+q q a a n
n 2.通项公式:q a a n n 1
1-•=或q a a m
n m
n -•=
3.求和公式:
n 1S na ,q 1==
n 11n n a (1q )a a q S ,q 11q 1q
--==≠--
4.重要性质(1)a a a a q p n m q p n m =⇒+=+
222222
2222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222
222
222cos 2cos 2cos 2b c a A bc
a c
b B a
c a b c C ab
+-=+-=+-=
(2)()m,2m,32q 1m --≠m m m S S S S S 仍成等比数列或为奇数
三.数列求和方法总结:
1.等差等比数列求和可采用求和公式(公式法).
2.非等差等比数列可考虑分组求和法、错位相减法等转化为等差或等比数列再求和, 常见的拆项公式:11
1)1(1.1+-=+n n n n
第三章:不等式
一.解一元二次不等式三步骤: 2221.ax bx c 0ax bx c 0(a 0)2.ax bx c 03..⎧++>++<>⎪++=⎨⎪⎩化不等式为标准式或。
计算的值,确定方程的根。
根据图象写出不等式的解集△ 特别地:若二次项系数a 为正且有两根时写解集用口诀:不等号大于0取两边,小于0取中间
二.分式不等式的求解通法:
(1)标准化:①右边化零,②系数化正.
(2)转 换:化为一元二次不等式(依据:两数的商与积同号)
三.二元一次不等式Ax+By+C >0(A ,B 不同时为0),确定其所表示的平面区域用口诀:同上异下(A 与
不等式的符号)
(注意:包含边界直线用实线,否则用虚线)
四.线性规划问题求解步骤:画(可行域),移(平行线),求(交点坐标,最优解,最值),答. 五.基本不等式
:
0,0)2
a b
a b +≥≥≥(当且仅当a=b 时,等号成立).
2
a b (1)a b (2)ab (
).2
++≥≤变形;变形(和定积最大) )11(1)(1.2k
n n k k n n +-=+)
121
121(21)12)(12(1.
3+--=+-n n n n ]
)
2)(1(1
)1(1[21)2)(1(1.
4++-+=++n n n n n n n )
1(1
n 1.
5n n n -+=++()10()()0
()()(2)0()()0()0
()()()30()()
>⇔>≥⇔≥≠≥⇔-≥f x f x g x g x f x f x g x g x g x f x f x a a g x g x 常用的解分式不等式的同解变形法则为()且(),再通分
利用基本不等式求最值应用条件:一正数; 二定值; 三相等。