八年级下册几何证明题

合集下载

八年级下册几何证明题精选

八年级下册几何证明题精选

八年级下册几何证明题精选1、如图,矩形ABCD 中,AC 与BD 交于O 点,BE AC ⊥于BD CF E ⊥,于F ,求证:CF BE =2、 如图,在平行四边形ABCD 中,DN CL BL AN ,,,分别为D C B A ∠∠∠∠,,,的角平分线,试证明:四边形MNKL 是矩形3、 如图,矩形ABCD 的对角线相交于点O ,DE ∥CE AC ,∥CE DE DB ,,相交于E ,请判断四边形DOCE 的形状,并说明理由4、 如图,△ABC 中,B ACB ∠︒=∠,90的平分线交高CD 于点E ,交AC 于F ,G AB FG ,⊥为垂足,请证明:四边形CEGF 是菱形5、 如图,平行四边形ABCD 的对角线相交于点O ,EF 经过点O ,分别与边AB ,DC 相交于点F E ,,点N M ,分别是线段OC OA ,的中点,求证:四B边形ENFM 是平行四边形6、 已知,如图,点M H F E ,,,分别是正方形ABCD 的四条边上的点,并且DM CH BF AE ===,求证:四边形EFHM 是正方形FB7、 如图,在梯形ABCD 中,N M ,分别为梯形两腰AB ,CD 的中点,ME ∥AN 交BC 于点E ,试证明:NE AM =8、 如图,在△ABC 中,AC AB =,CE BD ,分别为ACB ABC ∠∠,的平分线,求证:四边形EBCD 是等腰梯形9、 如图,在直角梯形纸片ABCD 中,AB ∥DC ,︒=∠90A ,CD 〉AD ,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E ,折痕为DF ,连结EF 并展开纸片。

(1)求证:四边形ADEF 是正方形;(2)取线段AF 的中点G ,连结EG ,结果CD BG =,试说明四边形GBCE 是等腰梯形10、 如图,在平行四边形ABCD 中,点E 是AD 的中点,BE 的延长线与CD的延长线交于点P (1)求证:△≅ABE △DFE ;(2)试连结AF BD ,,判断四边形ABDF 的形状,并证明你的结论11、 如图,在正方形ABCD 中,F E ,分别是BC AB ,边上的点,且BF AE =,请问(1)AF 与DE 相等吗为什么;(2)AF 与DE 是否垂直?说明你的理由12、13、 已知,如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连接AE ,CF ;(1)求证:CE AF =;(2)若EF AC =,试判断四边形AFCE 是什么样的四边形,并证明你的结论。

八年级数学十二道全等几何证明题 难度适中型

八年级数学十二道全等几何证明题 难度适中型

全等几何证明(1)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°.E为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;全等几何证明(2)如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE,求证:AE=EC+CD.全等几何证明(3)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:AD=DE.全等几何证明(4)如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.求证:CF=CG;全等几何证明(5)如图,已知P为∠AOB的平分线OP上一点,PC⊥OA于C,PA=PB,求证AO+BO=2CO全等几何证明(6)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC .求证:BG=FG ;全等几何证明(7)如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD . 全等几何证明(7)如图,AD ∥BC ,AE 平分∠BAD ,AE ⊥BE ;说明:AD+BC=AB .全等几何证明(8)将两个全等的直角三角形ABC 和DBE 如图方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .求证:AF+EF=DE全等几何证明(9)如图,在△ABC 中,AD 平分∠BAC ,AB =AC -BD ,则∠B ∶∠C 的值为多少?全等几何证明(10)已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.A BC DA P D全等几何证明(11)如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .全等几何证明(12)设P 是正方形ABCD BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .DCB A F D ECBFE P C B A。

八年级数学下册期末几何题证明题专题

八年级数学下册期末几何题证明题专题

1.(10分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP 的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.2.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.3.(9分)如图,在梯形ABCD中,M、N分别为AD、BC的中点,E、F分别为BM、CM的中点.(1)求证:四边形MENF是平行四边形;(2)若四边形MENF的面积是梯形ABCD面积的,问AD、BC满足什么关系?4.如图,在四边形 ABCD 中,AD=12,DO=OB=5,AC=26,∠ADB=90°.(1)求证:四边形 ABCD 为平行四边形;(2)求四边形 ABCD 的面积.5、四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.6、如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.7、如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.8、如图,在菱形ABCD中,AB=2,∠DAB=60°。

点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD、AN。

(1)求证:四边形AMDN是平行四边形。

(2)当AM为何值时,四边形AMDN是矩形?请说明理由。

9.(6 分)如图,菱形ABCD 的对角线AC、BD 相交于点O,且DE∥AC,AE∥B D.求证:四边形AODE 是矩形.10(9 分)如图,在△ABC 中,D 是BC 边上的中点,E 是AD 边上的中点,过A 点作BC的平行线交CE 的延长线于点F,连结BF.(1)求证:四边形AFBD 是平行四边形.(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?请说明理由.10.(7 分)如图,在△ABC 中,AB=AC,AD 平分∠BAC 交BC 于点D,分别过点A、D作AE∥BC、DE∥AB,AE 与DE 相交于点E,连结CE.(1)求证:BD =CD.(2)求证:四边形ADCE 是矩形.11.(9 分)如图,E、F 分别是矩形ABCD 的边BC、AD 上的点,且BE =DF.(1)求证:四边形AECF 是平行四边形.(2)若四边形AECF 是菱形,且CE = 10,AB = 8,求线段BE 的长.12.(7 分)如图,在△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AB 于点E,交AC 于点F,连结DE、DF.(1)求证:∠ADE=∠DAF.(2)求证:四边形AEDF 是菱形.13.【感知】如图①,四边形ABCD、AEFG 都是正方形,可知BE =DG .【探究】当正方形AEFG 绕点A 旋转到图②的位置时,连结BE、DG.求证:BE =DG .【应用】当正方形AEFG 绕点A 旋转到图③的位置时,点F 在边AB 上,连结BE、D G.若DG =13 ,AF = 10 ,则AB 的长为.14. (10 分)如图,以△ABC 的三边为边分别作等边△ACD、△BCE、△ABF.(1)求证:四边形ADEF 是平行四边形(2)△ABC 满足什么条件时,四边形ADEF 是矩形?(3)△ABC 满足什么条件时,四边形ADEF 是菱形?20.如图,将▱ABCD 的边 DC 延长到点 E ,使 CE=DC ,连接 AE ,交 BC 于点 F . (1)求证:△ABF ≌△ECF ;(2)若∠AFC=2∠D ,连接 AC 、BE ,求证:四边形 ABEC 是矩形.18.(本题8分)如图,□ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE ∥AC ,且DE =21AC ,连接CE 、OE(1) 求证:四边形OCED 是平行四边形; (2) 若AD =DC =3,求OE 的长.21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB =3,BC =5,连接BD ,∠BAD 的平分线分别交BD 、BC 于点E 、F ,且AE ∥CD (1) 求AD 的长;(2) 若∠C =30°,求CD 的长.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.18. (本题满分12分)如图,DB∥AC,且DB=12AC,E是AC的中点。

初中八年级数学下册几何证明题练习

初中八年级数学下册几何证明题练习

八年级数学下册几何证明题练习1.已知:△ABC 的两条高BD ,CE 交于点F ,点M ,N ,分别是AF ,BC 的中点,连接ED ,MN ; (1)证明:MN 垂直平分ED ; (2))若∠EBD=∠DCE=45°,判断以M ,E ,N ,D 为顶点的四边形的形状,并证明你的结论;2.四边形ABCD 是正方形,△BEF 是等腰直角三角形,∠BEF=90°,BE=EF ,连接DF ,G 为DF 的中点,连接EG ,CG ,EC ;(1)如图1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及GCEC的值; (2)将图1中的△BEF 绕点B 顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF 绕点B 顺时针旋转α(0°<α<90°),若BE=1,AB=2,当E ,F ,D 三点共线时,求DF 的长;3.已知,正方形ABCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G ,连接EG 、CG .(1)如图1,若△BEF 的底边BF 在BC 上,猜想EG 和CG 的关系为-----------------------------------------------; (2)如图2,若△BEF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由; (3)如图3,若△BEF 的直角边BE 在∠DBC 内,则(1)中的结论是否还成立?说明理由.4.如图正方形ABCD ,点G 是BC 上的任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F ;(1)如图l ,写出线段AF 、BF 、EF 之间的数量关系:------------------------------;(不要求写证明过程)(2)如图2,若点G 是BC 的中点,求GFEF的比值; (3)如图3,若点O 是BD 的中点,连OE ,求EFOF的比值;5.在△ABC中,D为BC中点,BE、CF与射线AE分别相交于点E、F(射线AE不经过点D).(1)如图1,当BE∥CF时,连接ED并延长交CF于点H. 求证:四边形BECH是平行四边形;(2)如图2,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND.求证:∠EMD=∠FND.6.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC 为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).7.菱形ABCD中,点E、F分别在BC、CD边上,且∠EAF=∠B;⑴如果∠B=60°,求证:AE=AF;⑵如果∠B=α(0°<α<90°),(1)中的结论:AE=AF是否依然成立,请说明理由;⑶如果AB长为5,菱形ABCD面积为20,BE=a,求AF的长;(用含a的式子表示)F EDC B A8.在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A ⇒B ⇒C 向终点C 运动,连接DM 交AC 于点N . (1)如图1,当点M 在AB 边上时,连接BN : ①求证:△ABN ≌△ADN ; ②若∠ABC=60°,AM=4,求点M 到AD 的距离; (2)如图2,若∠ABC=90°,记点M 运动所经过的路程为x (6≤x≤12).试问:x 为何值时,△ADN 为等腰三角形.9. 如图,矩形ABCD 中,AB=4cm ,BC=8cm ,动点M 从点D 出发,按折线DCBAD 方向以2cm/s 的速度运动,动点N 从点D 出发,按折线DABCD 方向以1cm/s 的速度运动. (1)若动点M 、N 同时出发,经过几秒钟两点相遇?(2)若点E 在线段BC 上,且BE=2cm ,若动点M 、N 同时出发,相遇时停止运动,经过几秒钟,点A 、E 、M 、N 组成平行四边形?10. 如图,矩形ABCD 中,AB=6 ,∠ABD=30°,动点P 从点A 出发,以每秒1个单位长度的速度在射线AB 上运动,设点P 运动的时间是t 秒,以AP 为边作等边△APQ (使△APQ 和矩形ABCD 在射线AB 的同侧).(1)当t 为何值时,Q 点在线段BD 上?当t 为何值时,Q 点在线段DC 上?当t 为何值时,C 点在线段PQ 上?(2)设AB 的中点为N ,PQ 与线段BD 相交于点M ,是否存在△BMN 为等腰三角形?若存在,求出t 的值;若不存在,说明理由; ⑶(选做)设△APQ 与矩形ABCD 重叠部分的面积为s ,求s 与t 的函数关系式.。

八年级数学几何证明题

八年级数学几何证明题
5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解
∵△ECD为等边三角形 ∴△ECB≌△DCA( HL )
∴∠ECD=60° CD=EC ∴BC=AC
即ACB==60° ∵∠ACB=60°

∴△ 是等边三角形
[例2】、如图,已知BC > AB,AD=DC。BD平分∠ABC。求证:∠A+∠C=180°.
证明:在BC上截取BE=BA,连接DE, ∴∠A=∠BED AD= DE

∵BC = DC∴△ABD ≌ △EBD (ASA)
∠CBD=∠CDB ∴AD = DE
]
【课堂练习】
1.如图,已知AE平分∠BAC,BE上AE于E,ED∥AC,∠BAE=36°,那么∠BED=126°
延长AE交AC于F
2.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证:(1)AM=AN;(2)AM⊥AN。
【变式练习】、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.
证明:延长AE到点F,使得EF=AE 联结DF

在△ACE和△FDE中 ∴∠ADB=∠ACD+∠CDA
CE =DE ∵∠ACE=∠FDE
∠AEC=∠FED ∴∠ADB=∠ADC+∠FDE
AE=FE 即 ∠ADB = ∠ADF
在△ADC和△GDB中 ∴BG= BF
AD=GD ∴ ∠BFG=∠BGF

八年级下册几何证明题

八年级下册几何证明题

天生我才,文成不怠!God rewards the diligent , though , not a genius.1_ D_ C_ B _ C_ A _ B_ A_ B_ E _A_ B四边形试题1.已知:在矩形ABCD 中,AE ⊥BD 于E ,∠DAE=3∠BAE ,求:∠EAC 的度数。

2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60︒,E 、F 分别为梯形的腰AB 、DC 的中点,求:EF 的长。

3、已知:在等腰梯形ABCD 中,AB ∥DC ,AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10求:等腰梯形ABCD 的周长。

4、已知:梯形ABCD 中,AB ∥CD ,以AD ,AC 为邻边作平行四边形ACED ,DC 延长线交BE 于F ,求证:F 是BE 的中点。

5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB ,AC 平分∠A ,又∠B=60︒,梯形的周长是20cm, 求:AB 的长。

天生我才,文成不怠!God rewards the diligent , though , not a genius.2_ A_ B_B_ C _B _F _ B _ C _ F6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。

7、已知:梯形ABCD 的对角线的交点为E 若在平行边的一边BC 的延长线上取一点F ,使S ABC ∆=S EBF ∆,求证:DF ∥AC 。

8、在正方形ABCD 中,直线EF 平行于对角线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。

9、若以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。

几何证明-单元测试

几何证明-单元测试

(D )在R t △中,3 0 °角所对的边是斜边的一半. 6 .在 R t △ A B C ,Z A =90°, Z B 与Z C 的平分线交于点) (A )100°; 八年级数学第十九章几何证明单元测试 班级 姓名 一、选择题(每题3分,满分18分) 1.已知等边三角形的边长为1,则它的高等于( (A) v3 ; (B) = ; (C) = ; (D )2.等腰直角三角形A BC 中,N C =90° D 是B C 上一点, 4。

=2。

口,则/ D AB 的度数是( (A ) 22. 5°; (B ) 20°; (C)15°; (D )3 0°.3.在R t △ ABC , Z ACB = 9 0°,CD 、C E 是斜边上的高和中线, AC= C E =1 0cm,则 BD 长为( ) (A)2 5 c m ; (B) 5cm; (C )1 5 cm ; (D ) 10cm .4.如图:EA ±AB, C B ±A B ,A E =AB=2BC,D 是 A B 的中点, 那么下列结论中不正确的是() (A) DE =A C ; (B ) D E± A C ; (C )Z CA B=30°; (D )ZE A F = Z ADE .5.下列命题的逆命题错误的是(. (A)凡直角都相等; (B )在一个三角形中,等边对等角; 第4题图(C)角平分线上的点到角的两边的距离都相等; O ,那么Z BOC 等于(B)12 0 °;(C)1 35°;(D) 150°.二、填空题(每题3分,满分36分)7.在直角坐标平面内,已知P(-1,2),。

(-2, 3),则PQ=.8在 R t^ ABC中,/C=90°, A B = 13,AC= 5 ,B C=.9.在R t A A BC中,若斜边AB的长为6 cm,则AB上的中线的长为.I0 .在R t △ ABC中,若 Z B=9 0 °, AC = 1 0 cm AB = 5 cm,则 N A = 度.II.定理:“线段的垂直平分线上的任意一点到这条线段的两个端点的距离相等”的逆命题是______________________________________________________________________III 2 .到点A的距离都为 3 的点的轨迹是:.13.A ABC中,/ B ,ZC的平分线交于点0,如果点。

八年级几何证明题

八年级几何证明题

几何证明题1、已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,;求证:DE =DF2、已知:如图2所示,AB =CD,AD =BC,AE =CF;求证:∠E =∠F3、如图3所示,设BP 、CQ 是∆ABC 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的垂线;求证:KH ∥BC4、已知:如图4所示,AB =AC,∠,,A AE BF BD DC =︒==90;求证:FD ⊥ED5、已知:如图6所示在∆ABC 中,∠=︒B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O; 求证:AC =AE +CD6、已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,∠=︒EAF 45;求证:EF =BE +DF7、如图8所示,已知∆ABC 为等边三角形,延长BC 到D,延长BA 到E,并且使AE =BD,连结CE 、DE; 求证:EC =ED8、例题:已知:如图9所示,∠=∠>12,AB AC ; 求证:BD DC >作业1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一点,DE ⊥CD 于D,交BC 于E,且有AC AD CE ==;求证:DE CD =122. 已知:如图12所示,在∆ABC 中,∠=∠A B 2,CD 是∠C 的平分线; 求证:BC =AC +AD3. 已知:如图13所示,过∆ABC 的顶点A,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ;设M 为BC 的中点; 求证:MP =MQ4. ∆ABC 中,∠=︒⊥BACAD BC 90,于D,求证:()AD AB AC BC <++14试题答案1、 分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD,易得CD AD =,∠=︒DCF 45;从而不难发现∆∆DCF DAE ≅证明:连结CD说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线;显然,在等腰直角三角形中,更应该连结CD,因为CD 既是斜边上的中线,又是底边上的中线;本题亦可延长ED 到G,使DG =DE,连结BG,证∆EFG 是等腰直角三角形;有兴趣的同学不妨一试; 2、证明:连结AC在∆ABC 和∆CDA 中, 在∆BCE 和∆DAF 中,说明:利用三角形全等证明线段求角相等;常须添辅助线,制造全等三角形,这时应注意:1制造的全等三角形应分别包括求证中一量;2添辅助线能够直接得到的两个全等三角形; 3、分析:由已知,BH 平分∠ABC,又BH ⊥AH,延长AH 交BC 于N,则BA =BN,AH =HN;同理,延长AK 交BC 于M,则CA =CM,AK =KM;从而由三角形的中位线定理,知KH ∥BC; 证明:延长AH 交BC 于N,延长AK 交BC 于M ∵BH 平分∠ABC ∴=∠∠ABHNBH 又BH ⊥AH ∴==︒∠∠AHB NHB 90 BH =BH同理,CA =CM,AK =KM ∴KH 是∆AMN 的中位线 ∴KH MN // 即KH ∆ADE ∆BDF AE BF B DAE AD BDADE BDFFD ED===∴≅∴∠=∠∴∠+∠=︒∴⊥,∠∠,∆∆313290∆∆AEO AFO ≅∴∠=∠12∠=︒B 60∠+∠=︒∠=︒∠+∠=︒566016023120,,∴∠=∠=∠=∠=︒123460∆∆FOC DOC FC DC ≅∴=,()∠=∠=∴≅∴∠=∠BAD CAD AO AOAEO AFO SAS ,∆∆42∠=︒B 60∴∠+∠=︒∴∠=︒∴∠+∠=︒∴∠=∠=∠=∠=︒∴≅∴=566016023120123460∆∆FOC DOC AAS FC DC()AC AE CD =+∠=∠=︒=ABG D AB AD90,∴≅∴=∠=∠∆∆ABG ADF SAS AG AF (),13∠=︒EAF 45∴∠+∠=︒∴∠+∠=︒23452145∴=∴=+GE EFEF BE DF ∆ABC∴∆BFD∴==∴==AE FD BF BA AF EF AC FDEAC EFD EAC DFE SAS EC ED//()∴∠=∠∴≅∴=∆∆∆ADE ∆ADB∆∆ADF ADC ≅∴∠=∠=>∠∠>∠∴∠>∠∴>∴>3434,,DF DCBFD BBFD BBD DF BD DC证明:取CD 的中点F,连结AF 又∠+∠=︒∠+∠=︒14901390, ∴∠=∠=∴≅∴=∴=4312AC CEACF CED ASA CF EDDE CD∆∆()2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法;“截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段;证明:延长CA 至E,使CE =CB,连结ED在∆CBD 和∆CED 中,又∠=∠+∠BAC ADE E∴∠=∠∴=∴==+=+ADE E AD AEBC CE AC AE AC AD,3. 证明:延长PM 交CQ 于R 又BMCM BMP CMR =∠=∠,∴≅∴=∆∆BPM CRMPM RM∴QM 是Rt QPR ∆斜边上的中线 ∴=MP MQ4. 取BC 中点E,连结AE。

专题五几何证明-北师大版八年级数学下册习题课件

专题五几何证明-北师大版八年级数学下册习题课件

∵ ∠AFE 的平分线交 CA 延长线于点 G.
∴ AFG GFE 1 AFE 1 150 = 75,
2
2
∴ ∠G=180°-∠GAF-∠AFG
=180°-60°-75°=45°.
二、等边三角形的证明 4. 如图,在△ABC中,∠B=60°,过点 C 作 CD∥AB,若 ∠ACD=60°,求证:△ABC 是等边三角形. 解:∵ CD∥AB, ∴ ∠A=∠ACD=60°, ∵ ∠B=60°, 在 △ABC 中, ∠ACB=180°-∠A-∠B=60°, ∴ ∠A=∠B=∠ACB. ∴ △ABC 是等边三角形.
OC,OA 的中点.
求证:BE=DF.
证明:∵四边形 ABCD 是平行四边形,
∴ OA=OC,OB=OD,
∵ E,F 分别是 OC,OA 的中点,
∴ OE 1 OC,OF 1 OA,
2
2
∴ OE=OF,
OB OD, 在 △OBE 和 △ODF 中,BOE DOF,
OE OF,
∴ △OBE ≌△ODF (SAS),
5. 在等边△ABC 中,点 P 在△ABC 内,点 Q 在△ABC 外, 且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形? 试说明你的结论.
解:△APQ 为等边三角形.
证明如下:∵ △ABC 为等边三角形,
∴ AB=AC.
AB AC,
在 △ABP 与 △ACQ 中,ABP ACQ,
解:(1)在平行四边形 ABCD 中, ∵ AB∥CD,∴ ∠AFD=∠CDF, ∵ ∠ADC 的平分线 DF 交 AB 于点 F. ∴ ∠ADF=∠CDF,∴ ∠ADF=∠AFD, ∴ AF=AD=4, ∵ AB=6,∴ BF=2.

(完整版)八年级下册几何证明题

(完整版)八年级下册几何证明题

天生我才,文成不怠!God rewards the diligent , though , not a genius. 1_ D_ C_B _ C_ A _ B_ A_ B_ E _ B四边形试题1.已知:在矩形ABCD 中,AE ⊥BD 于E ,∠DAE=3∠BAE ,求:∠EAC 的度数。

2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60︒,E 、F 分别为梯形的腰AB 、DC 的中点,求:EF 的长。

3、已知:在等腰梯形ABCD 中,AB ∥DC ,AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10求:等腰梯形ABCD 的周长。

4、已知:梯形ABCD 中,AB ∥CD ,以AD ,AC 为邻边作平行四边形ACED ,DC 延长线交BE 于F ,求证:F 是BE 的中点。

5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB ,AC 平分∠A ,又∠B=60︒,梯形的周长是20cm, 求:AB 的长。

天生我才,文成不怠!God rewards the diligent , though , not a genius.2_ A _ B_B_ C _B _F _ B _ C _ F6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。

7、已知:梯形ABCD 的对角线的交点为E 若在平行边的一边BC 的延长线上取一点F ,使S ABC ∆=S EBF ∆,求证:DF ∥AC 。

8、在正方形ABCD 中,直线EF 平行于对角线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。

9、若以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。

(完整版)八年级几何证明题集锦及解答值得收藏

(完整版)八年级几何证明题集锦及解答值得收藏

八年级几何全等证明题归纳1.如图,梯形ABCD中,AD∥BC,∠DCB=45°,BD⊥CD.过点C作CE⊥AB 于E,交对角线BD于F,点G为BC中点,连接EG、AF.求证:CF=AB+AF.证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,∴∠EBF=∠DCF,∵DB=CD,BA=CH,∴△ABD≌△HCD,∴AD=DH,∠ADB=∠HDC,∵AD∥BC,∴∠ADB=∠DBC=45°,∴∠HDC=45°,∴∠HDB=∠BDC—∠HDC=45°,∴∠ADB=∠HDB,∵AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF,∴CF=CH+HF=AB+AF,∴CF=AB+AF.2.如图,ABCD为正方形,E为BC边上一点,且AE=DE,AE与对角线BD交于点F,连接CF,交ED于点G.判断CF与ED的位置关系,并说明理由.解:垂直.理由:∵四边形ABCD为正方形,∴∠ABD=∠CBD,AB=BC,∵BF=BF,∴△ABF≌△CBF,∴∠BAF=∠BCF,∵在RT△ABE和△DCE中,AE=DE,AB=DC,∴RT△ABE≌△DCE,∴∠BAE=∠CDE,∴∠BCF=∠CDE,∵∠CDE+∠DEC=90°,∴∠BCF+∠DEC=90°,∴DE⊥CF.3.如图,在直角梯形ABCD中,AD∥BC,∠A=90º,AB=AD,DE⊥CD交AB于E,DF平分∠CDE交BC于F,连接EF.证DA明:CF=EF解:EB F C过D作DG⊥BC于G.由已知可得四边形ABGD为正方形,∵DE⊥DC∴∠ADE+∠EDG=90°=∠GDC+∠EDG,∴∠ADE=∠GDC.又∵∠A=∠DGC且AD=GD,∴△ADE≌△GDC,∴DE=DC且AE=GC.在△EDF和△CDF中∠EDF=∠CDF,DE=DC,DF为公共边,∴△EDF ≌△CDF,∴EF=CF4.已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。

第19章几何证明(基础、常考、易错、压轴)分类专项训练(原卷版)

第19章几何证明(基础、常考、易错、压轴)分类专项训练(原卷版)

第19章几何证明(基础、常考、易错、压轴)分类专项训练【基础】一、单选题1.(2022·上海·八年级专题练习)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()V的三条中线的交点A.ABCV三边的垂直平分线的交点B.ABCV三条角平分线的交点C.ABCV三条高所在直线的交点D.ABC2.(2022·上海·八年级单元测试)三角形的外心是三角形的()A.三条中线的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三条高所在直线的交点3.(2022·上海·八年级专题练习)下列命题中,真命题是()A.三角形的一个外角大于这个三角形的内角B.如果两个角的两边分别平行,那么这两个角相等C.一对邻补角的角平分线互相垂直D.面积相等的两个三角形全等4.(2022·上海·八年级专题练习)如图,将线段OA绕点O逆时针旋转45°,得到线段OB.若OA=8,则点A经过的路径长度为()A.4p B.3p C.2p D.p5.(2022·上海·同济大学附属七一中学八年级期中)下列语句不是命题的是()A.两条直线相交有且只有一个交点B.两点之间线段最短C.延长AB到D,使2BD AB=D.等角的补角相等6.(2022·上海浦东新·八年级期中)在下列各命题中,是假命题的是( )A.在一个三角形中,等边对等角B.全等三角形的对应边相等C.同旁内角相等,两直线平行D.等角的补角相等7.(2022·上海·八年级单元测试)如图,已知钓鱼竿AC的长为6m,露在水面上的鱼线BC长为,某钓者想看看鱼钩上的情况,把鱼竿AC转动到AC¢的位置,此时露在水面上的鱼线B C¢¢,则BB¢的长为()A B.C D.8.(2022·上海·八年级专题练习)下列命题中,其逆命题是真命题的命题个数()(1)全等三角形的对应角相等; (2) 对顶角相等; (3) 等角对等边;(4)两直线平行,同位角相等; (5)全等三角形的面积相等;A.1个B.2个C.3个D.4个9.(2022·上海·八年级单元测试)如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB于点R,PS⊥AC于点S,若PR=PS,则下列结论正确的个数是( )(1)PQ=PB;(2)AS=AR;(3)△BRP≌△PSC (4)∠C=∠SPCA.1个B.2个C.3个D.4个二、填空题10.(2022·上海·八年级专题练习)命题:“对顶角相等”的逆命题是_____________________________.11.(2022·上海市市西初级中学八年级期中)命题“等腰三角形的两个底角相等”的逆命题是_________.12.(2022·上海·八年级专题练习)请写出“两直线平行,同位角相等”的结论:_____.13.(2022·上海·八年级专题练习)平面内在角的内部(包括顶点)且到角的两边距离相等的点的轨迹是这个角的 _____.14.(2022·上海·八年级专题练习)命题“如果a b =,那么22a b =”的逆命题是_______,逆命题是______命题(填“真”或“假”)15.(2022·上海市南洋模范初级中学八年级期中)底边为已知线段BC 的等腰三角形ABC 的顶点A 的轨迹是_____.16.(2022·上海浦东新·八年级期中)“若0ab >,则0a >,0b >”_____命题(选填“是”或“不是”).17.(2022·上海·八年级专题练习)命题“等腰三角形两底角的平分线相等”的逆命题是________________.18.(2022·上海·八年级专题练习)把“同角的余角相等”改成“如果…,那么…”:_____________.19.(2022·上海·同济大学附属七一中学八年级期中)把命题“同角的余角相等”写成“如果……,那么……”的形式为______.20.(2022·上海·八年级专题练习)平面上经过A 、B 两点的圆的圆心的轨迹是_____.21.(2022·上海·八年级专题练习)命题“直角三角形的两个锐角互余”的逆命题为_____.22.(2022·上海·八年级专题练习)到点A 的距离等于6cm 的点的轨迹是________________.23.(2022·上海·八年级专题练习)“全等三角形的对应角相等”的逆命题是_______________________________.24.(2022·上海·八年级期末)已知两点A 、B ,到这两点距离相等的点的轨迹是____________.25.(2022·上海·八年级专题练习)如图,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,BC =12cm ,AC =9cm ,那么BD 的长是_____.26.(2022·上海·八年级单元测试)已知直角坐标平面内的两点分别为A (﹣3,1)、B (1,﹣2),那么A 、B 两点间的距离等于_____.27.(2022·上海·八年级专题练习)“,则=a b ”的逆命题为___________________.三、解答题28.(2022·上海·八年级单元测试)如图,在正方形ABCD中,点E、F分别在AD、CD边上,且AE DF=,联结BE、AF.求证:AF BE=.【常考】一.选择题(共5小题)1.(2020秋•闵行区期中)下列命题是真命题的是( )A.两个锐角的和还是锐角B.全等三角形的对应边相等C.同旁内角相等,两直线平行D.等腰三角形既是轴对称图形,又是中心对称图形2.(2019秋•虹口区校级月考)如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O,若∠BCA =70°,则∠BOE的度数是( )A.60°B.55°C.50°D.40°3.(2022秋•杨浦区期中)若两条平行线被第三条直线所截,则下列说法错误的是( )A.一对同位角的平分线互相平行B.一对内错角的平分线互相平行C.一对同旁内角的平分线互相平行D.一对同旁内角的平分线互相垂直4.(2019秋•浦东新区校级月考)在Rt△ABC中,∠C=90°,有一点D同时满足以下三个条件:①在直角边BC上;②在∠CAB的角平分线上;③在斜边AB的垂直平分线上,那么∠B为( )A.15°B.30°C.45°D.60°5.(2022秋•徐汇区校级期中)在△ABC中,AB=4,AC=6,AD是BC边上的中线,则AD的取值范围是( )A.0<AD<10B.1<AD<5C.2<AD<10D.0<AD<5二.填空题(共11小题)6.(2021秋•奉贤区校级期中)将命题“同角的补角相等”改写成“如果…那么…”形式为 .7.(2022秋•闵行区校级期中)将一副三角板如图所示放置(其中含30°角的三角板的一条较短直角边与另一块三角板的斜边放置在一直线上),那么图中∠1= 度.8.(2021秋•静安区校级期末)命题“等腰三角形两底角的平分线相等”的逆命题是 .9.(2022秋•徐汇区校级期中)命题“同旁内角相等,两直线平行”是 (填“真“或“假”)命题10.(2022秋•闵行区校级期中)将命题“对顶角相等”改为“如果…那么…”的形式为: .11.(2022秋•虹口区校级期中)已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c; ④如果b⊥a,c⊥a,那么b∥c.其中正确的是 .(填写序号)12.(2021秋•徐汇区校级期末)如图,在△ABC中,∠ACB=90°,∠A=20°,CD与CE分别是斜边AB 上的高和中线,那么∠DCE= 度.13.(2022秋•徐汇区校级期中)如图,在△ABC和△DEF中,∠ACB=∠EFD=90°,点B、F、C、D在同一直线上,已知AB⊥DE,且AB=DE,AC=6,EF=8,DB=10,则CF的长度为 .14.(2020秋•徐汇区校级期中)“等腰三角形两腰上的中线相等.”的逆命题是 .15.(2022秋•徐汇区校级期中)在△ABC中,∠BAC=α,边AB的垂直平分线交边BC于点D,边AC的垂直平分线交边BC于点E,连接AD,AE,则∠DAE的度数为 .(用含α的代数式表示)16.(2022秋•虹口区校级期中)如图,已知:△ABC中,∠C=90°,AC=40,BD平分∠ABC交AC于D,AD:DC=5:3,则D点到AB的距离是 .三.解答题(共2小题)17.(2022秋•静安区校级期中)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费马点.若点M为△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图②,分别以△ABC的AB、AC 为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.18.(2021秋•崇明区校级期末)如图,在四边形ABCD中,∠DAB=∠DCB=90°,对角线AC与BD相交于点O,M、N分别是边BD、AC的中点.(1)求证:MN⊥AC;(2)当AC=8cm,BD=10cm时,求MN的长.【易错】一.选择题(共4小题)1.(2022秋•黄浦区校级月考)下列命题中,是真命题的是( )A.从直线外一点向直线引垂线,这条垂线段就是这个点到这条直线的距离B.过一点,有且只有一条直线与已知直线平行C.两条直线被第三条直线所截,同旁内角互补D.两点之间,线段最短2.(2021秋•浦东新区期末)下列三个数为边长的三角形不是直角三角形的是( )A.3,3,3B.4,8,4C.6,8,10D.5,5,53.(2021秋•浦东新区期中)在下列各原命题中,逆命题是假命题的是( )A.两直线平行,同旁内角互补B.如果两个三角形全等,那么这两个三角形的对应边相等C.如果两个三角形全等,那么这两个三角形的对应角相等D.两个相等的角是对顶角4.(2019秋•浦东新区校级月考)BP和CP是△ABC两个外角的平分线,则∠BPC为( )A .B .90°+C .90°﹣D .∠A二.填空题(共2小题)5.(2020秋•浦东新区校级期末)以线段MN 为底边的等腰三角形的顶角顶点的轨迹是 .6.(2020秋•浦东新区校级月考)在△ABC 中,AB =13cm ,AC =15cm ,高AD =12cm ,则BC = .三.解答题(共1小题)7.(2019秋•浦东新区期末)如图(1),已知锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,M 、N 分别是线段BC 、DE 的中点.(1)求证:MN ⊥DE .(2)连接DM ,ME ,猜想∠A 与∠DME 之间的关系,并证明猜想.(3)当∠A 变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.【压轴】一、单选题1.(2020·上海市曹杨第二中学附属学校八年级期中)如图,D 为BAC Ð的外角平分线上一点,过D 作DE AC ^于E ,DF AB ^交BA 的延长线于F ,且满足FDE BDC Ð=Ð,则下列结论:①CDE V ≌BDF V ;②CE AB AE =+;③BDC BAC Ð=Ð;④DAF CBD Ð=Ð.其中正确的结论有( ).A .1个B .2个C .3个D .4个二、填空题2.(2022·上海市民办文绮中学八年级阶段练习)在ABC V 中,12AB AC ==,30A Ð=°,点E 是AB 中点,点D 在AC 上,DE =ADE V 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.三、解答题3.(2022·上海·测试·编辑教研五八年级期末)梯形ABCD 中,AD BC ∥,90B Ð=°,4AB =,5BC =,点G 是CD 中点,过点G 作CD 的垂线交射线BC 于点F ,DCF Ð的角平分线交射线BA 于点E ,交直线GF 于点P .(1)当点F 与点B 重合时,求CD 的长;(2)若点F 在线段BC 上,AD x =,CF y =,求y 关于x 的函数关系式,并写出函数定义域;(3)联结DP、DE,当DPEV是以DP为腰的等腰三角形时,求AD的长.4.(2022·上海·八年级专题练习)已知△ABC和△ADE都是等腰直角三角形,其中∠ABC=∠ADE=90°,连接BD、EC,点M为EC的中点,连接BM、DM.(1)如图1,当点D、E分别在AC、AB上时,求证:△BMD为等腰直角三角形;(2)如图2,将图1中的△ADE绕点A逆时针旋转45°,使点D落在AB上,此时(1)中的结论“△BMD为等腰直角三角形”还成立吗?请对你的结论加以证明;(3)如图3,将图2中的△ADE绕点A逆时针旋转90°时,△BMD为等腰直角三角形的结论是否仍成立?若成立,请证明;若不成立,请说明理由.5.(2022·上海·八年级专题练习)如图,在直角坐标平面内,正比例函数y=的图像与一个反比例函数图像在第一象限内的交点为点A,过点A作AB⊥x轴,垂足为点B,AB=3.(1)求反比例函数的解析式;(2)在直线AB上是否存在点C,使点C到直线OA的距离等于它到点B的距离?若存在,求点C的坐标;若不存在,请说明理由;(3)已知点P在直线AB上,如果△AOP是等腰三角形,请直接写出点P的坐标.6.(2022·上海松江·八年级期末)如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AB=1,点D是边AC上一点(不与点A、C重合),EF垂直平分BD,分别交边AB、BC于点E、F,联结DE、DF.(1)如图1,当BD⊥AC时,求证:EF=AB;(2)如图2,设CD=x,CF=y,求y与x的函数解析式,并写出函数的定义域;(3)当BE=BF时,求线段CD的长.7.(2022·上海·八年级专题练习)已知:如图,在△ABC纸片中,AC=3,BC=4,AB=5,按图所示的方法将△ACD 沿AD 折叠,使点C 恰好落在边AB 上的点C ′处,点P 是射线AB 上的一个动点.(1)求折痕AD 长.(2)点P 在线段AB 上运动时,设AP =x ,DP =y .求y 关于x 的函数解析式,并写出此函数的定义域.(3)当△APD 是等腰三角形时,求AP 的长.8.(2021·上海·八年级专题练习)在直角梯形ABCD 中,//AB CD ,BC AB ^,AB AD =,联结BD ,如图(a ).点P 沿梯形的边,按照点A B C D A ®®®®移动,设点P 移动的距离为x ,BP y =.(1)当点P 从点A 移动到点C 时,y 与x 的函数关系如图(b )中折线MNQ 所示.则AB =______,BC =_____,CD =_____.(2)在(1)的情况下,点P 按照点A B C D A ®®®®移动(点P 与点A 不重合),BDP △是否能为等腰三角形?若能,请求出所有能使BDP △为等腰三角形的BP 的值;若不能,请说明理由.9.(2021·上海·八年级专题练习)如图,在四边形ABCD 中,∠ADC=∠ABC=90°,CB=CD ,点E 、F 分别在AB 、AD 上,AE=AF .连接CE 、CF .(1)求证:CE=CF ;(2)如果∠BAD=60°,CD=①当AF=x 时,设EFC S y D =,求y 与x 的函数关系式;(不需要写定义域)②当AF=2时,求△CEF 的边CE 上的高.10.(2020·上海市曹杨第二中学附属学校八年级期中)如图,在ABC V 中,2ACB B Ð=Ð,BAC Ð平分线AO 交BC 于点D ,点H 为AO 上一动点,过H 作直线l AO ^于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .=;(1)当直线l经过点C时(如图2),求证:BN CD(2)当M是线段BC的中点时,写出线段CE和线段CD之间的数量关系,并证明;(3)请直接写出BN、CE和CD之间的数量关系.。

八年级数学十二道全等几何证明题 难度适中型

八年级数学十二道全等几何证明题 难度适中型

八年级数学十二道全等几何证明题难度适中型 The document was prepared on January 2, 2021全等几何证明(1)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°.E 为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;全等几何证明(2)如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE,求证:AE=EC+CD.全等几何证明(3)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:AD=DE.全等几何证明(4)如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.求证:CF=CG;全等几何证明(5)如图,已知P为∠AOB的平分线OP上一点,PC⊥OA于C,PA=PB,求证AO+BO=2CO全等几何证明(6)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;全等几何证明(7)如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .全等几何证明(7)如图,AD ∥BC ,AE 平分∠BAD ,AE ⊥BE ;说明:AD+BC=AB . 全等几何证明(8)将两个全等的直角三角形ABC 和DBE 如图方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .求证:AF+EF=DE全等几何证明(9) 如图,在△ABC 中,AD 平分∠BAC ,AB =AC -BD ,则∠B ∶∠C 的值为多少全等几何证明(10)已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.全等几何证明(11)如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . A B CD A P CDB求证:CE=CF.设P是正方形ABCD DCE.求证:PA=PF.。

初二下册数学证明题及答案

初二下册数学证明题及答案

初二下册数学证明题及答案下文是关于初二下册数学证明题及答案相关内容,希望对你有一定的帮助:篇一:《初二数学下册证明题(中等难题含答案)》一:已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE AC.DA (1)求证:BG FG;(2)若AD DC2,求AB的长.BGCE二:如图,已知矩形ABCD,延长CB到E,使CE=CA,连结AE并取中点F,连结AE并取中点F,连结BF、DF,求证BF ⊥DF。

三:已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.(第23题)四、(本题7分)如图,△ABC中,M是BC的中点,AD是∠A 的平分线,BD⊥AD于D,AB=12,AC=18,求DM的长。

五、(本题8分)如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC。

⑴求证:DH=1(AD+BC) 2⑵若AC=6,求梯形ABCD的面积。

六、(6分) 、如图,P是正方形ABCD对角线BD上一点,PE ⊥DC,PF⊥BC,E、F分别为垂足,若CF=3,CE=4,求AP的长.七、(8分)如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点.(1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论;(2)判断并证明四边形MENF是何种特殊的四边形?(3)当等腰梯形ABCD的高h与底边BC满足怎样的数量关系时?四边形MENF是正方形(直接写出结论,不需要证明).AMD选择题:15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图,依此规律第10个图形的周长为。

……第一个图第二个图第三个图16、如图,矩形ABCD对角线AC经过原点O,B点坐标为(―1,―3),若一反比例函数y解析式为。

八年级数学十二道全等几何证明题难度适中型

八年级数学十二道全等几何证明题难度适中型

全等几何证明(1)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°.E为AD 延长线上的一点,且CE=CA,求证:AD+CD=DE;全等几何证明(2)如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF 平分∠DAE,求证:AE=EC+CD.全等几何证明(3)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:AD=DE.全等几何证明(4)如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.求证:CF=CG;全等几何证明(5)如图,已知P为∠AOB的平分线OP上一点,PC⊥OA于C,PA=PB,求证AO+BO=2CO全等几何证明(6)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC .求证:BG=FG ;全等几何证明(7)如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .全等几何证明(7)如图,AD ∥BC ,AE 平分∠BAD ,AE ⊥BE ;说明:AD+BC=AB .全等几何证明(8)将两个全等的直角三角形ABC 和DBE 如图方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F . 求证:AF+EF=DE全等几何证明(9)如图,在△ABC 中,AD 平分∠BAC ,AB =AC -BD ,则∠B ∶∠C 的值为多少?全等几何证明(10)已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.A B C D A D全等几何证明(11)如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .设P 是正方形ABCD DCE . 求证:PA =PF .PC B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册几何证明题精选
1、如图,矩形ABCD 中,AC 与BD 交于O 点,BE AC ⊥于BD CF E ⊥,于F ,求证:CF BE =
2、 如图,在平行四边形ABCD 中,DN CL BL AN ,,,分别为D C B A ∠∠∠∠,,,的角平分线,试证明:四边形MNKL 是矩形
3、 如图,矩形ABCD 的对角线相交于点O ,DE ∥CE AC ,∥CE DE DB ,,相交于E ,请判断四边形DOCE 的形状,并说明理由
4、 如图,△ABC 中,B ACB ∠︒=∠,90的平分线交高CD 于点E ,交AC 于F ,G AB FG ,⊥为垂足,请证明:四边形CEGF 是菱形
5、 如图,平行四边形ABCD 的对角线相交于点O ,EF 经过点O ,分别与边AB ,DC 相交于点F E ,,点N M ,分别是线段OC OA ,的中点,求证:四边形ENFM 是平行四边形
6、 已知,如图,点M H F E ,,,分别是正方形ABCD 的四条边上的点,并且DM CH BF AE ===,求证:四边形EFHM 是正方形
7、 如图,在梯形ABCD 中,N M ,分别为梯形两腰AB ,CD 的中点,ME ∥AN 交BC 于点E ,试证明:NE AM =
8、 如图,在△ABC 中,AC AB =,CE BD ,分别为ACB ABC ∠∠,的平分线,求证:四边形EBCD 是等腰梯形
9、 如图,在直角梯形纸片ABCD 中,AB ∥DC ,︒=∠90A ,CD 〉AD ,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E ,折痕为DF ,连结EF 并展开纸片。

(1)求证:四边形ADEF 是正方形;(2)取线段AF
的中点G ,连结EG ,结果CD BG =,试说明四边形GBCE 是等腰梯形
10、 如图,在平行四边形ABCD 中,点E 是AD 的中点,BE 的延长线与CD 的延长线交于点P (1)求证:△≅ABE △DFE ;(2)试连结AF BD ,,判断四边形ABDF 的形状,并证明你的结论
11、 如图,在正方形ABCD 中,F E ,分别是BC AB ,边上的点,且BF AE =,请问(1)AF 与DE 相等吗?为什么?;(2)AF 与DE 是否垂直?说明你的理由
12、 已知,如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连接AE ,CF ;
(1)求证:CE AF =;(2)若EF AC =,试判断四边形AFCE 是什么样的四边形,并证明你的结论。

13、 如图,在△ABC 中,AC AB =,CE BD ,分别为ACB ABC ∠∠,的平分线,求证:四边形EBCD 是等腰梯形
14、 如图,在直角梯形纸片ABCD 中,AB ∥DC ,CD A ,90︒=∠﹥AD ,将纸片沿点D 的直线折叠,使点A 落在边CD 上的点E ,折痕为DF ,连结EF 并展开纸片。

(1)求证:四边形ADEF 是正方形;(2)取线段AF 的中点G ,连结EG ,结果CD BG =,试说明四边形GBCE 是等腰梯形
15、 如图,在直角梯形ABCD 中,AB ∥DC ,A BC ∠=,5为直角,,7,4==AB DC 求AD 的长
16、 如图,在梯形ABCD 中,AC AB ⊥,,12,6,60,==︒=∠=BC AD B CD AB 求梯形ABCD 的周长
17、 如图,在梯形ABCD 中,AD ∥BC ,DC AB =,P 为梯形ABCD 外一
点,且,
PA=求证△≅
PD
ABP△DCP
18、如图,在Rt△ABC中,CF为直角的平分线,CA
EF⊥
FD⊥于D,BC 于E,则四边形CDFE是怎样的四边形,为什么?
19、如图,已知:在△ABC中,AD
BAC⊥
ED
∠,于E,DF
C,
90︒
=
∠平分BC ∥AB交AC于F,试判定四边形AFDE是菱形,并说明理由
20、如图,已知菱形ABCD的对角线12
AC,BC
=BD
,
16=
DE⊥于点E,求DE的长
21、如图,等腰△ABC中,,
AB=M是BC的中点,
AC

E
GF ⊥垂足分别是DE
F
,
,相交于
,
,
G,
D
MD

,
,
,
DE
,AB
AC
AB
MG⊥
AC
GF
H,四边形HGMD是菱形吗?请说明理由
22、如图,延长平行四边形ABCD的边BC至E,DA至F,使EF
=
CE,
AF 与BD交于O,求证:EF与BD互相平分
23、如图,平行四边形ABCD的对角线相交于点,O EF过点O分别与
AD,相交于点F
E,;(1)求证:△AOE≅△COF;(2)若BC
=OE
AB试求四边形EFCD的周长
BC
=
,3
,7
,4=
24、如图,平行四边形ABCD中,F
E,分别是BC
AD,的中点,AF与BE交于点CE
G,和DF交于点H,求证:四边形EGFH是平行四边形。

相关文档
最新文档