折叠问题训练

合集下载

四边形折叠问题专项训练

四边形折叠问题专项训练

矩形折叠问题专项训练学习目标:1、理解折叠问题的实质,熟练发现相等的线段和相等的角。

2、能利用已有知识作出正确的推理论证。

3、体会数学中的方程思想、转化思想、数形结合思想.学习重点:折叠的本质、方程的思想.学习难点:通过对不同题型的分析和训练,找到解题的切入点从而突破难点. 探究一:求角的度数1. 将矩形ABCD 的纸片,沿EF 折成如图所示;已知∠ EFG=55º,则∠ FGE= 。

2. 如图,矩形ABCD 沿BE 折叠,使点C 落在AD 边上的F 点处,如果∠ ABF=60º,则∠ CBE 等于( )。

(A)15º (B)30º (C )45º (D)60º3、将一矩形纸片按如图方式折叠,BC ,BD 为折痕,则∠CBD 的度数为( )A 、60°B 、75 °C 、90 °D 、95 °(第1题) (第2题) (第3题)探究二 求线段的长度1、 将矩形纸片ABCD 沿对角线AC 折叠, 点B 落在点E 处。

求证:AF=CF2、 将矩形纸片ABCD 沿对角线AC 折叠, 点B 落在点E 处。

若AD=4,AB=3. 求FC 的长度. (已证AF=FC )B C AD FE D'C'GA B C D E F探究三:求面积3、将矩形纸片ABCD沿对角线AC折叠, 点B落在点E处。

若AD=4,AB=3.求重合部分△AFC的面积.探究四判断位置关系4、将矩形纸片ABCD沿对角线AC折叠, 点B落在点E处。

连接DE,求证:DE∥AC.探究五判断形状5、若将折叠的图形恢复原状,点F与BC边上的M正好重合,连接AM,试判断四边形AMCF的形状,并说明理由。

(六)课堂小结:谈谈你今天的收获吧!巩固练习:求折痕的长1、如图,矩形纸片ABCD中,AB=6cm,AD=8cm在BC上找一点F,沿DF折叠矩形ABCD,使C点落在对角线BD上的点E处,此时折痕DF的长是多少?2、如图,矩形纸片ABCD中,AB=8cm,AD=10cm,沿AE折叠矩形ABCD,使点D落在BC边上的点F处,求EC的长。

中考前压轴题专项训练3——中考数学中的折叠问题(带答案)

中考前压轴题专项训练3——中考数学中的折叠问题(带答案)

中考前压轴题专项训练3——折叠专题中考数学中的折叠问题为了考查学生的数形结合的数学思想方法和空间想象能力,近几年来中考中常出现折叠问题几何图形的折叠问题,实际是轴对称问题。

处理这类问题的关键是根据轴对称图形的性质,搞清折叠前后哪些量变了,哪些量没变,折叠后有哪些条件可利用。

所以一定要注意折叠前后的两个图形是全等的。

即对应角相等,对应线段相等有时可能还会出现平分线段、平分角等条件。

这一类问题,把握住了关键点,并不难解决。

例1、(成都市中考题) 把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ’M 或B ’M 的延长线上,那么∠EMF 的度数是( ) A 、85度 B 、90度 C 、95度 D 、100度例2、(武汉市实验区中考题) 将五边形ABCDE 纸片按如图的方式折叠,折痕为AF ,点E 、D 分别落在E ’、D ’。

已知∠AFC=76°,则∠CFD ’等于( ) A 、31° B 、28° C 、24° D 、20°例3、(河南省实验区中考题) 如图把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、 y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点A ’的位置,若0B=5,tan ∠BOC=21。

则点A ’的坐标为________。

例4、(南京市中考题) 已知矩形纸片,AB=2,AD=1。

将纸片折叠后,使顶点A 与边CD 上的点E 重合。

(1) 如果折痕FG 分别与AD 、AB 交于点F 、G(如图1),AF=32,求DE 的长; (2)如果折痕FG 分别与CD 、AB 交于点F 、G(如图2),△AED 的外接圆与直线BC 相切,求折痕FG 的长。

中考实战:一、选择题1 (德州市) 如图,四边形ABCD 为矩形纸片,把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为 AF 。

初中数学基础测试专项训练: 特殊四边形相关的折叠问题(含答案)

初中数学基础测试专项训练:  特殊四边形相关的折叠问题(含答案)

特殊四边形相关的折叠问题 一、选择题1. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°2.如图,在矩形ABCD 中,AB=3,BC=5,点E 在边CD 上,连接BE ,将△BCE 沿BE 折叠,若点C 恰好落在AD 边上的点F 处,则CE 的长为( )A. 53B. 35C. 43D.343.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE :EC=2:1,则线段CH 的长是( )A.3B. 4C. 5D.6二、填空题4. 如图,折叠矩形纸片ABCD ,得折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DF .若AB=4,BC=2,则AF= _________.5. 如图,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为________ cm 2.6.如图,正方形ABCD 的边长为4,E 为BC 上的一点,BE=1,F 为AB 上的一点,AF=2,P 为AC 上一个动点,则PF+PE 的最小值为_______.三、解答题7.在平行四边形ABCD 中,将△BCD 沿BD 翻折,使点C 落在点E 处,BE 和AD 相交于点O.求证:OA=OE8.如图,将□ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点'D 处,折痕l 交CD 边于点E ,连接BE(1)求证:四边形'BCED 是平行四边形(2)若BE 平分∠ABC ,求证:222BE AE AB +=9. 如图,AC 为矩形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处。

备考2021年中考数学复习专题:图形的变换_轴对称变换_翻折变换(折叠问题)

备考2021年中考数学复习专题:图形的变换_轴对称变换_翻折变换(折叠问题)
(1) 若点P在边BC上,PD=CD,求点P的坐标. (2) 若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x-1上,求点P的坐标. (3) 若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它 们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案). 23、 (2017金华.中考真卷) (本题10分) 如图1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分 别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行 折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩 形,这样的矩形称为叠合矩形.
A . 25° B . 30° C . 45° D . 60°
6、
(2020兰州.中考真卷) (2019八下·海沧期中) 如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若

,则 为()
A. B. C. D. 7、 (2020南岸.中考模拟) △ABC中,∠ACB=45°,D为AC上一点,AD=5 ,连接BD,将△ABD沿BD翻折至△EBD, 点A的对应点E点恰好落在边BC上.延长BC至点F,连接DF,若CF=2,tan∠ABD= ,则DF长为( )
14、 (2019河南.中考模拟) 如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△A B′E.若B′恰好落在射线CD上,则BE的长为________.
15、 (2020淮阴.中考模拟) 如图,在△ABC中,AC=BC,把△ABC沿AC翻折,点B落在点D处,连接BD,若∠CBD=16° ,则∠BAC=________°.

专题训练(一)矩形中的折叠问题

专题训练(一)矩形中的折叠问题

专题训练(一) 矩形中的折叠问题(本专题部分习题有难度,请根据实际情况选做)1.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为( )A.12 B.10 C.8 D.62.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG=60°.现沿直线GE将纸片折叠,使点B落在纸片上的点H处,连接AH,则图中与∠BEG相等的角的个数为( )A.5个B.4个C.3个D.2个3.如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠EHF的度数等于________.4.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3 cm,BC=5 cm,则重叠部分△DEF的面积是________cm2.5.如图,折叠矩形一边AD,点D落在BC边的点F处,BC=10 cm,AB=8 cm,求:(1)FC的长;(2)EF的长.6.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF,且AB=10 cm,AD=8 cm,DE=6 cm.(1)求证:四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.7.将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,求点B的坐标和点E的坐标;(自己重新画图)(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.8.如图,矩形ABCD中,AB=8,AD=10.(1)求矩形ABCD的周长;(2)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.①求DE的长;②点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长.(3)M是AD上的动点,在DC上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,求线段CT长度的最大值与最小值之和.参考答案1.B2.A3.56°4.5.15.(1)由题意可得AF=AD=10 cm,在Rt△ABF中,AB=8 cm,AF=10 cm,∴BF=6 cm.∴FC=BC-BF=10-6=4(cm).(2)由题意可得EF=DE,可设EF的长为x,则在R t△EFC中,(8-x)2+42=x2,解得x=5,即EF的长为5 cm.6.(1)证明:∵把纸片ABCD折叠,使点B恰好落在CD边上,∴AE=AB=10,AE2=102=100.又∵AD2+DE2=82+62=100,∴AD2+DE2=AE2.∴△ADE是直角三角形,且∠D=90°.又∵四边形ABCD为平行四边形,∴四边形ABCD是矩形.(2)设BF=x,则EF=BF=x,EC=CD-DE=10-6=4(cm),FC=BC-BF=8-x,在Rt△EFC中,EC2+FC2=EF2,即42+(8-x)2=x2.解得x=5.故BF=5 cm.(3)在Rt△ABF中,由勾股定理得AB2+BF2=AF2,∵AB=10 cm,BF=5 cm,∴AF=102+52=55(cm).7.(1)如图,点B的坐标为(3,4).∵AB =BD =3,∴△ABD 是等腰直角三角形.∴∠BAD =45°.∴∠DAE =∠BAD =45°.∴E 在y 轴上.AE =AB =BD =3,∴四边形ABDE 是正方形,OE =1. ∴点E 的坐标为(0,1).(2)点E 能恰好落在x 轴上.理由如下:∵四边形OABC 为矩形,∴BC =OA =4,∠AOC =∠DCO =90°.由折叠的性质可得:DE =BD =OA -CD =4-1=3,AE =AB =OC =m. 假设点E 恰好落在x 轴上,在Rt △CDE 中,由勾股定理可得EC =DE 2-CD 2=32-12=2 2. 则有OE =OC -CE =m -2 2.在Rt △AOE 中,OA 2+OE 2=AE 2.即42+(m -22)2=m 2.解得m =3 2.8.(1)周长为2×(10+8)=36.(2)①∵四边形ABCD 是矩形,由折叠对称性得AF =AD =10,FE =DE.在Rt △ABF 中,由勾股定理得BF =6,∴FC =4.在Rt △ECF 中,42+(8-DE)2=EF 2,解得DE =5.②分三种情形讨论:若AP =AF ,∵AB ⊥PF ,∴PB =BF =6;若PF =AF ,则PB +6=10.解得PB =4;若AP =PF ,在Rt △APB 中,AP 2=PB 2+AB 2,设PB =x ,则(x +6)2-x 2=82.解得x =73. ∴PB =73. 综合得PB =6或4或73. (3)当点N 与C 重合时,CT 取最大值是8,当点M 与A 重合时,CT 取最小值为4,所以线段CT 长度的最大值与最小值之和为12.。

轴对称的性质—折叠问题(专项培优训练)2023-2024学年八年级数学上册(人教版)(解析版)

轴对称的性质—折叠问题(专项培优训练)2023-2024学年八年级数学上册(人教版)(解析版)

轴对称的性质—折叠问题(专项培优训练)试卷满分:100分 考试时间:120分钟 试卷难度:较难试卷说明:本套试卷结合人教版数学八年级上册同步章节知识点,精选易错,常考,压轴类问题进行专题汇编!题目经典,题型全面,解题模型主要选取热点难点类型!同步复习,考前强化必备!适合成绩中等及偏上的学生拔高冲刺。

一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(本题2分)(2022秋·天津津南·八年级校考期中)如图,把一张长方形纸片ABCD ,沿对角线AC 折叠,点B 的对应点为B ',AB '与DC 相交于点E ,则下列结论正确的有( )①ABC AB C ≅';②AE CE =;③ADE CB E ≅';④B CE EAB ∠'=∠.A .1个B .2个C .3个D .4个【答案】C 【分析】由折叠的性质可得ABC AB C ≅',,BAC CAB '∠=∠,AD BC B C =='由平行线的性质和等腰三角形的性质可得 ,ECA EAC AE CE ∠=∠=,由“HL ”可证()Rt ADE Rt CB E HL '≅,可得 ED EB =' ,即可进行判断;【详解】∵矩形纸片 ABCD 沿对角线 AC 折叠,点B 的对应点为 B '∴ABC AB C '≅,故①正确;,BAC CAB '∴∠=∠,AD BC B C =='∵AB CD ∥,BAC ACD ∴∠=∠,ACD CAB ∴∠=∠',ECA EAC ∴∠=∠∴AE CE =,故②正确;,,AE CE AD BC B C ==='在Rt ADE △ 和 Rt CB E '中,AE CE AD CB =⎧⎨=⎩∴()Rt ADE Rt CB E HL '≅故③正确;,DEA B CE '∴∠=∠,DEA EAB ∠≠∠,B CE EAB ∴∠'≠∠故④不正确;∴结论正确的有①②③共3个故选:C【点睛】本题考查了翻折变换,矩形的性质,全等三角形的性质,证明 AE EC = 是本题的关键.A .①②B .①②③C .①③④D .①②③④【答案】D 【分析】先求出点A ,点B 坐标,由勾股定理可求AB 的长,可判断①;由折叠的性质可得6OB BD ==,OC CD =,90BOC BDC ∠=∠=︒,由勾股定理可求OC 的长,可得点C 坐标,利用待定系数法可求BC 解析式,可判断②;由面积公式可求DH 的长,代入解析式可求点D 坐标,可判断③;分别讨论P 点在C 、B 点的情况,比较AP DP +值的情况,得出当P 点在C 点时,使得AP DP +的值最小可判断④,即可求解. 【详解】解:直线3=+64y x −分别与x 、y 轴交于点A 、B ,∴点()8,0A ,点()0,6B ,8OA ∴=,6OB =,10AB ∴=,故①正确;线段OB 沿BC 翻折,点O 落在AB 边上的点D 处,6OB BD ∴==,OC CD =,90BOC BDC ∠=∠=︒,4AD AB BD ∴=−=,222AC AD CD =+,()22816OC OC ∴−=+,3OC ∴=,∴点()3,0C ,设直线BC 解析式为:6y kx =+,036k ∴=+,2k ∴=−,∴直线BC 解析式为:26y x =−+,故②正确;如图,过点D 作DH AC ⊥于H ,3CD OC ==,5CA ∴=,1122ACD S AC DH CD AD =⋅=⋅△, 341255DH ⨯∴==,∴当125y =时,123654x =−+, 245x ∴=,∴点2412,55D ⎛⎫ ⎪⎝⎭,故③正确;直线BC 上存在一点P ,当P 点在C 点时,()OC DC P =,∴AP DP AC OC OA +=+=,当P 点在B 点时,AP DP AD DB AB +=+=,在Rt OAB 中,AB OA >∴当P 点在C 点时,使得AP DP +的值最小,则点P 的坐标是()3,0,故④正确;综上分析可知,正确的结论为①②③④,故D 正确.故选:D .【点睛】本题是一次函数综合题,考查了利用待定系数法求解析式,折叠的性质,面积法,勾股定理等知识,灵活运用这些性质解决问题是本题的关键. 3.(本题2分)(2023春·福建厦门·八年级厦门市湖滨中学校考期末)如图,在ABC 中,D 是AC 边上的中点,连接BD ,把BDC 沿BD 翻折,得到BDC ',DC '与AB 交于点E ,连接AC ',若2AD AC '==,3BD =,则C 到BD 的距离为( )【答案】B【分析】连接CC ',交BD 于点M ,由翻折知,BDC BDC '≌,BD 垂直平分CC ',证ADC '为等边三角形,利用含30度的直角三角形性质及勾股定理求出1DM =,CM =【详解】解:如图,连接CC ',交BD 于点M ,∵2AD AC ='=,D 是AC 边上的中点,∴2DC AD ==,由翻折知,BDC BDC '≌,BD 垂直平分CC ',∴2DC DC '==,BC BC '=,CM C M '=,∴2AD AC DC ''===,∴ADC '为等边三角形,∴60ADC AC D C AC ∠'=∠'=∠'=︒,∵DC DC =', ∴160302DCC DC C ∠'=∠'=⨯︒=︒,在Rt CDM △中,30DCC ∠'=︒,2DC =,∴1DM =,CM C M '∴=∴C 到BD故选B .【点睛】本题考查了等边三角形的判定及性质、含30度角的直角三角形的性质、勾股定理、折叠的性质、全等三角形的性质,熟练掌握性质定理是解题的关键. 4.(本题2分)(2020秋·广东广州·八年级校考期中)如图1,长方形ABCD 中,E 点在AD 上,且30ABE ∠︒=.分别以BE 、CE 为折线,将A 、D 向BC 的方向折过去,如图2,若图2中15AED ∠=︒,则BCE ∠度数为( )A .30︒B .32.5︒C .35︒D .37.5︒【答案】D 【分析】根据长方形的性质与三角形内角和定理,得到60AEB ∠=︒,再根据折叠的性质,得到A EB AEB '∠=,DEC D EC '∠=∠,由105AED '∠=︒,进而得到37.5DEC ∠=︒,最后根据平行线的性质,即可求出BCE ∠度数.【详解】解:四边形ABCD 是长方形,AD BC ∴∥,90A ∠=︒,30ABE ∠︒=,18060AEB A ABE ∴∠=︒−∠−∠=︒,由折叠的性质可知,60A EB AEB ∠=∠='︒,DEC D EC '∠=∠,15A ED ''∠=︒,606015105AED AEB A EB A ED ''''∴∠=∠+∠−∠=︒+︒−︒=︒,18075DED AED ''∴∠=︒−∠=︒,137.52DEC D EC DED ''∴∠=∠=∠=︒,AD BC ∥,37.5BCE DEC ∴∠=∠=︒,故选:D .【点睛】本题考查了折叠的性质,三角形内角和定理,平行线的性质,熟练掌握折叠的性质是解题关键.5.(本题2分)(2023春·陕西榆林·八年级校考期末)如图,在等腰ABC 中,AB AC =,50BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线交于点O ,点C 沿EF 折叠后与点O 重合,则CEF ∠的度数是( )A .55︒B .50︒C .45︒D .40︒【答案】B 【分析】连接OB ,OC ,先求出25BAO ∠=︒,进而求出40OBC ∠=︒,求出40COE OCB ∠=∠=︒,由三角形内角和定理和12CEF OEF CEO ∠=∠=∠即可求得答案. 【详解】解:如图,连接OB ,50BAC ∠=︒,AO 为BAC ∠的平分线,11502522BAO BAC ∴∠=∠=⨯︒=︒.又AB AC =,()1180652ABC ACB BAC ∴∠=∠=︒−∠=︒.DO 是AB 的垂直平分线,OA OB ∴=,25ABO BAO ∴∠=∠=︒,652540OBC ABC ABO ∴∠=∠−∠=︒−︒=︒.AO 为BAC ∠的平分线,AB AC =,∴直线AO 垂直平分BC ,OB OC ∴=,40OCB OBC ∴∠=∠=︒,点C 沿EF 折叠后与点O 重合,OE CE ∴=,12CEF OEF CEO ∠=∠=∠,40COE OCB ∴∠=∠=︒;在OCE △中,1801804040100CEO COE OCB ∠=︒−∠−∠=︒−︒−︒=︒,1502CEF CEO ∴∠=∠=︒.故选:B .【点睛】本题主要考查了等腰三角形的性质以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关知识来分析、判断. .将AFG 沿AG A .1B .32 【答案】C 【分析】由正方形的性质可得AD AB =,设BF CF a ==,则2CD a =,24DG CD CG a =−=−,由题意知,90ADE ABF ∠=∠=︒,由折叠的性质可得HG EF ⊥,AE AF =,GE GF =,证明()Rt Rt HL ADE ABF ≌,则DE BF a ==,2434GF GE a a a ==+−=−,由勾股定理得222GF CF DG −=,即()222344a a −−=,解得3a =,0a =(舍去),则3CF =,5EG =,9EC =,由勾股定理得EF ,根据1122CEF S EG CF EF HG =⨯=⨯,即115322HG ⨯⨯=⨯,计算求解即可.【详解】解:由正方形的性质可得AD AB =,设BF CF a ==,则2CD a =,24DG CD CG a =−=−, 由题意知,90ADE ABF ∠=∠=︒,由折叠的性质可得HG EF ⊥,AE AF =,GE GF =,∵AE AF =,AD AB =,∴()Rt Rt HL ADE ABF ≌,∴DE BF a ==,2434GF GE a a a ==+−=−,由勾股定理得222GF CF CG −=,即()222344a a −−=,解得3a =,0a =(舍去),∴3CF =,5EG =,9EC =,由勾股定理得EF ∵1122GEF S EG CF EF HG =⨯=⨯,∴115322HG ⨯⨯=⨯,解得HG =, 故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,折叠的性质,勾股定理等知识.解题的关键在于对知识的熟练掌握与灵活运用.A .65︒B .62.5︒C .55︒D .52.5︒【答案】B 【分析】根据折叠得出90OB C B ''∠=∠=︒,求出55OB G '∠=︒,根据平行线的性质得出18055125B OB '∠=︒−︒=︒.根据折叠得出162.52BOG B OB '∠=∠=︒.【详解】解:根据折叠可知,90OB C B ''∠=∠=︒,∵35GB C ''∠=︒,∴55OB G '∠=︒,∵AB CD ∥,∴18055125B OB '∠=︒−︒=︒. 由折叠可知,162.52BOG B OB '∠=∠=︒,故B 正确. 故选:B .【点睛】本题主要考查了折叠的性质,平行线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补. 8.(本题2分)(2023·浙江·八年级假期作业)如图,现有一块三角板ABC ,其中90ABC ︒∠=,60CAB ︒∠=,8AB =,将该三角板沿BC 边翻转得到A BC '△,再将A BC '△沿A C '边翻转得到A B C ''△,则A 与B '两点之间的距离为( )【答案】C 【分析】连接AB ',作B D AA ''⊥,交AA '延长线于点D ,在Rt A B D ''中求得B D '、A D '的长度,在Rt AB D '中,即可求得AB '.【详解】解:连接AB ',作B D AA ''⊥,交AA '延长线于点D ,如下图:由折叠的性质可得:8AB A B A B '''===,60CAB CA B CA B '''∠=∠=∠=︒∴60B A D ''∠=︒∵B D AA ''⊥,∴90D Ð=°,∴30A B D ''∠=︒, ∴142A D A B '''==,∴B D '==,20AD =,∴AB '=故选:C【点睛】此题考查了勾股定理,折叠的性质,含30︒直角三角形的性质,解题的关键是熟练利用相关性质进行求解.A .①②④B .①②③C .①③④D .①②③④【答案】D 【分析】作FM BC ⊥于M (见详解图),①根据翻折变换的性质和正方形的性质可证ABG AFG △△≌;②设BG GF x ==,在Rt EGC △中,根据勾股定理可证3BG GC ==;③通过tan 2AB AGB BG ∠==,tan 2FM FCM CM ∠==,证明AGB FCM ∠=∠,由平行线的判定定理可得AG CF ∥;④由②得到3GC =,由③得到125FM =,根据12FCG S GC FM =△即可计算面积.【详解】解:作FM BC ⊥于M ,四边形ABCD 是正方形,∴6AB BC CD DA ====,90B D BCD ∠=∠=∠=︒,AFE △是由ADE V 翻折,∴AD AF AB ==,90ADE AFE AFG ∠=∠=∠=︒,在Rt AGF 和Rt AGB 中,AG AG AF AB =⎧⎨=⎩,∴ABG AFG △△≌.故①正确.∴BG GF =,设BG GF x ==,在Rt EGC △中,90ECG ∠=︒,2DE =,6CD =,4EC =,2EG x =+,6GC x =−,∴()()222246x x +=+−,∴3x =,∴3BG GC ==,故②正确.FM BC ⊥,CD BC ⊥∴FM EC ∥ ∴GF FM GM GE ECGC ==,3GF =,5GE =,4EC =,3GC =∴125FM =,95GM =,65CM GC GM =−=, ∴6tan 23AGB ∠==, tan 2FM FCM CM ∠==,∴AGB FCM ∠=∠,∴AG CF ∥,故③正确. ∴112183255FCG S ==△,故④正确.综上,选项D 符合题意.故选:D .【点睛】本题考查了正方形的性质、全等三角形的判定和性质、翻折变换、勾股定理的应用等知识,熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键. 为对称轴将CDE 折叠得到CHE ,使得点 A .90CEF ∠=︒ B .CE 【答案】D 【分析】A.由折叠的性质可以知道EF 和CE 分别是AEG ∠和DEG ∠的平分线,同时AED ∠是平角,所以可知90CEF ∠=︒,故选项A 正确;B.由题意和折叠的性质可以知道EF AG ⊥、EF CE ⊥,就可以得到CE AG ∥,选项B 正确;C 和D.过点C 作C M A B ⊥于点M ,120CBA ∠=︒,可得2BM =,CM =BF a =,可以得到4FG AF a ==−,2FM BF BM a =+=+.根据折叠的性质可得4CG CD ==,根据勾股定理,求得2.4a =,即可得到 1.6FG =, 5.6CF =,所以5.6745CF AB ==.故选项C 正确,选项D 错误. 【详解】解:A.由折叠可知EF 和CE 分别是AEG ∠和DEG ∠的平分线. 又180AED ∠=︒,111809022CEF CEG FEG AED ∴∠=∠+∠=∠=⨯︒=︒, 故选项A 正确.B.又点A 与点G 关于EF 对称,∴EF AG ⊥, 又EF CE ⊥,∴CE AG ∥,故选项B 正确.C 和D.如答图,过点C 作C M A B ⊥于点M .120CBA ∠=︒,∴60CBM ∠=︒,4BC =,∴易知2BM =,CM =设BF a =,∴4FG AF a ==−,2FM BF BM a =+=+,点E 是AD 的中点,折叠后点H 落到EG 上,∴点G 与点H 重合,4CG CD ==.易知点C G F ,,共线,∴448CF FG CG a a =+=−+=−.222FM CM CF +=,()(()22228a a ∴+=−+,解得 2.4a =. ∴4 2.4 1.6FG =−=,88 2.4 5.6CF a =−=−=,5.6745CF AB ∴==,故选项C 正确,选项D 错误.综上,故选:D .【点睛】本题考查翻折变换(折叠问题)、菱形的性质、勾股定理,熟练掌握翻折的性质是解答本题的关键.二、填空题:本大题共10小题,每小题2分,共20分. 11.(本题2分)(2023春·河北承德·八年级统考期末)如图,小宇将一张平行四边形纸片折叠,使点A 落在长边CD 上的点1A 处,并得到折痕DE ,小宇测得长边6CD =,则四边形1A EBC 的周长为 .【答案】12【分析】根据折叠的性质,得到DA DA '=,EA EA '=,结合平行四边形的性质,得到DA DA BC '==,代入计算即可.【详解】根据折叠的性质,得到DA DA '=,EA EA '=,∵四边形ABCD 是平行四边形,∴DA DA BC '==,6AB CD ==,∴四边形1A EBC 的周长为1111212BC BE A E AC A D AC AE BE AB CD CD +++=+++=+==.故答案为:12.【点睛】本题考查了折叠的性质,平行四边形的性质,熟练掌握性质是解题的关键.12.(本题2分)(2023春·上海浦东新·八年级统考期末)如图,在ABC 中,90A ∠=︒,28BC AC ==,点M 在边BC 上,过点M 作MN BC ⊥,垂足为点M ,交边AB 于点N ,将ABC 沿直线MN 翻折,点A 、C 分别与点D 、E 对应,如果四边形ADBE 是平行四边形,那么CM 的长是 .【答案】3【分析】当点E 在线段BC 上时,连接DE 交AB 于点O ,过点O 作OH BC ⊥于点H ,则90BHO ∠=︒,求出AB =30ABC ∠=︒,由轴对称可得4DE AC ==,得OB =2OD OE ==,OH =,求出6CE =,由折叠可知,3CM =;假设点E 在线段CB 的延长线上,得到)4AN AF x ==−,与)2AN x =−矛盾,故点E 不可能在线段CB 的延长线上,即可确定CM 的长.【详解】解:当点E 在线段BC 上时,如图,连接DE 交AB 于点O ,过点O 作OH BC ⊥于点H ,则90BHO ∠=︒,∵90BAC ∠=︒,28BC AC ==,∴AB ==30ABC ∠=︒,∵将ABC 沿直线MN 翻折,点A 、C 分别与点D 、E 对应,∴4DE AC ==,∵四边形ADBE 是平行四边形,∴1122OB AB ==⨯=122OD OE DE ===,∴12OH OB ==∴3BH ==,∴1EH ==,∴312BE BH EH =−=−=,∴826CE BC BE =−=−=,由折叠可知,132CM EM CE ===,假设点E 在线段CB 的延长线上,延长MN 交AD 于点F ,则AD FM ⊥,12AF DF AD ==,∵90BAC ∠=︒,28BC AC ==,∴AB ==30ABC ∠=︒,设CM EM x ==,则8BM x =−,∴()828BE x x x AD=−−=−=, ∴142AF DF AD x ===−, 在Rt BMN △中,30ABC ∠=︒,90BMN ∠=︒, ∴1MN BN 2=,∴222BM MN BN +=,即22212BM BN BN ⎛⎫+= ⎪⎝⎭,则)8BN x ==−,))82AN BN x x ==−==−,在Rt ANF △中,142AF DF AD x ===−,30NAF ABC ∠=∠=︒,90AFN ∠=︒, ∴12FN AN =,∴222AF FN AN +=,即22212AF AN AN ⎛⎫+= ⎪⎝⎭,)4AN AF x ==−,与)2AN x =−矛盾,故点E 不可能在线段CB 的延长线上,综上可知,3CM =,故答案为:3【点睛】此题考查了勾股定理、平行四边形的性质、含30︒角的直角三角形的性质等知识, 分类讨论是解题的关键. 13.(本题2分)(2023春·北京丰台·八年级统考期末)如图,在Rt ABC △中,90B Ð=°,3AB =,4BC =,将ABC 折叠,使点B 恰好落在边AC 上,与点B '重合,AE 为折痕,则BE 的长等于 .【答案】1.5【分析】根据折叠得到BE EB '=,AB AB 3'==,设BE EB x '==,则4EC x =−,根据勾股定理求得AC 的值,再由勾股定理可列方程求解即可.【详解】解:根据折叠可得BE EB '=,AB AB 3'==,设BE EB x '==,则4EC x =−,在Rt ABC △中,90B Ð=°,3AB =,4BC =5AC ∴=532B C AC AB ''∴=−=−=在Rt B EC '△中,由勾股定理得,()222x 24x +=− 解得 1.5x =故答案为:1.5【点睛】本题考查的是翻折变换的性质,解题的关键是掌握折叠前后图形的形状和大小不变,对应边和对应角相等,能熟练运用勾股定理列方程解决问题.14.(本题2分)(2023春·四川达州·八年级统考期末)如图,在ABC 和DCB △中,90A D ∠=∠=︒,AC ,BD 相交于点E ,AE DE =.将CDE 沿CE 折叠,点D 落在点D ¢处,若40BED '∠=︒,则BCD '∠的大小为 .【答案】15︒/15度【分析】根据全等三角形的判定和性质得出BE CE =,再由等边对等角确定EBC ECB ∠∠=,利用折叠的性质及三角形内角和定理求解即可.【详解】解:在AEB 和DEC 中,90A D AE DE AEB DEC ∠∠∠∠==︒⎧⎪=⎨⎪=⎩,∴(ASA)AEB DEC ≌,∴BE CE =,∴EBC ECB ∠∠=,∵40BED '∠=︒,CDE 沿CE 折叠,点D 落在点D ¢处,∴70D EC DEC ︒'∠=∠=,∴180110BEC DEC ∠=︒−∠=︒,790200DCE ︒−︒=︒∠=,∴180110352EBC ECB ︒−∠︒=∠==︒,20DCE D CE ︒'∠=∠=,∴15BCD ECB D CE ''∠=∠−∠=︒,故答案为:15︒.【点睛】题目主要考查折叠的性质及全等三角形的判定和性质,三角形内角和定理及等腰三角形的判定和性质,理解题意,综合运用这些知识点是解题关键.15.(本题2分)(2023·浙江·八年级假期作业)折纸是一项有趣的活动,如图所示,一张长方形纸片()90ABCD A B C ∠=∠=∠=︒,先将纸片沿EF 折叠,再将折叠后的纸片沿GH 折叠,使得GD '与A B ''重合,展开纸片后若62BFE ∠=︒,则DGH ∠= ︒.【答案】17【分析】由平行线的性质得到62GEF BFE ∠=∠=︒,由平角定义得到180118AEF GEF ∠=︒−∠=︒,由轴对称的性质得到:90A A '∠=∠=︒,118A EF AEF '∠=∠=︒,DGH D GH '∠=∠,求出A EG '∠,由直角三角形的性质求出'∠A GE ,由对顶角的性质得到DGD A GE ''∠=∠,即可求出12DGH DGD '∠=.【详解】解:四边形ABCD 是矩形, AD BC ∴∥,90A ∠=︒,62GEF BFE ∴∠=∠=︒,180118AEF GEF ∴∠=︒−∠=︒,由题意得:90A A '∠=∠=︒,118A EF AEF '∠=∠=︒,DGH D GH '∠=∠,1186256A EG A EF GEF ''∴∠=∠−∠=︒−︒=︒,9034A GE A EG ''∴∠=︒−∠=︒,34DGD A GE ''∴∠=∠=︒,1172DGH DGD '∴∠==︒.故答案为:17.【点睛】本题考查轴对称的性质,平行线的性质,余角的计算,对顶角的性质,解题的关键是掌握轴对称的性质.16.(本题2分)(2023·浙江·八年级假期作业)如图,在△ABC 中,AB AC =,30C ∠=︒,将纸片沿DE 折叠,使点B 落到点A 处,若6BC =,则DE = .【答案】1【分析】利用等腰三角形的性质得到30B C ∠=∠=︒,则120BAC ∠=︒,再由折叠性质得BD AD =,30BAD B ∠=∠=︒,90AED ∠=︒,进而得到90DAC ∠=︒,再根据含30度角的直角三角形的性质求解即可.【详解】解:∵AB AC =,30C ∠=︒∴30B C ∠=∠=︒,则3018030120BAC ∠=−︒−︒=︒,由折叠性质得BD AD =,30BAD B ∠=∠=︒,90AED ∠=︒,∴1309020DAC ︒−︒=∠=︒,12DE AD =,∴2CD AD =,又6BC =,∴236BC BD CD AD AD AD =+=+==,∴2AD =, ∴112DE AD ==, 故答案为:1.【点睛】本题考查等腰三角形的性质、折叠性质、三角形的内角和定理、含30度角的直角三角形的性质,熟练掌握折叠性质和直角三角形的性质是解答的关键. 上一动点,把CDE 沿直线,若D BC '为等边三角形,【答案】1或4/4或1【分析】依据折叠的性质、菱形的性质以及等边三角形的性质,分两种情况得到DE 的长即可.【详解】解:由折叠及菱形的性质可得CD CD CB '==,故D BC '是以BD '底的等腰三角形,故当60D BC '∠=︒,D BC '为等边三角形,分以下两种情况讨论,1)如图(1),当点D ¢点A 重合时,60D BC '∠=︒,此时点E 为AD 的中点,故1DE =,2)如图(2),当点D ¢与点A 关于直线BC 对称时,D ¢,C ,D 三点共线,EC DC ⊥,故24DE DC ==, 综上所述,1DE =或4,故答案为:1或4.【点睛】本题考查了菱形的性质,折叠问题及等边三角形的性质等知识的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 如图,ABC 中,【答案】108【分析】连接OB 、OC ,根据角平分线的定义求出BAO ∠,根据等腰三角形两底角相等求出ABC ∠,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA OB =,根据等边对等角可得ABO BAO ∠=∠,再求出OBC ∠,证明 OB OC =,再根据等边对等角求出OCB OBC ∠=∠,根据翻折的性质可得OE CE =,然后根据等边对等角求出COE ∠,再利用三角形的内角和定理列式计算即可.【详解】解:如图,连接OB 、OC ,54BAC ∠=︒Q ,AO 为BAC ∠的平分线,11542722BAO BAC ∴∠=∠=⨯︒=︒,又AB AC =,11(180)(18054)6322ABC BAC ∴∠=︒−∠=︒−︒=︒, DO 是AB 的垂直平分线,OA OB ∴=,27ABO BAO ∴∠=∠=︒,632736OBC ABC ABO ∴∠=∠−∠=︒−︒=︒, AO 为BAC ∠的平分线,AB AC =,∴点O 在BC 的垂直平分线上,∴OB OC =,36OCB OBC ∴∠=∠=︒,将C ∠沿(EF E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,OE CE ∴=,36COE OCB ∴∠=∠=︒,在OCE △中,1801803636108OEC COE OCB ∠=︒−∠−∠=︒−︒−︒=︒,故答案为:108.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,三角形内角和定理等等,熟知相关知识是解题的关键.19.(本题2分)(2023春·辽宁沈阳·八年级统考期末)如图,在ABC ∆中,90A ∠=︒,30C ∠=︒,3AB =,点D 为AC 的中点,点E 是BC 边上一个动点,将CDE ∆沿着DE 翻折,使得点C 落在点F 处,当FE AC ⊥时,EF 的长为 .【答案】32或92【分析】根据题意,分两种情况:①当E 在D 的右侧时;②当E 在D 的左侧时,由翻折性质,结合含30︒的直角三角形边的关系列方程求解即可得到答案.【详解】解:在ABC 中,90A ∠=︒,30C ∠=︒,3AB =,点D 为AC 的中点,AC ∴=12CD AB =, 当E 在D 的右侧时,延长FE 交AC 于H ,如图所示:FE AC ⊥,90EHC ∴∠=︒,由翻折的性质知,CD DF ==,30C DFH∠=∠=︒, 设EF x =,则CE EF x ==,1122EH EC x ==, 32FH x ∴=,在直角三角形DFH 中,30DFH ∠=︒,则FH =,∴32x =,32x ∴=;当E 在D 的左侧时,如图所示:由翻折性质知,CD DF ==,30C EFD ∠=∠=︒,CE EF x ==,EF AC ⊥,90FHD ∴∠=︒,1122EH EC x ∴==,1122FH x x x =−=,在直角三角形FHD 中,HF =,∴12x =,解得92x =, 故答案为:32或92.【点睛】本题考查翻折性质,充分利用翻折性质及含30︒的直角三角形边的关系分情况讨论是解决问题的关键. 20.(本题2分)(2023春·重庆忠县·八年级统考期末)如图,在正方形ABCD 中,点E 是BC 上一点,连接DE ,将BDE 沿DE 翻折得到GDE ,连接CG .若CG BD ∥,则CEG ∠= .【答案】60︒/60度【分析】根据直角三角形斜边中线的性质得出CH DH HB ==,1=2CH DB ,由折叠的性质得DB DG =,∠=∠BDE GDE ,利用辅助线构造矩形并由其性质得出CH GK =,再由等量代换得出12GK DG =,最后由特殊直角三角形的性质得出30GDK ∠=︒,利用折叠的性质及正方形的性质即可求解. 【详解】解:如图,过点C 作直线CH DB ⊥于点H ,过点G 作直线GK DB ⊥于点K ,正方形ABCD 中,DC CB =,90452CDB ︒∠==︒,CH DH HB ∴==,1=2CH DB . GDE △由BDE 沿DE 翻折得到,GDE BDE ∴≌△△, DB DG ∴=,∠=∠BDE GDE ,CH DB ⊥,GK DB ⊥,CG BD ∥,CH GK ∴∥,90CHK ∠=︒,∴四边形CHKG 是矩形.CH GK ∴=, ∴11=22GK CH DB DG ==,90GKD ∠=︒,∴30GDK ∠=︒.11=30=1522BDE GDK ∴∠=∠⨯︒︒.∵正方形ABCD ,∴45DBE ∠=︒,∴1804515120BED ∠=︒−︒−︒=︒,60CED ∠=︒,∵BDE 沿DE 翻折得到GDE ,∴120BED DEG ∠=∠=︒,∴12060CEG DEC ∠=︒−∠=︒,故答案为:60︒.【点睛】本题考查正方形—翻折问题.具体考查正方形的性质,折叠的性质,全等三角形的性质,特殊直角三角形的性质,矩形的判定和性质等的综合运用能力.灵活添加辅助线是解本题的关键.三、解答题:本大题共7小题,21-25题每小题8分,26-27题每小题10分,共60分. 若将DAB 沿直线 (1)求点A B 、的坐标.(2)求三角形ACE 的面积.(3)求直线CD 的解析式.【答案】(1)()3,0A ,()0,4B(2)6(3)364y x =−【分析】(1)当0x =,4043y =−⨯+,解得4y =,则()0,4B ,当0y =,4043x =−+,解得3x =,则()3,0A ;(2)由折叠的性质可知AB AC =,OBA ECA ∠=∠,证明()AAS ABO ACE ≌,根据12ACE ABO S S OA OB ==⨯,计算求解即可;(3)由勾股定理得,5AB ,则8OC OA AC =+=,()80C ,,待定系数法求直线CD 的解析式即可.【详解】(1)解:当0x =,4043y =−⨯+,解得4y =,则()0,4B ,当0y =,4043x =−+,解得3x =,则()3,0A ,∴()3,0A ,()0,4B ;(2)解:由折叠的性质可知AB AC =,OBA ECA ∠=∠,∵OBA ECA ∠=∠,OAB EAC ∠=∠,AB AC =,∴()AAS ABO ACE ≌, ∴1134622ACE ABO S S OA OB ==⨯=⨯⨯=,∴三角形ACE 的面积为6;(3)解:由勾股定理得,5AB ==,由(2)可知5AC AB ==,8OC OA AC =+=,∴()80C ,,设直线CD 的解析式为y kx b =+,将()0,6D −,()80C ,,代入y kx b =+得,680b k b =−⎧⎨+=⎩,解得346k b ⎧=⎪⎨⎪=−⎩,∴直线CD 的解析式为364y x =−. 【点睛】本题考查了一次函数的解析式,勾股定理,折叠的性质,全等三角形的判定与性质,一次函数的图象坐标轴的交点.解题的关键在于对知识的熟练掌握与灵活运用. 22.(本题8分)(2023春·吉林长春·八年级统考期末)将边长为2的正方形纸片ABCD 按如下操作:【操作一】如图①,将正方形纸片ABCD 对折,使点A 与点B 重合,点D 与点C 重合,再将正方形纸片ABCD 展开,得到折痕EF .则点B 、点F 之间的距离为_____________.【操作二】如图②,G 为正方形ABCD 边BC 上一点,连接AG ,将图①的正方形纸片沿AG 翻折,使点B 的对称点H 落在折痕EF 上.连接BH .(1)求证:ABH 是等边三角形.(2)求四边形CFGH 的周长.(1)证明见解析;(2)5【分析】操作一:由题知,4BC =,122CF DF CD ===,利用勾股定理可得BF =操作二:(1)由翻折得EF 是AB 的垂直平分线,故BH AH =,又AB AH =,即AB BH AH ==,即得ABH 是等边三角形;(2)由ABH 是等边三角形,可得2AH AB ==,1AE =.HE ==可得2FH EF HE =−=即可得出四边形ABGH 的周长.【详解】解:操作一:如图,连接BF ,由题知2BC CD ==,由翻折,知112CF DF CD ===,由勾股定理,得BF操作二:(1)由翻折知EF 是AB 的垂直平分线,BH AH ∴=,又AB AH =,AB BH AH ∴==,ABH ∴是等边三角形;(2)∵ABH 是等边三角形.∴2AH AB ==,1AE =.∴HE =∴2FH EF HE =−=∴四边形CFHG 的周长CF HF HG CG CF HF CB +++=++122=+5=【点睛】本题主要考查四边形的综合题,涉及勾股定理,等边三角形的判定和性质,正方形的性质等知识点,熟练掌握轴对称的性质与勾股定理的应用是解题的关键. (1)试判断重叠部分BED 的形状,并证明你的结论;(2)若BE 平分ABD ∠,12BC =,求BED 的面积.【答案】(1)BED 是等腰三角形,证明见解析(2)BED 的面积【分析】(1)根据折叠性质得出EBD DBC ∠=∠,进而得出EDB EBD ∠=∠,可得EB ED =,根据等角对等边即可得证;(2)根据含30度角的直角三角形的性质,勾股定理得出DE ,进而根据三角形的面积公式即可求解.【详解】(1)BED 是等腰三角形,证明:四边形ABCD 是长方形,AD BC ∴∥,EDB DBC ∴∠=∠,由折叠可知:EBD DBC ∠=∠,EDB EBD ∴∠=∠,EB ED ∴=,BED ∴是等腰三角形;(2)四边形ABCD 是长方形,AB DC ∴=,12AD BC ==,90A ABC C ∠=∠=∠=︒, BE 平分ABD ∠,ABE EBD ∴∠=∠,30ABE EBD DBC ∴∠=∠=∠=︒,2,BC CD BC ∴==,DC BC ∴==AB ∴=EB ED =,12AE AD DE DE ∴=−=−,在Rt ABE △中,根据勾股定理,得222AE AB BE +=,222(12)DE DE ∴−+=,解得8DE =,BED ∴的面积11822DE AB =⨯⋅=⨯⨯=【点睛】本题考查了勾股定理,折叠问题,含30度角的直角三角形的性质,熟练掌握勾股定理与折叠的性质是解题的关键. 24.(本题8分)(2023春·山西阳泉·八年级统考期末)综合与实践问题情境:在综合实践活动课上,同学们以“平行四边形纸片的折叠”为主题开展数学活动.在平行四边形纸片ABCD 中,E 为CD 边上任意一点,将ADE V 沿AE 折叠,点D 的对应点为D ¢.分析探究:(1)如图1,当点D ¢恰好落在AB 边上时,四边形D BCE '的形状为 .问题解决:(2)如图2,当E ,F 为CD 边的三等分点时,连接FD '并延长,交AB 边于点G .试判断线段AG 与BG 的数量关系,并说明理由.(3)如图3,当60ABC ∠=︒,45DAE =︒∠时,连接DD '并延长,交BC 边于点H .若ABCD Y 的面积为24,4=AD ,请直接写出线段D H '的长.【答案】(1)平行四边形;(2)2BG AG =,理由见解析;(3)D H '=【分析】(1)利用平行四边形的性质及折叠的性质可得ABCD ,AD DE AD '==,可得四边形ADED '是菱形,可知DE AD =',继而可知BD CE '=,即可求解;(2)利用折叠的性质可得AED AED '∠=∠,ED ED ¢=,结合三等分点可知ED ED EF '==,进而可得ED F EFD ''∠=∠,利用三角形外角性质可得AED ED F ''∠=∠,进而可知AE FG ∥,可得四边形AEFG 是平行四边形,再结合平行四边形的性质即可得AG 与BG 的数量关系;(3)由折叠可知:45DAE D AE '∠=∠=︒,AD AD =',易知DAD '△为等腰直角三角形,延长AD '交BC 于M ,可知45MD H AD D ''∠=∠=︒,由平行四边形的性质可得,45BHM ADH MD H '∠=∠=︒=∠,AM AD ⊥,进而可知MD MH '=由ABCD Y 的面积为24,4=AD ,得24AD AM ⋅=,求得6AM =,可得2MD AM AD ''=−=,再利用勾股定理即可求解.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AB CD ,AB CD =则D AE AED '∠=∠由折叠可知:AD AD =',DAE D AE '∠=∠,∴DAE AED ∠=∠,∴AD DE AD '==,∴四边形ADED '是平行四边形,又∵AD AD =',∴四边形ADED '是菱形,∴DE AD =',∴BD CE '=,∴四边形D BCE '是平行四边形,故答案为:平行四边形;(2)2BG AG =,理由如下:∵四边形ABCD 是平行四边形,∴AB CD ,AB CD =,又∵E ,F 为CD 边的三等分点, ∴13DE EF CF DC ===,由折叠可知:ED ED ¢=,AED AED '∠=∠,则ED ED EF '==,∴ED F EFD ''∠=∠,由三角形外角可知:DED ED F EFD AED AED ''''∠=∠+∠=∠+∠,∴AED ED F ''∠=∠,∴AE FG ∥,∴四边形AEFG 是平行四边形,∴EF AG =, ∵13EF DC =,AB CD =, ∴13AG AB =,则23BG AB =,∴2BG AG =;(3)由折叠可知:45DAE D AE '∠=∠=︒,AD AD =',∴90DAD '∠=︒,则DAD '△为等腰直角三角形,∴45ADH AD D '∠=∠=︒,延长AD '交BC 于M ,则45MD H AD D ''∠=∠=︒∵四边形ABCD 是平行四边形,∴AD BC ∥,∴45DHM ADH MD H ∠=∠=∠'︒=,90AMH DAD '∠=∠=︒,即AM AD ⊥,∴MD MH '=∵ABCD Y 的面积为24,4=AD ,即:24AD AM ⋅=,∴6AM =,则2MD AM AD AM AD ''=−=−=,∴D H '【点睛】本题考查平行四边形的判定及性质,菱形的判定,翻折的性质,等腰直角三角形的判定及性质,勾股定理等知识点,熟练掌握相关性质定理是解决问题的关键. 轴的负半轴上,若将DAB 沿直线(1)求线段AB 的长(2)求直线CD 的函数表达式;(3)点P 在直线CD 上,使得2PAC OAB SS =,求点【答案】(1)5AB =(2)364y x =− (3)7224,55⎛⎫ ⎪⎝⎭或824,55⎛⎫− ⎪⎝⎭【分析】(1)先根据点,A B 的坐标可得3,4OA OB ==,再利用勾股定理可得5AB =;(2)设点D 的坐标为()0,D m ,则4,BD m OD m =−=−,先根据折叠的性质可得4CD BD m ==−,再在Rt COD 中,利用勾股定理可得6m =−,从而可得()0,6D −,然后利用待定系数法即可得;(3)设点P 的坐标为3,64P n n ⎛⎫− ⎪⎝⎭,根据2PAC OAB S S =建立方程,解方程可得n 的值,由此即可得出答案.【详解】(1)解:()3,0A ,()0,4B , 3,4OA OB ∴==, x 轴y ⊥轴,5AB ∴=.(2)解:设点D 的坐标为()0,D m ,则4,BD m OD m =−=−,由折叠的性质得:4CD BD m ==−,5AC AB ==,8OC OA AC ∴=+=,∴点C 的坐标为()8,0,在Rt COD 中,222OD OC CD +=,即()()22284m m −+=−,解得:6m =−,()0,6D ∴−,设直线CD 的函数表达式为y kx b =+,将点()()8,0,0,6C D −代入得:806k b b +=⎧⎨=−⎩,解得346k b ⎧=⎪⎨⎪=−⎩,则直线CD 的函数表达式为364y x =−.(3)解:由题意,设点P 的坐标为3,64P n n ⎛⎫− ⎪⎝⎭, 3,4OA OB ==,162OAB S OA OB ∴=⋅=,2PAC OAB S S =,61562342n −∴⨯=⨯, 解得725n =或85n =, 当725n =时,732364424655n −=−=⨯,即此时7224,55P ⎛⎫ ⎪⎝⎭, 当85n =时,83246534564n =−=−−⨯,即此时824,55P ⎛⎫− ⎪⎝⎭, 综上,点P 的坐标为7224,55⎛⎫ ⎪⎝⎭或824,55⎛⎫− ⎪⎝⎭. 【点睛】本题考查了勾股定理、折叠的性质、求一次函数的解析式、一次函数的几何应用,熟练掌握折叠的性质和待定系数法是解题关键. 26.(本题10分)(2023春·江苏苏州·八年级星海实验中学校考期中)如图1,四边形ABCD 中,AD BC ∥,90ADC ∠=︒,8AD =,6BC =,点M 从点D 出发,以每秒2个单位长度的速度向点A 运动,同时,点N 从点B 出发,以每秒1个单位长度的速度向点C 运动.其中一个动点到达终点时,另一个动点也随之停止运动,过点N 作NP AD ⊥于点P ,连接AC 交NP 于点Q ,连接MQ .设运动时间为t 秒.(1)AM =______,AP =______.(用含t 的代数式表示)(2)当四边形ANCP 为平行四边形时,求t 的值;(3)如图2,将AQM 沿AD 翻折,得AKM ,是否存在某时刻t ,使四边形AQMK 为为菱形,若存在,求出t 的值;若不存在,请说明理由.【答案】(1)82t −,2t +(2)2t =(3)存在,1t =【分析】(1)由2DM t =,根据AM AD DM =−即可求出82AM t =−;先证明四边形CNPD 为矩形,得出6DP CN t ==−,则2AP AD DP t =−=+;(2)根据四边形ANCP 为平行四边形时,可得68(6)t t −=−−,解方程即可;(3)由NP AD ⊥,QP PK =,可得当PM PA =时有四边形AQMK 为菱形,列出方程628()6t t t −−=−−,求解即可.【详解】(1)解:如图1.2DM t =,82AM AD DM t ∴=−=−.在直角梯形ABCD 中,AD BC ∥,90ADC ∠=︒,NP AD ⊥于点P ,∴四边形CNPD 为矩形,6DP CN BC BN t ∴==−=−,8(6)2AP AD DP t t ∴=−=−−=+;故答案为:82t −,2t +.(2)四边形ANCP 为平行四边形时,CN AP =,68(6)t t ∴−=−−,解得:2t =;(3)存在时刻1t =,使四边形AQMK 为菱形.理由如下:NP AD ⊥,QP PK =,∴当PM PA =时有四边形AQMK 为菱形,628(6)t t t ∴−−=−−,解得1t =.【点睛】本题主要考查了四边形综合题,其中涉及到直角梯形的性质,矩形的判定与性质,等腰直角三角形的性质,轴对称的性质,等腰三角形的性质,正方形的性质等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.(1)BQ = ______ (含t 的代数式表示);(2)如图2,连接AD ,PF ,PQ ,当AD PQ ∥时,求PQF △的面积;(3)如图3,连接PF ,PQ ,D 点关于直线PF 的对称点为D '点,若'D 落在PQB △的内部则t 的取值范围为______.【答案】(1)4(02)t t −<≤(2)PQFS = (3)4453t <<【分析】(1)根据几何动点的速度和时间可得结论;(2)根据四边形BPDQ 是平行四边形,证明四边形APQD 是平行四边形,可得1t =,再证明EFD ≌△CFQ ,最后利用三角形的面积公式可解答;(3)先证明DF FQ =,再计算两个边界点时点t 的值;①如图3,点D '与Q 重合,②如图4,D '在斜边AB 上,由此可得结论.【详解】(1)解:在Rt ABC △中,90830C AB A ∠∠=︒==︒,,,142BC AB AC ∴===,由题意,CQ t =,()402BQ t t ∴=−<≤. 故答案为:()402t t −<≤; (2)如图2中,四边形BPDQ 是平行四边形,∴DQ AB ∥,BP DQ BQ PD ==,,。

中考数学专题训练:图形的折叠问题(附参考答案)

中考数学专题训练:图形的折叠问题(附参考答案)

中考数学专题训练:图形的折叠问题(附参考答案)1.如图,在平面直角坐标系中,矩形ABCD的边AD=5,OA∶OD=1∶4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1处,则点E的坐标是( )A.(1,2) B.(-1,2)C.(√5-1,2) D.(1-√5,2)2.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是( )A.30°B.45°C.74°D.75°3.如图,在矩形ABCD中,AB=2,BC=2√5,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连接CF,则cos ∠ECF的值为( )A.23B.√104C.√53D.2√554.把一张矩形纸片ABCD按如图所示方法进行两次折叠,得到等腰直角三角形BEF.若BC=1,则AB的长度为( )A.√2B.√2+12C.√5+12D.435.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC 上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.2076.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为__________.7.如图,在Rt△ABC纸片中,∠ACB=90°,CD是边AB上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB.若BC=2,则CA′=_______.8.如图,点E在矩形ABCD的边CD上,将△ADE沿AE折叠,点D恰好落在边BC 上的点F处.若BC=10,sin ∠AFB=45,则DE=_____.9.如图,在扇形AOB中,点C,D在AB⏜上,将CD⏜沿弦CD折叠后恰好与OA,OB 相切于点E,F.已知∠AOB=120°,OA=6,则EF⏜的度数为________;折痕CD 的长为_______.10.如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为______;DP的最大值为_______.11.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D →A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB′P,连接CB′,则在点P的运动过程中,线段CB′的最小值为_________.12.如图,DE平分等边三角形ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是______.13.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=______.14.如图,在等边三角形ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=7√21.20其中正确的结论是__________.(填序号)15.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(1)如图1,当t=1时,求∠O′QA的大小和点O′的坐标;(2)如图2,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为3√3,则t的值可以是__________________________________________.(请直接写出两个不同....的值即可)16.如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有________.(填序号)①BD=8;②点E到AC的距离为3;③EM=103;④EM∥AC.17.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM,BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=________;(填度数)(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ 的数量关系,并说明理由.参考答案1.D 2.D 3.C 4.A 5.D6. 3√2-3 7.2√3 8.5 9.60°4√6 10.10 2√511.-2 12.√m2+n2 13.3√7714.①②④15.(1)∠O′QA=60°点O′的坐标为(32,√32)(2)O′E=3t-6,其中t的取值范围是2<t<3 (3)3或103(答案不唯一,满足3≤t<2√3即可) 16.①④17.(1)30°(2)∠MBQ=∠CBQ,理由略。

专题训练(一) 多边形中的折叠问题

专题训练(一) 多边形中的折叠问题

专题训练(一) 多边形中的折叠问题问题描述
给定一张正$n$ 边形的纸片,可以任意选择一个顶点向内折叠,使得边界重合,最终得到一个凸多边形。

试回答以下问题:
1. 对于哪些 $n$ 能够通过折叠得到凸多边形?
2. 对于能够通过折叠得到凸多边形的 $n$,其凸多边形是否唯一?
解题思路
1. 当 $n$ 为奇数时,可以通过将正 $n$ 边形折成一条线段,然
后将线段两端向内折叠得到凸多边形。

当 $n$ 为偶数时,如果将正$n$ 边形沿对角线剖分,则得到两个正 $\frac{n}{2}$ 边形,此时若
能构造一个简单多边形使得其边界经过新的两个多边形相交的两个
顶点,则可以通过将两个正 $\frac{n}{2}$ 边形分别折成两个凸
$\frac{n}{2}$ 边形,然后将四个凸 $\frac{n}{2}$ 边形组成一个凸
$n$ 边形。

因此当且仅当 $\frac{n}{2}$ 为奇数时,可以通过折叠得到凸多边形。

2. 当 $n=3$ 时,凸多边形唯一;当 $n$ 为奇数大于 $3$ 时,凸多边形不唯一,其中一种解为将正 $n$ 边形折成一条线段(连接相邻两条边界的中点),将线段两端向内折叠得到凸多边形;当
$n$ 为偶数大于 $4$ 时,凸多边形不唯一,其中之一构造方式如上述。

总结
通过本题可以锻炼多边形的折叠和拼接能力,此外还能够引导学生思考数学问题的解法和简洁的表述方式。

折叠问题练习题(含答案)

折叠问题练习题(含答案)

专题4:折叠问题【典例引领】例:如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.【强化训练】1、数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC 中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC 进行以下操作:第一步:折叠三角形纸片 ABC 使点 C 与点 A 重合,然后展开铺平,得到折痕 DE ;第二步:将△ABC 沿折痕 DE 展开,然后将△DEC 绕点 D 逆时针方向旋转得到△DFG ,点 E ,C 的对应点分别是点 F ,G ,射线 GF 与边 AC 交于点 M(点 M 不与点 A 重合),与边 AB 交于点 N ,线段 DG 与边 AC 交于点 P.数学思考:(1)求 DC 的长;(2)在△DEC 绕点 D 旋转的过程中,试判断 MF 与 ME 的数量关系,并证明你的结论;问题解决:(3)在△DEC 绕点 D 旋转的过程中,探究 下列问题:① 如图 2,当 GF ∥BC 时,求 AM 的长;② 如图 3,当 GF 经过点 B 时,AM 的长为③ 当△DEC 绕点 D 旋转至 DE 平分∠FDG 的位置时,试在图 4 中作出此时的△DFG 和射线 GF ,并直接写出 AM 的长(要求:尺规作图 ,不写作法,保留 作图痕迹,标记出所有相应的字母)2.(2016内蒙古包头市)如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上点,连接EF .(1)图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使M F ∥CA . ①试判断四边形AE M F 的形状,并证明你的结论;②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF 的值.3.如图1,四边形的对角线相交于点,,,,.(1)填空:与的数量关系为;(2)求的值;(3)将沿翻折,得到(如图2),连接,与相交于点.若,求的长.4.Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'=√2AD,那么请直接写出点D'到直线BC的距离.专题4:折叠问题【典例引领】例:如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(3)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(4)(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.【答案】(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;证明见解答.【分析】(1)由折叠可得AB=AB′,BE=B'E,再根据四边形ABCD是正方形,易证B'E=B'F,即可证明DF+BE=AF;(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;证明图(2):延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,根据CB∥AD,得∠AEB=∠EAD,即可得出∠B′AE=∠DAG,则∠GAF=∠DAE,则∠AGD=∠GAF,即可得出答案BE+DF=AF.【解答】解:(1)由折叠可得AB=AB′,BE=B'E,∵四边形ABCD是正方形,∴AB=DC=DF,∠CB'E=45°,∴B'E=B'F,∴AF=AB'+B'F,即DF+BE=AF;(5)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;图(2)的证明:延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,∵CB∥AD,∴∠AEB=∠EAD,∵∠BAE=∠B'AE,∴∠B'AE=∠DAG,∴∠GAF=∠DAE,∴∠AGD=∠GAF,∴GF=AF,∴BE+DF=AF;图(3)的证明:在BC上取点M,使BM=DF,连接AM,需证△ABM≌△ADF,∴∠BAM=∠FAD,AF=AM ∵ΔABE≌AB'E∴∠BAE=∠EAB′,∴∠MAE=∠DAE,∵AD∥BE,∴∠AEM=∠DAE,∴∠MAE=∠AEM,∴ME=MA=AF,∴BE﹣DF=AF.【强化训练】1、数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC 中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC 进行以下操作:第一步:折叠三角形纸片ABC 使点C 与点A 重合,然后展开铺平,得到折痕DE;第二步:将△ABC 沿折痕DE 展开,然后将△DEC 绕点D 逆时针方向旋转得到△DFG,点E,C 的对应点分别是点F,G,射线GF 与边AC 交于点M(点M 不与点A 重合),与边AB交于点N,线段DG 与边AC 交于点P.数学思考:(1)求DC 的长;(2)在△DEC 绕点D 旋转的过程中,试判断MF 与ME 的数量关系,并证明你的结论;问题解决:(3)在△DEC 绕点D 旋转的过程中,探究下列问题:①如图2,当GF∥BC 时,求AM 的长;②如图3,当GF 经过点B 时,AM 的长为③当△DEC 绕点D 旋转至DE 平分∠FDG 的位置时,试在图 4 中作出此时的△DFG 和射线GF,并直接写出AM 的长(要求:尺规作图,不写作法,保留作图痕迹,标记出所有相应的字母)【答案】(1) DC=5;(2)相等,理由见解析;(3)①AM=3;②AM=74;③AM=10 3√5【分析】(1)理由勾股定理求出BC即可解决问题.(2)结论:MF=ME.证明Rt△DMF≌Rt△DME(HL),即可解决问题.(3)①如图2中,作AH⊥BC于H,交FG于K.由KM∥CH,推出AK AH =AMAC,求出AK,AH即可解决问题.②证明BM=MC,设BM=MC=x,在Rt△ABM中,根据BM2=AB2+AM2,构建方程即可解决问题.③尺规作图如图4-1所示.作DR平分∠CDF,在DR上截取DG=DC,分别以D,G为圆心,DE,CE为半径画弧,两弧交于点F,△DFG即为所求.如图4-1中,连接DM,设DG交AC于T,作TH⊥CD于H,作DK平分∠CDG交TH于K,作KJ⊥DG于J.易证△DEM≌△DHK(AAS),推出EM=HK,只要求出HK即可.【解答】解:(1)如图1中,∵DE⊥AC,∴∠DEC=∠A=90°,∴DE∥AB,∵AE=EC,∴BD=DC,在Rt△ABC中,∵AB=6,AC=8,∴BC=√AB2+BC2=√62+82=10,∴CD=12BC=5.(2)结论:MF=ME.理由:如图1中,连接DM,∵∠DFM=∠DEM=90°,DM=DM,DF=DE,∴Rt△DMF≌Rt△DME(HL),∴MF=ME.(3)①如图2中,作AH⊥BC于H,交FG于K.易知AH=AB⋅ACBC =245,四边形DFKH是矩形,∴DF=KH=3,∴AK=AH-KH=95,∵KM∥CH,∴AKAH =AMAC,∴95245=AM8,∴AM=3.②如图3中,∵DG=DB=DC,∴∠G=∠DBG,∵∠G=∠C ,∴∠MBC=∠C ,∴BM=MC ,设BM=MC=x ,在Rt △ABM 中,∵BM 2=AB 2+AM 2,∴62+(8-x )2=x 2,∴x=254∴AM=AC-CM=8-254=74.故答案为74.③尺规作图如图4-1所示.作DR 平分∠CDF ,在DR 上截取DG=DC ,分别以D ,G 为圆心,DE ,CE 为半径画弧,两弧交于点F ,△DFG 即为所求.如图4-1中,连接DM ,设DG 交AC 于T ,作TH ⊥CD 于H ,作DK 平分∠CDG 交TH 于K ,作KJ ⊥DG 于J .易证△DEM ≌△DHK (AAS ),推出EM=HK ,只要求出HK 即可.∵TE ⊥DE ,TH ⊥DC ,DG 平分∠CDE ,∴TE=TH ,设TE=TH=x ,在Rt △TCH 中,x 2+22=(4-x )2,∴x=32, ∴DT =√32+(32)2=32√5, ∵DK 平分∠CDT ,KJ ⊥DT ,KH ⊥CD ,∴KJ=KH ,设KJ=KH=y ,在Rt △KTJ 中,y 2+(32√5−3)2=(32−y)2∴y =3√5−6,∴EM=3√5−6∴AM =AE −EM =4−(3√5−6)=10−3√5.2.(2016内蒙古包头市)如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上点,连接EF .(1)图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使M F ∥CA . ①试判断四边形AE M F 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF的值.【答案】(1)52;(2)①四边形AE M F 为菱形;②4√109;(3)32. 【分析】试题分析:(1)先利用折叠的性质得到EF ⊥AB ,△AEF ≌△DEF ,则S △AEF ≌S △DEF ,则易得S △ABC =4S △AEF ,再证明Rt △AEF ∽Rt △ABC ,然后根据相似三角形的性质得到=()2,再利用勾股定理求出AB即可得到AE 的长;(2)①通过证明四条边相等判断四边形AEMF 为菱形;②连结AM 交EF 于点O ,如图②,设AE=x ,则EM=x ,CE=4﹣x ,先证明△CME ∽△CBA 得到==,解出x 后计算出CM=,再利用勾股定理计算出AM ,然后根据菱形的面积公式计算EF ;(3)如图③,作FH ⊥BC 于H ,先证明△NCE ∽△NFH ,利用相似比得到FH :NH=4:7,设FH=4x ,NH=7x ,则CH=7x ﹣1,BH=3﹣(7x ﹣1)=4﹣7x ,再证明△BFH ∽△BAC ,利用相似比可计算出x=,则可计算出FH 和BH ,接着利用勾股定理计算出BF ,从而得到AF 的长,于是可计算出的值.【解答】(1)如图①,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF≌S△DEF,∵S四边形ECBF=3S△EDF,∴S△ABC=4S△AEF,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,∴AB==5,∵∠EAF=∠BAC,∴Rt△AEF∽Rt△ABC,∴=()2,即()2=,∴AE=;(2)①四边形AEMF为菱形.理由如下:如图②,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵MF∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=EM=MF=AF,∴四边形AEMF为菱形;②连结AM交EF于点O,如图②,设AE=x,则EM=x,CE=4﹣x,∵四边形AEMF为菱形,∴EM∥AB,∴△CME∽△CBA,∴==,即==,解得x=,CM=,在Rt△ACM中,AM===,∵S菱形AEMF=EF•AM=AE•CM,∴EF=2×=;(6)如图③,作FH⊥BC于H,∵EC∥FH,∴△NCE∽△NFH,∴CN:NH=CE:FH,即1:NH=:FH,∴FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,∵FH∥AC,∴△BFH∽△BAC,∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=,∴FH=4x=,BH=4﹣7x=,在Rt△BFH中,BF==2,∴AF=AB﹣BF=5﹣2=3,∴=.3.如图1,四边形的对角线相交于点,,,,.(1)填空:与的数量关系为;(2)求的值;(3)将沿翻折,得到(如图2),连接,与相交于点.若,求的长.【答案】(1)∠BAD+∠ACB=180°;(2);(3)1.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出,可得,可得4y2+2xy﹣x2=0,即,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得,可得,即,由此即可解决问题;【解答】(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴,∴,∴4y2+2xy﹣x2=0,∴,∴(负根已经舍弃),∴.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD ∽△ACB ,∴∠DAE=∠ABC=∠DA′C , ∴∠DA′C+∠A′CB=180°,∴A′D ∥BC , ∴△PA′D ∽△PBC ,∴,∴,即∴PC=1.4.Rt △ABC 中,∠ACB =90°,AC =3,BC =7,点P 是边AC 上不与点A 、C 重合的一点,作PD ∥BC 交AB 边于点D .(1)如图1,将△APD 沿直线AB 翻折,得到△AP 'D ,作AE ∥PD .求证:AE =ED ; (2)将△APD 绕点A 顺时针旋转,得到△AP 'D ',点P 、D 的对应点分别为点P '、D ', ①如图2,当点D '在△ABC 内部时,连接P ′C 和D 'B ,求证:△AP 'C ∽△AD 'B ;②如果AP :PC =5:1,连接DD ',且DD '=√2AD ,那么请直接写出点D '到直线BC 的距离.【答案】(1)见解析;(2)①见解析;②点D '到直线BC 的距离为176或536 【分析】(1)由折叠的性质和平行线的性质可得∠EAD =∠ADP =∠ADP ',即可得AE =DE ;(2)①由题意可证△APD ∽△ACB ,可得APAC =ADAB ,由旋转的性质可得AP =AP ',AD =AD ',∠PAD =∠P 'AD ',即∠P 'AC =∠D 'AB ,,则△AP 'C ∽△AD 'B ;②分点D '在直线BC 的下方和点D '在直线BC 的上方AP′AC =AD′AB两种情况讨论,根据平行线分线段成比例,可求PD =356,通过证明△AMD '≌△DPA ,可得AM =PD =356,即可求点D '到直线BC 的距离.【解答】证明:(1)∵将△APD 沿直线AB 翻折,得到△AP 'D , ∴∠ADP '=∠ADP , ∵AE ∥PD , ∴∠EAD =∠ADP , ∴∠EAD =∠ADP ', ∴AE =DE(2)①∵DP ∥BC ,∴△APD∽△ACB,∴APAC =ADAB,∵旋转,∴AP=AP',AD=AD',∠PAD=∠P'AD',∴∠P'AC=∠D'AB,AP′AC =AD′AB,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴APAC =PDBC=56,∵BC=7,∴PD=356,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F=12D'D,∠ADF=∠AD'F,∵cos∠ADF=DFAD =12D′DAD=√22ADAD√22,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=356,∵CM=AM﹣AC=356﹣3,∴CM =176,∴点D '到直线BC 的距离为176若点D '在直线BC 的上方,如图,过点D '作D 'M ⊥AC ,交CA 的延长线于点M ,同理可证:△AMD '≌△DPA , ∴AM =PD =356,∵CM =AC +AM , ∴CM =3+356=356,∴点D '到直线BC 的距离为356综上所述:点D '到直线BC 的距离为176或536;。

强化训练 图形的折叠问题

强化训练 图形的折叠问题

(建议用时45分钟)基础巩固1.(2022·烟台模拟)如图,在△ABC中,∠ACB=90°,AC=8,BC=6,将△ADE沿DE翻折,使点A与点B重合,则CE的长为()A.198B.2C.254D.74D解析:设CE=x,则AE=8-x=EB.在Rt△BCE中,BE2=CE2+BC2,即(8-x)2=x2+62,解得x=74.故选D.2.(2022·泰山区模拟)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A. 5 B.35 2C.25D.45 C解析:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD.∴∠EFC=∠AEF.由折叠得∠EFC =∠AFE , ∴∠AFE =∠AEF .∴AE =AF =5. 由折叠得FC =AF ,OA =OC , ∴BC =3+5=8. 在Rt △ABF 中,AB =52-32=4, 在Rt △ABC 中,AC =42+82=45,∴OA =OC =25.故选C .3.(2022·舟山)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知∠AOB =120°,OA =6,则EF 的度数为________;折痕CD 的长为________.60° 46 解析:作O 关于CD 的对称点M ,连接MD 、ME 、MF 、MO ,MO 交CD 于N ,则ON =MN .∵将CD ︵沿弦CD 折叠,∴点D 、E 、F 、C 都在以M 为圆心,半径为6的圆上.∵将CD ︵沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F ,∴ME ⊥OA ,MF ⊥OB . ∴∠MEO =∠MFO =90°.∵∠AOB =120°,∴四边形MEOF 中,∠EMF =360°-∠AOB -∠MEO -∠MFO =60°.即EF ︵的度数为60°.∵∠MEO =∠MFO =90°,ME =MF ,MO =MO , ∴△MEO ≌△MFO (HL).∴∠EMO =∠FMO =12∠FME =30°. ∴OM =ME cos ∠EMO =6cos 30°=43.∴MN =23. ∵MO ⊥DC , ∴DN =DM 2-MN 2=62-(23)2=26=12CD .∴CD =46.故答案为60°,46.4.(2022·东平月考)如图,在矩形纸片ABCD 中,AB =6,BC =9,M 是BC 上的点,且CM =3,将矩形纸片ABCD 沿过点M 的直线折叠,使点D 落在AB 上的点P 处,点C 落在点C ′处,折痕为MN ,则线段AN 的长是________.4 解析:连接PM ,如图.∵AB =6,BC =9,CM =3, ∴BM =BC -CM =9-3=6.由折叠性质得,CD =PC ′=6,∠C =∠PC ′M =∠PBM =90°,C ′M =CM =3, 在Rt △PBM 和Rt △MC ′P 中, ⎩⎪⎨⎪⎧PM =MP BM =CP, ∴Rt △PBM ≌Rt △MC ′P (HL). ∴PB =C ′M =3.∴P A =AB -PB =6-3=3. 设AN =x ,则ND =9-x =PN . 在Rt △APN 中,AN 2+AP 2=PN 2, 即x 2+32=(9-x )2,解得x =4. ∴AN 的长是4. 故答案为4.5.(2021·抚顺)如图,将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕EF 与AC 相交于点O ,连接BO .若AB =4,CF =5,则OB 的长为________.25 解析:连接AF ,过O 作OH ⊥BC 于H ,如图:∵将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕EF 与AC 相交于点O , ∴AF =CF =5,OA =OC . 在Rt △ABF 中,BF =AF 2-AB 2=52-42=3,∴BC =BF +CF =8.∵OA=OC,OH⊥BC,AB⊥BC,∴O为AC中点,OH∥AB.∴OH是△ABC的中位线.∴BH=CH=12BC=4,OH=12AB=2.在Rt△BOH中,OB=BH2+OH2=42+22=25.故答案为25.6.(2021·巴中)如图,矩形AOBC的顶点A,B在坐标轴上,点C的坐标是(-10,8),点D在AC上,将△BCD沿BD翻折,点C恰好落在OA边上点E处,则tan∠DBE等于()A.34B.35C.33D.12D解析:∵四边形AOBC为矩形,且点C(-10,8),∴AC=OB=8,AO=BC=10,∠C=∠A=∠EOB=90°.∵△BCD沿BD翻折,点C恰好落在OA边上点E处,∴CD=DE,BC=BE=10.在Rt△OBE中,OE=BE2-OB2=102-82=6.设AD=m,则CD=DE=8-m.∵∠ADE+∠AED=∠AED+∠OEB=90°,∴∠ADE=∠OEB.∵∠A=∠AOB,∴△ADE∽△OEB.∴DADE=OEBE.即m8-m=610.解得m=3.∴DE=8-3=5.在Rt△BDE中,DE=5,BE=10,∴tan∠DBE=510=12.另一种思路:OE=6,则AE=4.在Rt△ADE中,(8-m)2+42=m2,解得m=5.∴DE=5.在Rt△BDE中,BE=10,∴tan∠DBE=510=12.故选D.能力提升7.(2022·宁阳检测)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD平分∠EFB,则AD的长为()A.259B.258C.157D.207D解析:作DH⊥BC于H.在Rt△ABC中,∠ACB=90°,由勾股定理得AB=32+42=5.∵将△ADE沿DE翻折得△DEF,∴AD=DF,∠A=∠DFE.∵FD平分∠EFB,∴∠DFE=∠DFH.∴∠DFH=∠A.设DH=3x.在Rt△DHF中,sin∠DFH=sin A=35,∴DF=5x.∴BD=5-5x.∵△BDH∽△BAC,∴BDAB=DHAC.∴5-5x5=3x4.∴x=47.∴AD=5x=207.故选D.8.(2021·泰安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE.若DE=EF,CE=2,则AD的长为______.4+22解析:由翻折的性质可知,EB=EB′,∠B =∠AB ′E =∠EB ′D =90°.在Rt △EBF 和Rt △EB ′D 中,⎩⎪⎨⎪⎧EF =ED EB =EB ′,∴Rt △EBF ≌Rt △EB ′D (HL). ∴BF =B ′D .∵四边形ABCD 是矩形, ∴∠C =∠CDB ′=∠EB ′D =90°. ∴四边形ECDB ′是矩形. ∴DB ′=EC =2. ∴BF =EC =2.由翻折的性质可知,BF =FG =2,∠F AG =45°,∠AGF =∠B =90°,∴AG =FG =2.∴AF =22.∴AB =AB ′=2+22. ∴AD =AB ′+DB ′=4+22. 故答案为4+22.9.(2022·岱岳区模拟)如图,边长为1的正方形ABCD 中,点E 为AD 的中点,连接BE ,将△ABE 沿BE 折叠得到△FBE ,BF 交AC 于点G ,求CG 的长.答案:327解析:延长BF 交CD 于H ,连接EH . ∵四边形ABCD 是正方形,∴AB ∥CD ,∠D =∠DAB =90°,AD =CD =AB =1. ∴AC =AD 2+CD 2=12+12=2.由翻折的性质可知,AE =EF ,∠EAB =∠EFB =90°,∠AEB =∠FEB . ∵点E 是AD 的中点,∴AE =DE =EF . 在Rt △EHD 和Rt △EHF 中,⎩⎪⎨⎪⎧EH =EH ED =EF ,∴Rt △EHD ≌Rt △EHF (HL). ∴∠DEH =∠FEH . ∵∠DEF +∠AEF =180°, ∴2∠DEH +2∠AEB =180°. ∴∠DEH +∠AEB =90°. ∵∠AEB +∠ABE =90°, ∴∠DEH =∠ABE . ∴△EDH ∽△BAE . ∴ED AB =DH EA =12. ∴DH =14,CH =34. ∵CH ∥AB , ∴CG GA =CH AB =34. ∴CG =37AC =327.10.(2022·天津)将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(1)如图1,当t=1时,求∠O′QA的大小和点O′的坐标;(2)如图2,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为33,则t的值可以是__________.(请直接写出两个不同....的值即可)答案:(1)∠O′QA=60°点O′的坐标为(32,32)(2)O′E=3t-6,其中t的取值范围是2<t<3(3)3或103(答案不唯一,满足3≤t<23即可)解析:(1)在Rt△POQ中,∠OQP=90°-∠OPQ=60°.根据折叠,知△PO′Q≌△POQ,∴O′Q=OQ,∠O′QP=∠OQP=60°.∵∠O′QA=180°-∠O′QP-∠OQP,∴∠O′QA=60°.如图,过点O′作O′H⊥OA,垂足为H,则∠O′HQ=90°.∴在Rt△O′HQ中,得∠QO′H=90°-∠O′QA=30°.由t=1得OQ=1,则O′Q=1.在Rt△O′HQ中,QH=12O′Q=12,O′H=O′Q2-QH2=32.∴OH=OQ+QH=3 2.∴点O′的坐标为(32,32).(2)∵点A(3,0),∴OA=3.又∵OQ=t,∴QA=OA-OQ=3-t.由(1)知O′Q=t,∠O′QA=60°.∵四边形OABC是矩形,∴∠OAB=90°.在Rt△EAQ中,∠QEA=90°-∠EQA=30°.∴QA=12QE.∴QE=2QA=2(3-t)=6-2t.∵O′E=O′Q-QE,∴O′E=3t-6.如图,当点O′落在AB上时,OQ=O′Q=t,∠AQO′=60°,则∠AO′Q=30°.∴AQ=12O′Q=12t.∴t+12t=3.解得t=2.∴t的取值范围是2<t<3.(3)当点Q与点A重合时,AO′=3,∠DAO′=30°.∴AD=AO′cos 30°=23.则S△ADP=12×23×3=33.∴t=3时,重合部分的面积是33.从t=3之后重合部分的面积始终是33.当P与C重合时,OP=6,∠OPQ=30°,此时t=OP·tan 30°=23.∵P不能与C重合,∴t<23.∴3≤t<23都符合题意.拓展训练11.(2022·青岛)如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC 的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有:________.(填写序号)①BD=8;②点E到AC的距离为3;③EM =103;④EM∥AC.①④解析:∵AB=AC,BC=16,AD⊥BC,∴BD=DC=12BC=8.故①正确.如图,过点E作EF⊥AB于F,EH⊥AC于H.∵AD⊥BC,AB=AC,∴AD平分∠BAC.∴EH=EF.∵BE是∠ABD的角平分线,ED⊥BC,EF⊥AB,∴EF=ED.∴EH=ED=4.故②不正确.∵将∠C沿GM折叠使点C与点E恰好重合,∴EM=MC,DM+MC=DM+EM=CD=8.设DM=x,则EM=8-x.在Rt△EDM中,EM2=DM2+DE2,DE=4,∴(8-x)2=42+x2.解得x=3.∴EM=MC=5.故③不正确.设AE=a,则AD=AE+ED=4+a,BD=8,AB2=(4+a)2+82.∵S△ABES△BDE=12AB·EF12BD·ED=12AE·BD12ED·BD,∴AEED=ABBD.∴a4=AB8.∴AB=2a.∴(4+a)2+82=(2a)2.解得a=203或a=-4(舍去).∴tan C=ADDC=203+48=43.∵tan∠EMD=EDDM=43,∴∠C=∠EMD.∴EM∥AC.故④正确.故答案为①④.12.(2022·肥城检测)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于M,N两点,当B′为线段MN的三等分点时,BE 的长为()A.32B.322C.32或322D.322或355D解析:①当MB′=13MN时,如图.Rt△AMB′中,AB′=AB=3,MB′=13AB=1,∴AM=AB′2-MB′2=22.∵AD∥BC,AB⊥BC,MN⊥AD,∴四边形ABNM是矩形.∴BN=AM=22,MN=AB=3.设BE=x,则B′E=x,EN=22-x.Rt△B′EN中,B′N=MN-MB′=2,EN2+B′N2=B′E2,∴(22-x)2+22=x2.解得x=32 2.∴BE的长为32 2.②当NB′=13MN时,如图:∵NB′=13MN=1,∴MB′=2.∴AM=5.设BE=y,同①可得y=355.∴BE的长为355.综上所述,BE的长为322或355.故选D.。

[数学]-专项9.8 四边形中的折叠问题专项训练(30道)(举一反三)(苏科版)(原版)

[数学]-专项9.8 四边形中的折叠问题专项训练(30道)(举一反三)(苏科版)(原版)

专题9.8 四边形中的折叠问题专项训练(30道)【苏科版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可加强学生对折叠问题的理解!一.选择题(共10小题)1.(2022•绥化一模)如图,在一张矩形纸片ABCD中AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的点H处,点D落在点G处,连接CE,CH.有以下四个结论:①四边形CFHE是菱形;②CE平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=5.以上结论中,其中正确结论的个数有()A.1个B.2个C.3个D.4个2.(2022•沿河县二模)如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A (10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为2√34−6;④当OD⊥AD时,BP=2.其中结论正确的有()A.1个B.2个C.3个D.4个3.(2022春•溧阳市期末)如图,把正方形纸片ABCD沿对边中点所在直线折叠后展开,折痕为MN;再的值是()过点D折叠,使得点A落在MN上的点F处,折痕为DE,则EMFNA.√3B.√3−1 C.2−√3D.3−√34.(2022•衢州模拟)如图矩形ABCD纸片,我们按如下步骤操作:(1)以过点A的直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于点E;(2)将纸片展开后,再次折叠纸片,以过点E所在的直线为折痕,使点A落在BC或BC的延长线上,折痕EF交直线AD或直线AB于F,则∠AFE的值为()A.22.5°B.67.5°C.22.5°或67.5°D.45°或135°5.(2022•嘉兴二模)如图,矩形纸片ABCD中,AD=6,E是CD上一点,连结AE,△ADE沿直线AE 翻折后点D落到点F,过点F作FG⊥AD,垂足为G.若AD=3GD,则DE的值为()A.√5B.52C.6√55D.5√336.(2022春•宝安区期末)如图,在长方形ABCD中,AD∥BC,AB∥CD,E在AD上.AD=m,AE=n (m>n>0).将长方形沿着BE折叠,A落在A′处,A'E交BC于点G,再将∠A′ED对折,点D落在直线A′E上的D′处,C落在C′处,折痕EF,F在BC上,若D、F、D′三点共线,则BF=()A .m +12nB .m−n 2C .m+n 2D .m ﹣n7.(2022春•普洱期末)有一张长方形纸片ABCD ,按下面步骤进行折叠:第一步:如图①,点E 在边BC 上,沿AE 折叠,点B 落在点B '处;第二步:如图②,沿EB '折叠,使点A 落在BC 延长线上的点A '处,折痕为EF .下列结论中错误的是( )A .△AEF 是等边三角形B .EF 垂直平分AA 'C .CA '=FD D .EA '=AF8.(2022•槐荫区二模)如图,菱形ABCD 的边AB =8,∠B =60°,P 是AB 上一点,BP =3,Q 是CD 边上一动点,将四边形APQD 沿直线PQ 折叠,A 的对应点A ′.当CA ′的长度最小时,CQ 的长为( )A .5B .7C .8D .6.59.(2022春•泰兴市月考)如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为8,∠B =120°,则EF 的值是( )A .2√3B .4C .4√3D .610.(2022•资阳)如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB =√6,EF =2,∠H =120°,则DN 的长为( )A .√32B .√6+√32C .√6−√3D .2√3−√6二.填空题(共10小题)11.(2022•成华区模拟)如图,在矩形纸片ABCD 中,AB =8,BC =6,点E 是AD 的中点,点F 是AB 上一动点.将△AEF 沿直线EF 折叠,点A 落在点A '处.在EF 上任取一点G ,连接GC ,GA ',CA ′,则△CGA '的周长的最小值为 .12.(2022•安徽二模)如图(1),四边形ABCD 是正方形,点E 是边AD 上的点,将△CDE 沿着直线CE 折叠,使得点D 落在AC 上,对应点为F .(1)CD EF = ;(2)如图(2),点G 是BC 上的点,将△ABG 沿着直线AG 折叠,使得点B 落在AC 上,对应点为H ,连接FG ,EH ,则S 正方形ABCDS 四边形EFGH = .13.(2022•邓州市一模)如图(1)是一张菱形纸片,其中∠A=135°,AB=√3+1,点E为BC边上一动点.如图(2),将纸片沿AE翻折,点B的对应点为B';如图(3),将纸片再沿AB'折叠,点E的对应点为E'.当AE'与菱形的边垂直时,BE的长为.14.(2022春•成都期末)如图,在边长为2的正方形ABCD中,点E,F分别是边BC,AD上的点,连接EF,将四边形ABEF沿EF折叠,点B的对应点G恰好落在CD边上,点A的对应点为H,连接BH.则BH+EF的最小值是.15.(2022•微山县一模)已知矩形ABCD中,AB=6.点E为AD上一个动点,连接CE,将△CDE沿CE 折叠,点D落在点F处,当点F为线段AB的三等分点时,AE的长.16.(2022春•蜀山区期末)如图,矩形ABCD中,AB=2,∠DAC=30°,点M是BC边的中点,点P 是对角线AC上一动点(0<CP<1.5),将△CPM沿PM折叠,点C落在点C'处,线段MC′交AC于点N,连接AC,当△ANC′是直角三角形时,线段AC′的长度为.17.(2022春•江汉区期末)如图,将矩形ABCD沿直线EF折叠,使点A与点C重合,点B落在点G的值处,折痕交AD于点E,交BC于点F,若△CEF的面积与△CDE的面积比为4:1,则EFDE 是.18.(2022•庐阳区校级三模)如图1,在五边形纸片ABCDE中,AB=1,∠A=120°,将五边形纸片沿BD折叠,点C落在点P处,在AE上取一点Q,将△ABQ和△EDQ分别沿BQ、DQ折叠,点A、E恰好落在点P处.(1)∠C+∠E=°;=.(2)如图2,若四边形BCDP是菱形,且Q、P、C三点共线时,则BQAB19.(2022•长春模拟)如图,在矩形ABCD中,AB=4,BC=6,点E是BC的中点,点F在AD上运动,沿直线EF折叠四边形CDFE,得到四边形GHFE,其中点C落在点G处,连接AG,AH,则AG 的最小值是.20.(2022•沈河区二模)如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.三.解答题(共10小题)21.(2022•遵义)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E 处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;的值.(2)若△CMN的面积与△CDN的面积比为3:1,求MNDN22.(2022•张家港市模拟)已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF、CE和EF,设EF与AC的交点为O.(1)求证:四边形AFCE是菱形;(2)若AE=2√13cm,△ABF的为面积12cm2,求△ABF的周长.23.(2022•淮安)已知:平行四边形ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿DE、BF折叠四边形ABCD,A、C两点恰好都落在O点处,且四边形DEBF为菱形(如图).(1)求证:四边形ABCD是矩形;的值.(2)在四边形ABCD中,求ABBC24.(2022•南岗区模拟)已知:将矩形ABCD折叠,使点A与点C重合,折痕为EF,其中点E,F分别在AB,CD上,点D的对应点为点G,连接AF.(1)如图1,求证:四边形AECF为菱形;(2)如图2,若∠CFG=60°,连接AC交EF于点O,连接DO,GO,在不添加任何辅助线的情况下,请直接写出图2中所有的等边三角形.25.(2022春•浦东新区期末)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)求点D的坐标;(2)若点N是平面内任一点,在x轴上是否存在点M,使M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.26.(2022春•江岸区期中)如图,将矩形ABCD纸片对折,设折痕为MN,再通过折叠使B点落在折痕MN上的B',设两条折痕的交点为F,连接BF、EB'、BB'、AB'.(1)求∠ABB'的度数;(2)请判断四边形BFB'E的形状,并说明理由.27.(2022•西固区校级模拟)在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:AE⊥BF;(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4,求QF的值28.(2022秋•梅列区校级期中)如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.29.(2022•道外区三模)将等腰三角形ABC折叠,使顶点B与底边AC的中点D重合,折线分别交AB,BC于点F,E,连接DF,DE.(1)如图1,求证:四边形DFBE是菱形;(2)如图2,延长FD至点G,使FD=DG,连接GC,并延长GC交FE的延长线于点H,在不添加任何辅助线的情况下,请直接写出图2中的所有平行四边形(不包括以BF为一边的平行四边形).30.(2022秋•宜宾期末)如图矩形纸片ABCD的边长AB=a,BC=b(a<b),点M、N分别为边AD、BC上两点(点A、C除外),连接MN.若对角线BD与MN交于点O,分别沿BM、DN折叠,折叠后点A、C恰好都落在点O处,并且得到的四边形是菱形BNDM.请你探索a、b之间的数量关系,并求出当a=√3时,菱形BNDM的面积.。

专题训练(二) 特殊三角形中的折叠问题

专题训练(二) 特殊三角形中的折叠问题

专题训练(二) 特殊三角形中的折叠问题
介绍
本文档将讨论特殊三角形中的折叠问题。

特殊三角形包括等边
三角形和等腰三角形。

我们将深入探讨如何正确地折叠这些三角形,以及折叠过程中可能出现的问题和解决方案。

等边三角形的折叠问题
等边三角形的每一边都相等,并且每个角都是60度。

折叠等
边三角形时,我们需要确保折叠线与三角形的边相切,并且每个顶
点都重合。

这样才能确保折叠后形成一个三角形。

等腰三角形的折叠问题
等腰三角形有两条边相等,并且两个底角相等。

折叠等腰三角
形时,我们需要确保折叠线与底边重合,并且顶点位于底边的中垂
线上。

这样才能确保折叠后形成一个三角形。

折叠过程中可能出现的问题和解决方案
在折叠特殊三角形的过程中,可能会遇到以下问题和解决方案:
1. 无法准确地将折叠线与三角形的边相切时,可以使用尺子或直角工具来辅助确定折叠线的位置。

2. 折叠后形成的三角形不完整或变形时,可能是由于折叠线位置不准确或不规整造成的。

可以重新调整折叠线的位置,或者使用更精确的工具进行折叠。

结论
特殊三角形中的折叠问题需要注意折叠线的位置和准确性,以确保折叠后形成一个完整的三角形。

在折叠过程中遇到问题时,可以使用合适的工具和调整手法来解决。

折叠特殊三角形不仅可以提高我们的几何认知能力,还能培养我们的空间想象力。

专题训练(一) 正方形中的折叠问题

专题训练(一) 正方形中的折叠问题

专题训练(一) 正方形中的折叠问题在这份文档中,我们将讨论正方形中的折叠问题。

正方形折叠问题是一个有趣的数学问题,需要我们探索在一个正方形纸张上进行折叠的可能性和性质。

问题描述假设我们有一张边长为L的正方形纸张。

我们可以在任意位置将纸张折叠,并将其折叠成较小的正方形。

折叠操作可以进行多次,每次折叠都会生成一个新的正方形。

我们的问题是:通过连续的折叠操作,是否可以使得最终的正方形尺寸变为边长为a的正方形?如果可以,我们还需要考虑的问题是:对于任意给定的边长a,我们需要进行多少次折叠操作才能达到目标?解决方案正方形中的折叠问题可以通过简单的数学分析和逻辑推理来解决。

首先,我们需要考虑每次折叠操作会如何改变正方形的边长。

假设我们将正方形纸张沿着对角线折叠一次。

此时,我们得到了一个边长为L/√2的正方形。

接着,我们再次沿着新生成的正方形的对角线进行折叠。

这时,我们会得到一个边长为(L/√2)/√2 =L/2的正方形。

通过上述分析,我们可以看到每次折叠操作都会使正方形的边长减半。

也就是说,经过n次折叠操作后,正方形的边长将变为L/(2^n)。

为了使最终的正方形边长为a,我们需要解方程L/(2^n) = a,求解得n = log2(L/a)。

因此,对于给定的边长a,我们需要进行log2(L/a)次折叠操作才能达到目标。

结论通过上述的分析,我们得出了正方形中的折叠问题的解决方案。

通过连续的折叠操作,我们可以将正方形纸张折叠成所需的目标尺寸。

同时,我们还确定了对于给定的目标尺寸,需要进行的折叠次数。

这个问题不仅有趣,而且具有实际应用价值。

在纸艺、几何学和数学教育等领域,都可以通过这个问题进行探索和教学。

希望这份文档对您理解正方形中的折叠问题有所帮助!。

专题训练(二) 特殊梯形中的折叠问题

专题训练(二) 特殊梯形中的折叠问题

专题训练(二) 特殊梯形中的折叠问题介绍本文档将讨论特殊梯形中的折叠问题。

我们将探讨在给定特殊梯形的情况下,如何正确地折叠它们以得到特定的形状。

问题描述特殊梯形是一种具有不同边长的梯形,其中一个内角为直角。

我们需要根据给定的特殊梯形,按照一定步骤进行折叠,使其达到特定的形状。

方法步骤以下是折叠特殊梯形的步骤:1. 首先,观察给定的特殊梯形。

了解其边长、内角情况。

2. 然后,根据特殊梯形的内角为直角,我们可以将其折叠成一个正方形和一个直角三角形。

确保边缘对齐并保持折叠的准确性。

3. 接下来,继续将正方形折叠。

将整个正方形沿中心对称线对折,确保边缘对齐。

4. 最后,打开折叠好的形状,你将得到一个新的特殊梯形,其中两个内角为直角。

请注意,这只是一种折叠方法,具体操作可能因梯形的具体形状而有所不同。

应用范例以下是一个应用范例,展示了如何使用上述步骤折叠特定的特殊梯形:给定一个特殊梯形,其中底边长为10cm,顶边长为6cm,高度为8cm。

按照上述步骤进行折叠,最终我们将得到一个新的特殊梯形,其中两个内角为直角。

结论通过正确折叠特殊梯形,我们可以得到新的形状,其中两个内角为直角。

折叠过程需要根据特殊梯形的具体形状进行调整,但基本步骤保持一致。

以上是对特殊梯形中的折叠问题的讨论和解决方法。

通过理解和掌握这些方法,我们可以有效地解决类似的问题。

---> 注意:本文档中的所有内容均为给出的假设情况下提供的建议和信息。

在实际操作中,请根据具体情况和需求进行判断和决策。

中考数学中考最后压轴题训练---折叠旋转问题

中考数学中考最后压轴题训练---折叠旋转问题

一.折叠类1. (13江苏徐州卷)在平面直角坐标系中,已知矩形ABCD 中,边2AB =,边1AD =,且AB 、AD 分别在x 轴、y 轴的正半轴上,点A 与坐标原点重合.将矩形折叠,使点A 落在边DC 上,设点A '是点A 落在边DC 上的对应点.(1)当矩形ABCD 沿直线12y x b =-+折叠时(如图1),求点A '的坐标和b 的值;(2)当矩形ABCD 沿直线y kx b =+折叠时,① 求点A '的坐标(用k 表示);求出k 和b 之间的关系式; ② 如果我们把折痕所在的直线与矩形的位置分 为如图2、3、4所示的三种情形,请你分别写出每种情形时k 的取值范围.(将答案直接填在每种情形下的横线上) (--当如图1、2折叠时,求D A '的取值范围?)k 的取值范围是; k 的取值范围是 ;k 的取值范围是 ;[解] (1)如图答5,设直线12y x b =-+与OD 交于点E ,与OB 交于点F ,连结A O ',则OE = b ,OF = 2b ,设点A '的坐标为(a ,1)因为90DOA A OF ''∠+∠=︒,90OFE A OF '∠+∠=︒, 所以DOA OFE '∠=∠,所以△DOA '∽△OFE .所以DA DO OE OF '=,即12a b b=,所以12a =. 所以点A '的坐标为(12,1).连结A E ',则A E OE b '==.在R t △DEA '中,根据勾股定理有222A E A D DE ''=+ ,即2221()(1)2b b =+-,解得58b =.(2)如图答6,设直线y kx b =+与OD 交于点E ,与OB 交于点F ,连结A O ',则OE = b ,bOF k =-,设点A '的坐标为(a ,1).因为90DOA A OF ''∠+∠=︒,90OFE A OF '∠+∠=︒. 所以DOA OFE '∠=∠,所以△DOA '∽△OFE .(图1)所以DA DOOE OF'=,即1a b b k=-,所以a k =-. 所以A '点的坐标为(k -,1).连结A E ',在Rt △DEA '中,DA k '=-,1DE b =-,A E b '=. 因为222A E A D DE ''=+,所以222()(1)b k b =-+-.所以212k b +=.在图答6和图答7中求解参照给分. (3)图13﹣2中:21k -≤≤-; 图13﹣3中:1-≤k≤2-+ 图13﹣4中:20k -≤[点评]这是一道有关折叠的问题,主要考查一次函数、四边形、相似形等知识,试题中贯穿了方程思想和数形结合的思想,请注意体会。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

折叠问题训练
1. 如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB ∥且12EF AB =;②BAF CAF ∠=∠;③AF S ADFE ⋅=2
1四边形2BDF FEC BAC ∠+∠=∠,正确的个数是( ) A .1 B .2 C .3 D .4
2、(2011深圳)如图1,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm , 先沿对角线BD 对折,点C 落在点C′的位置,BC′交AD 于点G .
(1)求证:AG=C′G; (2)如图2,再折叠一次,使点D 与点A 重合,得折痕EN ,EN 交AD 于点
M ,求EM 的长.
3、把矩形ABCD 沿BD 折叠至如上图所示的情形,请你猜想四边形ABDE 是什么图形,并证明你的猜想。

4. 如图,把一张矩形纸片ABCD 沿BD 对折,使C 点落在E 处,BE 与AD 相交于点O ,写出一组相等的线段 (不包括AB =CD 和AD =BC )。

填空第5题图
O E D C B A 第8题图
A
问题二图 第4题 第6题
5、在□ABCD 中,AB =6,AD =8,∠B 是锐角,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处,如果AE 过BC 的中点O ,则□ABCD 的面积等于( )
A 、48
B 、610
C 、712
D 、224
6.纸片△ABC 中,∠A =650,∠B =750,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=200,则∠2的度数为 。

1.如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,∠BEG=60°.现沿直线E 将纸片折叠,使点B 落在纸片上的点H 处,连接AH ,则与∠BEG 相等的角的个数为( )
A 、4
B 、3
C 、2
D 、1
2.如图,梯形ABCD 中,AD∥BC,AB=DC ,∠ABC=72°,现平行移动腰AB 至DE 后,再将△DCE 沿DE 折叠,得△DC′E,则∠EDC′的度数是___度.
3.动手操作:在矩形纸片ABCD 中,AB=3,AD=5.如图所示,折叠纸片,使点A 落在BC 边上的A’处,折痕为PQ ,当点A’在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A’在BC 边上可移动的最大距离为____.
6.在Rt△ABC 中,∠BAC=90°,AB=3,M 为边BC 上的点,连接AM (如图所示).如果将△ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是_.
7.如图,矩形纸片ABCD ,BC=2,∠ABD=30度.将该纸片沿对角线BD 翻折,点A 落在点E 处,EB 交DC 于点F ,则点F 到直线DB 的距离为__________
8.等边△ABC 的边长为1cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A′处,且点A′在△ABC 外部,则阴影部分图形的周长为________cm .
1题图 2题图 3题图
6题图 7题图 8题图。

相关文档
最新文档