北京市昌平区2013-2014学年九年级上学期期末考试数学试题(word)
8北京市昌平区2013届高三第二次质量抽测数学文试题(Word解析版) 2

昌平区2012-2013学年第二学期高三年级第二次质量抽测数 学 试 卷(文科)(满分150分,考试时间 120分钟)2013.4考生须知:1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)i 是虚数单位,则复数21=i z i-在复平面内对应的点在 A .第一象限 B.第二象限 C.第三象限 D.第四象限【答案】A【解析】2211=222i i z i i i i-=-=-=+,所以对应的点的坐标为(2,1),在第一象限,选A. (2)已知集合{|21}x A x =>,{|1}B x x =<,则A B =A. {|1}x x >B. {|0}x x >C. {|01}x x <<D. {|1}x x <【答案】C【解析】{|21}{0}xA x x x =>=>,所以AB = {|01}x x <<,选C.(3)已知命题 :p x ∀∈R ,2x ≥,那么下列结论正确的是A. 命题:2p x x ⌝∀∈R ≤, B .命题:2p x x ⌝∃∈<R ,C .命题:2p x x ⌝∀∈-R ≤,D .命题:2p x x ⌝∃∈<-R ,【答案】B【解析】全称命题的否定是特称命题,所以命题:2p x x ⌝∃∈<R ,,选B.(4) 执行如图所示的程序框图,输出的S 值为A .102B .81C .39D .21【答案】A【解析】第一次循环,133,2S n =⨯==.第二次循环,232321,3S n =+⨯==.第三次循环,32133102,4S n =+⨯==.此时不满足条件,输出102S =,选A. (5)在区间(0,)2π上随机取一个数x ,则事件“2tan cos 2x x ≥g ” 发生的概率为A. 34B. 23C. 12D. 13 【答案】C 【解析】由2tan cos 2x x ≥g 得2sin 2x ≥,解得42x ππ≤≤,所以事件“2tan cos 2x x ≥g ”发生的概率为12422πππ-=,选C. (6)某地区的绿化面积每年平均比上一年增长18%,经过x 年,绿化面积与原绿化面积之比为y ,则()y f x =的图像大致为【答案】D【解析】设某地区起始年的绿化面积为a ,因为该地区的绿化面积每年平均比上一年增长18%,所以经过x 年,绿化面积()(118%)xg x a =+,因为绿化面积与原绿化面积之比为y ,则()()(118%) 1.18x x g x y f x a===+=,则函数为单调递增的指数函数。
昌平区2013-2014学年第一学期高三年级期末理科数学

昌平区2013-2014学年第一学期高三年级期末质量抽测数 学 试 卷(理 科)(满分150分,考试时间120分钟) 2014.1考生须知:1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3.答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4.修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5.考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项.)(1) 已知全集=R U ,集合{1,0,1}=-A ,2{20}=-<B x x x , 则=I ðU A B(A) {1,0}- (B) {1,0,2}- (C) {0} (D) {1,1}- (2) “1cos 2α=”是“3πα=”的(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(3) 给定函数①21y x =+,②12log y x =,③12y x =,④1()2xy =,其中在区间(0,1)上单调递增的函数的序号是(A )② ③(B )① ③ (C )① ④(D )② ④w(4) 执行如图所示的程序框图,输出的k 值是 (A)1 (B)2 (C)3 (D)4俯视图左视图主视图(5) 若实数,x y 满足10,2,3,+-≥⎧⎪≤⎨⎪≤⎩x y x y 则z y x =-的最小值是(A) 1 (B) 5 (C) 3- (D) 5- (6) 一个几何体的三视图如图所示,则这个几何体的体积是 (A) 1 (B) 2(C)23 (D)13(7) 连掷两次骰子得到的点数分别为m 和n ,若记向量()m n ,a =与向量(12)=-,b 的夹角为θ,则θ为锐角的概率是 (A)536 (B) 16 (C) 736(D) 29(8)已知函数21, 0,(),40⎧+>⎪=-≤≤x x f x a x 在点(1,2)处的切线与()f x 的图象有三个公共点,则a 的取值范围是(A)[8,4--+ (B)(44---+ (C)(48]-+ (D)(48]---第二卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分,共30分.)(9) 已知θ是第二象限的角,3sin 5θ=,则tan θ的值为___________ .(10) 如图,在复平面内,复数z 对应的向量为OA uu r,则复数i ⋅z =_______ .(11) 已知等差数列{}n a 的前n 项和为n S ,若2461a a a -+=,则4a =_____ ,7S = _____.(12)曲线11,2,,0====x x y y x所围成的图形的面积等于___________ . (13) 在ABC ∆中,4,5,2==⋅=AB BC BA AC uu r uuu r,则AC =________ .(14) 将含有3n 个正整数的集合M 分成元素个数相等且两两没有公共元素的三个集合A B C 、、,其中12{,,,}n A a a a =L ,12{,,,}n B b b b =L ,12{,,,}n C c c c =L ,若A B C 、、中的元素满足条件:12n c c c <<<L ,k k k a b c +=,(1,2,3,,)k n =,则称M 为“完并集合”.①若{1,,3,4,5,6}M x =为“完并集合”,则x 的一个可能值为 .(写出一个即可)②对于“完并集合”{1,2,3,4,5,6,7,8,9,10,11,12}M =,在所有符合条件的集合C 中,其元素乘积最小的集合是 .D CBAP三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分)已知函数2()cos 2sin 1f x x x x =+-. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)当5[,]126x ππ∈-时,求函数()f x 的取值范围.(16)(本小题满分13分)为了调研某校高一新生的身高(单位:厘米)数据,按10%的比例对700名高一新生按性别分别进行“身高”抽样检查,测得“身高”的频数分布表如下表1、表2.(Ⅰ)求高一的男生人数并完成下面的频率分布直方图; (Ⅱ)估计该校学生“身高”在[165,180)之间的概率;(Ⅲ)从样本中“身高”在[180,190)的男生中任选2人,求至少有1人“身高”在[185,190)之间的概率.(17)(本小题满分14分)在四棱锥P ABCD -中,PD ⊥平面ABCD ,2PD CD BC AD ===,//,90AD BC BCD ∠=︒.(Ⅰ)求证:BC PC ⊥;(Ⅱ)求PA 与平面PBC 所成角的正弦值;(Ⅲ)线段PB 上是否存在点E ,使AE ⊥平面PBC ?说明理由.(18)(本小题满分13分)在平面直角坐标系x y O 中,已知点(,0)(0)≠A a a ,圆C 的圆心在直线4y x =-上,并且与直线:10l x y +-=相切于点(3,2)P -.(Ⅰ)求圆C 的方程;(Ⅱ)若动点M 满足2MA MO =,求点M 的轨迹方程;(Ⅲ)在(Ⅱ)的条件下,是否存在实数a ,使得CM 的取值范围是[1,9],说明理由.(19)(本小题满分13分)已知函数2(2)()m xf x x m-=+. (Ⅰ)当1m =时,求曲线()f x 在点11(,())22f 处的切线方程; (Ⅱ)求函数()f x 的单调区间.(20)(本小题满分14分)设满足以下两个条件的有穷数列123,,,,n a a a a L 为(2,3,4,)=L n n 阶“期待数列”: ①1230++++=L n a a a a ,②1231++++=L n a a a a . (Ⅰ)若等比数列{}n a 为2()∈N*k k 阶“期待数列”,求公比q ;(Ⅱ)若一个等差数列{}n a 既是2()∈N*k k 阶“期待数列”又是递增数列,求该数列的通项公式; (Ⅲ)记n 阶“期待数列”{}i a 的前k 项和为(1,2,3,,)=L k S k n .(1)求证: 12≤k S ; (2)若存在{1,2,3,,}∈L m n ,使12=m S ,试问数列{}(1,2,3,,)=L i S i n 能否为n 阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.昌平区2013-2014学年第一学期高三年级期末质量抽测数学试卷(理科)参考答案及评分标准 2014.1一、选择题共10小题,每小题5分,共50分。
教委直发WORD北京2013-2014昌平第一学期初三数学期末考试题附标准答案

昌平区2013—2014学年第一学期初三年级期末质量抽测数 学 试 卷2014.1一、选择题(共8道小题,每小题4分,共32分)1.已知⊙O 1和⊙O 2地半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2地位置关系是 A .外切B.相交C.内切D.内含2.在不透明地布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出地球是白球..地概率是A .15B.13C.25D.233.如图,⊙O 地直径AB =4,点C 在⊙O 上,如果∠ABC =30°,那么AC 地长是A .1BC D .24.在方格纸中,选择标有序号①②③④中地一个小正方形涂黑,使它与图中阴影部分组成地新图形构成中心对称图形,该小正方形地序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB =,6AE =,则AC 等于A . 3B . 4C . 6D . 86.当二次函数249y x x =++取最小值时,x 地值为 A .2-B .1C .2D .97.课外活动小组测量学校旗杆地高度.如图,当太阳光线与地面成30°角时, 测得旗杆AB 在地面上地影长BC 为24米,那么旗杆AB 地高度约是 A .12米B .C .24米D .8.已知:如图,在半径为4地⊙O 中,AB 为直径,以弦AC AC 折叠后与AB 相交于点D ,如果3AD DB =,那么AC 地长为A .B ..D .6二、填空题(共4道小题,每小题4分,共16分) 9.如果cos 2A =,那么锐角A 地度数为.10.如果一个圆锥地母线长为4,底面半径为1,那么这个圆锥地侧面积为.11.在1×2地正方形网格格点上放三枚棋子,按图所示地位置已放置了两枚棋子,B如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在地格点为顶点地三角形是直角三角形地概率为.12.在平面直角坐标系xoy 中,直线2x =和抛物线2y ax =在第一象限交于点A ,过A 作AB x ⊥轴于点B .如果a 取1,2,3,…,n 时对应地△AOB 地面积为123S S S ,,,,n S ,那么1S =_____;123n S S S S ++++=_____.三、解答题(共6道小题,第13题4分,第14-18题各5分,共29分)13.如图1,正方形ABCD 是一个6 × 6网格地示意图,其中每个小正方形地边长为1,位于AD 中点处地点P 按图2地程序移动.(1)请在图中画出点P 经过地路径;(2)求点P 经过地路径总长.14.30452sin 60︒︒-︒.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血地血型均为O 型地概率(要求:用列表或画树状图地方法解答).16.如图,从热气球C 处测得地面A 、B 两处地俯角分别为30°、45°,如果此时热气球C 处地高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处地距离.图2图117. 已知抛物线与x 轴相交于两点A (1,0),B (-3,0),与y 轴相交于点C (0,3).(1)求此抛物线地函数表达式; (2)如果点3,2D m ⎛⎫⎪⎝⎭是抛物线上地一点,求△ABD 地面积.18.如图,在△ABC 中,∠ABC =2∠C ,BD 平分∠ABC,且AD =,BD =AB 地值.DBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M地坐标为1(,0)2,求点N 地坐标.20.(1)已知二次函数223y x x =--,请你化成CD2()y x h k =-+地形式,并在直角坐标系中画出223y x x =--地图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上地两点,且121x x <<,请直接写出1y 、2y 地大小关系;(3)利用(1)中地图象表示出方程2210x x --=地根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径地⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 地延长线与AC 地延长线交于点F .(1)求证:DE 是⊙O 地切线;(2)若⊙O 地半径为4,BE =2,求∠F 地度数.22.阅读下面地材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 地中点,点F 是线段AE 上一点,BF 地延长线交射线CD 于点G . 如果3AF EF =,求CDCG地值. 他地做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 地数量关系为,CG 和EH 地数量关系为,CDCG地值为. (2)如图(2),在原题地其他条件不变地情况下,如果(0)AF a a EF =>,那么CDCG地值为(用含a 地代数式表示).(3)请你参考小明地方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F . 如果(00)AB BC m n m n CD BE ==>>,,,那么AFEF地值为(用含m ,n 地代数式表示).H(1)ABCDE FG G F E D CBA(2)(3)ABCDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”地侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°地方向上,距离千米,B 市位于台风中心M正东方向. 台风中心以每小时30千米地速度沿MF 向北偏东60°地方向移动(假设台风在移动地过程中地风速保持不变),距离台风中心60千米地圆形区域内均会受到此次强烈台风地影响. (1)A 市、B 市是否会受到此次台风地影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响地持续时间为多少小时?备用图24.已知二次函数y =x 2–kx +k –1(k >2).(1)求证:抛物线y = x 2 –kx + k - 1( k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 地左侧),与y 轴交于点C ,若tan 3OAC ∠=,求抛物线地表达式;(3)以(2)中地抛物线上一点P (m ,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上地一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间地数量关系;(3)如图3,在(2)地条件下,如果CE=2,AE=ME地长.E'MFEDCBAE'EDCBA图1图2E'MFEDC BA图3昌平区2013—2014学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.1一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:……………………………………………………2分(2)由题意得,点P经过地路径总长为:270318091802n rπππ⨯==.……………………………4分14.解:原式2 - (3)分=11+ (4)分=2.…………………………………………………………………………5分15.解:列表如下:……………………………………………………………4分所以,两次所献血型均为O型地概率为49.…………………………………………………………5分16.解:依题意,可知:30,45,,100,CAB CBA CD AB D CD∠=︒∠=︒⊥=于点………………………………………1分,CD AB⊥90.CDA CDB∴∠=∠=︒…………………………………………………………………2分Rt100BDC BD CD∴∆==在中,,…………………………………………………………3分Rt tanCDADC AAD∆=在中,.∴3100AD CD==.…………………………………………………………………4分100AB AD BD∴=+=.……………………………………………………………5分∴AB两处地距离为100)米.17.解:(1)∵抛物线与y轴相交于点C(0,3),∴设抛物线地解析式为23y ax bx=++. ……………………………………………1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B -,∴30,9330.a b a b ++=⎧⎨-+=⎩………………………………………………………………………2分解得:1,2.a b =-⎧⎨=-⎩∴抛物线地函数表达式为:232y x x =-+-. …………………………………………3分 (2)∵点3(,)2D m 是抛物线上一点, ∴2(23339)224m =-⨯+=--. …………………………………………………………4分 ∴119942242ABDD S AB y ∆==⨯⨯=. ………………………………………………5分 18.解:∵BD 平分∠ABC , ∴∠ABC =2∠1=2∠2. ∵∠ABC =2∠C ,∴∠C =∠1=∠2.…………………………… 1分∴CD BD ==……………………………… 2分 ∴AC = 又∵∠A=∠A ,∴△ABD ∽△ACB .……………………………………………………………………… 3分∴AD AB ABAC=.……………………………………………………………………… 4分∴226AB AD AC ==⨯=.∴AB =.……………………………………………………………………5分四、解答题(共4道小题,每小题5分,共20分) 19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B (0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴, ∴四边形BOCA 为矩形.∴AC =OB =32,OC =BA .∵AC ⊥MN ,∴∠ACM =90°,MC =CN .……………………………………………………2分21DCBA∵M (12,0), ∴OM =12.在 Rt △AMC 中,设AM =r .根据勾股定理得:222MC AC AM +=. 即22213()()22r r -+=,求得r=52. ∴⊙A 地半径为52.…………………………………………………………………… 3分 即AM =CO =AB=52.………………………………………………………………… 4分∴MC =CN=2. ∴N (92,0) . ………………………………………………………………………… 5分 20.解:(1)223y x x =--22113x x =-+--………………………………………………………………… 1分 2(1)4x =--. ………………………………………………………………… 2分画图象,如图所示.…………………………………………………………………… 3分 (2)12y y >.…………………………………………………………………………………4分 (3)如图所示,将抛物线223y x x =--向上平移两个单位后得到抛物线221y x x =--,抛物线221y x x =--与x 轴交于点A 、B ,则A 、B 两点地横坐标即为方程2210x x --=地根.…………5分21.(1)证明:连接OD .∵AB =AC ,∴ABC ACB ∠=∠. ∵OD =OC ,∴ODC OCD ∠=∠.∴ABC ODC ∠=∠. ∴AB ∥OD .∴AED ODF ∠=∠. ………………… 1分 ∵DE ⊥AB , ∴90AEF ∠=︒. ∴90ODF ∠=︒. ∴DE OD ⊥.∴DE 是⊙O 地切线.…………………………………………………………… 2分(2)解:连接AD .∵AC 为⊙O 地直径,ADB ∆. ………………………………………………………… 3分. ∵⊙O 地半径为4, ∴AB =AC =8.∴6AE AB BE =-=.∴AD =………………………………………………………………………… 4分 在Rt ADB ∆中,∵sin AD B AB ∠===, ∴60ABC ∠=︒. 又∵AB =AC ,∴ABC ∆是等边三角形. ∴60BAC ∠=︒∴30F ∠=︒. ……………………………………………………………………5分22.解:(1)3AB EH =,2CG EH =,32.…………………………………………………………… 3分(2)2a.……………………………………………………………………………………4分(3)mn .…………………………………………………………………………………5分五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分) 23.解:(1)如图1,过点A 作AC ⊥MF 于点C ,过点B 作BD ⊥MF 于点D .依题意得:∠AME =15°,∠EMD =60°,AM =BM = ∴∠AMC =45°,∠BMD=30°.∴61AC =,BD =.……………2分 ∵台风影响半径为60千米,而6160AC =>,60BD =<,∴A 市不会受到此次台风影响,B 市会受到此次台风影响.………………………4分(2)如图2,以点B 为圆心,以60千米为半径作PQ 交MF 于P 、Q 两点,连接PB.…………………………………………………………………………5分∵BD =60千米,∴30PD ==.∵BD ⊥PQ ,PQ =2PD =60.………………………6分 ∵台风移动速度为30千米/小时, ∴台风通过PQ 地时间为2小时.即B 市受台风影响地持续时间为2小时 . ………………………………………………7分24.(1)证明:∵()()2411k k ∆=--⨯⨯-()22k =-,…………………………………………………1分又∵2k >, ∴20k ->.∴2(2)0k ->即0∆>.∴抛物线y = x 2 –kx + k - 1与x 轴必有两个交点.…………………………………2分 (2)解:∵抛物线y = x 2 –kx + k - 1与x 轴交于A 、B 两点,∴令0y =,有210x kx k -+-=.解得:11x k x =-=或. ………………………………………………………………3分 ∵2k >,点A 在点B 地左侧, ∴()()1,0,1,0A B k -. ∵抛物线与y 轴交于点C ,∴()0,1C k -.…………………………………………………………………………4分∵在Rt AOC ∆中, tan 3OAC ∠=,∴tan 311OAC OC k OA ∠=-==, 解得4k =. ∴抛物线地表达式为243y x x =-+.…………………………………………………5分(3)解:当2m <2m >+x 轴与P 相离.……………………………6分当2m =2m =或2m =x 轴与P 相切.…………………………7分当22m <或22m <<+x 轴与P 相交.………………………………8分25.解:(1) 30°. ………………………………………………………………………………………1分 (2)当点E 在线段CD 上时,2DE BF M E +=; …………………………………………2分 当点E 在CD 地延长线上,030EAD ︒<∠<︒时,2BF DE ME -=; …………………………………………3分 3090EAD ︒<∠≤︒时,2DE BF ME +=;90120EAD ︒<∠<︒时,2DE BF ME -=. …………………………………………4分(3)作AG BC ⊥于点G , 作DH BC ⊥于点H.由AD ∥BC ,AD =AB =CD ,∠BAD =120°,得∠ABC =∠DCB =60°,易知四边形AGHD 是矩形和两个全等地直角三角形ABG DCH ∆∆,.则GH=AD ,BG=CH . ∵120ABE ADC '∠=∠=︒, ∴点E '、B 、C 在一条直线上.设AD =AB =CD=x ,则GH=x ,BG=CH=12x ,. 作EQ BC ⊥于Q.在Rt △EQC 中,CE =2,60C ∠=︒,∴1CQ =, EQ =∴E'Q=21233BC CQ BE x x x '-+=-+-=-.……………………………………………………5分作AP EE '⊥于点P .∵△ADE 绕点A 顺时针旋转120°后,得到△ABE'.∴△AEE'是等腰三角形,30,AE E AE AE ''∠=︒==. ∴在Rt △APE'中,∴EE'=2E'P=……………………………………………………………………6分 ∴在Rt △EQE'中,9=.PQ ABCD EF M E'H G∴339x -=.∴4x =.…………………………………………………………………………7分 ∴2,8DE BE BC '===,2BG =. ∴4E G '=在Rt △E'AF 中,AG BC ⊥,∴Rt △AG E'∽Rt △F A E'. ∴AE E FE G AE ''=''∴7E F '=.∴5BF E F E B ''=-=. 由(2)知:2DE BF ME +=. ∴72ME =.………………………………………………………………………8分版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.sQsAE 。
北京市昌平区2013-2014学年八年级上期末质量抽测数学试题及答案

昌平区2013-2014学年第一学期初二年级期末质量抽测数学试卷 (120分,120分钟) 2014.1考生须知1.本试卷共4页,共五道大题,25个小题,满分120分.考试时间120分钟. 2.在答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个是符合题意的. 1.下面所给的图形中, 不是轴对称图形的是ABCD2.下列运算正确的是 A .236x x x =÷ B .()523x x= C .()22263y x xy = D . 24322y x xy y x =⋅3.点P (2,-3)关于y 轴的对称点是 A .(2,3) B .(2,-3) C .(-2,3) D .(-2,-3)4.下列各式由左边到右边的变形中,属于分解因式的是A .b a b a 33)(3+=+B .9)6(962++=++x x x x C .)(y x a ay ax -=- D .22(2)(2)a a a -=+- 5. 若分式21-+x x 的值为0,则x 的值为 A .﹣1 B .0 C .2 D .﹣1或26. 下列各式中,正确的是A . 22x y x y-++=- B .222()x y x y x y x y --=++ C .1a b b ab b ++= D . 23193x x x -=-- 7. 如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于点D .若BC =4cm ,BD=5cm ,则点D 到AB 的距离是A .5cmB .4cmC .3cmD .2cmCDBA8.如图,从边长为a +1的正方形纸片中剪去一个边长为a ﹣1的正方形(a >1),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),则该矩形的面积是a-1a +1A . 2B .2a C .4a D . a 2﹣1二、填空题(共4道小题,每小题4分,共16分) 9.二次根式2+x 中,x 的取值范围是 .10.等腰三角形两边长分别为6和8,则这个等腰三角形的周长为 . 11.已知2a b -=,那么224a b b --的值为 .12.如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP;再过1P 作121OP P P ⊥且21P P =1,得32=OP;又过2P 作232OP P P ⊥且132=P P ,得=3OP 2;…;依此继续,得=2012OP ,=n OP (n 为自然数,且n >0).三、解答题(共6 道小题,每小题5分,共 30 分) 13.计算:22783-+--()25-.14.分解因式:ax 2–2ax + a .15.计算:x y x y y x x ⎛⎫+-÷⎪⎝⎭.16.已知:如图,C 是线段AB 的中点,∠A =∠B ,∠ACE =∠BCD .求证:AD =BE .P 4P 3P 2PP 1OED BC A17.解方程:212xx x +=+.18.已知x 2=3,求(2x +3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2的值.四、解答题(共 4 道小题,每小题5分,共 20 分)19.如图,在4×3的正方形网格中,阴影部分是由4个正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这6个小正方形组成的图形是轴对称图形,并画出其对称轴.20.如图1,已知三角形纸片ABC ,AB =AC ,∠A = 50°,将其折叠,如图2,使点A 与点B 重合,折痕为ED ,点E ,D 分别在AB ,AC 上,求∠DBC 的大小.21.甲、乙两人分别从距目的地6公里和12公里的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前10分钟达到目的地.求甲、乙的速度.图2(A )A B C D E图1A BC方法一方法二22.已知:如图,在△ABC 中,AD 平分∠BAC ,CD ⊥AD 于点D ,∠DCB=∠B ,若AC=10,AB=26,求AD 的长.五、解答题(共3道小题,23,24小题每题7分,25小题8分,共 22 分) 23.如图,四边形ABCD 中,AD =2,∠A =∠D = 90°,∠B = 60°,BC =2CD . (1)在AD 上找到点P ,使PB +PC 的值最小.保留作图痕迹,不写证明; (2)求出PB +PC 的最小值.24.如图,AD 是△ABC 的角平分线,点F ,E 分别在边AC ,AB 上,且FD =BD . (1)求证∠B +∠AFD =180°;(2)如果∠B +2∠DEA =180°,探究线段AE ,AF ,FD 之间满足的等量关系,并证明.25.已知A (-1,0),B (0,-3),点C 与点A 关于坐标原点对称,经过点C 的直线与y 轴交于点D ,与直线AB 交于点E .(1)若点D ( 0,1), 过点B 作BF ⊥CD 于F ,求∠DBF 的度数及四边形ABFD 的面积; (2)若点G (G 不与C 重合)是动直线CD 上一点,点D 在点(0,1)的上方,且BG =BA ,试探究∠ABG 与∠ECA 之间的等量关系.ABC D ABCDAC B ED F 备用图xOyxOy昌平区2013—2014学年第一学期初二年级质量监控数学试卷参考答案及评分标准 2014.1一、选择题(共8个小题,每小题4分,共32分)题 号 12345678答 案BDDCABCC二、填空题(共4个小题,每小题4分,共16分)题 号 9 101112答 案x ≥-220或2242013,1+n三、解答题(共6 道小题,每小题5分,共 30 分)13.解:原式=1-23-22+ ……………………………………………… 4分 =4-23. ……………………………………… 5分 14.解:原式=a (x 2-2x +1) ………………………………………… 2分 =a (x -1)2. ………………………………………………… 5分15.解:原式=y x xxy y xy x +⨯⎪⎪⎭⎫ ⎝⎛-22 ……………………………………… 2分= yx xxy y x +⨯-22 ……………………………………… 3分 =yx xxy y x y x +⨯-+))(( …………………………………………… 4分 =yyx -. …………………………………… 5分 16.证明:∵ C 是线段AB 的中点,∴ AC =BC . ……………………… 2分 ∵ ∠ACE =∠BCD ,∴ ∠ACD =∠BCE . ……………………………………… 3分 ∵ ∠A =∠B ,∴ △ADC ≌△BEC . ……………………… 4分 ∴ AD = BE . ……………………………………………………………… 5分EDBC A17.解: 2(x +2)+x (x +2)=x 2………………………………………………………… 2分 2x +4+x 2+2x =x 24x =-4. …………………………………………………………… 3分 x =-1. ……………………………………………………… 4分经检验x =-1是原方程的解. ………………………………………… 5分 ∴ 原方程的解为x =-1.18.解:原式=4x 2-9-4x 2+4x +x 2-4x +4 ……………………… 3分=x 2-5. ……………………………………… 4分当x 2=3时,原式=3-5=-2. ………………………………… 5分四、解答题(共 4 道小题,每小题5分,共 20 分) 19.解:画出一种方法,给2分,画出两种方法给5分.20.解:∵ △ABC 中,AB =AC ,∠A = 50°,∴ ∠ABC =∠C=6 5°. ……………… 2分 由折叠可知:∠ABD =∠A=50°. ……………… 4分 ∴ ∠DBC=6 5°-50°=15°. ……………… 5分21.解:设甲、乙两人的速度分别为每小时3x 千米和每小时4x 千米. ………………………… 1分根据题意,得6112364x x+=. ……………………………… 3分 解这个方程,得 x =6. ……………………………… 4分 经检验:x =6是所列方程的根,且符合题意. ∴ 3x =18,4x =24.答:甲、乙两人的速度分别为每小时18千米和每小时24千米. ……………… 5分 22.解:如图,延长CD 交AB 于点E . ……………… 1分∵ AD 平分∠BAC ,CD ⊥AD 于点D , ∴ ∠EAD = ∠CAD ,∠ADE=∠ADC =90°. ∴ ∠AED=∠ACD . ……………… 2分 ∴ AE=AC . ∵ AC=10,AB=26,∴ AE=10,BE=16. ……………… 3分方法一方法二图2(A )AB CD E图1AB C DCBAE∵ ∠DCB=∠B , ∴ EB= EC=16. ∵ AE= AC ,CD ⊥AD ,∴ ED= CD=8. ……………………………………………… 4分 在Rt △ADC 中,∠ADC =90°,∴22AD AC CD =-=22108-=6. ……………………………………… 5分五、解答题(共3道小题,23,24小题每题7分,25小题8分,共 22 分)23.解:(1)如图,延长CD 到点E 使DE =CD ,连接BE 交AD 于点P . ……………… 2分PB +PC 的最小值即为BE 的长.(2)过点E 作EH ⊥AB ,交BA 的延长线于点H . ∵ ∠A =∠ADC = 90°,∴ CD ∥AB .∵ AD =2, ∴ EH =AD =2. ……………… 4分 ∵ CD ∥AB , ∴ ∠1=∠3.∵ BC =2CD ,CE=2CD , ∴ BC = CE . ∴ ∠1=∠2. ∴ ∠3=∠2.∵ ∠ABC = 60°,∴ ∠3=30°. ……………… 6分 在Rt △EHB 中,∠H =90°,∴ BE =2HE =4. ………………………………………………… 7分 即 PB +PC 的最小值为4.24.解:(1)在AB 上截取AG =AF .∵AD 是△ABC 的角平分线, ∴∠FAD =∠DAG . 又∵AD =AD , ∴△AFD ≌△AGD .∴∠AFD =∠AGD ,FD =GD .∵FD =BD , ∴BD=GD , ∴∠DGB=∠B ,∴∠B+∠AFD=∠DGB+∠AGD=180°. ………………………………………………… 4分 (2)AE = AF +FD . ………………………………………………… 5分过点E 作∠DEH=∠DEA ,点H 在BC 上. ∵∠B +2∠DEA =180°, ∴∠HEB =∠B .H FD E B CAG 321H P E D C B A∵∠B+∠AFD=180°, ∴∠AFD =∠AGD =∠GEH , ∴GD ∥EH .∴∠GDE =∠DEH =∠DEG . ∴GD =GE . 又∵AF =AG ,∴AE =AG +GE =AF +FD . ………………………………………………… 7分 25.解:(1)如图1,依题意,C (1,0),OC =1.由D (0,1),得OD =1.在△DOC 中,∠DOC =90°,OD =OC =1.可得 ∠CDO =45°. …………………1分 ∵ BF ⊥CD 于F ,∴ ∠BFD =90°.∴ ∠DBF =90°-∠CDO =45°. …………………2分 ∴ FD =FB 。
【精品】北京市昌平区九年级数学上册期末试卷(及答案)

北京市昌平区九年级数学上册期末试卷(含答案)(时间:120分钟满分:100分)一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2 C.D.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠0 7.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.8.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC= .11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为米.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB 长为半径的圆恰好经过AB的中点D,则AC的长等于.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF 的过程:.16.北京昌平区有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①;②.三、解答题(共68分)17.(5分)计算:tan30°﹣2cos60°+cos45°+π0.18.(5分)如图,△ABC中,∠ABC=60°,AB=2,BC=3,AD⊥BC垂足为D.求AC长.19.(5分)如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.20.(5分)已知二次函数y=x2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:x …0 1 2 3 …y … 3 0 ﹣1 0 …(1)求二次函数的表达式.(2)画出二次函数的示意图,结合函数图象,直接写出y<0 时自变量x 的取值范围.21.(5分)如图,AB是⊙O的弦,⊙O的半径OD⊥AB 垂足为C.若AB=2,CD=1,求⊙O的半径长.22.(5分)点P(1,4),Q(2,m)是双曲线y=图象上一点.(1)求k值和m值.(2)O为坐标原点.过x轴上的动点R作x轴的垂线,交双曲线于点S,交直线OQ于点T,且点S在点T的上方.结合函数图象,直接写出R的横坐标n的取值范围.23.(5分)小明同学要测量学校的国旗杆BD的高度.如图,学校的国旗杆与教学楼之间的距AB=20m.小明在教学楼三层的窗口C测得国旗杆顶点D的仰角为14°,旗杆底部B的俯角为22°.(1)求∠BCD的大小.(2)求国旗杆BD的高度(结果精确到1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)24.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点, =.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.25.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D 沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE 长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 0.5 1 1.5 2 2.5 3 3.5 4y/cm 4 3.5 3.2 2.8 2.1 1.4 0.7 0补全上面表格,要求结果保留一位小数.则t≈.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为cm.26.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.27.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.28.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.答案一、选择题(本题共16分,每小题2分)1.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】根据比例的性质,可得答案.【解答】解:A、由比例的性质,得4x=3y与3x=4y不一致,故A不符合题意;B、由比例的性质,得xy=12与3x=4y不一致,故B不符合题意;C、由比例的性质,得4x=3y与3x=4y不一致,故C不符合题意;D、由比例的性质,得3x=4y与3x=4y一致,故D符合题意;故选:D.【点评】本题考查了比例的性质,利用比例的性质是解题关键.2.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2 C.D.【分析】本题需先根据已知条件,得出BC的长,再根据正切公式即可求出答案.【解答】解:∵∠C=90°,AB=,AC=2,∴BC=1,∴tanA==.故选:A.【点评】本题主要考查了锐角三角函数的定义,在解题时要根据在直角三角形中,正切等于对边比邻边这个公式计算是本题的关键.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°【分析】根据圆周角定理求出∠AOD即可解决问题.【解答】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点评】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.【分析】连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD 的长,即可确定出AB的长.【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=2,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=4.故选:B.【点评】此题考查了垂径定理,以及勾股定理,根据题意作出辅助线,构造出直角三角形是解本题的关键.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.【分析】由a>0,b<0,c<0,推出﹣>0,可知抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,由此即可判断.【解答】解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.【点评】本题考查二次函数的图象,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠0 【分析】由抛物线与坐标轴有三个交点可得出:方程x2+2x+m=0有两个不相等的实数根,且m≠0,利用根的判别式△>0可求出m的取值范围,此题得解.【解答】解:∵二次函数y=x2+2x+m的图象与坐标轴有3个交点,∴方程x2+2x+m=0有两个不相等的实数根,且m≠0,∴△=22﹣4m>0,∴m<1.∴m<1且m≠0.故选:D.【点评】本题考查了抛物线与x轴的交点以及根的判别式,利用根的判别式△>0找出关于m的一元一次不等式是解题的关键.7.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为6(图中的阴影部分),得出AA′=2,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=2,∴A(1,1),B(4,2),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为6(图中的阴影部分),∴AC•AA′=3AA′=6,∴AA′=2,即将函数y=(x﹣2)2+1的图象沿y轴向上平移2个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+3.故选:B.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.8.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.【分析】当点N在AD上时,可得前半段函数图象为开口向上的抛物线的一部分;当点N在DC上时,MN长度不变,可得后半段函数图象为一条线段.【解答】解:设∠A=α,点M运动的速度为a,则AM=at,当点N在AD上时,MN=tanα×AM=tanα•at,此时S=×at×tanα•at=tanα×a2t2,∴前半段函数图象为开口向上的抛物线的一部分,当点N在DC上时,MN长度不变,此时S=×at×MN=a×MN×t,∴后半段函数图象为一条线段,故选:C.【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为4:9 .【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答.【解答】解:因为两个相似三角形的周长比为2:3,所以这两个相似三角形的相似比为2:3,所以这两个相似三角形的面积比为4:9;故答案为:4:9.【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC= 1 .【分析】只要证明△ADE∽△ACB,推出=,求出AE即可解决问题;【解答】解;∵∠A=∠A,∠ADE=∠C,∴△ADE∽△ACB,∴=,∴=,∴AE=3,∴EC=AC﹣AE=4﹣3=1,故答案为1.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.【分析】由题意可知C、D是弧AB的三等分点,通过平移可把阴影部分都集中到一个小扇形中,可发现阴影部分正好是扇形AOB的,先求出扇形AOB的面积再求阴影部分的面积或者直接求圆心角是20度,半径是3的扇形的面积皆可.【解答】解:S扇形OAB=,S阴影=S扇形OAB=×π=π.故答案为:【点评】此题考查扇形的面积问题,通过平移的知识把小块的阴影部分集中成一个规则的图形﹣﹣扇形,再求算扇形的面积即可.利用平移或割补把不规则图形变成规则图形求面积是常用的方法.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为 2.5 米.【分析】由坡度的概念得出=,根据AB=3可得AC的长度.【解答】解:根据题意知=,∵AB=3,∴=,解得:AC=2.5,故答案为:2.5.【点评】本题主要考查解直角三角形的应用﹣坡度坡角问题,解题的关键是熟练掌握坡度的定义.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5 .【分析】根据一次函数与反比例函数交点纵坐标,结合图象确定出所求x的范围即可.【解答】解:根据图象得:当y1>y2>0时,x的取值范围是﹣2<x <﹣0.5,故答案为:﹣2<x<﹣0.5【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,弄清数形结合思想是解本题的关键.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB 长为半径的圆恰好经过AB的中点D,则AC的长等于5.【分析】连接CD,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD,求出圆的半径的长,再利用勾股定理列式进行计算即可得解.【解答】解:如图,∵∠C=90°,点D为AB的中点,∴AB=2CD=10,∴CD=5,∴BC=CD=5,在Rt△ABC中,AC===5.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,求出圆的半径的长是解题的关键.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF的过程:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【分析】根据对应点C与点F的位置,结合两三角形在网格结构中的位置解答.【解答】解:△ABC向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°即可得到△DEF,所以,过程为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.故答案为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【点评】本题考查了几何变换的类型,平移、旋转,准确识图是解题的关键.16.北京昌平区有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①平行线分线段成比例定理;②等底共高.【分析】根据平行线分线段成比例定理和等底共高求解可得.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知,故答案为:①平行线分线段成比例定理;②等底共高.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握平行线分线段成比例定理和等底共高的两三角形面积关系.三、解答题(共68分)17.(5分)计算:tan30°﹣2cos60°+cos45°+π0.【分析】根据特殊角的三角函数值先进行化简,然后根据实数运算法则进行计算即可得出结果.【解答】解:tan30°﹣2cos60°+cos45°+π0=×﹣2×+×+1=1﹣1+1+1=2.【点评】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.18.(5分)如图,△ABC中,∠ABC=60°,AB=2,BC=3,AD⊥BC垂足为D.求AC长.【分析】先在Rt△ABD中利用三角函数定义求出AD=,BD=1.再得到CD=2.然后在Rt△ADC中根据勾股定理求出AC即可.【解答】解:∵AD⊥BC,垂足为D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=2,∴sinB=,cosB=,即=, =,解得:AD=,BD=1.∵BC=3,∴CD=2.在Rt△ADC中,AC==.【点评】本题考查了解直角三角形和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.19.(5分)如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.【分析】(1)由BO是△ABC的角平分线、BC=CD知∠ABO=∠CBO=∠D,根据∠AOB=∠COD即可得证;(2)由△AOB∽△COD知=,据此即可得出答案.【解答】解:(1)∵BO是△ABC的角平分线,∴∠ABO=∠CBO,∵BC=CD,∴∠CBO=∠D,∴∠ABO=∠D,又∵∠AOB=∠COD,∴△AOB∽△COD;(2)∵BC=4,∴BC=CD=4,∵△AOB∽△COD,∴=,即=,解得:OC=2.【点评】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握相似三角形的判定与性质、角平分线的性质、等边对等角等知识点.20.(5分)已知二次函数y=x2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:x …0 1 2 3 …y … 3 0 ﹣1 0 …(1)求二次函数的表达式.(2)画出二次函数的示意图,结合函数图象,直接写出y<0 时自变量x 的取值范围.【分析】(1)根据表格数据,利用待定系数法即可求出二次函数表达式;(2)画出二次函数的示意图,找出函数图象在x轴下方的部分,此题得解.【解答】解:(1)由已知可知,二次函数经过(0,3),(1,0)则有,解得:,所以二次函数的表达式为y=x2﹣4x+3;(2)函数图象如图所示:由函数图象可知当1<x<3时,y<0.【点评】本题考查了抛物线与x轴的交点、二次函数的图象以及待定系数法求二次函数解析式,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据给定点的坐标画出函数图象.21.(5分)如图,AB是⊙O的弦,⊙O的半径OD⊥AB 垂足为C.若AB=2,CD=1,求⊙O的半径长.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,再连接OA,在Rt△OAC中利用勾股定理求出r的值即可.【解答】解:∵⊙O的弦AB=8,半径OD⊥AB,∴AC=AB=×2=,设⊙O的半径为r,则OC=r﹣CD=r﹣1,连接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r﹣1)2+()2,解得r=2.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.22.(5分)点P(1,4),Q(2,m)是双曲线y=图象上一点.(1)求k值和m值.(2)O为坐标原点.过x轴上的动点R作x轴的垂线,交双曲线于点S,交直线OQ于点T,且点S在点T的上方.结合函数图象,直接写出R的横坐标n的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【解答】(1)解:∵点P(1,4),Q(2,m )是双曲线y=图象上一点.∴4=,m=,∴k=4,m=2.(2)观察函数图象可知,R的横坐标n的取值范围:0<n<2或n<﹣2.【点评】本题考查反比例函数图象上点的特征、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(5分)小明同学要测量学校的国旗杆BD的高度.如图,学校的国旗杆与教学楼之间的距AB=20m.小明在教学楼三层的窗口C测得国旗杆顶点D的仰角为14°,旗杆底部B的俯角为22°.(1)求∠BCD的大小.(2)求国旗杆BD的高度(结果精确到1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)【分析】(1)过C作CE∥AB交BD于E.根据题意可得答案;(2)在Rt△CEB中,利用三角函数可得tan∠ECB=,代入数据可得BE的长,然后在Rt△CED中可得tan∠DCE==≈0.25,进而可得ED长,再求和即可.【解答】解:(1)过C作CE∥AB交BD于E.由已知,∠DCE=14°,∠ECB=22°,∴∠DCB=36°;(2)在Rt△CEB中,∠CEB=90°,AB=20,∠ECB=22°,∴tan∠ECB==≈0.4,∴BE≈8,在Rt△CED中,∠CED=90°,CE=AB=20,∠DCE=14°,∴tan∠DCE==≈0.25,∴DE≈5,∴BD≈13,∴国旗杆BD的高度约为13米.【点评】此题主要考查了解直角三角形的应用,关键是读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点, =.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.【分析】(1)连接BC,想办法证明AC=BC,EC=BC即可解决问题;(2)首先证明∠DBF=∠BAF,可得sin∠BAF=sin∠DBF==,由此即可解决问题;【解答】(1)证明:连结BC.∵AB是的直径,C在⊙O上∴∠ACB=90°,∵=,∴AC=BC∴∠CAB=45°.∵AB是⊙O的直径,EF切⊙O于点B,∴∠ABE=90°,∴∠AEB=45°,∴AB=BE,∴AC=CE.(2)在Rt△ABE中,∠ABE=90°,AE=8,AE=BE ∴AB=8,在Rt△ABF中,AB=8,sin∠BAF=,解得:BF=6,连结BD,则∠ADB=∠FDB=90°,∵∠BAF+∠ABD=90°,∠ABD+∠DBF=90°,∴∠DBF=∠BAF,∵sin∠BAF=,∴sin∠DBF=,∴=,∴DF=.【点评】本题考查切线的性质、圆周角定理、解直角三角形、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D 沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE 长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 0.5 1 1.5 2 2.5 3 3.5 4y/cm 4 3.5 3.2 2.8 2.1 1.4 0.7 0补全上面表格,要求结果保留一位小数.则t≈ 2.9 .(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为2.3 cm.【分析】(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.【解答】解:(1)根据题意量取数据为2.9故答案为:2.9(2)根据已知数据描点连线得:(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3【点评】本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.26.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.【分析】(1)利用配方法把解析式配成顶点式即可得到抛物线的顶点坐标;(2)先确定P点坐标,然后把P点坐标代入y=mx2﹣2mx+m+1求出m 即可;(3)分别把A、B点的坐标代入y=mx2﹣2mx+m+1求出对应的m的值,然后根据二次函数的性质确定满足条件的m的范围.【解答】(1)解:∵y=mx2﹣2mx+m+1=m(x﹣1)2+1,∴抛物线的顶点坐标为(1,1);(2)易得直线l2的表达式为y=x,当x=2时,y=x=2,则P(2,2),把P(2,2)代入y=mx2﹣2mx+m+1得4m﹣4m+m+1=2,解得m=1,∴抛物线解析式为y=x2﹣2x+2;(3)点A(0,2)关于x轴的对称点B的坐标为(0,﹣2),当抛物线过A(0,2)时,把A(0,2)代入y=mx2﹣2mx+m+1得m+1=2,解得m=1,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,0<m≤1;当抛物线过B(0,﹣2)时,把B(0,﹣2)代入y=mx2﹣2mx+m+1得m+1=﹣2,解得m=﹣3,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,﹣3≤m<0;综上所述,m的取值范围是 0<m≤1或﹣3≤m<0.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.27.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.【分析】(1)①根据要求画出图形即可;②利用三角形的外角的性质计算即可;(2)只要证明△FCE∽△ACB,可得==,Rt△CFA中,∠CFA=90°,cos∠FCA=,推出∠FCA=30°,即α=30°.(3)在Rt△ABC,和Rt△CBE中,利用勾股定理即可解决问题;【解答】解:(1)①补全的图形如图所示:②∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∴∠CDA=∠DBC+∠BCD=45°+α.(2)在△FCE和△ACB中,∠CFE=∠CAB=45°,∠FCE=∠ACB=90°,∴△FCE∽△ACB,∴=∵=∴=连结FA,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠BCE=α,在Rt△CFA中,∠CFA=90°,cos∠FCA=∴∠FCA=30°,即α=30°.(3)结论:AB2=2CF2+2BE2.理由:∵AB2=AC2+BC2=2BC2,BC2=CE2+BE2=CF2+BE2,∴AB2=2CF2+2BE2.【点评】本题考查相似三角形综合题、相似三角形的判定和性质、等腰直角三角形的性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.28.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有P1,P2.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.【分析】(1)①利用两圆的位置关系即可判断;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式即可得到结论;(2)根据关联点的定义求出圆的半径r的最大值与最小值即可解决问题;【解答】解:(1)①∵点P1(,0),P2(1,),P3(0,3)∴OP1=,OP2=2,OP3=3,∴半径为1的⊙P1与⊙O相交,半径为1的⊙P2与⊙O相交,半径为1的⊙P3与⊙O相离1,∴⊙O的关联点是P1,P2;故答案为:P1,P2;②如图,以O为圆心,2为半径的圆与直线y=1交于 P1,P2两点.线段P1,P2上的动点P(含端点)都是以O为圆心,1为半径的圆的关联点.故此﹣≤x≤.(2)由已知,若P为图形G的关联点,图形G必与以P为圆心1为半径的圆有交点.∵正方形ABCD边界上的点都是某圆的关联点,∴该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O为圆心,3为半径的圆;符合题意的半径最小的圆是以O为圆心,2﹣1 为半径的圆.综上所述,2﹣1≤r≤3.【点评】本题考查一次函数综合题、圆、正方形的有关性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2019-2020学年北京市昌平区九年级上学期期末数学试卷 (解析版)

2019-2020学年北京市昌平区九年级(上)期末数学试卷一、选择题1.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱2.已知∠A是锐角,tan A=1,那么∠A的度数是()A.15°B.30°C.45°D.60°3.随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是()A.B.C.D.4.如图,AB为⊙O的直径,弦CD⊥AB于点E,连接AC,OC,OD,若∠A=20°,则∠COD的度数为()A.40°B.60°C.80°D.100°5.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB 平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()A.(4,2)B.(4,3)C.(6,2)D.(6,3)6.二次函数y=x2+bx+c的图象如图所示,若点A(0,y1)和B(﹣3,y2)在此函数图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.如图所示的网格是正方形网格,图中△ABC绕着一个点旋转,得到△A'B'C',点C的对应点C'所在的区域在1区∼4区中,则点C'所在单位正方形的区域是()A.1区B.2区C.3区D.4区8.如图,抛物线y=﹣x2+2x+m交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=﹣1,则b=4;④抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2.其中结论正确的序号是()A.①②B.①②③C.①②④D.②③④二、填空题(共8道小题,每小题2分,共16分)9.已知抛物线y=x2+c,过点(0,2),则c=.10.如图,已知正方形OABC的三个顶点坐标分别为A(2,0),B(2,2),C(0,2),若反比例函数y=(k>0)的图象与正方形OABC的边有交点,请写出一个符合条件的k值.11.如图,正方形ABCD内接于⊙O,⊙O的半径为6,则的长为.12.如图,在△ABC中,∠C=90°,∠A=α,AC=20,请用含α的式子表示BC的长.13.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC的长为.14.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为.15.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为m.16.如图,抛物线y=x2+2x+2和抛物线y=x2﹣2x﹣2的顶点分别为点M和点N,线段MN 经过平移得到线段PQ,若点Q的横坐标是3,则点P的坐标是,MN平移到PQ 扫过的阴影部分的面积是.三、解答题(共6道小题,每小题5分,共30分)17.计算:sin30°+2cos60°×tan60°﹣sin245°.18.如图,在Rt△ABC中,∠C=90°,tan A=,BC=2,求AB的长.19.已知二次函数y=﹣x2﹣2x+3.(1)将二次函数化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中画出y=﹣x2﹣2x+3的图象;(3)结合函数图象,直接写出y>0时x的取值范围.20.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.21.如图,A,B,C是⊙O上的点,sin A=,半径为5,求BC的长.22.课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图1所示,分别为Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm.当边AC与DE重合,且边AB和DF在同一条直线上时:(1)如图2在下边的图形中,画出所有符合题意的图形;(2)求BF的长.四、解答题(共4道小题,每小题6分,共24分)23.材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10m,间距AB为32m,桥面AB 水平,主索最低点为点P,点P距离桥面为2m;为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如图4:甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;乙同学:如图5,以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;(2)距离点P水平距离为4m和8m处的吊索共四条需要更换,则四根吊索总长度为多少米?24.如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.25.如图1,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为xcm,C,D两点间的距离为y1cm,P,D两点之间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm0.00 1.00 2.00 3.00 3.20 4.00 5.00 6.00 6.507.008.00 y1/cm0.00 1.04 2.09 3.11 3.30 4.00 4.41 3.46 2.50 1.530.00 y2/cm 6.24 5.29 4.35 3.46 3.30 2.64 2.00m 1.80 2.00 2.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)如图2,在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,并画出函数y2的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a 的取值范围.五、解答题(共2道小题,每小题7分,共14分)27.已知等边△ABC,点D为BC上一点,连接AD.(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.28.对于平面直角坐标系xOy中,已知点A(﹣2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45°≤∠APB≤90°时,则称点P为线段AB的可视点,且当PA=PB时,称点P为线段AB的正可视点.(1)①如图1,在点P1(3,6),P2(﹣2,﹣5),P3(2,2)中,线段AB的可视点是;②若点P在y轴正半轴上,写出一个满足条件的点P的坐标:.(2)在直线y=x+b上存在线段AB的可视点,求b的取值范围;(3)在直线y=﹣x+m上存在线段AB的正可视点,直接写出m的取值范围.参考答案一、选择题(共8道小题,每小题2分,共16分)下列各题均有四个选项,其中只有一个是符合题意的.1.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【分析】根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.解:俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,故选:D.2.已知∠A是锐角,tan A=1,那么∠A的度数是()A.15°B.30°C.45°D.60°【分析】直接利用特殊角的三角函数值得出答案.解:∵∠A是锐角,tan A=1,∴∠A的度数是:45°.故选:C.3.随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.4.如图,AB为⊙O的直径,弦CD⊥AB于点E,连接AC,OC,OD,若∠A=20°,则∠COD的度数为()A.40°B.60°C.80°D.100°【分析】先根据垂径定理得到=,然后根据圆周角得到∠BOD和∠BOC的度数,从而得到∠COD的度数.解:∵弦CD⊥AB,∴=,∴∠BOD=∠BOC=2∠A=2×20°=40°,∴∠COD=40°+40°=80°.故选:C.5.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB 平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()A.(4,2)B.(4,3)C.(6,2)D.(6,3)【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移1个单位,向上平移了1个单位,然后可得B′点的坐标;解:∵A(1,0)平移后得到点A′的坐标为(2,1),∴向右平移1个单位,向上平移了1个单位,∴B(3,2)的对应点坐标为(4,3),故选:B.6.二次函数y=x2+bx+c的图象如图所示,若点A(0,y1)和B(﹣3,y2)在此函数图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定【分析】根据抛物线的对称性,在对称轴同侧的可根据增减性由自变量x的大小得出函数值y的大小,在对称轴一侧的可根据离对称轴的远近和抛物线的增减性进行判断.解:点A(0,y1)和B(﹣3,y2)在抛物线对称轴x=﹣2的两侧,且点A比点B离对称轴要远,因此y1>y2,故选:A.7.如图所示的网格是正方形网格,图中△ABC绕着一个点旋转,得到△A'B'C',点C的对应点C'所在的区域在1区∼4区中,则点C'所在单位正方形的区域是()A.1区B.2区C.3区D.4区【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点P即为旋转中心,从而得出线段AB和点C是绕着P点逆时针旋转90°,据此可得答案.解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点P即为旋转中心,由图可知,线段AB和点C绕着P点逆时针旋转90°,∴点C逆时针旋转90°后所得对应点C′落在4区,故选:D.8.如图,抛物线y=﹣x2+2x+m交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=﹣1,则b=4;④抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2.其中结论正确的序号是()A.①②B.①②③C.①②④D.②③④【分析】①根据抛物线与y轴的交点坐标的求法即可判断;②当m=0时,可得抛物线与x轴的两个交点坐标和对称轴即可判断;③根据抛物线与x轴的一个交点坐标和对称轴即可得另一个交点坐标即可判断;④根据二次函数图象当x1<1<x2,且x1+x2>2,则y1>y2.解:①∵抛物线与y轴的交点坐标为(0,m),∴C(0,m),故①正确;②当m=0时,抛物线与x轴的两个交点坐标分别为(0,0)、(2,0),对称轴方程为x=1,∴△ABD是等腰直角三角形,故②正确;③当a=﹣1时,抛物线与x轴的一个交点坐标为(﹣1,0),∵对称轴x=1,∴另一个交点坐标为(3,0),∴b=﹣3,故③错误;④观察二次函数图象可知:当x1<1<x2,且x1+x2>2,则y1>y2.故④正确.故选:C.二、填空题(共8道小题,每小题2分,共16分)9.已知抛物线y=x2+c,过点(0,2),则c=2.【分析】把点(0,2)代入y=x2+c即可得到结论.解:∵抛物线y=x2+c,过点(0,2),∴0+c=2,∴c=2,故答案为:2.10.如图,已知正方形OABC的三个顶点坐标分别为A(2,0),B(2,2),C(0,2),若反比例函数y=(k>0)的图象与正方形OABC的边有交点,请写出一个符合条件的k值k=1(满足条件的k值的范围是0<k≤4).【分析】把B(2,2)代入y=即可得到结论.解:∵反比例函数y=(k>0)的图象与正方形OABC的边有交点,∴把B(2,2)代入y=得,k=4,∴满足条件的k值的范围是0<k≤4,故k=1(答案不唯一),故答案为:k=1(满足条件的k值的范围是0<k≤4).11.如图,正方形ABCD内接于⊙O,⊙O的半径为6,则的长为3π.【分析】连接OB,CO,根据弧长公式即可求解.解:连接OB,OC,则OC=OB=6,∠BOC=90°,∴的弧长为π×6=3π,故答案为3π.12.如图,在△ABC中,∠C=90°,∠A=α,AC=20,请用含α的式子表示BC的长20tanα.【分析】直接利用正切的定义求解.解:在△ABC中,∠C=90°,tan A=,所以BC=AC tan A=20tanα.故答案为20tanα.13.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC的长为2.【分析】连接AB,根据切线长定理得到PA=PB,根据等边三角形的性质得到AB=PA =6,∠PAB=60°,根据切线的性质得到∠PAC=90°,根据正切的定义计算即可.解:连接AB,∵PA,PB是⊙O的切线,∴PA=PB,∵∠P=60°,∴△PAB为等边三角形,∴AB=PA=6,∠PAB=60°,∵PA是⊙O的切线,∴∠PAC=90°,∴∠CAB=30°,∵AC是⊙O的直径,∴∠ABC=90°,在Rt△ABC中,BC=AB•tan∠CAB=6×=2,故答案为:2.14.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为(1,2).【分析】根据位似变换的性质解答.解:以原点O为位似中心,把△OAB缩小为原来的,A(2,4),∴A的对应点A'的坐标为(2×,4×),即(1,2),故答案为:(1,2).15.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为25m.【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m.故答案为:25.16.如图,抛物线y=x2+2x+2和抛物线y=x2﹣2x﹣2的顶点分别为点M和点N,线段MN 经过平移得到线段PQ,若点Q的横坐标是3,则点P的坐标是(1,5),MN平移到PQ扫过的阴影部分的面积是16.【分析】由抛物线解析式求得点M、N的坐标,然后根据平移的性质来求点P的坐标;阴影部分的面积=平行四边形PMNQ的面积.解:如图,连接PM,QN,MQ、PN.由y=x2+2x+2=(x+1)2+1,y=x2﹣2x﹣2=(x﹣1)2﹣3,知M(﹣1,1),N(1,﹣3).∵点Q的横坐标是3,点Q在抛物线y=x2﹣2x﹣2上,∴y=32﹣2×3﹣2=1.∴Q(3,1).∴线段MN先向上平移4个单位,然后向右平移2个单位得到线段PQ.∴点P的坐标是(1,5),∴PN⊥MQ,且PN与MQ相互平分,∴平行四边形PMNQ是菱形.根据平移的性质知,S阴影部分=S菱形PMNQ=PN•MQ=×4×8=16.故答案是:(1,5);16.三、解答题(共6道小题,每小题5分,共30分)17.计算:sin30°+2cos60°×tan60°﹣sin245°.【分析】将特殊角的三角函数值代入求解.解:sin30°+2cos60°×tan60°﹣sin245°=,=.18.如图,在Rt△ABC中,∠C=90°,tan A=,BC=2,求AB的长.【分析】根据直角三角形的边角关系,求出AC,再根据勾股定理求出AB.解:∵在Rt△ABC中,∠C=90°,∴tan A==.∵BC=2,∴=,AC=6.∵AB2=AC2+BC2=40,∴AB=.19.已知二次函数y=﹣x2﹣2x+3.(1)将二次函数化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中画出y=﹣x2﹣2x+3的图象;(3)结合函数图象,直接写出y>0时x的取值范围.【分析】(1)利用配方法可把抛物线解析式化顶点式;(2)先解方程﹣x2﹣2x+3=0得抛物线与x轴的交点坐标为(﹣3,0),(1,0),再确定抛物线的顶点坐标和与y轴的交点坐标,然后利用描点法画二次函数图象;(3)结合函数图象,写出抛物线在x轴上方所对应的自变量的范围即可.解:(1)y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)=﹣(x+1)2+4;(2)抛物线的顶点坐标为(﹣1,4),当x=0时,y=﹣x2﹣2x+3=3,则抛物线与y轴的交点坐标为(0,3);当y=0时,﹣x2﹣2x+3=0,解得x1=1,x2=﹣3,则抛物线与x轴的交点坐标为(﹣3,0),(1,0);如图,(3)﹣3<x<1.20.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=90°(直径所对的圆周角是直角)(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.【分析】(1)根据要求画出图形即可.(2)利用圆周角定理证明∠OAP=∠OBP=90°即可.解:(1)补全图形如图.(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=90°(直径所对的圆周角是直角),∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.故答案为90,直径所对的圆周角是直角.21.如图,A,B,C是⊙O上的点,sin A=,半径为5,求BC的长.【分析】构造直径三角形,利用垂径定理,圆周角定理解决问题即可.【解答】证明:方法Ⅰ:连接OB,OC,过点O作OD⊥BC,如图1∵OB=OC,且OD⊥BC,∴∠BOD=∠COD=∠BOC,∵∠A=∠BOC,∴∠BOD=∠A,sin A=sin∠BOD=,∵在Rt△BOD中,∴sin∠BOD==,∵OB=5,∴=,BD=4,∵BD=CD,∴BC=8.方法Ⅱ:作射线BO,交⊙O于点D,连接DC,如图2.∵BD为⊙O的直径,∴∠BCD=90°,∵∠BDC=∠A,∴sin A=sin∠BDC=,∵在Rt△BDC中,∴sin∠BDC==.∵OB=5,BD=10,∴=,∴BC=8.22.课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图1所示,分别为Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm.当边AC与DE重合,且边AB和DF在同一条直线上时:(1)如图2在下边的图形中,画出所有符合题意的图形;(2)求BF的长.【分析】(1)按题意画出图形即可;(2)分两种情况,由勾股定理求出BC,AB,则可得出答案.解:(1)补全图形如图:(2)情况Ⅰ,如图1:∵在Rt△ACF中,∠F=∠ACF=45°,∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(+2)cm.情况Ⅱ,如图2:∵在Rt△ACF中,∠F=∠ACF=45°,∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(﹣2)cm.四、解答题(共4道小题,每小题6分,共24分)23.材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10m,间距AB为32m,桥面AB 水平,主索最低点为点P,点P距离桥面为2m;为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如图4:甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;乙同学:如图5,以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;(2)距离点P水平距离为4m和8m处的吊索共四条需要更换,则四根吊索总长度为多少米?【分析】(1)根据选择的坐标系,可以直接写出点C的坐标,然后设出主索抛物线的表达式,再根据点C和点P都在抛物线上,即可求得主索抛物线的表达式;(2)根据求出的抛物线解析式,将x=4和8代入解析式中,即可求得四根吊索的长度,从而可以求得四根吊索总长度为多少米.解:当选择甲同学的坐标系时,(1)由图可知,点C的坐标为(16,0),设抛物线的表达式为y=ax2+c(a≠0),由题意可知,C点坐标为(16,0),P点坐标为(0,﹣8),,解得,∴主索抛物线的表达式为y=x2﹣8;(2)x=4时,y=×42﹣8=,此时吊索的长度为10﹣=(m),由抛物线的对称性可得,x=﹣4时,此时吊索的长度也为m,同理,x=8时,y=×82﹣8=﹣6,此时吊索的长度为10﹣6=4(m),x=﹣8时,此时吊索的长度也为4m,∵++4+4=13(米),∴四根吊索的总长度为13米.当选择乙同学的坐标系时,(1)由图可知,点C的坐标为(16,10),设抛物线的表达式为y=ax2+c(a≠0),由题意可知,C点坐标为(16,10),P点坐标为(0,2),解得.∴主索抛物线的表达式为y=x2+2;(2)x=4时,y=×42+2=,此时吊索的长度为m,由抛物线的对称性可得,x=﹣4时,此时吊索的长度也为m,同理,x=8时,y=x2+2=4,此时吊索的长度为4m,x=﹣8时,此时吊索的长度也为4m,∵++4+4=13(米),∴四根吊索的总长度为13米.当选择丙同学的坐标系时,(1)由图可知,点C的坐标为(16,8),设抛物线的表达式为y=ax2(a≠0)162×a=8,解得a=,∴主索抛物线的表达式为y=x2;(2)x=4时,y=×42=,此时吊索的长度为(m),由抛物线的对称性可得,x=﹣4时,此时吊索的长度也为m,同理,x=8时,y=×82=2,此时吊索的长度为2+2=4(m),x=﹣8时,此时吊索的长度也为4m,∵++4+4=13(米),∴四根吊索的总长度为13米.24.如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.【分析】(1)如图,连接OD.根据已知条件得到∠AOD=∠BOD=90°,根据等腰三角形的性质得到∠ODC=∠OCD.推出FC⊥OC,于是得到结论;(2)根据三角函数的定义得到=,根据相似三角形的性质即可得到结论.【解答】(1)证明:如图,连接OD.∵点D是半圆的中点,∴∠AOD=∠BOD=90°,∴∠ODC+∠OED=90°,∵OD=OC,∴∠ODC=∠OCD.又∵CF=EF,∴∠FCE=∠FEC.∵∠FEC=∠OED,∴∠FCE=∠OED.∴∠FCE+∠OCD=∠OED+∠ODC=90°,即FC⊥OC,∴FC是⊙O的切线;(2)解:∵tan A=,∴在Rt△ABC中,=,∵∠ACB=∠OCF=90°,∴∠ACO=∠BCF=∠A,∵△ACF∽△CBF,∴===.∴AF=10,∴CF2=BF•AF.∴BF=.∴AO==.25.如图1,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为xcm,C,D两点间的距离为y1cm,P,D两点之间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm0.00 1.00 2.00 3.00 3.20 4.00 5.00 6.00 6.507.008.00y1/cm0.00 1.04 2.09 3.11 3.30 4.00 4.41 3.46 2.50 1.530.00y2/cm 6.24 5.29 4.35 3.46 3.30 2.64 2.00m 1.80 2.00 2.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)如图2,在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,并画出函数y2的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为 4.54.【分析】(1)通过取点、画图、测量可求解;(2)根据题意作图即可;(3)由题意可得PD=AD,画出y=x,交曲线AD的值为所求,即可求解.解:(1)通过取点、画图、测量,可得m=1.73,(2)如图(3)∵当AD=2PD,∴PD=AD,在(2)中图象中作出y=x的图象,并测量两个函数图象交点得:AD=4.54,故答案为:4.54.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是直线x=1;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a 的取值范围.【分析】(1)①A与B关于对称轴x=1对称;②A(0,c)向右平移2个单位长度,得到点B(2,c),代入解析式即可求得;(2)分两种情况a>0和a<0讨论,结合图象确定有1个整数点时a的最大和最小值,进而确定a的范围.解:(1)①∵A与B关于对称轴x=1对称,∴抛物线对称轴为直线x=1,故答案为直线x=1;②∵抛物线y=ax2+bx+c与y轴交于点A,∴A(0,c)点A向右平移2个单位长度,得到点B(2,c),∵点B在抛物线上,∴4a+2b+c=c,∴b=﹣2a.(2)方法一:如图1,若a>0,∵A(0,c),B(2,c),∴区域内(不含边界)恰有1个整点D的坐标为(1,c﹣1),则理另一个整点E(1,c ﹣2)不在区域内,∵把x=1代入抛物线y=ax2+bx+c得y=a+b+c=﹣a+c,∴根据题意得,解得1<a≤2,如图2,若a<0,同理可得,解得﹣2≤a<﹣1综上,符合题意的a的取值范围为﹣2≤a<﹣1或1<a≤2.方法二:∵AB=2,点A是整点,∴点C到AB的距离大于1并且小于等于2.∵点C到AB的距离表示为c﹣a,减去c的差的绝对值,∴1<|c﹣a﹣c|≤2,即1<|a≤2,∴﹣2≤a<﹣1或1<a≤2.五、解答题(共2道小题,每小题7分,共14分)27.已知等边△ABC,点D为BC上一点,连接AD.(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.【分析】(1)根据全等三角形性质和三角形外角的性质即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠CBE,根据三角形的外角的性质得到∠APE =∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°.根据旋转的性质得到AF=AD,∠DAF=120°.根据全等三角形的性质得到AQ=QE,于是得到结论.【解答】(1)补全图形图1,证明:在△ABD和△BEC中,∴△ABD≌△BEC(SAS)∴∠BAD=∠CBE.∵∠APE是△ABP的一个外角,∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°;(2)补全图形图2,,证明:在△ABD和△BEC中,∴△ABD≌△BEC(SAS)∴∠BAD=∠CBE,∵∠APE是△ABP的一个外角,∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°.∵AF是由AD绕点A逆时针旋转120°得到,∴AF=AD,∠DAF=120°.∵∠APE=60°,∴∠APE+∠DAP=180°.∴AF∥BE,∴∠1=∠F,∵△ABD≌△BEC,∴AD=BE.∴AF=BE.在△AQF和△EQB中,△AQF≌△EQB(AAS),∴AQ=QE,∴,∵AE=AC﹣CE,CD=BC﹣BD,且AE=BC,CD=BD.∴AE=CD,∴.28.对于平面直角坐标系xOy中,已知点A(﹣2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45°≤∠APB≤90°时,则称点P为线段AB的可视点,且当PA=PB时,称点P为线段AB的正可视点.(1)①如图1,在点P1(3,6),P2(﹣2,﹣5),P3(2,2)中,线段AB的可视点是P2,P3;②若点P在y轴正半轴上,写出一个满足条件的点P的坐标:P(0,3)(答案不唯一).(2)在直线y=x+b上存在线段AB的可视点,求b的取值范围;(3)在直线y=﹣x+m上存在线段AB的正可视点,直接写出m的取值范围.【分析】(1)①如图1,以AB为直径作圆G,则点P在圆上,则∠APB=90°,若点P在圆内,则∠APB>90°,以C(,)为圆心,AC为半径作圆,在点P优弧上时,∠APB=45°,点P在优弧内,圆G外时,45°<∠APB<90°;以D(,﹣)为圆心,AD为半径作圆,在点P优弧上时,∠APB=45°,点P 在优弧内,圆G外时,45°<∠APB<90°;分别判断点P1,P2,P3的位置即可求解;②观察图象可求解;(2)分别求出直线y=x+b与圆C,圆D相切时,b的值,即可求解;(3)线段AB的正可视点的定义,可得线段CQ和线段DW上的点为线段AB的正可视点,将点的坐标代入可求解.解:(1)①如图1,以AB为直径作圆G,则点P在圆上,则∠APB=90°,若点P在圆内,则∠APB>90°,以C(,)为圆心,AC为半径作圆,在点P优弧上时,∠APB=45°,点P在优弧内,圆G外时,45°<∠APB<90°;以D(,﹣)为圆心,AD为半径作圆,在点P优弧上时,∠APB=45°,点P 在优弧内,圆G外时,45°<∠APB<90°;∵点P1(3,6),P2(﹣2,﹣5),P3(2,2)∴P1C=>=AC,则点P1在圆C外,则∠AP1B<45°,P2D==AC,则点P2在圆D上,则∠AP2B=45°,P3G==BG,点P3在圆G上,则∠AP3B=90°,∴线段AB的可视点是P2,P3,故答案为:P2,P3;②由图1可得,点P的坐标:P(0,3)(答案不唯一,纵坐标y p范围:≤y p≤6).(2)如图2,设直线y=x+b与圆C相切于点H,交x轴于点N,连接BH,∵∠HNB=∠HBN=45°,∴NH=BH,∠NHB=90°,且NH是切线,∴BH是直径,∴BH=5,∴BN=10,∴ON=7,∴点N(﹣7,0)∴0=﹣7+b,∴b=7,当直线y=x+b与圆D相切同理可求:b=﹣8∴﹣8≤b≤7(3)如图3,作AB的中垂线,交⊙C于点Q,交⊙D于点W,∵直线y=﹣x+m上存在线段AB的正可视点,∴线段CQ和线段DW上的点为线段AB的正可视点.∵点C(,),点D(,﹣),点Q(,+),点W(,﹣﹣)分别代入解析式可得:∴m=3,m=+3,m=﹣2,m=﹣2﹣,∴m的取值范围:或.。
(2019秋)北京市昌平区九年级上期末数学试题有答案.docx

昌平区2019-2020学年第一学期初三年级期末质量抽测数 学 试 卷学校: 班级: 姓名:下列各题均有四个选项,其中只有一个..是符合题意的. 1.已知∠A 为锐角,且sin A =2,那么∠A 等于 A .15° B .30° C .45° D .60° 2.如图是某几何体的三视图,该几何体是A .圆锥B .圆柱C .长方体D .正方体(第2题图)(第3题图)(第4题图) 3.如图,点B 是反比例函数k y x =(0k ≠)在第一象限内图象上的一点,过点B 作BA ⊥x 轴于点A ,BC ⊥y 轴于点C ,矩形AOCB 的面积为6,则k 的值为A .3B .6C .-3D .-64.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为 A .40° B .30° C .80°D .100°5.将二次函数265y x x =-+用配方法化成2()y x h k =-+的形式,下列结果中正确的是 A .2(6)5y x =-+ B .2(3)5y x =-+C .2(3)4y x =--D .2(3)9y x =+-6.如图,将ΔABC 绕点C 顺时针旋转,点B 的对应点为点E ,点A 的对应点为点D ,当点E 恰好落在边AC 上时,连接AD ,若∠ACB=30°,则∠DAC 的度数是(第6 题图)(第7 题图)A .60°B .65°C . 70°D .75°7.如图,AB 为⊙O 的直径,点C 为⊙O 上的一点,过点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠A =25°,则∠D 的度数是 A .25° B .40° C .50° D .65° 8.小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m )与跑步时间t (单位:s )的对应关系如下图所示.下列叙述正确的是A .两人从起跑线同时出发,同时到达终点.B .小苏跑全程的平均速度大于小林跑全程的平均速度. C. 小苏在跑最后100m 的过程中,与小林相遇2次.D .小苏前15s 跑过的路程小于小林前15s 跑过的路程. 二、填空题(共8道小题,每小题2分,共16分) 9.请写出一个图象在第二,四象限的反比例函数的表达式.10.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2), (1-,0),将线段AB 沿x 轴的正方向平移,若点B 的对应点的坐标为 'B (2,0),则点A 的对应点'A 的坐标为.(第10题图)11.如图,P A ,PB 分别与⊙O 相切于A 、B 两点,点C 为劣弧AB 上任意一点,过点C 的切线分别交AP ,BP 于D ,E 两点.若AP=8,则 △PDE 的周长为.12.抛物线2y x bx c =++经过点A (0,3),B (2,3),抛物线的对称轴为.(第11题图)13.如图,⊙O 的半径为3,正六边形ABCDEF 内接于⊙O ,则劣弧AB 的长为. 14.如图,在直角三角形ABC 中,∠C =90°,BC =6,AC =8,点D 是AC 边上一点,将△BCD 沿BD 折叠,使点C 落在AB 边的E 点,那么AE 的长度是.15.如图,在平面直角坐标系xOy 中,△CDE 可以看作是△AOB 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB 得到△CDE 的过程:.(第13题图) (第14题图) (第15题图) 16.阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为________.(第16题图)三、解答题(共6道小题,每小题5分,共30分)17.计算:2sin30tan60cos60tan45︒-︒+︒-︒.18(1)求这个二次函数的表达式;(2)在图中画出这个二次函数的图象.19.如图,在△ABC中,AB=AC,BD⊥AC于点D.AC=10,cos A=45,求BC的长.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.∠=∠;(1)求证:A BCD(2)若AB=10,CD=8,求BE的长.21.尺规作图:如图,AC为⊙O的直径.(1)求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹);(2)当直径AC=4时,求这个正方形的边长.22.某校九年级数学兴趣小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量某塔的高度,他们先在点D用高1.5米的测角仪DA测得塔顶M的仰角为30︒,然后沿DF方向前行40m到达点E处,在E处测得塔顶M的仰角为60︒.请根据他们的测量数据求此塔MF的高.(结果精确到0.1m,参考数据:412≈,73.16≈).23≈,45.1四、解答题(共4道小题,每小题6分,共24分)23.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如下图),你选择的方案是_____(填方案一,方案二,或方案三),则B点坐标是______,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.24.如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF的延长线于点E ,交AB 的延长线于点D . (1)求证:DE 是⊙O 的切线; (2)如果半径的长为3,tan D=34,求AE 的长.25.小明根据学习函数的经验,对函数4254y x x =-+ 的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(2)如图,在平面直角坐标系xOy 中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质; (4)进一步探究函数图象发现:①方程42540x x -+=有个互不相等的实数根;②有两个点(x 1,y 1)和(x 2,y 2)在此函数图象上,当x 2>x 1>2时,比较y 1和y 2的大小关系为: y 1y 2 (填“>”、“<”或“=”);③若关于x 的方程4254x x a -+=有4个互不相等的实数根,则a 的取值范围是.26.在平面直角坐标系xOy 中,抛物线y=mx 2-2mx -3 (m ≠0)与y 轴交于点A ,其对称轴与x 轴交于点B顶点为C 点.(1)求点A 和点B 的坐标;(2)若∠ACB =45°,求此抛物线的表达式;(3)在(2)的条件下,垂直于轴的直线与抛物线交于点P (x 1,y 1)和Q (x 2,y 2),与直线AB 交于点N (x 3,y 3),若x 3<x 1<x 2,结合函数的图象,直接写出x 1+x 2+x 3的取值范围为.五、解答题(共2道小题,每小题7分,共14分) 27.已知,△ABC 中,∠ACB =90°,AC =BC ,点D 为BC 边上的一点.(1)以点C 为旋转中心,将△ACD 逆时针旋转90°,得到△BCE ,请你画出旋转后的图形; (2)延长AD 交BE 于点F ,求证:AF ⊥BE ; (3)若AC,BF =1,连接CF ,则CF 的长度为.28.对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为1d ,到y 轴的距离为2d ,若12d d ≥,则称1d 为点P 的最大距离;若12d d <,则称2d 为点P 的最大距离.例如:点P (3-,4)到到x 轴的距离为4,到y 轴的距离为3,因为3<4,所以点P 的最大距离为4. (1)①点A (2,5-)的最大距离为;②若点B (a ,2)的最大距离为5,则a 的值为;y l(2)若点C 在直线2y x =--上,且点C 的最大距离为5,求点C 的坐标;(3)若⊙O 上存在..点M ,使点M 的最大距离为5,直接写出⊙O 的半径r 的取值范围.昌平区2019-2020学年度第一学期初三年级期末质量抽测数学参考答案及评分标准 2018. 1一、选择题(共8道小题,每小题2分,共16分)三、解答题(共6道小题,每小题5分,共30分)17.解:2sin30tan60cos60tan45︒-︒+︒-︒122112=⨯-…………………………………………………………4分12=.…………………………………………………………………5分18.解:(1)由题意可得二次函数的顶点坐标为(1-,4-).………………………………… 1分设二次函数的解析式为:2(1)4y a x=+-………………2分把点(0,3)代入2(1)4y a x=+-得1a=∴2(1)4y x=+-…………………………………3分(2)如图所示……………………………………………………… 5分19.解:∵AC=AB,AB=10,∴AC=10.……………………………………………1分在Rt△ABD中∵cos A=ADAB=45,∴AD=8, (2)分∴DC=2.……………………………………………………………………………3分∴6BD==.…………………………………………………………4分∴BC==……………………………………………………5分20.(1)证明:∵直径AB⊥弦CD,∴弧BC=弧BD. ……………………1分∴A BCD∠=∠.…………………… 2分(2)解:连接OC∵直径AB⊥弦CD,CD=8,∴CE=ED=4. ……………………3分∵直径AB =10,∴CO =OB=5.在Rt△COE中3OE=……………………4分∴2BE=.……………………5分21.(1)如图所示…………………… 2分(2)解:∵直径AC =4,∴OA =OB=2.………………………3分∵正方形ABCD为⊙O的内接正方形,∴∠AOB=90°,………………………4分∴AB== 5分.22.解:由题意:AB=40,CF=1.5,∠MAC=30°,∠MBC =60°,∵∠MAC=30°,∠MBC =60°,∴∠AMB=30° ∴∠AMB =∠MAB∴ AB =MB =40.………………………… 1分 在Rt △ACD 中, ∵ ∠MCB=90°,∠MBC =60°, ∴ ∠BMC =30°.∴ BC =12BM =20.………………………… 2分∴MC ==………………………………… 3分., ∴ MC ≈34.6. ……………………………………………… 4分∴ MF = MC+CF =36.1.………………………………………………………… 5分 ∴ 塔MF 的高约为36.1米. …………………………………… 5分23.解:方案1:(1)点B 的坐标为(5,0)…………… 1分设抛物线的解析式为:(5)(5)y a x x =+-…………… 2分 由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =- ∴抛物线的解析式为:1(5)(5)5y x x =-+-…………… 3分 (2)由题意:把3x =代入1(5)(5)5y x x =-+-解得:165y ==3.2…………… 5分 ∴水面上涨的高度为3.2m …………… 6分方案2:(1)点B 的坐标为(10,0)…………… 1分 设抛物线的解析式为:(10)y ax x =-…………… 2分由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =- ∴抛物线的解析式为:1(10)5y x x =--…………… 3分 (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2…………… 5分∴水面上涨的高度为3.2m …………… 6分方案3:(1)点B 的坐标为(5, 5-)…………… 1分 由题意可以得到抛物线的顶点为(0,0) 设抛物线的解析式为:2y ax =…………… 2分 把点B 的坐标(5, 5-),代入解析式可得:15a =-∴抛物线的解析式为:215y x =-…………… 3分(2)由题意:把3x =代入215y x =-解得:95y =-= 1.8-…………… 5分 ∴水面上涨的高度为5 1.8-=3.2m …………… 6分24.(1)证明:连接OC ,∵点C 为弧BF 的中点, ∴弧BC =弧CF .∴BAC FAC ∠=∠.…………… 1分∵OA OC =, ∴OCA OAC ∠=∠.∴OCA FAC ∠=∠.……………………2分∵AE ⊥DE ,∴90CAE ACE ︒∠+∠=.∴90OCA ACE ︒∠+∠=. ∴OC ⊥DE .∴DE 是⊙O 的切线. …………………… 3分 (2)解:∵tan D=OC CD =34,OC =3, ∴CD =4.…………………………… 4分∴OD .∴AD= OD+ AO=8.…………………………… 5分 ∵sin D=OC OD =AE AD =35,∴AE=245.……………………………6分 25. (1)m =0,…………… 1分 (2)作图,……………2分(3)图像关于y 轴对称, (答案不唯一) ……………3分 (4)< (5)944a -<<26.解:(1)∵抛物线y=mx 2-2mx -3 (m ≠0)与y 轴交于点A , ∴点A 的坐标为,3-(0);…………………… 1分 ∵抛物线y=mx 2-2mx -3 (m ≠0)的对称轴为直线1x =,∴点B 的坐标为,0(1).…………………… 2分 (2)∵∠ACB =45°,∴点C 的坐标为,4-(1),…………………… 3分 把点C 代入抛物线y=mx 2-2mx -3得出1m =,∴抛物线的解析式为y=x 2-2x -3. …………………… 4分(3)123523x x x <++< ……………………6分 27.(1)补全图形…………………… 2分(2)证明:∵ΔCBE 由ΔCAD 旋转得到,∴ΔCBE ≌ΔCAD ,……………… 3分∴∠CBE =∠CAD ,∠BCE =∠ACD =90°,……………4分 ∴∠CBE +∠E =∠CAD +∠E ,∴∠BCE =∠AFE =90°,∴AF ⊥BE .……………………………………5分(3………………………………………………7分28.解:(1)①5……………………… 1分②5±……………………… 3分(2)∵点C 的最大距离为5, ∴当5x <时,5y =±,或者当5y <时,5x =±. ………………4分 分别把5x =±,5y =±代入得:当5x =时,7y =-,当5x =-时,3y =,当5y =时,7x =-,当5y =-时,3x =,∴点C (5-,3)或(3,5-).……………………… 5分(3)5r ≤≤…………………………………7分。
北京市昌平区2014届高一上学期期末考试物理试题(WORD精校版)

昌平区2013~2014学年第一学期高一年级期末质量抽测物 理 试 卷(满分100分,考试时间90分钟) 2014.1第一部分(选择题 共46分)一.单项选择题。
本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项符合题意,选对得3分,选错或不答的得0分。
1. 在下列各组物理量中,全部属于矢量的是( B )A .位移、时间、速度B .速度、速度变化量、加速度C .速度、速率、加速度D .路程、时间、速度2. 如图1所示,在斜面上放一物体静止不动,该物体受重力G 、弹力N 和静摩擦力f 的作用,该物体的受力示意图正确的是( D )3. 北京正负电子对撞机的核心部分是使电子加速的环形室,若一电子在环形室中作半径为R 的圆周运动,转了1圈回到原位置,则其位移和路程分别是( A ) A .0,2πRB .2πR ,2πR C .2R ,2RD .2R ,2πRA B C D图14. 用图2所示的方法可以测出一个人的反应时间:受测者将手放在直尺的某一刻度处,看到直尺下落,立即抓住直尺,记下此时的刻度。
如果直尺下落的距离△h =20.00cm ,则受测者的反应时间t 为(g 取10m/s 2)(A ) A .0.2s B .0.14s C .0.04s D .0.02s5. 图3为某物体做直线运动的v -t 图像,关于物体在前4 s 的运动情况,下列说法中正确的是(C ) A .物体的加速度大小为2m/s 2 B .物体加速度方向始终不变 C .物体始终向同一方向运动 D .物体的位移大小为零6. 如图4所示,一木块放在水平面上,木块与水平面间的最大静摩擦力f max =8N 。
从某时刻开始,一个水平向右的外力F 作用在木块上,F 从零开始逐渐增大,直到木块向右运动。
设木块与水平面间的最大静摩擦力等于滑动摩擦力,则此过程中木块受到的摩擦力大小(C ) A .始终等于8N B .始终等于FC .木块静止时随F 的增大而增大,木块运动时大小不变D .木块静止大小不变,木块运动时随F 的增大而增大7. 在电梯内的水平地板上有一体重计,某人站在体重计上,电梯静止时,体重计的示数为40kg 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昌平区2013—2014学年第一学期初三年级期末质量抽测数学 试 卷 2014.1一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是 A .外切 B. 相交 C. 内切D. 内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是 A .15B.13C. 25D.233.如图,⊙O 的直径AB =4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B CD .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是 A .① B .② C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB =,6AE =,则AC 等于A . 3B . 4C . 6D . 86.当二次函数249y x x =++取最小值时,x 的值为A .2-B .1C .2D .9A7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时, 测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是 A .12米B .C .24米D .8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC AC 折叠后与AB 相交于点D ,如果3AD DB =,那么AC 的长为A .B .C .D .6二、填空题(共4道小题,每小题4分,共16分)9.如果cos 2A =,那么锐角A 的度数为 .10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为 .11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为 .12.在平面直角坐标系xoy 中,直线2x =和抛物线2y ax =在第一象限交于点A , 过A 作AB x ⊥轴于点B .如果a 取1,2,3,…,n 时对应的△A O B 的面积为123S S S ,,,,n S ,那么1S =_____;123n S S S S ++++=_____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13. 如图1,正方形ABCD 是一个6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径; (2)求点P 经过的路径总长.14.2sin 60︒-︒.15. 现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.图2图1CD17. 已知抛物线与x 轴相交于两点A (1,0),B (-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2D m ⎛⎫ ⎪⎝⎭是抛物线上的一点,求△ABD 的面积.18. 如图,在△ABC 中,∠ABC =2∠C ,BD 平分∠ABC,且AD =BD =AB的值.DBA四、解答题(共4道小题,每小题5分,共20分)19. 如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y x x =--,请你化成2()y x h k =-+的形式,并在直角坐标系中画出223y x x =--的图象; (2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x <<,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210x x --=的根来,要求保留画图痕迹,说明结果.21. 已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F . (1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.22. 阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G . 如果3AF EF =,求CDCG的值. 他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF . 请你回答:(1)AB 和EH 的数量关系为 ,CG 和EH 的数量关系为 ,CDCG的值为 .(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF =>,那么CDCG的值为 (用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F . 如果(00)AB BC m n m n CD BE==>>,,,那么AFEF的值为 (用含m ,n 的代数式表示). H(1)ABCDE FGG F E D CBA(2)(3)ABCDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离B 市位于台风中心M正东方向千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2 – kx + k – 1( k >2).(1)求证:抛物线y = x 2 – kx + k - 1( k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC ∠=,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m ,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM ∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;(3)如图3,在(2)的条件下,如果CE=2,AE=ME的长.E'MFEDCBAE'EDCBA图1图2E'MFEDC BA图3昌平区2013—2014学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准 2014.1一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:……………………………………2分 (2)由题意得,点P经过的路径总长为:270318091802n r πππ⨯==. …………………………… 4分 14.解:原式2322-⨯ ………………………………………… 3分 =11+ ………………………………………………………… 4分=2. ………………………………………………………………………… 5分15.解:列表如下:…………………………………………… 4分所以,两次所献血型均为O 型的概率为49.………………………………… 5分16.解:依题意,可知:30,45,,100,CAB CBA CD AB D CD ∠=︒∠=︒⊥=于点 …………………… 1分,CD AB ⊥90.CDA CDB ∴∠=∠=︒ ……………………………………………… 2分Rt 100BDC BD CD ∴∆==在中, , ………………………………………… 3分Rt tan CDADC A AD∆=在中,. ∴3100AD CD== ……………………………………… 4分100AB AD BD ∴=+=. …………………………………………… 5分∴AB 两处的距离为100)米. 17.解:(1) ∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y ax bx =++. …………………… 1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B -,∴30,9330.a b a b ++=⎧⎨-+=⎩…………………………………2分解得:1,2.a b =-⎧⎨=-⎩∴抛物线的函数表达式为:232y x x =-+-. …………………3分 (2)∵点3(,)2D m 是抛物线上一点, ∴2(23339)224m =-⨯+=--. …………………………4分 ∴119942242ABD D S AB y ∆==⨯⨯=. ………………………………………………5分18.解: ∵BD 平分∠ABC , ∴∠ABC =2∠1=2∠2. ∵∠ABC =2∠C ,∴∠C =∠1=∠2. …………………………… 1分∴CD BD ==……………………………… 2分∴AC =. 又∵∠A=∠A ,∴△ABD ∽△ACB . …………………………………… 3分∴AD AB ABAC=. ………………………………………… 4分∴226AB AD AC ==⨯=.∴AB =(舍负). …………………………………………5分四、解答题(共4道小题,每小题5分,共20分) 19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B (0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴, ∴四边形BOCA 为矩形.∴AC =OB =32,OC =BA .∵AC ⊥MN ,∴∠ACM = 90°,MC =CN . …………………………… 2分∵M (12,0), ∴OM =12.在 Rt △AMC 中,设AM =r .根据勾股定理得:222MC AC AM +=. 即22213()()22r r -+=,求得r=52. ∴⊙A 的半径为52. ……………………………………… 3分 即AM =CO =AB =52. ………………………………… 4分∴MC =CN=2 .21DCBA∴N (92, 0) . ……………………………………… 5分 20.解:(1)223y x x =--22113x x =-+--…………………………………………… 1分 2(1)4x =--. ……………………………………… 2分画图象,如图所示. ………………………………………… 3分 (2)12y y >.………………………………………………………… 4分(3)如图所示,将抛物线223y x x =--向上平移两个单位后得到抛物线221y x x =--,抛物线221y x x =--与x 轴交于点A 、B ,则A 、B 两点的横坐标即为方程2210x x --=的根.………… 5分21.(1)证明:连接OD .∵AB =AC ,∴ABC ACB ∠=∠.∵OD =OC ,∴ODC OCD ∠=∠.∴ABC ODC ∠=∠.∴AB ∥OD . ∴AED ODF ∠=∠. ………………… 1分∵DE ⊥AB ,∴90AEF ∠=︒. ∴90ODF ∠=︒. ∴DE OD ⊥.∴DE 是⊙O 的切线. ………………………………………… 2分(2)解:连接AD .∵AC 为⊙O 的直径, ∴AD BC ⊥.ADB ∆. …………………………… 3分.∵⊙O 的半径为4, ∴AB =AC =8.∴6AE AB BE=-=.∴AD =………………………………………… 4分 在Rt ADB ∆中,∵sin AD B AB ∠===, ∴60ABC ∠=︒. 又∵AB =AC ,∴ABC ∆是等边三角形. ∴60BAC ∠=︒∴30F ∠=︒. ……………………………………5分22.解:(1)3AB EH =,2CG EH =, 32. …………………………… 3分(2)2a. ……………………………………… 4分(3)mn . …………………………………………… 5分五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分) 23.解:(1)如图1,过点A 作AC ⊥MF 于点C, 过点B 作BD ⊥MF 于点D .依题意得:∠AME =15°,∠EMD =60°,AM =BM = ∴∠AMC =45°,∠BMD =30°.∴61AC =,BD =. …………… 2分 ∵台风影响半径为60千米,而6160AC =>,60BD =<,∴A 市不会受到此次台风影响,B 市会受到此次台风影响. …………4分(2)如图2,以点B 为圆心,以60千米为半径作PQ 交MF 于P 、Q 两点,连接PB (5)分∵BD =60千米, ∴30PD ==.∵ BD ⊥PQ ,PQ =2PD =60. ……………………… 6分 ∵台风移动速度为30千米/小时, ∴台风通过PQ 的时间为2小时.即B 市受台风影响的持续时间为2小时 . ………………………………7分24.(1)证明:∵()()2411k k ∆=--⨯⨯-()22k =-,…………………………… 1分又∵2k >, ∴20k ->.∴2(2)0k ->即0∆>.∴抛物线y = x 2 – kx + k - 1与x 轴必有两个交点. ………… 2分 (2) 解:∵抛物线y = x 2 – kx + k - 1与x 轴交于A 、B 两点,∴令0y =,有210x kx k -+-=.解得:11x k x =-=或. …………………………3分 ∵2k >,点A 在点B 的左侧, ∴()()1,0,1,0A B k -. ∵抛物线与y 轴交于点C ,∴()0,1C k -. ………………………… 4分∵在Rt AOC ∆中, tan 3OAC ∠=,∴tan 311OAC OC k OA ∠=-==, 解得4k =. ∴抛物线的表达式为243y x x =-+. ……………………… 5分(3)解:当2m <2m >+x 轴与P 相离. …………6分当2m =2m =或2m =x 轴与P 相切. ……………7分当22m <或22m <<x 轴与P 相交. …………8分25.解:(1) 30°. ………………………………………… 1分(2)当点E 在线段CD 上时,2DE BF M E +=; ………………… 2分 当点E 在CD 的延长线上,030EAD ︒<∠<︒时,2BF DE M E -=; …………… 3分 3090EAD ︒<∠≤︒时,2DE BF M E +=;90120EAD ︒<∠<︒时,2DE BF M E -=. ………………4分 (3)作AG BC ⊥于点G , 作DH BC ⊥于点H.由AD ∥BC ,AD =AB =CD ,∠BAD =120°,得∠ABC =∠DCB =60°,易知四边形AGHD 是矩形和两个全等的直角三角形ABG DCH ∆∆,.则GH=AD , BG=CH . ∵120ABE ADC '∠=∠=︒, ∴点E '、B 、C 在一条直线上.设AD =AB =CD=x ,则GH=x ,BG=CH=12x ,. 作EQ BC ⊥于Q.在Rt △EQC 中,CE =2, 60C ∠=︒,∴1CQ =, EQ ∴E'Q=21233BC CQ BE x x x '-+=-+-=-.……………………5分作AP EE '⊥于点P .∵△ADE 绕点A 顺时针旋转120°后,得到△ABE'.∴△A EE'是等腰三角形,30,AE E AE AE ''∠=︒== ∴在Rt △AP E'中,∴EE'=2E'P= ……………………6分 ∴在Rt △EQ E'中,9. ∴339x -=.∴4x =. ……………………………… 7分 ∴2,8DE BE BC '===,2BG =. ∴4E G '=PQ ABCD EF ME'H G在Rt △E'AF 中,AG BC ⊥,∴Rt △AG E'∽Rt △F A E'. ∴AE E FE G AE''='' ∴7E F '=.∴5BF E F E B ''=-=. 由(2)知:2DE BF M E +=. ∴72ME =. …………………………………… 8分。