均值不等式应用(技巧)

合集下载

均值不等式解题技巧总结

均值不等式解题技巧总结

均值不等式解题技巧总结
均值不等式是数学中常用的一种算术不等式,可以用来证明和解决各种数学问题。

以下是一些常见的均值不等式解题技巧的总结:
1. 引入适当的均值:根据题目所给条件,选择适当的均值形式,如算术平均数、几何平均数、调和平均数等。

2. 利用均值不等式:根据所选择的均值形式,利用均值不等式进行推导。

常见的均值不等式有算术-几何均值不等式、几何-调和均值不等式、算术-几何-调和均值不等式等。

3. 引入适当的条件:在使用均值不等式之前,可以引入适当的条件,如非负性条件、大小关系条件等,以限制变量的取值范围,使得均值不等式成立。

4. 倒推法:对于一些需要证明的不等式,可以利用倒推法,从已知的均值不等式开始,逐步推导出需要证明的不等式。

5. 逼近法:对于一些复杂的不等式,可以通过逼近的方法,将其转化为一系列简单的均值不等式,从而解决问题。

6. 双曲线方法:对于一些特殊的均值不等式,可以利用双曲线的性质进行证明。

双曲线方法常用于解决两个变量的均值不等式。

7. 对称性方法:对于一些具有对称性的均值不等式,可以利用其对称性进行证明。

对称性方法常用于解决多个变量的均值不等式。

总之,解题时应根据具体情况选择合适的技巧和方法,并且需要灵活运用数学知识和技巧进行推导和证明。

均值不等式解题方法和技巧总结

均值不等式解题方法和技巧总结

利用均值不等式求最值的方法和技巧几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立;③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。

一、 配凑(8种技巧)1.拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y x x x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=∙∙∙-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2求函数)01y x x =<<的最大值。

解:y ==因()()32222221122122327x x x x x x ⎛⎫++-⎪∙∙-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x =-,即x =时,上式取“=”。

均值不等式求最值的十种方法

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=〞号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=〞号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=〞号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=〞号成立.注:① 注意运用均值不等式求最值时的条件:一“正〞、二“定〞、三“等〞;② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积〞的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 (1) 当时,求(82)y x x =-的最大值。

(2) 01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=〞。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和〞的形式,变为“积〞的形式,然后利用隐含的“定和〞关系,求“积〞的最大值。

例2 求函数)2101y xx x =-<<的最大值。

解:()()2242214122x x y x x x =-=•••-。

因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x =-,即6x =时,上式取“=〞。

均值不等式应用

均值不等式应用

均值不等式应用在实际应用中,均值不等式有一些常用的技巧,可以帮助我们更方便地应用和理解它们。

1.对称性:均值不等式对于多个变量的情况,通常具有对称性。

这意味着可以通过交换变量的位置来得到等价的不等式。

例如,对于实数$a,b,c$,有$\sqrt{\frac{a^2+b^2}{2}} \geq \frac{a+b}{2}$ 和$\sqrt{\frac{b^2+c^2}{2}} \geq \frac{b+c}{2}$,可以通过交换$a$和$c$得到$\sqrt{\frac{a^2+c^2}{2}} \geq \frac{a+c}{2}$。

利用这个对称性,可以在一些情况下简化不等式的推导过程。

2.递增性:均值不等式通常对于多个变量的情况是递增的。

这意味着如果变量的取值不变,但其中一个变量增加了,那么均值不等式的左边将比右边更大。

例如,对于实数$a,b$,有$\sqrt{ab} \leq \frac{a+b}{2}$,如果将$b$增加为$b+c$,则有$\sqrt{a(b+c)} \leq \frac{a+b+c}{2}$。

利用这个递增性,可以在一些情况下通过增加变量的值来简化不等式的推导过程。

3.平方技巧:当不等式中涉及到平方时,可以通过对不等式同时两边取平方来简化推导过程。

例如,对于实数$a,b$,有$\sqrt{a^2b^2} \leq\frac{a^2+b^2}{2}$,两边同时平方得到$a^2b^2 \leq\frac{(a^2+b^2)^2}{4}$,再进行化简推导。

需要注意的是,平方技巧可能会引入额外的解,因此在使用此方法时需要注意检查这些额外的解是否符合原始问题的要求。

4.归纳思想:对于具有多个变量的复杂不等式问题,可以利用归纳思想逐步推导出目标不等式。

具体来说,可以先考虑两个变量的情况,再逐步增加变量的个数,通过观察和推导相应的不等式,逐步得到目标不等式的结论。

这种思想在解决一些较为复杂的均值不等式问题时非常有帮助。

例说利用均值不等式求函数最值的几种技巧

例说利用均值不等式求函数最值的几种技巧

例说利用均值不等式求函数最值的几种技巧利用均值不等式求函数最值是数学中常用的一种方法,通过这种方法,可以简单地确定函数的最大值和最小值。

本文将介绍几种利用均值不等式求函数最值的常用技巧。

1.权值平均:使用均值不等式时,通过给定变量的权重,我们可以找到一个平均值,该平均值应该落在函数的最大值和最小值之间。

例如,如果我们要找出一个函数f(x)在一些闭区间[a,b]上的最大值,我们可以找到一个适当的c,使得a<c<b,并应用以下均值不等式:f(a)≤f(c)≤f(b)然后,我们可以将函数的值乘以相应的权重(比如(a-c)和(b-c)),并利用均值不等式得出结论。

2.凸函数和凹函数:对于凸函数而言,任意两个点之间的连线位于这两个点所对应的函数值之上。

如果我们要找到函数f(x)在一些闭区间上的最大值,我们可以在该区间上找到两个点,判断这两个点的连线是否位于这个函数值之上。

如果是,那么函数值将成为该区间的最大值。

对于凹函数来说,与凸函数类似,只是方向相反。

3.形象化问题:通过将问题形象化,我们可以更好地理解利用均值不等式求函数最值的思路。

例如,我们有一个数轴上的几个点,我们想找到距离它们最近和最远的点。

我们可以将这些点放在数轴上,并根据它们的位置找到距离最近和最远的点。

同样地,在函数的最大值和最小值问题中,我们可以通过绘制图形并观察函数曲线来找到函数的最大值和最小值。

4.极值问题:利用均值不等式求函数最值时,我们可以寻找函数的极值点。

当函数的导数为0时,函数可能取得最大值或最小值。

我们可以计算导数,找到可能的极值点,并对这些极值点应用均值不等式,从而确定函数的最大值和最小值。

5.多元函数:均值不等式也可以应用于多元函数的情况。

在多元函数的情况下,我们可以将问题转化为一元函数的情况,并使用上述方法解决。

综上所述,利用均值不等式求函数最值是一个实用的方法。

通过使用权值平均、凸函数和凹函数特性、形象化问题、极值问题和多元函数等技巧,我们可以更好地利用均值不等式来确定函数的最大值和最小值,从而解决数学中的一些问题。

用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧均值不等式是数学中的一种重要的不等式关系,用于描述一组数据的平均值与其他性质之间的关系。

它可以应用于各种问题,如最值问题、优化问题等。

使用均值不等式来求解最值问题的方法和技巧有以下几个方面。

1.确定使用哪种均值不等式:均值不等式有许多种,如算术均值不等式、几何均值不等式、平方均值不等式等。

不同的均值不等式适用于不同的情况。

在解题时,要根据具体情况选择适合的均值不等式。

通常,当问题中涉及到平方和、乘积、根号等运算时,选择平方均值不等式;当问题中涉及到和、平均数等运算时,选择算术均值不等式;当问题中涉及到几何平均数、平方根等运算时,选择几何均值不等式。

2.清晰确定问题的条件和目标:在解决最值问题时,首先要清晰地确定问题的条件和目标。

条件是指问题中已知的信息,目标是指要求解的最值。

只有明确了条件和目标,才能有针对性地选择适合的均值不等式,并通过变换和推导进行求解。

3.运用不等式性质进行变换:在使用均值不等式进行求解时,可以根据题目中给出的条件进行变换,使得问题更容易求解。

如将含有平方和的表达式进行整理,将含有乘积的表达式进行拆分等。

变换后可利用不等式的性质,如对称性、单调性、对数性质等来推导和求解。

4.找到合适的等号成立条件:根据均值不等式的性质,等号成立的条件通常与数据的性质相关。

找到合适的等号成立条件不仅是验证结果的正确性,还可以通过这些条件求解最值问题。

例如,在求解两个数的平方和的最小值时,可通过设等号成立条件来求解。

5.结合其他方法进行求解:在使用均值不等式解决最值问题时,有时候也需要结合其他方法和技巧进行求解。

例如,可以结合求导、代数方法、几何方法等来解决一些复杂的最值问题。

这样可以提高问题的求解效率和准确性。

综上所述,运用均值不等式求解最值问题需要根据题目的条件和目标选择合适的不等式,进行变换和推导,并找到合适的等号成立条件。

同时,也可以结合其他方法和技巧进行求解。

均值不等式八种技巧

均值不等式八种技巧

运用均值不等式的八类拼凑技巧一、 拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2求函数)01y x x =<<的最大值。

解:y ==。

因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x=-,即3x =时,上式取“=”。

故max 9y =。

评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。

例3 已知02x <<,求函数()264y x x =-的最大值。

解:()()()222222236418244y xx x x x =-=⨯--()()3222324418818327x x x ⎡⎤+-+-⨯⎢⎥≤=⎢⎥⎣⎦。

当且仅当()2224x x=-,即x ==”。

故max3218827y ⨯=,又max 0,3y y >=。

二、 拼凑定积通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件例4 设1x >-,求函数()()521x x y x ++=+的最小值。

解:()())14114415159111x x y x x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦==+++≥+=+++。

均值不等式应用(技巧)

均值不等式应用(技巧)

均值不等式应用(技巧)Wekede 整理一.均值不等式1.(1)若Rb a ∈,,则abba222≥+ (2)若Rb a ∈,,则222b aab+≤(当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则abb a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x+≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+ab ba(当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或(当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧:技巧一:凑项 例1:已知54x <,求函数14245yx x =-+-的最大值。

均值不等式八大技巧全学生版

均值不等式八大技巧全学生版

利用均值不等式求最值的方法和技巧几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立;③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。

一、 配凑(8种技巧)1.拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 已知01x <<,求函数321y x x x =--++的最大值。

例2 求函数)01y x x =<<的最大值。

例3 已知02x <<,求函数()264y x x =-的最大值。

2.拼凑定积例4 设1x >-,求函数()()521x x y x ++=+的最小值。

例5 已知1x >-,求函数()()22413x y x +=+的最大值。

例6 已知0x π<<,求函数2cos sin xy x-=的最小值。

3.拼凑常数降幂例7 若332,,a b a b R ++=∈,求证:2a b +≤。

例8 若332,,x y x y R ++=∈,求225x y xy ++的最大值。

例9 已知,,0,1a b c abc >=,求证:333a b c ab bc ca ++≥++。

用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧均值不等式是一个常用的不等式工具,在解决很多求最值问题时会起到很大的帮助。

它的核心思想是通过找到相应的均值来构造不等式,从而得到最值的估计。

下面,我将详细介绍均值不等式的方法和技巧。

1.算术平均-几何平均不等式(AM-GM不等式):AM-GM不等式是最常见的均值不等式,它表明对于任意非负实数x1,x2, ..., xn,有如下不等式成立:(x1 + x2 + ... + xn) / n ≥ √(x1 * x2 * ... * xn)这个不等式的意义在于,对于一组非负实数的和,取平均值一定大于等于这组数的乘积的正平方根。

这个不等式常常被用于证明其他数学结论的基础。

2.幂平均不等式:幂平均不等式是一组关于算术平均和几何平均之间关系的不等式。

对于任意非负实数x1, x2, ..., xn,以及实数p,q,有如下不等式成立:[(x1^p + x2^p + ... + xn^p) / n]^(1/p) ≥ [(x1^q + x2^q + ... + xn^q) / n]^(1/q)这个不等式是一个广义的不等式,AM-GM不等式就是其特例(p=q=1)。

使用幂平均不等式可以推导出很多常见的不等式,如柯西不等式、余弦不等式等。

3.杨辉不等式:杨辉不等式是一组与二项式系数相关的不等式。

对于任意自然数n,以及实数a,b,有如下不等式成立:(a+b)^n≥C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n这个不等式是二项式定理的推广,它可以用来证明其它不等式,如二项式不等式、二项式平均不等式等。

4.切比雪夫不等式:切比雪夫不等式是一组关于平均值和取值范围之间关系的不等式。

对于任意一组具有有限均值μ的实数x1, x2, ..., xn,有如下不等式成立:P(,x1-μ,≥k)≤(σ/k)^2其中,σ是x1, x2, ..., xn的标准差,即σ^2 = [(x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2] / n这个不等式的意义在于,对于平均值给定的一组数,其离平均值较远的数出现的概率是受标准差的限制的。

均值不等式求值的十种方法

均值不等式求值的十种方法

均值不等式求最值的十种方法————————————————————————————————作者:————————————————————————————————日期:用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 (1) 当时,求(82)y x x =-的最大值。

(2) 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2 求函数()22101y xx x =-<<的最大值。

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧均值不等式是数学中常用的一种求最值的方法和技巧,它通过将数列中各个数的和与它们的平均值相比较,从而得到最值的估计。

本文将详细介绍均值不等式的定义、性质、应用以及解题步骤,以帮助读者更好地理解和运用这一重要的不等式求解问题。

一、均值不等式的定义均值不等式是数学中一类关于平均值的不等式,通常用来对一组具有其中一种关系的数值进行比较。

假设有n个非负实数a1、a2、…、an,则它们的平均值和它们的几何平均值之间存在以下关系:(a1+a2+…+an)/n ≥ √(a1*a2*…*an) 或(a1+a2+…+an)/n ≥(a1+a2+…+an)/n ≥ ∛(a1*a2*…*an)其中,等号当且仅当a1=a2=…=an时成立。

二、均值不等式的性质1.单变量均值不等式:对于任意n个非负实数a1、a2、…、an,有(a1^p+a2^p+…+an^p)/n ≥ [(a1+a2+…+an)/n]^p其中,p为实数且p≥12.双变量均值不等式:对于任意两个非负实数a和b以及实数p≥1,有[(a^p+b^p)/2]^1/p≥[(a^q+b^q)/2]^1/q其中,p≥q且p、q均不等于0。

3.形式化均值不等式:设f(x)是定义在[a,b]上的连续函数,则对于任意无穷个非负实数a1、a2、…,有f(∫(a1→∞)f(x)dx) ≤ ∫(a1→∞)f(x)dx/lna1其中,a1为自然对数的底数。

三、均值不等式的应用均值不等式在数学中有着广泛的应用,特别是在求最值、证明不等式和优化问题中。

以下是几个常见的应用场景:1.证明不等式:通过应用均值不等式,可以证明很多重要的不等式,如柯西不等式、霍尔德不等式和克劳斯不等式等。

2.求极值:通过应用均值不等式,可以求解一些极值问题,如求最大面积、最小周长和最优化问题等。

3.优化设计:在工程和经济学中,均值不等式可以帮助优化设计,如在材料使用、成本控制和资源分配等方面。

均值不等式应用技巧

均值不等式应用技巧

均值不等式应用(技巧)一.均值不等式1、(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2、 (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3、若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或(当且仅当b a =时取“=”) 3、若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4、若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的与的最小值,当两个正数的与为定植时,可以求它们的积的最小值,正所谓“积定与最小,与定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

应用均值不等式的几种技巧

应用均值不等式的几种技巧

应用均值不等式的几种技巧顾红军(江苏省靖江市第二中学,214500) 本文将讨论均值不等式的应用技巧,供广大师生参考.一、等号的巧用学生运用均值不等式解题(特别是求最值时),常有忽视“=”号成立条件致误的现象.教学中应讲练一些“=”号成立条件在解决“等式问题”中的应用,以引起学生的重视例1 已知α、β为锐角,cos α+cos β-cos (α+β)=32,求α、β.解 由题设等式得(1-cos β)cos α+sin αsin β=32-cos β.∵(1-cos β)cos α+sin αsin β≤(1-cos β)2+cos 2α2+sin 2β+sin 2α2=32-cos β,∴上述不等式中等号成立,∴1-cos β=cos α,sin β=sin α,由cos 2α+sin 2α=1,得cos β=12,β=π3.同理可得α=β=π3.二、结构的巧调有些题目的表达式表面看来不具备应用均值不等式的条件,而在适当改变表达式的结构后,却能由均值不等式获得巧解.例2 设x 1,x 2,…,x n 都是正数,求证:x 21x 2+x 22x 3+…+x 2n -1x n +x 2nx 1≥x 1+x 2+…+x n .证明 调整结构,改证x 21x 2+x 2+x 22x 3+x 3+…+ x 2n -1x n+x n +x 2nx 1+x 1≥2(x 1+x 2+…+x n ).运用均值不等式,得x 21x 2+x 2+x 22x 3+x 3+…+x 2n -1x n+x n +x 2nx 1+x 1y 2=4px ·y -kx b,即by 2-4pxy +4pkx 2=0,∴b y x2-4pyx+4k =0,∴y 1x 1·y 2x 2=4pk b.又∵OA ⊥OB ,∴y 1x 1·y 2x 2=-1,∴b =-4pk ,∴直线AB 的方程为y =k (x -4p ).①∵OM ⊥AB ,∴直线OM 的方程为y =-1kx.②由①、②消去k ,得方程x 2+y 2-4px =0(x ≠0).由于点(4p ,0)的坐标也满足上面的方程,故所求点的轨迹方程为x 2+y 2-4px =0(x ≠0).·81·高中数学教与学 2004年≥2x 21x 2·x 2+2x 22x 3·x 3+…+2x 2n -1x n·x n +2x 2nx 1·x 1=2(x 1+x 2+…+x n ).故原不等式成立.三、项的巧拆解题时,为创造条件运用均值不等式,有时需将一些因素作适当改变,拆为多项之和或分解为多个因子之积.例3 已知n 是大于1的自然数,求证:2n >1+n2n -1.证 2n=2(2n -1-1)+2=2·1-2n -11-2+2=2(1+2+22+…+2n -2)+2=1+1+2+22+…+2n-1>1+n n1·2·22·…·2n-1=1+n2n-1.四、项的巧凑在用均值不等式求最值或证明不等式时,有时需要对项进行凑合即添加项或裂项等例4 已知a 、b 、c 、d 、e 是满足a +b +c+d +e =8,a 2+b 2+c 2+d 2+e 2=16的实数,试求e 的最大值.这是美国中学生数学竞赛题,证明留给读者.我们来求解该例的推广题.例5 设a 1,a 2,…,a n ∈R (n ≥2),且a 1+a 2+…+a n =s >0,a 21+a 22+…+a 2n =s2n -1,求a n 的最大值.解 s 2n -1-a 2n=a 21+a 22+…+a 2n -1=a 21+s -a n n -12+ a 22+s -a n n -12+…+ a 2n-1+s -a n n -12-(s -a n )2n -1≥2(a 1+a 2+…+a n -1)·s -a nn -1- (s -a n )2n -1=2·(s -a n )(s -a n )n -1-(s -a n )2n -1=(s -a n )2n -1.∴s 2-(n -1)a 2nn -1≥(s -a n )2n -1,∴na 2n -2sa n ≤0,∴0≤a n ≤2sn,当且仅当a 1=a 2=…=a n -1=s -2sn n -1=(n -2)s n (n -1)时,a n 有最大值2sn.五、待定常数的巧引为了创造条件运用均值不等式,我们还常引进待定常数,其值的确定由题设或由等号成立的充要条件共同确定,但有时可不必求出.例6 设x ,y ,z 是不全为零的实数,求xy +2yz x 2+y 2+z2的最大值.解 引进待定正常数a ,b ,对分子变形:xy +2yz =2a2x12ay + 2(by )1b z≤a 2x 2+12a y 2)+(by 2+1b z2=a 2x 2+12a +b y 2+1b 2z 2.令a 2=12a +b =1b,得a =5,b =255,∴xy +2yz ≤52(x 2+y 2+z 2),即xy +2yz x 2+y 2+z2≤52,当a2x =12ay ,by =1bz ,即当20x =25y =5z 时,xy +2yz x 2+y 2+z2取得最大值52.·91·第3期 高中数学教与学。

均值不等式的应用技巧

均值不等式的应用技巧

均值不等式的应用技巧均值不等式:当且仅当a=b时等号成立)是一个重要的不等式。

用“均值不等式”求最值是求最值问题中的一个重要方法,也是高考考查的一项重要内容。

应用该不等式求最值时,要把握不等式成立的三个条件“一正、二定、三相等”。

在此过程中往往需要采用“变系数、凑项、分离、取倒数、平方”等变形技巧构造定值,下面是笔者总结归纳的一些变形方法和技巧。

一、凑系数例1、求函数的最大值。

分析:由于不是常数,所以需将x的系数1变为2,使和为定值。

解:由,知所以:当且仅当:,即时取等号,所以的最大值是二、凑项例2、已知,求函数的最大值。

解:因为,所以,故所以=0当且仅当:,即或时,等号成立,但不合条件,舍去,故当时,。

三、分离例3、求函数的最大值分析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+2)的项,再将其分离。

解:因为,所以,所以由及得即当时,。

四、取倒数例4、若,求函数的最大值。

分析:此题形式上无法直接用均值不等式,但通过取倒数则可解:因为,所以故五、平方法例5、求函数的最大值。

解析:注意到的和为定值,所以又,所以当且仅当,即时取等号。

故。

评注:本题将解析式两边平方构造出摵臀ㄖ禂,为利用均值不等式创造了条件。

六、整体代换例6、已知,且,求的最小值。

解:不妨将乘以1,而1用代换。

=16当且仅当,且时取等号所以时,的最小值是16。

七、换元例7、求函数的最大值。

解析:变量代换,令,则当t=0时,y=0当时,当且仅当:,即时取等号,此时故。

八、化归转化,例8、设,求的最小值。

解:因为当且仅当,即时取等号所以点评:若与分别利用平均值不等式,再相乘求最值,会出现前后取等号条件不一致。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析)一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式运用的技巧

均值不等式运用的技巧

均值不等式运用的技巧均值不等式是解决最值问题的有效工具。

运用均值不等式求最值要同时满足条件:一正、二定、三相等,缺一不可。

多数求最值的问题具有隐蔽性,需要进行适当地变形才能用均值不等式求解。

掌握一些常见的变形技巧,可以更好地使用均值不等式求最值。

该题组的设计实际上是根据“一正、二定、三相等”三个条件设计的三个题组,整个设计由浅入深,教师在教学的过程中通过有效的提问,采用小组讨论、生生合作、师生探究的方式组织教学工作。

教师课堂驾驭能力强,关注每一位学生,多数学生均有不同程度的收获。

但教学过程中,教师只为了获得问题的结论,而不关注学生的思考过程。

如(3)的变式一有学生认为最小值为,不知道为什么要拼凑为1(1)1y x x =+++,其实这个问题解决了,(4)的变式二也就解决了。

又如(5)教师只关注了答案为18的同学的思维过程,有的学生错解为82()()16y x y x y =++≥=,所以最小值为16,学生认为等号成立的条件为xy =且82x y=,显然不能同时成立。

而这部分学生恰好没有受到老师的特别关注。

1. 凑系数例1 当4x 0<<时,求)x 28(x y -=的最大值。

利用均值不等式求最值,必须和为定值或积为定值,本题是积的形式,但其和不是定值。

注意到8)x 28(x 2=-+为定值,故需将“x ”项凑上一个系数即可。

解:由4x 0<<,知82x 28x 221)]x 28(x 2[21)x 28(x y ,0x 282=⎪⎭⎫ ⎝⎛-+≤-⋅=-=>-,当且仅当2x ,x 28x 2=-=时取等号。

其最大值是8。

点评:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

2. 凑项例2 求)1x (1x 1x y <-+=的最值。

分析:由题意知01x <-,首先要调整符号,而1x 1·x -不是定值,需对x 进行凑项才能得到定值,然后用均值不等式。

高中数学均值不等式的十一大方法与八大应用(解析版)

高中数学均值不等式的十一大方法与八大应用(解析版)

均值不等式的“十一大方法与八大应用”目录一、重难点题型方法11.方法一:“定和”与“拼凑定和”方法二:“定积”与“拼凑定积”方法三:“和积化归”方法四:“化1”与“拼凑化1”方法五:“不等式链”方法六:“复杂分式构造”方法七:“换元法”方法八:“消元法”方法九:“平方法”方法十:“连续均值”方法十一:“三元均值”应用一:在常用逻辑用语中的应用应用二:在函数中的应用应用三:在解三角形中的应用应用四:在平面向量中的应用应用五:在数列中的应用应用六:在立体几何中的应用应用七:在直线与圆中的应用应用八:在圆锥曲线中的应用二、针对性巩固练习重难点题型方法方法一:“定和”与“拼凑定和”【典例分析】典例1-1.(2021·陕西省神木中学高二阶段练习)若x>0,y>0,且2x+3y=6,则xy最大值为( )A.9B.6C.3D.32【答案】D【分析】由x>0,y>0,且2x+3y为定值,利用基本不等式求积的最大值.【详解】因为x>0,y>0,且2x+3y=6,所以xy=16×2x⋅3y≤162x+3y22=32,当且仅当2x=3y,即x=32,y=1时,等号成立,即xy的最大值为3 2.故选:D.典例1-2.(2022·湖南·雅礼中学高三阶段练习)已知x>0,y>0,且x+y=7,则1+x2+y的最大值为( )A.36B.25C.16D.9【答案】B【分析】由x+y=7,得x+1+y+2=10,再利用基本不等式即可得解.【详解】解:由x+y=7,得x+1+y+2=10,则1+x2+y≤1+x+2+y22=25,当且仅当1+x=2+y,即x=4,y=3时,取等号,所以1+x2+y的最大值为25.故选:B.【方法技巧总结】1.公式:若a,b∈R*,则a+b≥2ab(当且仅当a=b时取“=”)推论:(1)若a,b∈R,则a2+b2≥2ab(2)a+1a≥2(a>0)(3)ba+ab≥2(a,b>0)2.利用基本不等式求最值时,要注意其必须满足的三个条件:“一正二定三相等”(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致.3.技巧:观察积与和哪个是定值,根据“和定积动,积定和动”来求解,不满足形式的可以进行拼凑补形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均值不等式应用(技巧)Wekede 整理一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

变式:设230<<x ,求函数)23(4x x y -=的最大值。

解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。

技巧三: 分离例3. 求2710(1)1x x y x x ++=>-+的值域。

解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号)。

技巧四:换元解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t=时,459y t t≥⨯=(当t=2即x =1时取“=”号)。

评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。

即化为()(0,0)()Ay mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。

技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()af x x x=+的单调性。

例:求函数224y x =+的值域。

24(2)x t t +=≥,则224y x =+2214(2)4x t t t x =+=+≥+因10,1t t t >⋅=,但1t t=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。

因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥。

所以,所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭。

练习.求下列函数的最小值,并求取得最小值时,x 的值.(1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈2.已知01x <<,求函数y =.;3.203x <<,求函数y =. 条件求最值1.若实数满足2=+b a ,则ba33+的最小值是 .分析:“和”到“积”是一个缩小的过程,而且ba 33⋅定值,因此考虑利用均值定理求最小值, 解: ba33和都是正数,ba33+≥632332==⋅+b a b a当b a 33=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,ba 33+的最小值是6. 变式:若44log log 2x y +=,求11x y+的最小值.并求x,y 的值技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。

2:已知0,0x y >>,且191x y+=,求x y +的最小值。

错解..:0,0x y >>,且191xy +=,∴()1912x y x y x y ⎛⎫+=++≥ ⎪⎝⎭故 ()min 12x y += 。

错因:解法中两次连用均值不等式,在x y +≥等号成立条件是x y =,在19xy+≥条件是19x y=即9y x =,取等号的条件的不一致,产生错误。

因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。

正解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当9y xx y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。

变式: (1)若+∈R y x ,且12=+y x ,求yx11+的最小值(2)已知+∈R y x b a ,,,且1=+yb x a ,求y x +的最小值技巧七、已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值. 分析:因条件和结论分别是二次和一次,故采用公式ab ≤a 2+b 22 。

同时还应化简1+y 2中y 2前面的系数为 12, x 1+y 2 =x2·1+y 22 = 2 x ·12 +y 22下面将x ,12 +y 22 分别看成两个因式: x ·12 +y 22≤x 2+(12 +y 22 )22 =x 2+y 22 +12 2 =34即x 1+y 2 = 2 ·x12 +y 22 ≤ 342 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30bb +1由a >0得,0<b <15令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16t≥2t ·16t=8∴ ab ≤18 ∴ y ≥ 118 当且仅当t =4,即b =3,a =6时,等号成立。

法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2∴ab ≤3 2 ,ab ≤18,∴y ≥118点评:①本题考查不等式ab ba ≥+2)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式ab ba ≥+2)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。

2.若直角三角形周长为1,求它的面积最大值。

技巧九、取平方5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.解法一:若利用算术平均与平方平均之间的不等关系,a +b 2 ≤a 2+b 22,本题很简单3x +2y ≤ 2(3x )2+(2y )2 = 23x +2y =2 5解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。

W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20∴ W ≤20 =2 5变式: 求函数15()22y x <<的最大值。

解析:注意到21x -与52x -的和为定值。

2244(21)(52)8y x x ==+≤+-+-=又0y >,所以0y <≤当且仅当21x -=52x -,即32x =时取等号。

故max y =。

评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。

相关文档
最新文档