随机变量分布列

合集下载

随机变量的分布列

随机变量的分布列
(1) 某人射击可能环数(整数):0环、1环、2环、…,10环。 (2) 某次产品检验,在可能含有次品的100件产品中任一抽取4件,其中可能含有
的次品可能是0件,1件,2件,3件,4件。 (3) 掷一枚硬币,可能出现正面或反面。 (4) 掷一个骰子向上的点数。 (5) 掷一个骰子向上的点数为奇数或偶数。
5
例2:一袋中装有6个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出
3个小球,以ξ表示取出球的最大号码,求ξ的分布列.
解:ξ的所有取值为:3、4、5、6.
“ 3” 表示其中一个球号码等于“3”,另两个都比“3”小
“ 4” 表示其中一个球号码等于“4”,另两个都比“4”小
“ 5” 表示其中一个球号码等于“5”,另两个都比“5”小
Cnk pk qnk b(k; n, p)
例 : 某人射击击中目标的概率是0.2,射击中每次射击 的结果是相互独立的,求他在10次射击中击中目标的 次数不超过5次的概率(精确到0.01)。
解: 设在这10次射击中击中目标的次数是ξ,则 ξ~B(10,0.2).
P( 5) P( 0) P( 1) P( 5)
1
12
6
1 12
例4:已知随机变量ξ的分布列如下:
-2 -1 0 1 2 3
P
1
1
1
1
1
1
12
4
3
12
6
12
分别求出随机变量
解:(2)由2
(1)1
1;
2
(2)2
2得2的取值为0,1, 4, 9.
2
.的分布列.
P(2 P(2
0) 4)
P( 0) P( 2)
1 3

随机变量的分布列、期望、方差

随机变量的分布列、期望、方差

„ „
P
1 1 3

4
2 1 3 3
3
5
2 3
4
1 ⑷ ~ B 5, ,
k
∴ P=( =k)=C5 ( ) ·( ) 其中 k 0,1,2,3,4,5. ∴所求 的分布列是

1 3
k
2 3
5-k

0
32 243
1
80 243
2
80 243
【典例解析】
考点一:随机变量的分布列
例 1. 袋子中有 1 个白球和 2 个红球. ⑴ 每次取 1 个球,不放回,直到取到白球为止.求取球次数 的分布列.
2
2013 年高考第一轮复习资—理科数学 ⑵ 每次取 1 个球,放回,直到取到白球为止.求取球次数 的分布列. ⑶ 每次取 1 个球,放回,直到取到白球为止,但抽取次数不超过 5 次.求取球次数 的分布列. ⑷ 每次取 1 个球,放回,共取 5 次.求取到白球次数 的分布列. 解: ⑴ 1,2,3.

1
1 3
2
1 3
3
1 3
P
⑵ 每次取到白球的概率是 ,不取到白球的概率是 2 , 所求的分布列是
3
1 3

P ⑶

1 1 3 2 2 1 3 3
3
2 2 1 3 3 3
2 1 3 3
2
3
2 1 3 3
2
„ „
n
2 3
n 1

1 3
P 1 P 2 1 1 , 1 3 A3
1 A2 1 1 , 2 1 1 A A3 2 3 1

随机变量及其分布列

随机变量及其分布列
【T1 】某次抽奖活动的盒
中装有3个红球、2个白球、
中装有3个红球、2个白球、
5个黑球,它们大小形状
5个黑球,它们大小形状完
完全相同。现从10个球中
全相同。现从10个球中任
有放回的抽取3次,并做
意抽取3个。
好记录。
(1)求抽取的3个球是来自2
(1)求抽取的3个球中恰有2
种不同颜色球的概率;
个球是黑色的概率;


所以抽取的 5 辆汽车中恰有 2 辆是蓝色汽车的概率 P=C25
3312 135

.
512
4 4
返回
(2)在试驾体验过程中,发现蓝色汽车存在一定质量问
题, 监管部门决定从投放的汽车中随机地抽取一辆送技术部
门作进一步抽样检测,并规定:若抽到的是黄色汽车,则将
其放回市场,并继续随机地抽取下一辆汽车;若抽到的是蓝

125

8
3 2 3


P(X=3)=C3 5 =

125

∴X的分布列为
X
0
1
2
27
54
36
P
125
125
125
27
54
36
8
6
∴E(X)=0×
+1×
+2×
+3×
= .
125
125
125
125 5
3
8
125
返回

2
法二:∵随机变量X~B3,5,



k 2 k 3 3-k


3n-1 1
3n
+…+(n-1)×4

分布律和分布列

分布律和分布列

分布律和分布列分布律和分布列是概率论中非常重要的概念,它们被广泛应用于各个领域,包括统计学、工程学、金融学等。

本文将详细介绍分布律和分布列的概念、性质及其在实际应用中的意义。

一、分布律的定义与性质分布律又称分布函数,通常用F(x)来表示。

假设随机变量X的取值范围为实数轴上的所有实数,F(x)表示X小于等于x的概率,即:F(x) = P{X ≤ x}其中,P表示概率。

分布律具有以下性质:1. F(x)是一个非降函数,即F(x)在定义域内具有单调性。

2. F(x)的取值范围在[0,1]之间。

3. F(x)是一个右连续函数,即对于任意的x,F(x)在右侧连续。

4. F(x)在x处的导数等于X=x处的概率密度函数f(x),即F'(x) = f(x)。

二、分布列的定义与性质分布列是离散随机变量的分布函数,通常用p(x)来表示。

假设随机变量X的取值范围为{x1,x2,…,xn},则p(x)表示X等于x的概率,即:p(xi) = P{X=xi}分布列具有以下性质:1. 对于所有的i,有0 ≤ p(xi) ≤ 1。

2. ∑_i=1^n p(xi) = 1。

3. p(x)是一个非降函数。

三、分布律与分布列的区别分布律用来描述连续随机变量的概率分布,而分布列则用来描述离散随机变量的概率分布。

因为连续随机变量可以取无限多个值,所以概率密度函数f(x)是用来表示概率分布的。

分布律F(x)是f(x)的积分,表示随机变量小于等于某个值的概率。

而离散随机变量只能取有限个取值,所以概率可以用一个列表来表示。

分布列p(x)就是这个列表,它表示随机变量取某一特定值的概率。

四、分布律与分布列的应用分布律和分布列是概率论中非常重要的概念,它们被广泛应用于各个领域。

例如,在统计学中,分布律和分布列常常用来描述样本数据的概率分布,从而进行统计推断;在工程学中,分布律和分布列常常用来描述工程系统的性能分布,从而进行系统设计和优化;在金融学中,分布律和分布列常常用来描述金融资产的风险分布,从而进行投资决策和风险控制等。

随机变量及其分布列.几类典型的随机分布

随机变量及其分布列.几类典型的随机分布

随机变量及其分布列.几类典型的随机分布1. 离散型随机变量及其分布列 ⑴离散型随机变量如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y 表示.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量.⑵离散型随机变量的分布列将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =列表表示:X X 的分布列.2.几类典型的随机分布 ⑴两点分布如果随机变量X其中01p <<,1q p =-X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布.两点分布又称01-以这种分布又称为伯努利分布. ⑵超几何分布一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. ⑶二项分布1.独立重复试验 如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)kk n k n n P k p p -=-(0,1,2,,)k n =. 2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =.于是得到X 的分布列由式001110()C C C C n n n kk n k nn n n n n q p p qp qp q p q --+=++++各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p .二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑷正态分布1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时, 直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.正态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ.正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布.⑶重要结论:①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑷若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数. ()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.3.离散型随机变量的期望与方差 1.离散型随机变量的数学期望定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++,叫做这个离散型随机变量X 的均值或数学期望(简称期望).离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平. 2.离散型随机变量的方差一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-叫做这个离散型随机变量X 的方差.离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).()D X 叫做离散型随机变量X 的标准差,它也是一个衡量离散型随机变量波动大小的量.3.X 为随机变量,a b ,为常数,则2()()()()E aX b aE X b D aX b a D X +=++=,; 4. 典型分布的期望与方差:⑴二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np .⑵二项分布:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑶超几何分布:若离散型随机变量X 服从参数为N M n ,,的超几何分布, 则()nME X N=,2()()()(1)n N n N M M D X N N --=-.4.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件. 如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.5.条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =).正态曲线(正态随机变量的概率密度曲线)【例1】 下列函数是正态分布密度函数的是( )A .2()2()2x r f x eσσ-=π B .222π()x f x -=C .2(1)4()22x f x e -=πD .22()2x f x e =π【例2】 若正态分布密度函数2(1)2()()2x f x x --=∈R π,下列判断正确的是( )A .有最大值,也有最小值B .有最大值,但没最小值C .有最大值,但没最大值D .无最大值和最小值【例3】 对于标准正态分布()01N ,的概率密度函数()222πx f x -=,下列说法不正确的是( )A .()f x 为偶函数B .()f x 2πC .()f x 在0x >时是单调减函数,在0x ≤时是单调增函数D .()f x 关于1x =对称典例分析【例4】 设ξ的概率密度函数为2(1)2()x f x --=,则下列结论错误的是( )A .(1)(1)P P ξξ<=>B .(11)(11)P P ξξ-=-<<≤≤C .()f x 的渐近线是0x =D .1~(01)N ηξ=-,【例5】 设2~()X N μσ,,且总体密度曲线的函数表达式为:2214()x x f x -+-=,x ∈R .⑴求μσ,;⑵求(|1|P x -及(11P x -<+的值.【例6】 某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为2(80)200()x f x --=,则下列命题中不正确的是( )A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学标准差为10正态分布的性质及概率计算【例7】 设随机变量ξ服从正态分布(01)N ,,0a >,则下列结论正确的个数是____.⑴(||)(||)(||)P a P a P a ξξξ<=<+=⑵(||)2()1P a P a ξξ<=<- ⑶(||)12()P a P a ξξ<=-< ⑷(||)1(||)P a P a ξξ<=->【例8】 已知随机变量X 服从正态分布2(3)N a ,,则(3)P X <=( ) A .15B .14C .13D .12【例9】 在某项测量中,测量结果X 服从正态分布()()210N σσ>,,若X 在()01,内取值的概率为0.4,则X 在()02,内取值的概率为 .【例10】 已知随机变量X 服从正态分布2(2)N σ,,(4)0.84P X =≤,则(0)P X =≤( )A .0.16B .0.32C .0.68D .0.84【例11】 已知2(1)XN σ-,,若(31)0.4P X -=≤≤-,则(31)P X -=≤≤( )A .0.4B .0.8C .0.6D .无法计算【例12】 设随机变量ξ服从正态分布(29)N ,,若(2)(2)P c P c ξξ>+=<-,则_______c =.【例13】 设~(01)N ξ,,且(||)(010)P b a a b ξ<=<<>,,则()P b ξ≥的值是_______(用a 表示).【例14】 正态变量2~(1)X N σ,,c为常数,c >,若(2)(23)0.4P c X c P c X c <<=<<=,求(0.5)P X ≤的值.【例15】 某种零件的尺寸服从正态分布(04)N ,,则不属于区间(44)-,这个尺寸范围的零件约占总数的 .【例16】 某校高中二年级期末考试的物理成绩ξ服从正态分布2(7010)N ,. ⑴若参加考试的学生有100人,学生甲得分为80分,求学生甲的物理成绩排名;⑵若及格(60分及其以上)的学生有101人,求第20名的物理成绩. 已知标准正态分布表(0.97)0.833φ=.【例17】 在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布(70100)N ,.已知成绩在90分以上(含90分)的学生有12名.⑴试问此次参赛学生总数约为多少人?⑵若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?附:标准正态分布表(1.30)0.9032(1.31)0.9049(1.32)0.9066φφφ===,,.正态分布的数学期望及方差【例18】 如果随机变量2~()1N E D ξμσξξ==,,,求(11)P ξ-<<的值.正态分布的3σ原则ξ,,要使灯【例19】灯泡厂生产的白炽灯寿命ξ(单位:h),已知2~(100030)N泡的平均寿命为1000h的概率为99.7%,则灯泡的最低使用寿命应控制在_____小时以上.【例20】一批电池(一节)用于手电筒的寿命服从均值为35.6小时、标准差为4.4小时的正态分布,随机从这批电池中任意取一节,问这节电池可持续使用不少于40小时的概率是多少?【例21】某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是______.杂题(拓展相关:概率密度,分布函数及其他)【例22】 已知连续型随机变量ξ的概率密度函数01()1202x f x x a x x ⎧⎪=-<⎨⎪⎩≤≤≥,⑴求常数a 的值;⑵求3(1)2P ξ<<.【例23】 已知连续型随机变量ξ的概率密度函数201()1202x f x ax x x ⎧⎪=<⎨⎪⎩≤≤≥,求a 的值及3(1)2P ξ<<.【例24】 设随机变量X 具有概率密度30()00x ke x f x x -⎧=⎨<⎩≥,求k 的值及(0.1)P X >.【例25】 美军轰炸机向巴格达某铁路控制枢纽投弹,炸弹落弹点与铁路控制枢纽的距离X 的密度函数为100||||100()100000||100x x f x x -⎧⎪=⎨⎪>⎩≤,若炸弹落在目标40米以内时,将导致该铁路枢纽破坏,已知投弹3颗,求巴格达铁路控制枢纽被破坏的概率.【例26】 以()F x 表示标准正态总体在区间(),x -∞内取值的概率,若随机变量ξ服从正态分布()2,N μσ,则概率()P ξμσ-<等于( )A .()()F F μσμσ+--B .()()11F F --C .1F μσ-⎛⎫⎪⎝⎭ D .()2F μσ+【例27】 某城市从南郊某地乘公共汽车前往北区火车站有两条路线可走,第一条路线穿过市区,路程较短,但交通拥挤,所需时间(单位为分)服从正态分布()250,10N ;第二条路线沿环城公路走,路程较长,但交通阻塞少,所需时间服从正态分布()260,4N⑴若只有70分钟可用,问应走哪条路线?⑵若只有65分钟可用,又应走哪条路线?。

(完整版)分布列概念

(完整版)分布列概念

1. 分布列定义:设离散型随机变量所有可能取得的值为x i ,x 2,…3X …x 若取每一个值x i (i=1,2, , -n)的概率为P( x i ) P i ,则称表为随机变量的概率分布,简称 的分布列 离散型随机变量的分布列都具有下面两个性质:(1) P i > 0,i=1,2 …,n ; (2) P i +P 2+n+P n =1要点四、两类特殊的分布列1. 两点分布随机变量X 的分布列是像上面这样的分布列称为两点分布列.要点诠释:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1)为成功率. (2) 两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛 ,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究2. 超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有 X 件次品,则则事件{X=k }n N,M N,n, M,N N •称分布列为超几何分布列.如果随机变量 X 的分布列为超几何分布列, 则称随机变量 X 服 从超几何分布1. 定义设A 、B 为两个事件,且P(A) 0,在已知事件 A 发生的条件下,事件B 发生的概 率叫做条件概率。

用符号 P(B | A) 表示。

发生的概率为P(Xk)k n kC M C N MC N,k 0,1,2,L ,m ,其中min{ M , n},且P(B| A)读作:A发生的条件下B发生的概率。

要点诠释在条件概率的定义中,事件A在事件B已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的. 而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率.2 . P ( A | B)、P (AB)、P (B)的区别P (A | B)是在事件B发生的条件下,事件A发生的概率。

2022年人教A版高中数学选择性必修第三册第七章随机变量及其分布列 章末知识梳理

2022年人教A版高中数学选择性必修第三册第七章随机变量及其分布列 章末知识梳理

返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
事实上,对于具体问题,若能设出 n 个事件 Ai(i=1,2,…,n),使之 满足AA1iA+j=A2∅+…+An=Ω,(任意两个事件互斥,i,j=1,2,…,n,i≠j).(1) 就可得 B=BΩ=BA1+BA2+…+BAn.(2)这样就便于应用概率的加法公 式和乘法公式.
返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
③二项分布与超几何分布的区别:有放回抽样,每次抽取时的总体 没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复 试验,此种抽样是二项分布模型.而不放回抽样,取出一个则总体中就 少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模 型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回 抽样还是不放回抽样.
i=1
i=1
返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
P(Ai|B)=PAPiPBB |Ai

PAiPB|Ai
k
,i=1,2,…,n
PAkPB|Ak
i=1
3.独立性与条件概率的关系:当 P(B)>0 且 P(AB)=P(A)P(B)时,
有 P(A|B)=PPABB=PAPPBB=P(A)
率公式求解.
返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
[解析] 解法一:记“至少出现 2 枚正面朝上”为事件 A,“恰好出 现 3 枚正面朝上”为事件 B,所求概率为 P(B|A),事件 A 包含的基本事 件的个数为 n(A)=C52+C53+C54+C55=26,

(完整版)随机变量及其分布列概念公式总结

(完整版)随机变量及其分布列概念公式总结

随机变量及其分布总结1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,,,… 表示.ξη2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…,ξ取每一个值x i (i =1,2,…)的概率为,则称表()i i P x p ξ==ξx 1x 2…x i …PP 1P 2…P i…为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:(1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1.5.求离散型随机变量的概率分布的步骤:ξ(1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(=x i )=p i ξ(36.两点分布列:ξ01P1p -p7超几何分布列:一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品数,则事件{X=k }发生的概率为,其中(),0,1,2,,k n k M N MnNC C P X k k m C --=== ,且.称分布列min{,}m M n =,,,,n N M N n M N N *≤≤∈X 01…mP0n M N Mn NC C C -11n M N Mn NC C C --…m n m M N Mn NC C C --为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量X 服从超几何分布8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是,(k =0,1,2,…,n ,).kn k k n n q p C k P -==)(ξp q -=1于是得到随机变量ξ的概率分布如下:ξ01…k…nPnn qp C 00111-n n qp C …kn k k n qp C -…qp C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。

随机变量及其分布列知识点

随机变量及其分布列知识点

随机变量及其分布列知识点随机变量是描述随机实验结果的数值,它可以是离散的(只能取一些离散的数值)或连续的(可以取所有的数值)。

随机变量可以用来描述实验结果的各种特征,如数量、位置、时间等。

离散随机变量的分布列是一个表格,列出了随机变量取各个值的概率。

概率可以通过实验或理论分析得出。

在计算机科学和统计学中,分布列通常被表示为一个数组或字典。

离散随机变量的分布列有以下几个重要性质:1. 概率和为1:所有随机变量取值的概率之和等于1,即P(X=x1) + P(X=x2) + ... + P(X=xn) = 12.非负性:概率永远不会为负数,即P(X=x)>=0,对于所有的x。

3.互斥性:不同取值的随机变量概率互不重叠,即P(X=x1)与P(X=x2)不重叠,对于所有的x1和x24.互斥性:如果随机变量取值是离散的,那么分布列是一个离散函数,概率只在取值点有定义。

如果随机变量是连续的,那么分布列是一个连续函数,概率在区间上有定义。

离散随机变量的分布列可以用于计算各种统计量,如期望值、方差、标准差等。

期望值是随机变量取值的加权平均,方差是随机变量取值偏离平均值的程度。

标准差是方差的平方根,用来度量随机变量的离散程度。

在实际应用中,离散随机变量的分布列可以用来描述概率分布、事件的发生概率等。

它可以用来解决各种问题,如生活中的投资决策、经济模型的拟合、产品质量控制等。

例如,一个骰子的随机变量可以描述它可能的取值为1、2、3、4、5或6,对应的分布列是[1/6,1/6,1/6,1/6,1/6,1/6]。

这个分布列可以用来计算骰子摇出特定点数的概率,以及求得骰子取值的期望值和方差。

另一个例子是二项分布,它描述了在一系列独立实验中成功次数的概率分布。

二项分布的随机变量是一个离散随机变量,它的分布列可以用来计算成功次数的概率和期望值。

连续随机变量的分布列被称为概率密度函数。

概率密度函数描述了随机变量取值的概率密度,而不是概率。

随机变量及其分布列概念公式总结

随机变量及其分布列概念公式总结

随机变量及其分布总结1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示.2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量3、分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…,ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:(1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格6.两点分布列:7超几何分布列:一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品数,则事件 {X=k }发生的概率为(),0,1,2,,k n kM NMnNC C P X k k m C --===,其中min{,}m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:ξ 01 … k … nPnn q p C 00111-n n q p C … kn k k n q p C - …q p C n n n称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。

高中数学-分布列

高中数学-分布列

( 2)当 1时,表示此人为 O型血, C P( 1) C
1 10 1 45
2 9
回忆独立重复试验的概率公式:
含义: n次独立重复试验中恰好发生k次的概率
Pn ( k ) C n p (1 p)
k k
n k
设 为恰好发生的次数,记q 1 p,
请填写:随机变量ξ的概率分布:
6 6
练2:抛掷一枚骰子,重复3次,恰好得到2点的次 1 k 5 3 k 1 k 数ξ~________ B(3, ) C3 ( ) ( ) 则P(ξ=k)=_________ 6 6 6
思考:在独立重复试验中,某事件第一次发生时 所作试验的次数ξ也是一个取值 为正整数的离散 型随机变量。
ξ
1
2


k
g( k , p ) …

P
p
1
qp
q
k 1
p
例 (2000’高考)某工厂生产电子元件,其产品 的次品率为5%。现从一批产品中任意地连续取出 2件,写出其中次品数ξ的概率分布。
判断是否为二项分布的关键是看某事件是否进行n次独 立重复实验,每次试验只有2个结果,若不满足,则不 服从二项分布 解:依题意,随机变量ξ~B(2,5%)
随机变量ξ的概率分布(某事件具体何时发生不定,但发生k次) ξ
0 n
0
0 n
1
1 1 n 1 Cn pq
2
… …C
k n
k
b( k ; n, n p) …

P C pq
C pq
2 n
2 n 2
pq
k n k
C pq
n n
n 0

第十章 第五节 离散型随机变量的分布列及数字特征

第十章 第五节 离散型随机变量的分布列及数字特征
①求 X 的分布列,并求 X 的均值和方差; ②若网约车计费细则如下:起步价为 5 元,行驶路程不超过 3 km 时,收费 5 元,行驶路程超过 3 km 时,则按每超出 1 km(不足 1 km 也按 1 km 计程)收费 3 元 计费.试计算此人一天中出车一次收入的均值和方差.
(1)C 解析:D(3X-1)=9D(X),只需求 D(X)的最大值即可,根据题意 a+b
又 0≤p1≤1,∴0≤13 -d≤1,∴-23 ≤d≤13 .同理,由 0≤p3≤1,p3=d+13 , ∴-13 ≤d≤23 ,∴-13 ≤d≤13 ,即公差 d 的取值范围是-13,13 .
3.随机变量 X 的概率分布列如下:
X0
1
2
3
4
5
6
P
1 a
1 a
C16
1 a
C26
1 a
C36
1 a

X x1 x2 …
xi

xn
P p1 p2 …
pi

pn
则称 E(X)=x1p1+x2p2+…+xnpn 为 X 的数学期望或均值.
意义:离散型随机变量的数学期望刻画了这个离散型随机变量的平均水平.
(2)离散型随机变量的方差定义:
设离散型随机变量 X 的分布列为
X
x1
x2

xi

xn
P
p1
p2

X
-1
0
1
P
1 4
1 2
1 4
A.0 B.1 C.14
D.12
D 解析:E(X)=-1×14 +0×12 +1×14 =0,
则 D(X)=14 ×(-1-0)2+12 ×(0-0)2+14 ×(1-0)2=12 .

随机变量及其分布列

随机变量及其分布列

随机变量及其分布列.几类典型的随机分布一、离散型随机变量及其分布列随机变量是指在试验中可能出现的结果可以用一个变量X 来表示,并且X是随着试验的结果的不同而变化的。

离散型随机变量是指所有可能的取值都能一一列举出来的随机变量。

离散型随机变量常用大写字母X,Y表示。

离散型随机变量的分布列是将所有可能的取值与对应的概率列出的表格。

二、几类典型的随机分布1.两点分布二点分布是指随机变量X的分布列为X:1,P:pq,其中p 为0~1之间的参数,q为1-p。

伯努利试验只有两种可能结果的随机试验,因此又称为伯努利分布。

2.超几何分布超几何分布是指有总数为N件的两类物品,其中一类有M件,从所有物品中任取n件,这n件中含有这类物品件数X 是一个离散型随机变量,它取值为m时的概率为C(n,m)C(M,m)/C(N,n)。

超几何分布只要知道N,M和n,就可以根据公式求出X取不同值时的概率P(X=m),从而列出X的分布列。

3.二项分布二项分布是指在n次独立重复试验中,事件A发生的次数X服从二项分布,事件A不发生的概率为q=1-p,事件A恰好发生k次的概率为P(X=k)=C(n,k)p^kq^(n-k)。

其中p为事件A发生的概率,k为事件A发生的次数,n为试验的总次数。

首先,将文章中的格式错误和明显有问题的段落删除。

然后对每段话进行小幅度改写。

对于二项分布,当一个试验重复进行n次,每次成功的概率为p,失败的概率为q=1-p时,事件发生k次的概率可以用公式P(n,k) = n。

/ (k!(n-k)!) * p^k * q^(n-k)来计算。

这个公式可以展开成X的分布列,其中X表示事件发生的次数。

因为每个值都可以对应到表中的某个项,所以我们称这样的散型随机变量X服从参数为n,p的二项分布,记作X~B(n,p)。

二项分布的均值和方差可以用公式E(X) = np和D(X) = npq(q=1-p)来计算。

正态分布是一种连续型随机变量的概率分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第41练 随机变量及其分布列题型一 离散型随机变量的期望例1 2014年男足世界杯在巴西举行,为了争夺最后一个小组赛参赛名额,甲、乙、丙三支国家队要进行比赛,根据规则:每支队伍比赛两场,共赛三场,每场比赛胜者得3分,负者得0分,没有平局,获得第一名的队伍将夺得这个参赛名额.已知乙队胜丙队的概率为15,甲队获得第一名的概率为16,乙队获得第一名的概率为115.(1)求甲队分别战胜乙队和丙队的概率P 1,P 2;(2)设在该次比赛中,甲队得分为ξ,求ξ的分布列和数学期望.破题切入点 (1)利用相互独立事件同时发生的概率公式,结合甲队获得第一名与乙队获得第一名的条件列出方程,从而求出P 1,P 2;(2)先根据比赛得分的规则确定甲队得分ξ的可能取值,然后利用相互独立事件的概率计算公式分别求解对应的概率值,列出分布列求其期望.解 (1)根据题意,甲队获得第一名,则甲队胜乙队且甲队胜丙队, 所以甲队获第一名的概率为P 1×P 2=16.①乙队获得第一名,则乙队胜甲队且乙队胜丙队, 所以乙队获第一名的概率为(1-P 1)×15=115.②解②,得P 1=23,代入①,得P 2=14,所以甲队战胜乙队的概率为23,甲队战胜丙队的概率为14.(2)ξ可能取的值为0,3,6,当ξ=0时,甲队两场比赛皆输,其概率为P (ξ=0)=(1-23)×(1-14)=14;当ξ=3时,甲队两场只胜一场,其概率为P (ξ=3)=23×(1-14)+14×(1-23)=712;当ξ=6时,甲队两场皆胜,其概率为P (ξ=6)=23×14=16.所以ξ的分布列为所以E (ξ)=0×14+3×712+6×16=114.题型二 相互独立事件的概率例2 红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6、0.5、0.5.假设各盘比赛结果相互独立. (1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E (ξ).破题切入点 设“甲胜A ”为事件D ,“乙胜B ”为事件E ,“丙胜C ”为事件F ,则第(1)问就是求事件DE F +D E F +D EF +DEF 的概率,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式进行计算.第(2)问中的ξ可取0,1,2,3,分别对应事件D E F ,D E F +D E F +D E F ,DE F +D E F +D EF ,DEF ,求出其概率就得到了ξ的分布列,然后按照数学期望的计算公式求数学期望.解 (1)设“甲胜A ”为事件D ,“乙胜B ”为事件E ,“丙胜C ”为事件F ,则D ,E ,F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式,知P (D )=0.4,P (E )=0.5,P (F )=0.5.红队至少两人获胜的事件有DE F ,D E F ,D EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意,知ξ的可能取值为0,1,2,3.因此P (ξ=0)=P (D E F )=0.4×0.5×0.5=0.1,P (ξ=1)=P (D E F )+P (D E F )+P (D E F )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15.由对立事件的概率公式,得P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4. 所以ξ的分布列为因此E (ξ)=0×0.1+1×题型三 二项分布问题例3 (2013·山东)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列及数学期望.破题切入点 理解相互独立事件、二项分布的概念,掌握离散型随机变量的分布列与数学期望的计算.解 (1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,知各局比赛结果相互独立, 故P (A 1)=(23)3=827,P (A 2)=C 23(23)2(1-23)×23=827, P (A 3)=C 24(23)2(1-23)2×12=427. 所以甲队以3∶0胜利、3∶1胜利的概率都为827,以3∶2胜利的概率为427.(2)设“乙队以3∶2胜利”为事件A 4, 由题意,知各局比赛结果相互独立, 所以P (A 4)=C 24(1-23)2(23)2×(1-12)=427. 由题意,知随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性,得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627,又P (X =1)=P (A 3)=427,P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2) =327=19, 故X 的分布列为所以E (X )=0×1627+1×427+2×427+3×19=79.总结提高 (1)离散型随机变量的期望的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的期望可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,注意离散型随机变量的取值与概率间的对应. (2)两个事件相互独立是指一个事件的发生与否对另一个事件的发生与否没有关系,在一些问题中我们可以根据问题的实际意义来判断两个事件是否相互独立. (3)对于能够判断为服从二项分布的随机变量,可直接代入公式.1.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49B.13C.29D.19 答案 D解析 个位数与十位数之和为奇数,则个位数与十位数中必有一个奇数一个偶数,所以可以分两类.(1)当个位为奇数时,有5×4=20(个)符合条件的两位数. (2)当个位为偶数时,有5×5=25(个)符合条件的两位数.因此共有20+25=45(个)符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P =545=19.2.(2013·广东)已知离散型随机变量X 的分布列为则X 的数学期望E (X )等于( A.32B .2C.52D .3 答案 A解析 E (X )=1×35+2×310+3×110=32.3.(2014·绵阳模拟)甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34B.23C.45D.710 答案 A解析 设甲命中目标为事件A ,乙命中目标为事件B ,丙命中目标为事件C ,则目标被击中的事件可以表示为A ∪B ∪C ,即击中目标表示事件A 、B 、C 中至少有一个发生. ∴P (A ·B ·C )=P (A )·P (B )·P (C ) =[1-P (A )]·[1-P (B )]·[1-P (C )] =⎝⎛⎭⎫1-12⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=14. 故目标被击中的概率为1-P (A ·B ·C )=1-14=34.4.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a ,b ,c ∈(0,1)),已知他投篮一次得分的数学期望为1(不计其他得分的情况),则ab 的最大值为( ) A.148B.124 C.112D.16 答案 B解析 由已知得3a +2b +0×c =1,即3a +2b =1, ∴ab =16·3a ·2b ≤16⎝⎛⎭⎫3a +2b 22=16×⎝⎛⎭⎫122=124,当且仅当3a =2b =12时取等号,即ab 的最大值为124.5.盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是( ) A.18125B.36125 C.44125D.81125 答案 B解析 从5个球中随机取出一个球放回,连续取3次的所有取法有5×5×5=125种,有两次取红球的所有取法有3A 12·A 23=36种. 所以概率为36125.6.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|A.16B.13C.12D.23 答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.7.将一枚均匀的硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________. 答案1132解析 正面出现的次数比反面出现的次数多,则正面可以出现4次,5次或6次,所求概率P=C 46⎝⎛⎭⎫126+C 56⎝⎛⎭⎫126+C 66⎝⎛⎭⎫126=1132. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________. 答案 0.128解析 由题设,分两类情况:①第1个正确,第2个错误,第3、4个正确, 由乘法公式得P 1=0.8×0.2×0.8×0.8=0.1024; ②第1、2个错误,第3、4个正确, 此时概率P 2=0.2×0.2×0.8×0.8=0.0256. 由互斥事件概率公式得P =P 1+P 2=0.1024+0.0256=0.128.9.小王参加了2014年春季招聘会,分别向A ,B 两个公司投递个人简历.假定小王得到A 公司面试的概率为13,得到B 公司面试的概率为p ,且两个公司是否让其面试是独立的.记ξ为小王得到面试的公司个数.若ξ=0时的概率P (ξ=0)=12,则随机变量ξ的数学期望E (ξ)=________. 答案712解析 由题意,得P (ξ=2)=13p ,P (ξ=1)=13(1-p )+23p =1+p3,ξ的分布列为由12+1+p 3+13p =1,得p =14. 所以E (ξ)=0×12+1×1+p 3+2×13p =712.10.(2014·成都模拟)某工厂生产甲、乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(1)的前提下,①记X 为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X 的分布列和数学期望;②求生产5件芯片乙所获得的利润不少于140元的概率.解 (1)芯片甲为合格品的概率约为40+32+8100=45,芯片乙为合格品的概率约为40+29+6100=34. (2)①随机变量X 的所有可能取值为90,45,30,-15. P (X =90)=45×34=35,P (X =45)=15×34=320,P (X =30)=45×14=15,P (X =-15)=15×14=120,所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=90×35+45×320+30×15-15×120=66.②设生产的5件芯片乙中合格品有n 件,则次品有(5-n )件. 依题意,得50n -10(5-n )≥140,解得n ≥196.所以n =4或n =5.设“生产5件芯片乙所获得的利润不少于140元”为事件A , 则P (A )=C 45(34)4×14+(34)5=81128.11.在体育课上,甲、乙、丙三位同学进行篮球投篮练习,甲、乙、丙投中的概率分别为p 1,p 2,25,且p 1+p 2=1,现各自投篮一次,三人投篮相互独立.(1)求三人都没有投进的概率的最大值,并求此时甲、乙投篮命中的概率; (2)在(1)的条件下,求三人投中次数之和X 的分布列和数学期望. 解 (1)记甲、乙、丙投篮一次命中分别为事件A ,B ,C , 则P (A )=p 1,P (B )=p 2,P (C )=25.各自投篮一次都没有投进为事件D ,则D =A B C , 故P (D )=P (A B C )=P (A )P (B )P (C ) =[1-P (A )][1-P (B )][1-P (C )]=35(1-p 1)(1-p 2)≤35(1-p 1+1-p 22)2=320, 当且仅当p 1=p 2=12时等号成立.即各自投篮一次三人都没有投进的概率的最大值是320,此时甲、乙投篮命中的概率都是12.(2)X =0,1,2,3.根据(1)知P (X =0)=320;P (X =1)=P (A B C +A B C +A B C ) =12×12×35+12×12×35+12×12×25=25; P (X =2)=P (AB C +A B C +A BC ) =12×12×35+12×12×25+12×12×25 =720; P (X =3)=P (ABC )=12×12×25=110.所以X 的分布列为X 的数学期望E (X )=0×320+1×25+2×720+3×110=75.12.(2013·重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X 的分布列与期望E (X ).解 设A i (i =0,1,2,3)表示摸到i 个红球,B j (j =0,1)表示摸到j 个蓝球,则A i 与B j 独立.(1)恰好摸到1个红球的概率为P (A 1)=C 13C 24C 37=1835.(2)X 的所有可能值为:0,10,50,200,且 P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=C 33C 37·13=1105,P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=C 33C 37·23=2105,P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=C 23C 14C 37·13=12105=435,P (X =0)=1-1105-2105-435=67.综上可知,获奖金额X 的分布列为从而有E (X )=0×67+10×435+50×2105+200×1105=4(元).。

相关文档
最新文档