七年级数学下册--直方图
人教版数学七年级下册 10.2 直方图 课件(共27张PPT)
引入新知
用表格整理数据
……
划记
引入新知
我们该如何设 计表头呢?
引入新知
人数
63名同学身高的条形图
10 8
87
6
55
4 2
1
1
3
3
2
4
2
5
3
3
3
2
1
2
1
1
1
0
身高 149 151 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170身高
用表格整理数据 身高分组(x)
划记
将数据分几组 合适呢?每组 的范围取多少 呢?
……
引入新知
1、计算最大值与最小值的差(极差): 目的:明确数据的变化范围.
(1)最大值是172,最小值是149; (2)它们的差是
172-149=23(厘米);
(3)说明身高的变化范围是23.
学习新知
2、决定组距与组数: 组距:每一组两个端点的差
第十章 数据的收集 、整理与描述
10.2直方图
1、统计调查的一般步骤是什么?
全面调查 抽样调查
知识回顾
知识回顾
2、各个统计图在描述数据时有什么特点或者优 势?
条形统计图
扇形统计图
折线统计图
条形统计图能 清楚地表示出每个 项目的具体数目以 及各种数据之间的 差距
扇形统计图能清
折线统计图能清
楚地表示出各部分在 楚地表示出事物的
学习新知
频数
合计
3、列频 数分布 表:
人教版七年级数学下册102直方图课件
知2-练
请根据下面不同的分组方法列出频数分布表,画出 频数分布直方图,比较哪一种分组能更好地说明费 尔兹奖得主获奖时的年龄分布: (1) 组距是 2,各组是 28 ≤x<30,30 ≤x<32,…; (2) 组距是 5,各组是 25 ≤x<30,30 ≤x<35,…; (3) 组距是10,各组是 20 ≤x<30, 30 ≤x<40, … .
知2-练
6 【2016·温州】如图是九(1)班45名同学每周课外 阅读时间的频数直方图(每组含前一个边界值, 不含后一个边界值).由图可知,人数最多的一 组是( B ) A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时
知2-练
7 在1 000个数据中,用适当的方法抽取50个数据
进行统计,频数分布表中54.5~57.5这组数所占
(来自《教材》)
知2-讲
解:(1)计算最大值与最小值的差.
在样本数据中,最大值是7. 4,最小值是4.0,
它们的差是7. 4-4.0=3. 4.
(2)决定组距与组数.
在本例中,最大值与最小值的差是3.4. 如果取
组距为0.3,
那么由于
3.4 0.3
11 1 , 3
可分成12组,组数适合. 于是取组距为0.3, 组
的百分比为12%,那么估计总体中数据在54.5~
57.5之间的约有( A )
A.120个
B.60个
C.12个
D.600个
1 知识小结
条形统计图与频数分布直方图的关系: 不同点: (1)频数分布直方图是一种以频数为纵向指标的条形
统计图; (2)频数分布直方图中的长方形是连续排列的,条形
统计图中的长方形是分开排列的; 相同点:都易于比较各组数据之间的差别,能直观
七年级下册直方图知识点
七年级下册直方图知识点直方图是数学中常用的统计工具,可以用于分析一组数据的分布情况。
在七年级下册数学学习中,直方图是一个重要的知识点。
本文将详细介绍直方图的定义、制作方法、读取方法以及应用场景等内容,帮助同学们更好地掌握这一知识点。
一、直方图的定义直方图是用矩形表示数据分布情况的图表。
它的横轴表示数据的取值范围,纵轴表示数据的数量或频率。
每个矩形的宽度相等,高度表示对应数据的数量或频率。
可以用直方图来反映数据的集中趋势、离散程度等统计特征。
二、制作直方图的方法制作直方图有以下几个步骤:1. 确定数据的取值范围。
2. 将取值范围分成若干个区间。
3. 统计每个区间内数据的数量或频率。
4. 使用矩形表示每个区间内数据的数量或频率,矩形的宽度相等。
5. 在纵轴上标出矩形的高度。
6. 用垂直于横轴的线分割每个矩形,使每个矩形更加清晰。
三、读取直方图的方法读取直方图需要注意以下几点:1. 读取横轴上的刻度,确定数据的取值范围。
2. 读取纵轴上的刻度,确定数据的数量或频率。
3. 读取每个矩形的高度,分析数据在不同区间内的数量或频率。
4. 比较不同矩形的高度,分析数据在不同区间内的分布情况。
四、直方图的应用场景直方图可以用于分析各种数据分布情况,包括以下几个方面:1. 分析一个样本的分布情况,掌握数据的集中趋势、离散程度等统计特征。
2. 比较不同样本的分布情况,找出它们之间的相似和不同之处。
3. 检验数据是否符合正态分布,为之后的数据处理和分析提供基础。
4. 预测未来数据的分布情况,辅助做出合理的决策。
五、总结直方图是一种重要的统计工具,具有广泛的应用场景。
同学们在学习中应该注重理解和掌握直方图的定义、制作方法、读取方法以及应用场景等内容,为今后的数学学习和实际应用打下坚实的基础。
人教七年级数学下册-直方图(附习题)
频数
组距
组距
等距分组时,各小长方 形的面积与高的比是常数.
频数的大小 身高
画等距分组的频数分布直方图时,为了画 图与看图的方便、通常直接用小长方形的高表 示频数.
频数 思 考
通过频数分布直方图,你能发 现数据的分布有什么规律吗?
思考
对“问题”中的数据,如果取组距为 2 cm,那么数据应分成几组?如何选出需 要的 40 名同学?如果取组距为 4 cm 呢? 结合 5 种不同分组选出需要的 40 名同学 的情况,说明哪种分组最合适.
(4)
(5)这个班每分钟跳 绳次数在100-120的学 生最多(还有很多结 论,同学自己观察).
4. 一个面粉批发商统计了前 48 个星期的销售量 (单位:t):
24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.6 24.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.3 21.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.7 21.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.6 21.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4
4
180≤ x< 200
1
次数
60≤ x<
80
80≤x <100
100≤ x<Hale Waihona Puke 120120≤ x<
140
140≤ x<
160
160≤ x<
180
180≤ x<
200
频数 2 4 21 13 8
4
1
人教版七年级数学下册 说课稿 10.2 第2课时《直方图》
人教版七年级数学下册说课稿 10.2 第2课时《直方图》一. 教材分析《直方图》是人教版七年级数学下册第10.2节的内容。
本节课主要让学生了解直方图的概念,掌握绘制直方图的方法,以及能够通过直方图分析数据的分布特征。
学生在学习了条形图、折线图的基础上,学习直方图,是对数据可视化的一种深化。
通过本节课的学习,培养学生分析数据、处理数据的能力,提高学生的数学素养。
二. 学情分析七年级的学生已经掌握了条形图、折线图的基本知识,对于数据的初步处理有一定的了解。
但是,学生对于数据的深入分析,尤其是通过图形来分析数据的分布特征还不够熟练。
因此,在教学过程中,需要引导学生从条形图、折线图向直方图的过渡,让学生理解直方图的优势,以及如何通过直方图来分析数据。
三. 说教学目标1.知识与技能目标:学生能够理解直方图的概念,掌握绘制直方图的方法,学会通过直方图来分析数据的分布特征。
2.过程与方法目标:学生通过自主学习、合作交流,培养数据分析、处理的能力。
3.情感态度与价值观目标:学生体会数学与生活的紧密联系,培养学习数学的兴趣。
四. 说教学重难点1.教学重点:直方图的概念,绘制直方图的方法,通过直方图分析数据的分布特征。
2.教学难点:理解直方图的绘制方法,以及如何通过直方图来分析数据的分布特征。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生主动探究,培养学生的数据分析能力。
2.教学手段:利用多媒体课件,直观展示直方图的绘制过程,以及数据分析的过程。
六. 说教学过程1.导入新课:通过条形图、折线图的例子,引导学生思考:如何更直观地展示数据的分布特征?从而引出直方图的概念。
2.自主学习:学生自主探究直方图的定义,掌握绘制直方图的方法。
3.合作交流:学生分组讨论,分享绘制直方图的心得,以及如何通过直方图来分析数据的分布特征。
4.教师讲解:针对学生的讨论,教师进行讲解,强调直方图的优势,以及如何通过直方图来分析数据。
人教版七年级数学下册10.2直方图 (共16张PPT)
(3)列频数分布表.
(4)画频数分布直方图.
从上表和图看到,麦穗长度大部分落在5.2 cm至 7.0 cm 之间,其他区域较少.长度在5.8≤x<6.1范围 内的麦穗个数最多,有28个,而长度在4.0≤x<4.3, 4.3≤x<4.6,4.6≤x<4.9,7.0≤x<7.3,7.3≤x<7.6 范围内的麦穗个数很少,总共只有7个.
上面对数据进行分组时,组距取3,把数据分成8组. 如果组距取2或4,那么数据分成几个组?这样能否选出需 要的40名同学呢?
4.画频数分布直方图 如下图,为了更直观形象地看出频数分布的情况, 可以根据上表画出频数分布直方图.
在上图中,横轴表示身高,纵轴表示频数与组距 的比值.容易看出,
频数 小长方形面积 组距 频数. 组距
1. 计算最大值与最小值的差 在上面的数据中,最小值是149,最大值是172, 最大值与最小值的差是 23,说明身高的变化范围是 23.
2. 决定组距和组数 把所有数据分成若干组,每个小组的两个端点之 间的距离(组内数据的取值范围)称为组距.根据问 题的需要,各组的组距可以相同或不同.本问题中我 们作等距分组,即令各组的组距相同.如果从最小值 起每隔 3 作为一组,那么由于
3. 列频数分布表 对落在各个小组内的数据进行累计,得到各个小 组内的数据的个数(叫做频数).整理可得下面的频 数分布表:
从上表中可以看出,身高在155≤x<158,158≤x <161,161≤x<164三个组的人数最多,一共有12+ 19+10=41(人). 因此可以从身高在155 cm 至164 cm (不含164 cm) 的同学中挑选参加比赛的同学. 探究
例 为了考察某种大麦穗长的分布情况,在一块 试验田里抽取了100个麦穗,量得它们的长度如下表 (单位:cm):
人教版七年级数学下册10.2《直方图》课件(共60张PPt)
2÷4%=50人,然后减去其他已知小组的数据即可求出a=502-22-14-3=9,然后把22除以总人数即可求出 b=22÷50=44%.
【方法小结】频数分布表的识别能力,解 题的关键是从表格中找出所需要的隐含条 件,然后利用隐含条件解决问题.
知识梳理
在列频率分布表时,如果组距为2,那么应分 5 组,其中32.5~34.5中的频数是 为______ ____________ . 5 下表为某中学七(1)班学生将自己的零花钱 捐给“春蕾计划”的数目,老师将学生捐款数 目按10元组距分段,统计每个分数段出现的频 数,则a=________ 0.4,全班总人数为 11 ,b=_______ ________个 . 50
31 42 34 26 14 25 40 14 24 11
将数据适当分组,并绘制相应的频数直方图.
【分析】(1)最大值与最小值的差:42-0=42;(2)组
距是7时,42÷7=6,则分成6组;(3)如左图所示;(4)
如右图所示.
【方法小结】画频数分布图,组距和组数的确定没有固
定的标准,要凭借经验和研究的具体问题决定.
【例1】我市今年中考数学学科开考时间是6月22日 15时,数串“201506221500”中“0”出现的频数 是__________. 4
【解析】数串“201506221500”中“0”出现的频数是 4.故答案为:4.
已知在一个样本中,50个数据分别落在5个组内, 第一,二,三,四,五组数据的个数分别是2,
个端点之间的距离(组内数据的值范围)称
为组距.
组数:分成组的个数叫做组数.
频数:各个小组内的数据的个数叫做频数.
频数分布表:数据的频数分布表反映了在一组
数据中各数据的分布情况.要全面地掌握一组数
人教版七年级数学下册《直方图》PPT课件
1. 为了解某校九年级男生的身高情况,该校从九年级 随机找来 50 名男生进行了身高测量,根据测量结果(均 取整数,单位:cm) 列出了下表.
根据表中提供的信息回答下列问题:
(1) 数据在 161~165 范围内的频数 是__1_2_;
(2) 频数最大的一组数据的范围是 _1_6_6_~_1_7_0_;
3900 2700 3300 3610 3450 3850 3400
3300 2850 2800 3800 3100 2850 3400
3500 3800 2150 3280 3400 3450 3120
3315 3500 3700 3100 4160 3800 3600
3800 2900 3465 3000 3300 3500 2900
请将数据适当分组,列出频数分布表,画出频数 分布直方图,并分析这个面粉批发商每星期进面粉多 少吨比较合适.
解:这组数据中最大为 24.4, 最小值是 18.5,差为 5.9, ∴ 取组距为 1,组数为 7. 列频数分布表如右表:
画频数分布直方图如下:
频数 12
12
11
10 9 8 7 6
8 7
9 6
列频数分布表 画频数分布直方图
1. 在频数分布表中,各小组的频数之和 ( B ) A. 小于数据总数 B. 等于数据总数 C. 大于数据总数 D. 不能确定
2. 某地某月 1~20 日中午 12 时的气温 (单位: ℃) 如下:
22 31 25 15 18 23 21 20 27 17
20 12 18 21 21 16 20 24 26 19
5 4
3
有 10 天.
2 1
温度/℃
12 17 22 27 32
七年级直方图知识点
七年级直方图知识点在数学学习中,直方图是一个常见的概念。
在初中阶段,直方图几乎是必修的考试内容。
本文将简要介绍直方图的相关知识点,帮助七年级学生更好地掌握直方图。
一、直方图的定义和构成要素直方图是一种用于表示数据分布情况的图形。
每个数据段被映射为一个长方形,长方形的高度代表每个数据段的频数,宽度代表数据段的跨度。
直方图由若干个长方形组成,每个长方形占据的水平区间代表数据段。
常见用于统计分析和数据可视化。
构成要素包括以下几个部分:1. 数据段2. 频数3. 跨度4. 纵轴标尺5. 横轴标尺6. 长方形二、直方图的绘制方法在绘制直方图时,需按照以下步骤进行:1. 统计数据的频数:首先,需要将数据划分为若干个数据段,确定每个数据段的跨度。
然后根据数据段范围统计出每个数据段的频数。
2. 确定纵轴标尺:纵轴标尺表示每个频数所对应的高度,应该按整数幂次的比例进行分割,保证图形整洁美观。
3. 确定横轴标尺:横轴标尺表示每个数据段所对应的水平区间。
根据最小值和最大值确定数据段的水平范围,然后将其划分为若干个水平区间,每个区间为跨度间隔的倍数。
4. 绘制长方形:绘制每个长方形,长方形的高度为频数,宽度为数据段的跨度。
长方形应紧密相连,形成一个整体形状。
5. 添加标题和标注:给直方图添加标题和横纵轴标注,使图形更加清晰明了。
三、直方图的应用直方图是常见的一种数据可视化方法,在统计分析、数据探索和科学研究中都有广泛的应用。
利用直方图可以快速分析大量数据的分布情况及规律,并对数据进行比较和分类。
1. 探索数据的分布规律:直方图可以很好地展示数据的分布情况,分析每个数据段的占比和分布密度。
通过观察直方图,可以发现数据的分布是否符合正态分布、是否存在异常值等。
2. 对比不同数据集的分布情况:使用多个直方图,可以比较不同数据集及其分布情况。
如何数据集分布相似,可以进行更加深入的比较和分析。
3. 确定数据的基本统计量:结合直方图,可以确定数据的中心位置、散布情况、偏态和峰态等基本统计量。
数学人教版七年级下册教学课件直方图
直方图教课方案教材剖析:这节课使学生认识描绘数据的另一种统计图——直方图.用直方图能够直观展现数据在某一地区的散布状态,用于对整体的散布特色进行推测,直方图的绘制能否合理、正确,直接对数据剖析造成影响,要画一组数据的频数散布图,第一要获得这组数据的频数散布表,其次要选用适合的组数与组距.在统计中,用来描绘数据特色的统计图,除了直方图,往常还有条形图、折线图等,将直方图与比较近似的条形图进行比较,有助于对直方图特色及合用范围的认识.学情剖析:本节课采纳的是分组整理数据,剖析数据的频数散布,利用频数散布规律来解决问题的统计过程,为了获得一组数据的频数散布,需对数据进行分组整理,一组数据分红多少组适合呢?这不单与数据的多少相关,也与数据自己的特色相关,组数的多少要适中,若组数太多,数据散布会过于分别,若组数太少,数据散布就过于集中,实质决定组数时是一个试试的过程,这类结果的不确立性对学生来说是比较少见的,学生常常思疑自己的选择能否正确,能否还有更合理的选择。
所以,这是本节课的难点。
教课目的:知识与技术:使学生认识描绘数据的另一种统计图,经过案例掌握作直方图的几个重要步骤,理解组距、频数、频数散布的意义。
过程与方法:感觉收数据的整理过程,领会表格在数据整理中的作用感情态度与价值观:①.感觉统计在生产生活中的作用,加强学习数学的兴趣.初步成立统计的观点,培育检查研究的优秀习惯和科学的态度。
教课要点:1、会画直方图,能利用直方图解说数据中包含的信息。
2、理解组距、频数、频数散布的意义,能绘制频数散布图。
教课难点:对数据的分组及频数散布表的制作教课过程:(一)创建情境,引入新课问题1:为了参加全校各年级之间的广播操竞赛,七年级准备从差不多的40名同学参加竞赛,你知道如何选择吗?63名同学中挑身世高相教师:为了使选用的参赛选手身高比较齐整,需要知道数据散布状况,即身高在哪个范围内的学生多,哪个范围内的学生少,所以能够对这些数据进行适合的分组整理.再绘制成统计图。
七年级数学下册-统计调查与直方图
第十章数据的收集、整理与描述第16讲统计调查与直方图知识导航1.数据的收集方式及选择.2.条形统计图、折线统计图、扇形统计图、频数分布表及频数分布直方图的特点及画法.3.根据实际问题,选择合适的统计图进行数据的描述与评价.【板块一】统计调查方法技巧1.统计调查的步骤:收集数据、整理数据、描述数据、分析数据.2.统计调查的方式:全面调查与抽样调查.3.描述数据的工具:统计图,有条形统计图、折线统计图,扇形统计图等.题型一全面调查与抽样调查【例1】(2018春海淀区校级期末)在下列调查中,调查方式选择合理的是()A.为了了解某批次汽车的搞撞击能力,选择全面调查B.为了了解神州飞般的设备零件的质量情况,选择抽样调查C.为了了解一个班学生的睡眠情况,选择全面调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查【练1】(2018春无棣县期末)妈妈炖了一锅鸡汤,先用小勺舀了一点尝尝味道,这是利用了调查方式.(选填“普查”或“抽样调查”)题型二用统计图描述数据【例2】(2018春江阴市期中)为了解食品安全状况,质监部门抽查了甲,乙,丙,丁四个品牌饮料的质量,将收集的数据并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这次抽查了四个品牌的饮料共瓶;(2)请补全两条统计图.【练2】(2018春丽水期末)如图所示的折线统计图分别表示我市A县和B县在4月份的日平均气温的情况,记该月A县和B县平均气温是12℃的天数分别为a天和b天,则a+b=针对练习11.某同学想了解“国庆节”期间某一天,青云路与向阳路叉路口1分钟内各个方向通行的车辆数量,他应采取的收集数据方法为()A.查阅资料B.实验C.问卷调查D.观察2.(2018梧州)九年级一班同学根据兴趣分成A,B,C,D,E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.11人C.12人D.15人3.(2018春利津县期末)下列调查工作适合采用抽样调查方式的是(填序号).①利津县环保部门对辖区内黄河域的水污染情况的调查②要保证“神舟六号”载人飞向成功发射,对重要零部件的检查③了解一批灯泡的使用寿命④了解全国初中毕业生的睡眠状况⑤企业在给职工做工作服前进行的尺寸大小的调查⑥电视台对正在播出的某电视节目收视率的调查4.(2018春洪山区期末)某音像制品公司将某一天的销售数据绘制成如下两幅尚不完整的统计图,若该公司民歌、流行歌曲、故事片、其它等音像制口的销售中,每张制品销售的利润分别为3元,5元,8元,4元,则这一天的销售中,该公司共盈利了元.5.(2018绥化)某校举办“打造平安校园”活动,随机抽取了部分学生进行校园安全知识测试.将这些学生的测试结果分为四个等级:A优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘制成如下统计图.请你根据图中信息,解答下列问题:(1)本次参加校园安全知识测试的学生有多少人?(2)计算B级所在扇形圆心角的度数,并补全折线统计图.【板块二】抽样调查方法技巧1.四个概念:部体、个体、样本、样本容量,其中总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体数目,不能带单位.2.抽样调查是实际中经常采用的调查方式,如查抽取的样本得当,就能很好地反映总体情况.否则,抽样调查的结果偏高总体的情况.3.用样本去估计总体时,容量越大,样本越具有代表性,这时对总体的估计也就是越精确.题型一总体、个体、样本、样本容量【例1】为了了解某市3.6万名考生的数学中考成绩,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这3.6万名考生的数学中考成绩的全体是总体;②每个考生数学中考成绩是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本;④样本容量是200.其中说法正确的有.(填序号)【练1】某区有3000名学生参加初中毕业生会考,要想了解这3000名学生的数学成绩,从中随机抽取了300名学生的数学成绩进行统计分析,在此问题中,总体是,样本是,样本容量是.题型二抽样调查的可靠性【例2】(2018重庆)为了调查某大型企业员工对企业的满意程度,以下样本最具有代表性的是()A.企业员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工【练2】要调查某校学生周日的睡眠时间,下列调查对象选取最合适的是()A.选取该校50名女生B.选取该校50名男生C.选取该校一个班级的学生D.随机选取该校50名学生题型三用样本估计整体【例3】(2018邵阳)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.【练3】(2018河北模拟)从某公司3000名职工中随机抽取30名职工,每个职工周阅读时间(单位:min)依次为周阅读时(单位:min)61⁓7071⁓8081⁓9091⁓100101⁓110人数 3 6 9 10 2则该公司所有职工中,周阅读时间超过一个半小时的职工人数约为()A.1200 B.1500 C.1800 D.2100针对练习21.(2018春泰兴市校级期末)某市今年共有6万名学生参加中考,为了了解这6万名考生的数学成绩,从中抽取了1000考生的数学成绩进行统计分析,以下说法:①这种调查采用了抽样调查的方式;②6万名考生是总体;③1000名考生的数学成绩是总体的一个样本;④样本容量是1000名.其中正确的是有()A.0个B.1个C.2个D.3个2.(2018湘潭)每年5月11日是由世界卫生组织确定的世界防治肥胖日,某校为了解全校2000名学生的体重情况,随机抽测了200名学生的体重,根据体质指数(BMI)标准,体重超标的有15名学生,则估计全校2000名学生体重超标的学生的人数为()A.15 B.150 C.200 D.20003.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,只有2条鱼是前面做好记号的,那么可估计这个鱼塘鱼的数量约为()A.5000条B.2500条C.1750条D.1250条4.(2018兴化市二模)为了解某初中在校学生的身体健康状况,以下选取的调查对象中:①120位男学生;②每个年级都各选20位男学生和20位女学生;③120位八年级学生.你认为合适的是.(填序号)5.(2018春汶上县期末)某家庭为了了解用电量的多少,该家庭在六月份连续几天观察电月份的用电总量是千瓦时.6.(2018春如皋市期末)某校八年级学生参加“史地生会考”,八(1)班25名学生的成绩(满分100分)统计如下:90,74,88,65,98,75,81,42,85,70,55,80,95,88,72,87,60,56,76,66,78,72,82,63,100.(1)90分及以上为A级,75⁓89分为B级,60⁓74分为C级,60分以下为D级.请把下(2)根据(1)中完成的表格,将图中的条形图补充完整;(3)该校八年级共有1000名学生,如果60分以人为及格,请估计八年级有多少人及格?(4)若要知道抽测中每一个等级的人数占总分的百分比,应选择统计图【板块三】频数分布直方图方法技巧1.频数分布直方图的绘制步骤:①计算最大值与最小值的差;②决定组距与组数;③确定分点;④列频数分布表;⑤绘制频数分布直方图.2.绘制频数分布直方图注意事项:①分组时不能出现同一个数据在两个组的情况,通常使分点比题中要求的数据单位多一位,并且把第一组的起点稍微减小一点;②组距和组数的确定没有固定标准,数据越多,组数也就越多,当数据在100以内时,根据数据的多少通常分成5-12组.题型一频数和频率【例1】(2018春长安区期中)在一次数学测试中,将某班50名学生的成绩分为5组,第一组至第四组的频率之和为0.8,则第5组的频数是()A.10 B.9 C.8 D.7【练1】(2018春如皋市期末)某中学抽取部分学生对“你最喜欢的球类运动”做问卷调查,项目乒乓球羽毛球篮球足球频数80 50 n频率0.4 0.25 m则mn的值为.题型二频数分布表与频数分布直方图【例2】(2018锦州)为了解同学们每月零花钱数额,校园小记者随机抽查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:零花钱数额x/元人数(频数)频率0≤x<30 6 0.1530≤x<60 12 0.3060≤x<90 16 0.4090≤x<120 b0.10120≤x<150 2 a请根据以上图表,解答下列问题:(1)这次被调查的人数共有人,a= ;(2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.【练2】(2018春·丰台区期末)2018年6月6日是第二十三个全国爱眼日,某校为了做好学生的眼睛保护工作,对全体学生的裸眼视力进行了一次抽样调查,调查结果如图所示.根据学生视力合格标准,裸眼视力大于或等于5.0的为正常视力,那么该校正常视力的学生占全体学生的比值是.针对练习31.(2018春·天津期末)在一个样本中,40个数据分别落在5个小组内,第1,2,3,5小组的频数分别是2,8,15,5,则第4小组的频数是( )A.5B.10C.15D.202.(2017秋·宛城区期末)将某班女生的身高分成三组,情况如表所示,则表中a的值是.第一组第二组第三组频数 6 10 a频率b c20%3.(2018春·建昌县期末)一组数据,最大值与最小值的差为16,取组距为4,则组数为.4.(2018秋·建瓯市校级月考)如图,晓岚同学统计了她家5月份的长途电话明细清单,按通话时间画出频数分布直方图,则从图中的信息可知,她家通话时间不足10分钟的有次.5.(2018·临沂)某地某月1~20日中午12时的气温(单位:ºC)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19气温分组划记频数12<≤x1717<≤x22≤x22<27≤x3227<(3)根据频数分布表或频数分布直方图,分析数据的分布情况.【板块四】统计图的综合应用方法技巧1.条形统计图的特点:反映每组中的具体数据;易于比较数据之间的差别.2.折线统计图的特点:反映数据的变化趋势.3.扇形统计图的特点:反映部分在总体中所占的百分比.4.频率分布直方图的特点:频数和频率都能够反映每个对象出现的频繁程度;频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况.◢题型一条形统计图、折线统计图和扇形统计图的综合应用【例1】(2018·荆州)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是( )A.本次抽样调查的样本容量是500B.扇形统计图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人【练1】某校七( 2)班班长统计了今年1-8月“书香校园”活动中全班同学的课外阅读数量( 单位:本),绘制了折线统计图,下列说法错误的是( )A.阅读量最多的是8月份B.阅读量最少的是6月份C.3月份和5月份的阅读量相等D.每月阅读量超过40本的有5个月◢题型二频率分布表与频数分布直方图的综合应用【例2】(2018·内江)为了掌握八年级数学试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率1 47.5~59.52 0.052 59.5~71.5 4 0.103 71.5~83.5 a0.204 83.5~95.5 10 0.255 95.5~107.5 b c6 107.5~120 6 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a= ,b= ,c= ;(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为,72分及以上为及格,预计及格的人数约为,及格的百分比约为;(3)补全完整频数分布直方图.针对练习41.(2018·贺州)某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生时间(小时) 频数(人数) 频率32<≤x 4 0.143<≤x10 0.2554<≤x a 0.1565<≤x8 b76<≤x12 0.3合计40 1(1)表中的a= ,b= ;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?。
人教版数学七年级下册第68课时《直方图(一)》教案
人教版数学七年级下册第68课时《直方图(一)》教案一. 教材分析《直方图(一)》是人教版数学七年级下册的教学内容,主要让学生了解直方图的概念、作用以及如何绘制直方图。
通过学习本节课,学生能够掌握绘制直方图的方法,并对统计数据进行分析和处理。
教材通过丰富的实例和练习,引导学生探索和发现直方图的规律,培养学生的动手操作能力和解决问题的能力。
二. 学情分析学生在七年级上学期已经学习了统计学的基本知识,对数据的收集、整理、表示和分析有一定的了解。
但学生在绘制直方图方面可能存在一定的困难,因此需要通过实例和练习,让学生逐步掌握绘制直方图的方法。
三. 教学目标1.了解直方图的概念和作用,掌握绘制直方图的方法。
2.能够通过直方图对统计数据进行分析和处理。
3.培养学生的动手操作能力和解决问题的能力。
四. 教学重难点1.重点:直方图的概念、作用和绘制方法。
2.难点:如何通过直方图对统计数据进行分析和处理。
五. 教学方法采用问题驱动法、实例教学法和小组合作法。
通过设置问题引导学生探索和发现直方图的规律,运用实例讲解直方图的应用,学生进行小组合作,共同完成练习和任务。
六. 教学准备1.教材、PPT、黑板。
2.统计数据和图表。
3.直方图绘制工具(如纸笔、计算器等)。
七. 教学过程导入(5分钟)教师通过展示一组数据,引导学生思考如何直观地表示这些数据。
让学生回顾之前学习的统计学知识,为新课的学习做好铺垫。
呈现(10分钟)教师通过PPT展示直方图的定义和作用,讲解直方图的基本概念。
通过实例展示如何将一组数据转换为直方图,让学生初步了解直方图的绘制方法。
操练(10分钟)教师引导学生动手操作,尝试绘制直方图。
学生分组进行练习,互相交流讨论,教师巡回指导。
在此过程中,教师强调直方图的绘制步骤和注意事项。
巩固(10分钟)教师提出问题,让学生结合所学的直方图知识进行分析和解答。
通过实例让学生学会如何通过直方图对数据进行分析和处理。
拓展(10分钟)教师引导学生思考:直方图有哪些局限性?如何解决这些问题?让学生结合生活实际,发现直方图在实际应用中的优点和不足。
人教版数学七年级下册 10.4 第34课时直方图 课件(共26张PPT)
24 18
7
3
那么第④组的频数为( A
A. 24
B. 26
) C. 0.24
D. 0.26
知识重点
知识点二 频数分布直方图
频数分布直方图是以频数分布表为基础,用一组 __长__方__形____去表示统计数据分布状态的统计图,简称直方 图,一般的画法步骤是:① 计算最大值与最小值的 ____差______; ② 决定___组__距_____与___组__数_____;③ 列频 数分布表; ④ 画频数分布直方图.
思路点拨:根据从左到右5个小长方形的高的比为 1∶3∶7∶6∶3和总篇数,只要求出第四、五个分数段的 总篇数,就是分数大于或等于80分的优秀论文篇数,即 可得出答案.
举一反三
6. 某校随机抽查若干名学生,测试了1 min仰卧起坐的次数 ,把所得数据绘制成频数分布直方图(如图10-34-4),则 仰卧起坐次数不小于15次且小于20次的频率等于 0.1 __________.
(3)跳绳次数x在100≤x<140范围的学生占全班学生的 ____5_2_____ %; (4)如果60 s跳绳的个数在140个以上(含140个)为优秀,全 年级400名学生中该项运动为优秀的学生约有多少?
思路点拨:依据频数分布表的数据进行计算或判断即可.
举一反三
5. (创新题)某校组织了一次“疫情防控知识”专题网上学习,并 进行了一次全校2 500名学生都参加的网上测试.阅卷后,教务处 随机抽取100份答卷进行分析统计,绘制了下面的频数分布表: 请结合表中信息回 答下列问题: (1)a=_____1_0____, b=____2_5_____, n=____0_._2_5___;
思路点拨:各小组频数之和等于数据个数总和.
七年级数学下册--直方图
频数
174
身高 /cm
25
24
20
20
19
15
13
13
1
8
15 10
5
12
6 2
0
10
5
8
0
4
2
3 2
149 153 157 161 165 169 173 身高/cm
0
149 152 155 158
161 164 第二16十7页,共12780页。 173
身高/cm
小结
1.通过对直方图的学习, 你能说说条形图与直方图 有什么相同与不同吗?
纵轴表示频数
每个长方形的高表示 对应组的频数
20
直方图 直方图中各个长方
15
有哪些特点形?之间为什么没有
10
空隙?
5
0
149 152 155 158 161 164 167 170 173
直方图的特点:1、直方图能够显示各组频数分布情况 2、易于显示各组之间频数之间的差别
第十四页,共28页。
身高 /cm
(1) 计算最大值与最小值的差(极差). (2) 决定组距与组数: 极差/组距=_______
数据分成_____组.
(3) 决定分点
(4)列频数分布表。 数出每一组频数 (5)绘制频数分布直方图。
横轴表示各组数据,纵轴表示频数, 该组 内的频数为高,画出一个个矩形。
第十八页,共28页。
思考
(1)如果组距取2或4或5,可将数据 分成几组?
第二十五页,共28页。
时间/分
频数 (通话次数)
30
25
25
20
18
16
15
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
100 90 80 60 50 40 30 20 0 1957 1974 1987 1999 2025 2050 40 60 80
亚洲 北美洲 欧洲 拉美/加勒比 非洲
条形统计图可 折线统计图 以清楚地表示出每 可以清楚地反映 个项目的具体数目 事物变化的趋势
扇形统计图可 以清楚地表示各部 分在总体中所占的 百分比
课堂点兵(二)
在对七年级某班的一次数学测验成绩进行统计分 析中,各分数段的人数如图所示(分数取正整数, 满分100分),请观察图形,并回答下列问题。 (1)该班有 44 名学生; (2)70.5~80.5这一组的频数是 14 ,频率是 0.32 ;
人数
16 14 12 10 8 6 4 2 0
50.5 60.5 70.5 80.5 90.5 100.5 分数
(1)如果组距取2或4或5,可将数据 分成几组? (2)分别按上述分组方法,将数据整 理为频数分布表,并画出直方图。 (3)这样做能否选出身高比较整齐的 队员?
频数
频数
15
25
20 15
23 21
13
10 5 0 6 7
11 5 3
11
7 6 5
10 5
0
149 154 159 164 169 174 身高 /cm
学习目标: 认识直方图,会画直方图,会从直方图中 读取数据蕴含的信息。 学习重点:
画直方图,从直方图中读取数据蕴含 的信息。
问题思考:
我们已经学习了用哪些方法来描述数据?
各方法有什么特点?
三种统计图的特点:
世界人口变化情况统计图
2050年世界人口预测图 60 50 40 30 20 10 0 亚洲 欧洲 非洲
167≤x<170 170≤x<173
从表中可以看出,身高在155≤x<158,158≤x <161,161≤x<164三个组的人数最多,一共有41人, 因此可以从身高在155~164 cm(不含164 cm)的学 生中选队员。
问题解决 对落在各个小组内的数据进行累计,得到
各个小组内的数据的个数(叫做频数)。
2.条形图、扇形图、折线 图和直方图各有什么特点?
频数分布表有何优点?
答:易于显示大小数据次数多少, 分布情况,哪一组数据较集中等。
频数分布表有何不足之处?
答:原始数据不见了,还不够直观.
课堂点兵(一)
大宝同学统计了他家10月份的长途电 话清单,并按通话时间画出直方图:
频数
30 25 20 15 10 5 0
频数
(2) 在横轴上直方图的左右取两个频数为0的点, 它们分别与 直方图左右相距半个组距
25
(3) 将所取的这些点用线段依次连接起来
15
10
5 0
149
152
155
158
161
164
167
170
173
身高/cm
画频数分布直方图的一般步骤:
(1) 计算最大值与最小值的差(极差). (2) 决定组距与组数: 极差/组距=_______ 数据分成_____组.
理解应用
某中学七年级50名女同学进行1分钟跳绳测试,将她们跳绳次数统 计后分为A、B、C、D四等,绘制成下面的频数分布表(每组数据取值 含左端点,不含右端点)和扇形统计图.
频数分布表
等级 A B C D 跳绳(次/1分) 150~160 140~150 频数 2 10
扇形统计图
130~140
120~130 110~120 100~110 90~100 80~90
5
0
149 152 155 158 161 164 167 170 173
身高 /cm
直方图的特点:1、直方图能够显示各组频数分布情况 2、易于显示各组之间频数之间的差别
我们也可以用频数折线图 来描述频数分布的情况。频数折线 图可以在频数分布直方图的基础上 画出来。
方法: (1) 取直方图上每一个长方形上边的中点.
23
= 7 2 3 3
8组
:
149≤x <152,152≤x<155,… 170≤x<173 这里组数和组距分别是 8 和 3
身高(x)
划记
频数(学生人数)
149≤x<152
152≤x<155 155≤x<158 158≤x<161 161≤x<164
2
6 12
19 10 8 4 2
164≤x<167
问题解答方法探索
1、计算最大值与最小值的差: 最大值是172,最小值是149
它们的差(也称极差)是 172-149=23(厘米)
知道这组数据的变动的范围有多大。
149
……
172
23(厘米)
2、决定组距和组数: 把所有数据分成若干组,每个小组
的两个端点之间的距离称为组距
例:取组距为3 (最大值-最小值)÷组距= 所以要将数据分成
整理可以得到频数分布表
从表中可以看出,身高在155≤ x <158,
158 ≤ x <161, 161 ≤ x <164三个组的
人数最多, x 一共有41人,因此可以从身高在 155~164 cm(不含164 cm)的学生中选队员。
频数
频数分布直方图
19
20
15 12 10 6 5
10
8 4
2
0
149 152 155 158 161 164 167
15
m 2 n 1 2
A CD
B 64%
(1)表中m、n的值分别是多少,为什么? (2)这50名学生中,哪个等级的学生最多?
问题
158 168 159 149 162 155 156
为了参加全校各个年级之间的广播操比赛, 七年级准备从63名同学中挑出身高相差不多的40名 同学参加比赛.为此收集到这63名同学的身高(单 位:cm)如下:
158 158 167 163 163 156 157
160 154 170 163 157 165 153
168 158 153 162 162 166 165
159 154 160 172 162 156 159
159 169 160 161 161 154 157
151 158 159 153 157 166 155
158 158 159 156 157 164 164
159 158 160 162 164 165 156
8
2 153
157 161 165 169 173
身高 /cm
161
164
167
身高/cm
1.通过对直方图的学习, 你能说说条形图与直方图 有什么相同与不同吗?
条 形 1:条形图各矩 图 形间有空隙, 与 直方图各矩形 直 间无空隙。 方 图 的 2.直方图可以 区 显示各组频数 别: 分布情况,而 条形图不能反 映这一点。
2
170 173
身高 /cm
画等距频数分布直方图
频数(学生人数) 横轴表示身高
等距分组时,各个小长方形的面积与高(频数) 纵轴表示频数 的比是常数(组距),因此画等距分组的频数 分布直方图时,为画图与看图方便,通常直接 每个长方形的高表示 对应组的频数 用小长方形的高表示频数。
20
பைடு நூலகம்15
10
直方图 直方图中各个长方 有哪些特点? 形之间为什么没有 空隙?
选择身高在哪个范围内的学生参加呢?
思考问题: (1)要挑出身高相差不多的40名同学,你会 怎样做? (2)挑出的40名同学的身高在哪个范围内? (3)怎样做可知道身高数据的分布情况?
为了使选取的参赛选手身高比较 整齐,需要知道数据的分布情况,即 在哪些身高范围的学生比较多,哪些 身高范围内的学生人数比较少.为此 可以通过对这些数据适当分组来进行 整理
(通话次数)
25 18 10 16 8
1
5
10
15 20 25
时间/分
频数
30 25 20 15 10 5 0
(通话次数)
25 18 10 16 8
1
5
10
15 20 25
时间/分
问题(1)他家这个月一共打了多少次电话? 77 (2)通话时间不足10分钟的有多少次? 43
(3)哪个时间范围的通话最多?哪个时间范围的通话少? 1到5分钟内 10到15分钟内
3
1 1
频数 25
2
1
149 151 153 155 157 159 161 163 165 167 169 171 173 身高/cm
24
频数
20 15 1 0 5 0 4 2 170 173 149 13 13
20 15 10 5 0 149 2 152 155 158 6 12
19 10
8 3
画频数分布直方图的一般步骤:
(1) 计算最大值与最小值的差(极差). (2) 决定组距与组数: 极差/组距=_______
数据分成_____组. (3) 决定分点
(4)列频数分布表。 数出每一组频数
(5)绘制频数分布直方图。
横轴表示各组数据,纵轴表示频数, 该组内的频数为高,画出一个个矩形。
思考