28、2020版高考数学大二轮专题突破理科通用版课件:7.1 直线、圆、圆锥曲线小题专项练

合集下载

2020版高考数学大二轮专题突破文科通用版 课件:7.1 直线、圆、圆锥曲线小题专项练

2020版高考数学大二轮专题突破文科通用版 课件:7.1 直线、圆、圆锥曲线小题专项练

答案
一、选择题 二、填空题
7.已知方程���������2���2+������ − 3������������22-������=1 表示双曲线,且该双曲线两焦点间的距 离为 4,则 n 的取值范围是( )
A.(-1,3)
B.(-1, 3)
C.(0,3)
D.(0, 3)
关闭
因为双曲线的焦距为4,所以c=2,即m2+n+3m2-n=4,解得m2=1.又由方程 表示双曲线得(1+n)(3-n)>0,解得-1<n<3,故选A.
A.5 2 2
B.3 2 2
C.
2 2
D.12
关闭
因为圆 C 的方程为 x2+y2-6x+2y+9=0,所以其圆心坐标为 C(3,-1),
又 M 在直线 x+y-1=0 上,所以求圆心 C 到点 M 的最小距离,即是
求圆心 C 到直线 x+y-1=0 的距离 d.由点到直线的距离公式,可得
d=
|3-1-1| 12 +12
平行,∴
3+������ 2
=
4 5+������

5-3������ 8
,解得
m=-7.即必要性成立,但
m=-1
时,直线
l1:(3+m)x+4y=5-3m 与 l2:2x+(5+m)y=8 重合,充分性不成立,故选
B.
关闭
B
解-析4-
答案
一、选择题 二、填空题
2.(2019浙江金华十校第二学期高考模拟)过点(1,0)且与直线x-2y2=0垂直的直线方程为( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0

2020高考数学理科通用版专题课件一ppt

2020高考数学理科通用版专题课件一ppt

设 z=x+yi(x,y∈R). 因为 z-i=x+(y-1)i,
所以|z-i|= ������2 + (������-1)2=1, 则 x2+(y-1)2=1.故选 C.
C
关闭
关闭
解-析7-
答案
一、选择题 二、填空题
6.(2019天津卷,文1)设集合A={-1,1,2,3,5},B={2,3,4}, C={x∈R|1≤x<3},则(A∩C)∪B=( )
关闭
由x2-5x<0,得0<x<5.由|x-1|<1,得0<x<2.故“x2-5x<0”是“|x-1|<1”的必要不 充分条件.
关闭
B
解-析9-
答案
一、选择题 二、填空题
8.下列说法正确的是( ) A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1” B.“若am2<bm2,则a<b”的逆命题为真命题
A.{2}
B.{2,3}
C.{-1,2,3} D.{1,2,3,4}
A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D. D
关闭
关闭
解-析8-
答案
一、选择题 二、填空题
7.(2019天津卷,理3)设x∈R,则“x2-5x<0”是“|x-1|<1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件
C
关闭
关闭
解-析3-
答案
一、选择题 二、填空题
关闭
由 z=-3+2i,得������=-3-2i,则在复平面内������对应的点(-3,-2)位于第三象 限,故选 C.

2020版高考数学大二轮专题突破理科通用版 课件:7.3 直线、圆、圆锥曲线小综合题专项练

2020版高考数学大二轮专题突破理科通用版 课件:7.3 直线、圆、圆锥曲线小综合题专项练

A.
6 3
B.
3 3
C.
2 3
D.13
关闭
以线段 A1A2 为直径的圆的方程是 x2+y2=a2.因为直线
bx-ay+2ab=0 与圆 x2+y2=a2 相切,所以圆心到该直线的距离
d=
2������������ ������ 2 +������
2=a,整理,得
a2=3b2,即
a2=3(a2-c2),所以������������
7.已知 F2,F1 是双曲线������������22 − ������������22=1(a>0,b>0)的上、下焦点,点 F2 关于渐 近线的对称点恰好落在以 F1 为圆心,|OF1|为半径的圆上,则双曲线
的离心率为( )
A.3
B. 3
C.2
D. 2
关闭
由题意,F1(0,-c),F2(0,c),一条渐近线方程为 y=������������x,则 F2 到渐近线的
-4-
一、选择题 二、填空题
1.(2019 福建龙岩(漳州)高三 5 月月考)双曲线���5���2 − 1������02=1 的渐近线方 程为( )
A.y=±12x C.y=± 2x
B.y=± 22x D.y=±2x
关闭
双曲线������ 2
5

������ 2 10
=1
的渐近线方程为������ 2
-2-
(3)已知抛物线 y2=2px(p>0),C(x1,y1),D(x2,y2)为抛物线上的点,F
为焦点.
①焦半径|CF|=x1+���2���; ②过焦点的弦长|CD|=x1+x2+p;

2020版高考数学大二轮培优理科通用版课件:专题七 第2讲 椭圆、双曲线与抛物线

2020版高考数学大二轮培优理科通用版课件:专题七 第2讲 椭圆、双曲线与抛物线
方程与几何性质,主要有两个 方向,一是用定义或待定系数 法求曲线方程;二是利用曲线 方程研究几何性质,难度中 等.解答题第一问多结合圆锥
双曲线的定义、离心率问题
曲线的性质考查轨迹方程,一
直线与椭圆的位置关系、椭圆的 般难度不大.第二问主要结合
离心率
直线与圆锥曲线的位置关系
双曲线的几何性质(范围问题);椭 考查相交弦、范围等圆锥曲
双曲线的几何性质;直线与抛 物线的位置关系
命题分析: 从题量上看,少数 年份是 1 个选择 题,多数年份 2 个 小题(10 分); 从题序上看,选择 题多出现在第 4~11 题或填空题 15~16 题的位置, 解答题多出现在
第 19~20 题的位 置;
年份 卷别 题号 Ⅰ 10,15
2017 Ⅱ 9,16
Ⅲ 5,10
Ⅰ 5,10 2016 Ⅱ 11
Ⅲ 11
Ⅰ 5,14 2015
Ⅱ 11
考查角度
命题预测
直线与抛物线的位置关系、弦长
公式;双曲线的几何性质 双曲线的几何性质;抛物线与直线 的位置关系
双曲线的渐近线及标准方程;椭圆 的几何性质
双曲线的几何性质与标准方程;抛 物线与圆的综合问题
从命题特点上看,选择、填空 题着重考查圆锥曲线的标准
于点 A(x1,y1),B(x2,y2)时,|AB|=
1 + ������2|x1-x2|=
1
&1-y2|,而
|x1-x2|= (������1 + ������2)2-4������1������2. (2)抛物线的过焦点的弦长
抛物线 y2=2px(p>0)的过焦点 F ���2���,0 的弦 AB,若 A(x1,y1),B(x2,y2),则 x1x2=������42,y1y2=-p2,弦长|AB|=x1+x2+p.同样可得抛 物线 y2=-2px,x2=2py,x2=-2py 类似的性质.

2020版高考理科数学突破二轮复习新课标通用课件:第一部分 第2讲 集合、复数、常用逻辑用语

2020版高考理科数学突破二轮复习新课标通用课件:第一部分 第2讲 集合、复数、常用逻辑用语

解析:选 D.因为 ex>0 恒成立,所以选项 A 错误.取 x=2,则 2x=x2,所以选项 B 错 误.当 a+b=0 时,若 b=0,则 a=0,此时ab无意义,所以也不可能推出ab=-1;当ab= -1 时,变形得 a=-b,所以 a+b=0,故 a+b=0 的充分不必要条件是ab=-1,故选 项 C 错误.假设 x≤1 且 y≤1,则 x+y≤2,这显然与已知 x+y>2 矛盾,所以假设错误, 所以 x,y 中至少有一个大于 1,故选项 D 正确.综上,选 D.
则(A∩C)∪B=( )
A.{2}
B.{2,3}
C.{-1,2,3}
D.{1,2,3,4}
解析:选 D.因为 A∩C={-1,1,2,3,5}∩{x∈R|1≤x<3}={1,2},所以(A∩C)∪B ={1,2}∪{2,3,4}={1,2,3,4}.故选 D.
第四页,编辑于星期日:一点 三十五分。
3.(2019·郑州市第二次质量预测)已知全集 U=R,A={x|y=ln(1-x2)},B={y|y=4x-2},
则 A∩(∁UB)=( ) A.(-1,0)
B.[0,1)
C.(0,1)
D.(-1,0]
解析:选 D.A={x|1-x2>0}=(-1,1),B={y|y>0},所以∁UB={y|y≤0},所以 A∩(∁UB) =(-1,0],故选 D.
第五页,编辑于星期日:一点 三十五分。
4.(一题多解)已知集合 A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则 A 中元素的个数为( )
这三个元素至少有一个在集合 A 中,若 2 或 3 在集合 A 中,则 1 一定在集合 A 中,因
此只要保证 1∈A 即可,所以 a≥1,故选 B.

2020版高考数学大二轮专题突破文科通用版课件:7.4.1 直线与圆及圆锥曲线

2020版高考数学大二轮专题突破文科通用版课件:7.4.1 直线与圆及圆锥曲线

������-������ ������
=
���������+��� ������,p-t=������������+������������,
所以 p-t=t,t=���2���,则 T 为原点 O.
-12-
4.圆锥曲线的弦长 (1)直线方程的设法,已知直线过定点(x0,y0),设直线方程为yy0=k(x-x0),若已知直线的纵截距为(0,b),设直线方程为y=kx+b,若已 知直线的横截距为(a,0),设直线方程为x=ty+a; (2)弦长公式,斜率为k的直线与圆锥曲线交于点A(x1,y1),B(x2,y2)时,
∴������1-������2
������1-������2
=
2������ ������1+������2
=
������������0,即
kAB=������������0.
-15-
6.过一点的直线与圆锥曲线的位置关系 (1)过椭圆外一点总有两条直线与椭圆相切; 过椭圆上一点有且只有一条直线与椭圆相切; 过椭圆内一点的直线与椭圆相交. (2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点: 两条切线和另一条与对称轴平行或重合的直线; 过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一 条切线和另一条与对称轴平行或重合的直线; 过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一 条与对称轴平行或重合的直线.
-18-
2.圆锥曲线中常见的最值问题及解题方法
(1)两类最值问题:①涉及距离、面积的最值以及与之相关的一些 问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最
值时与之相关的一些问题.
(2)两种常见解法:①几何法,若题目的条件和结论能明显体现几 何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条

通用(理)2020高三二轮数学专题突破 专题五 第2讲

通用(理)2020高三二轮数学专题突破 专题五 第2讲

第2讲椭圆、双曲线、抛物线【高考考情解读】高考对本节知识的考查主要有以下两种形式:1.以选择、填空的形式考查,主要考查圆锥曲线的标准方程、性质(特别是离心率),以及圆锥曲线之间的关系,突出考查基础知识、基本技能,属于基础题.2.以解答题的形式考查,主要考查圆锥曲线的定义、性质及标准方程的求解,直线与圆锥曲线的位置关系,常常在知识的交汇点处命题,有时以探究的形式出现,有时以证明题的形式出现.该部分题目多数为综合性问题,考查学生分析问题、解决问题的能力,综合运用知识的能力等,属于中、高档题,一般难度较大.圆锥曲线的定义、标准方程与几何性质名称椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a>|F1F2|) ||PF1|-|PF2||=2a(2a<|F1F2|)|PF|=|PM|点F不在直线l上,PM⊥l于M标准方程x2a2+y2b2=1(a>b>0)x2a2-y2b2=1(a>0,b>0)y2=2px(p>0)图形几何性质范围|x|≤a,|y|≤b|x|≥a x≥0顶点(±a,0),(0,±b) (±a,0) (0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(±c,0) (p2,0)轴长轴长2a,短轴长2b实轴长2a,虚轴长2b离心率e=ca=1-b2a2(0<e<1)e=ca=1+b2a2(e>1)e=1准线x=-p2渐近线y=±ba x考点一 圆锥曲线的定义与标准方程例1 (1)设椭圆x 22+y 2m =1和双曲线y 23-x 2=1的公共焦点分别为F 1、F 2,P 为这两条曲线的一个交点,则|PF 1|·|PF 2|的值等于________.(2)已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =________. 答案 (1)3 (2)223解析 (1)焦点坐标为(0,±2),由此得m -2=4,故m =6.根据椭圆与双曲线的定义可得|PF 1|+|PF 2|=26,||PF 1|-|PF 2||=23,两式平方相减得4|PF 1||PF 2|=4×3,所以|PF 1|·|PF 2|=3.(2)方法一 抛物线C :y 2=8x 的准线为l :x =-2,直线y =k (x +2)(k >0)恒过定点 P (-2,0).如图,过A 、B 分别作AM ⊥l 于点M , BN ⊥l 于点N .由|F A |=2|FB |,则|AM |=2|BN |,点B 为AP 的中点. 连接OB ,则|OB |=12|AF |,∴|OB |=|BF |,点B 的横坐标为1, 故点B 的坐标为(1,22). ∴k =22-01-(-2)=223.方法二 如图,由图可知,BB ′=BF ,AA ′=AF , 又|AF |=2|BF |, ∴|BC ||AC |=|BB ′||AA ′|=12, 即B 是AC 的中点.∴⎩⎪⎨⎪⎧2x B =x A -2,2y B =y A 与 ⎩⎪⎨⎪⎧y 2A =8x A ,y 2B =8x B, 联立可得A (4,42),B (1,22). ∴k AB =42-224-1=223.(1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与到准线的距离相等的转化. (2)注意数形结合,提倡画出合理草图.(1)(2012·山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1D.x 220+y 25=1 (2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B , 交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x答案 (1)D (2)C解析 (1)∵椭圆的离心率为32,∴c a =a 2-b 2a =32,∴a =2b .∴椭圆方程为x 2+4y 2=4b 2.∵双曲线x 2-y 2=1的渐近线方程为x ±y =0,∴渐近线x ±y =0与椭圆x 2+4y 2=4b 2在第一象限的交点为⎝⎛⎭⎫255b ,255b ,∴由圆锥曲线的对称性得四边形在第一象限部分的面积为255b ×255b =4,∴b 2=5,∴a 2=4b 2=20.∴椭圆C 的方程为x 220+y 25=1.(2)如图,分别过A ,B 作AA 1⊥l 于A 1,BB 1⊥l 于B 1,由抛物线的定 义知,|AF |=|AA 1|,|BF |=|BB 1|, ∵|BC |=2|BF |,∴|BC |=2|BB 1|, ∴∠BCB 1=30°,∴∠AFx =60°. 连接A 1F ,则△AA 1F 为等边三角形, 过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于N ,则|NF |=|A 1F 1|=12|AA 1|=12|AF |,即p =32,∴抛物线方程为y 2=3x ,故选C.考点二 圆锥曲线的几何性质例2 (1)(2013·辽宁)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67(2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线的离心率e 的最大值为________. 答案 (1)B (2)53解析 (1)在△ABF 中,由余弦定理得 |AF |2=|AB |2+|BF |2-2|AB |·|BF |cos ∠ABF , ∴|AF |2=100+64-128=36,∴|AF |=6, 从而|AB |2=|AF |2+|BF |2,则AF ⊥BF . ∴c =|OF |=12|AB |=5,利用椭圆的对称性,设F ′为右焦点, 则|BF ′|=|AF |=6,∴2a =|BF |+|BF ′|=14,a =7. 因此椭圆的离心率e =c a =57.(2)设∠F 1PF 2=θ,由⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=4|PF 2|得⎩⎨⎧|PF 1|=83a ,|PF 2|=23a ,由余弦定理得cos θ=17a 2-9c 28a 2=178-98e 2.∵θ∈(0,180°],∴cos θ∈[-1,1),-1≤178-98e 2<1,又e >1,∴1<e ≤53.解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式.建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.(1)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且B F →=2 F D →,则C 的离心率为________.(2)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若E 为PF 的中点,则双曲线的离心率为________. 答案 (1)33 (2)102解析 (1)设椭圆C 的焦点在x 轴上,如图,B (0,b ), F (c,0),D (x D ,y D ), 则B F →=(c ,-b ), F D →=(x D -c ,y D ), ∵B F →=2F D →,∴⎩⎪⎨⎪⎧c =2(x D -c ),-b =2y D , ∴⎩⎨⎧x D =3c2,y D=-b2.又∵点D 在椭圆C 上,∴⎝⎛⎭⎫3c 22a 2+⎝⎛⎭⎫-b 22b 2=1,即e 2=13.∴e =33.(2)设c =a 2+b 2,双曲线的右焦点为F ′. 则|PF |-|PF ′|=2a ,|FF ′|=2c . ∵E 为PF 的中点,O 为FF ′的中点, ∴OE ∥PF ′,且|PF ′|=2|OE |. ∵OE ⊥PF ,|OE |=a2,∴PF ⊥PF ′,|PF ′|=a ,∴|PF |=|PF ′|+2a =3a . ∵|PF |2+|PF ′|2=|FF ′|2, ∴9a 2+a 2=4c 2,∴c a =102.∴双曲线的离心率为102. 考点三 直线与圆锥曲线的位置关系例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,点F 为椭圆的右焦点,点A 、B 分别为椭圆的左、右顶点,点M 为椭 圆的上顶点,且满足MF →·FB →=2-1. (1)求椭圆C 的方程;(2)是否存在直线l ,当直线l 交椭圆于P 、Q 两点时,使点F 恰为△PQM 的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)根据题意得,F (c,0)(c >0),A (-a,0),B (a,0),M (0,b ), ∴MF →=(c ,-b ),FB →=(a -c,0), ∴MF →·FB →=ac -c 2=2-1.又e =c a =22,∴a =2c ,∴2c 2-c 2=2-1,∴c 2=1,a 2=2,b 2=1, ∴椭圆C 的方程为x 22+y 2=1.(2)假设存在满足条件的直线l . ∵k MF =-1,且MF ⊥l ,∴k l =1.设直线l 的方程为y =x +m ,P (x 1,y 1),Q (x 2,y 2), 由⎩⎪⎨⎪⎧y =x +m ,x 22+y 2=1消去y 得3x 2+4mx +2m 2-2=0, 则有Δ=16m 2-12(2m 2-2)>0,即m 2<3, 又x 1+x 2=-4m3,x 1x 2=2m 2-23,∴y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2 =2m 2-23-4m 23+m 2=m 2-23.又F 为△MPQ 的垂心,连接PF ,则PF ⊥MQ ,∴PF →·MQ →=0,又PF →=(1-x 1,-y 1),MQ →=(x 2,y 2-1), ∴PF →·MQ →=x 2+y 1-x 1x 2-y 1y 2 =x 2+x 1+m -x 1x 2-y 1y 2 =-43m +m -2m 2-23-m 2-23=-m 2-m 3+43=-13(3m 2+m -4)=-13(3m +4)(m -1)=0,∴m =-43或m =1(舍去),经检验m =-43符合条件,∴存在满足条件的直线l ,其方程为3x -3y -4=0.(1)对于弦中点问题常用“根与系数的关系”或“点差法”求解,在使用根与系数的关系时,要注意使用条件Δ≥0,在用“点差法”时,要检验直线与圆锥曲线是否相交.(2)涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.(2013·北京)已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 解 (1)由椭圆W :x 24+y 2=1,知B (2,0)∴线段OB 的垂直平分线x =1. 在菱形OABC 中,AC ⊥OB , 将x =1代入x 24+y 2=1,得y =±32.∴|AC |=|y 2-y 1|= 3.因此菱形的面积S =12|OB |·|AC |=12×2×3= 3.(2)假设四边形OABC 为菱形.因点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. ∴线段AC 中点M ⎝⎛⎭⎫-4km 1+4k 2,m1+4k 2,∵M 为AC 和OB 交点,∴k OB =-14k.又k ·⎝⎛⎭⎫-14k =-14≠-1, ∴AC 与OB 不垂直.故OABC 不是菱形,这与假设矛盾. 综上,四边形OABC 不是菱形.1. 对涉及圆锥曲线上点到焦点距离或焦点弦问题,恰当选用定义解题,会效果明显,定义中的定值是标准方程的基础.2. 椭圆、双曲线的方程形式上可统一为Ax 2+By 2=1,其中A 、B 是不等的常数,A >B >0时,表示焦点在y 轴上的椭圆;B >A >0时,表示焦点在x 轴上的椭圆;AB <0时表示双曲线.3. 求双曲线、椭圆的离心率的方法:方法一:直接求出a ,c ,计算e =ca;方法二:根据已知条件确定a ,b ,c 的等量关系,然后把b 用a ,c 代换,求ca.4. 通径:过双曲线、椭圆、抛物线的焦点垂直于对称轴的弦称为通径,双曲线、椭圆的通径长为2b 2a ,过椭圆焦点的弦中通径最短;抛物线通径长是2p ,过抛物线焦点的弦中通径最短.椭圆上点到焦点的最长距离为a +c ,最短距离为a -c . 5. 抛物线焦点弦性质:已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1)、B (x 2,y 2). (1)y 1y 2=-p 2,x 1x 2=p 24; (2)|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角);(3)S △AOB =p 22sin α;(4)1|F A |+1|FB |为定值2p; (5)以AB 为直径的圆与抛物线的准线相切.1. 已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过点F且垂直于x 轴的直线与双曲线交于A ,B 两点,△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是 ( )A .(1,+∞)B .(1,2)C .(1,1+2)D .(2,1+2)答案 B解析 由AB ⊥x 轴,可知△ABE 为等腰三角形,又△ABE 是锐角三角形,所以∠AEB 为锐角,即∠AEF <45°,于是|AF |<|EF |,b 2a <a +c ,于是c 2-a 2<a 2+ac ,即e 2-e -2<0,解得-1<e <2.又双曲线的离心率e >1,从而1<e <2.2. 过抛物线y 2=2px (p >0)的对称轴上一点A (a,0)(a >0)的直线与抛物线相交于M 、N 两点,自M 、N 向直线l :x =-a 作垂线,垂足分别为M 1、N 1. (1)当a =p2时,求证:AM 1⊥AN 1;(2)记△AMM 1、△AM 1N 1、△ANN 1的面积分别为S 1、S 2、S 3.是否存在λ,使得对任意的a >0,都有S 22=λS 1S 3成立?若存在,求出λ的值;若不存在,说明理由. 解 (1)当a =p 2时,A (p2,0)为该抛物线的焦点,而l :x =-a 为准线,由抛物线的定义知|MA |=|MM 1|,|NA |=|NN 1|, 则∠NN 1A =∠NAN 1,∠MM 1A =∠MAM 1. 又∠NN 1A =∠BAN 1,∠MM 1A =∠BAM 1, 则∠BAN 1+∠BAM 1=∠NAN 1+∠MAM 1, 而∠BAN 1+∠BAM 1+∠NAN 1+∠MAM 1=180°, 则∠N 1AM 1=∠BAN 1+∠BAM 1=90°, 所以AM 1⊥AN 1.(2)可设直线MN 的方程为x =my +a ,由⎩⎪⎨⎪⎧x =my +a ,y 2=2px 得y 2-2pmy -2pa =0.设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=-2pa . S 1=12(x 1+a )|y 1|,S 2=12(2a )|y 1-y 2|,S 3=12(x 2+a )|y 2|,由已知S 22=λS 1S 3恒成立,则 4a 2(y 1-y 2)2=λ(x 1+a )(x 2+a )|y 1y 2|. (y 1-y 2)2=(y 1+y 2)2-4y 1y 2=4p 2m 2+8pa , (x 1+a )(x 2+a )=(my 1+2a )(my 2+2a ) =m 2y 1y 2+2ma (y 1+y 2)+4a 2=m 2(-2pa )+2ma ×2pm +4a 2=4a 2+2pam 2.则得4a 2(4p 2m 2+8pa )=2pa λ(4a 2+2pam 2),解得λ=4,即当λ=4时,对任意的a >0,都有S 22=λS 1S 3成立.(推荐时间:70分钟)一、选择题1. (2013·课标全国Ⅱ)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x答案 C解析 由题意知:F ⎝⎛⎭⎫p 2,0,抛物线的准线方程为x =-p2,则由抛物线的定义知,x M =5-p 2,设以MF 为直径的圆的圆心为⎝⎛⎭⎫52,y M 2,所以圆的方程为⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝⎛⎭⎫5-p2,解得p =2或p =8,所以抛物线C 的方程为y 2=4x 或y 2=16x ,故选C. 2. 与椭圆x 212+y 216=1共焦点,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1B.y 23-x 2=1C.3x 24-3y 28=1D.3y 24-3x 28=1 答案 A解析 椭圆x 212+y 216=1的离心率为16-1216=12,且焦点为(0,±2),所以所求双曲线的焦点为(0,±2)且离心率为2,所以c =2,2a =2得a =1,b 2=c 2-a 2=3,故所求双曲线方程是y 2-x 23=1. 3. (2013·江西)已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM |∶|MN |等于( )A .2∶ 5B .1∶2C .1∶ 5D .1∶3 答案 C解析 由抛物线定义知M 到F 的距离等于M 到准线l 的距离MH . 即|FM |∶|MN |=|MH |∶|MN | =|FO |∶|AF |=1∶ 5.4. 过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F ,作圆x 2+y 2=a 2的切线FM 交y 轴于点P ,切圆于点M,2OM →=OF →+OP →,则双曲线的离心率是( )A. 2B. 3C .2D. 5答案 A解析 由已知条件知,点M 为直三角形OFP 斜边PF 的中点,故OF =2OM ,即c =2a ,所以双曲线的离心率为 2.5. (2013·山东)抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p 等于( ) A.316B.38C.233D.433答案 D解析 抛物线C 1的标准方程为x 2=2py ,其焦点F 为⎝⎛⎭⎫0,p2,双曲线C 2的右焦点F ′为(2,0),渐近线方程为y =±33x .由y ′=1p x =33得x =33p ,故M ⎝⎛⎭⎫33p ,p6.由F 、F ′、M 三点共线得p =433.6. 椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且PF →1·PF→2的最大值的取值范围是[c 2,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是( )A .[14,12]B .[12,22]C .(22,1)D .[12,1)答案 B解析 设P (x ,y ),F 1(-c,0),F 2(c,0), 则PF →1=(-c -x ,-y ),PF →2=(c -x ,-y ), PF →1·PF →2=x 2+y 2-c 2.又x 2+y 2可看作P (x ,y )到原点的距离的平方, 所以(x 2+y 2)max =a 2,所以(PF 2→·PF 2→)max =b 2, 所以c 2≤b 2=a 2-c 2≤3c 2,即14≤e 2≤12,所以12≤e ≤22.故选B.二、填空题7. (2012·江苏)在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________. 答案 2解析 建立关于m 的方程求解. ∵c 2=m +m 2+4, ∴e 2=c 2a 2=m +m 2+4m=5, ∴m 2-4m +4=0,∴m =2.8. (2013·福建)椭圆Г:x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y=3(x +c )与椭圆Г的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. 答案3-1解析 由直线方程为y =3(x +c ), 知∠MF 1F 2=60°, 又∠MF 1F 2=2∠MF 2F 1,所以∠MF 2F 1=30°, MF 1⊥MF 2,所以|MF 1|=c ,|MF 2|=3c 所以|MF 1|+|MF 2|=c +3c =2a . 即e =ca=3-1.9. (2013·辽宁)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________. 答案 44解析 由双曲线C 的方程,知a =3,b =4,c =5, ∴点A (5,0)是双曲线C 的右焦点, 且|PQ |=|QA |+|P A |=4b =16,由双曲线定义,|PF |-|P A |=6,|QF |-|QA |=6. ∴|PF |+|QF |=12+|P A |+|QA |=28, 因此△PQF 的周长为|PF |+|QF |+|PQ |=28+16=44.10.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为________. 答案 7解析 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7. 三、解答题11.(2013·课标全国Ⅱ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解 (1)设A (x 1,y 1),B (x 2,y 2),则 x 21a 2+y 21b 2=1 ① x 22a 2+y 22b2=1②①-②,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0.因为y 1-y 2x 1-x 2=-1,设P (x 0,y 0),因为P 为AB 的中点,且OP 的斜率为12,所以y 0=12x 0,即y 1+y 2=12(x 1+x 2).所以可以解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2, 又因为c =3,所以a 2=6, 所以M 的方程为x 26+y 23=1.(2)因为CD ⊥AB ,直线AB 方程为x +y -3=0, 所以设直线CD 方程为y =x +m , 将x +y -3=0代入x 26+y 23=1得:3x 2-43x =0,即A (0,3),B ⎝⎛⎭⎫433,-33, 所以可得|AB |=463; 将y =x +m 代入x 26+y 23=1得:3x 2+4mx +2m 2-6=0, 设C (x 3,y 3),D (x 4,y 4),则|CD |=2(x 3+x 4)2-4x 3x 4=22318-2m 2,又因为Δ=16m 2-12(2m 2-6)>0,即-3<m <3,所以当m =0时,|CD |取得最大值4,所以四边形ACBD 面积的最大值为12|AB |·|CD |=863.12.(2013·江西)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A 、PB 、PM 的斜率分别为k 1、k 2、k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.解 (1)由P ⎝⎛⎭⎫1,32在椭圆x 2a 2+y2b2=1上,得 1a 2+94b2=1, ① 又e =c a =12,得a 2=4c 2,b 2=3c 2,②②代入①得,c 2=1,a 2=4,b 2=3. 故椭圆方程为x 24+y 23=1.(2)设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1)x 24+y 23=1得,(4k 2+3)x 2-8k 2x +4k 2-12=0, x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3.k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=k (x 1-1)-32x 1-1+k (x 2-1)-32x 2-1=2k -32⎝⎛⎭⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-(x 1+x 2)+1=2k -32·8k 24k 2+3-24k 2-124k 2+3-8k 24k 2+3+1=2k -1.又将x =4代入y =k (x -1)得M (4,3k ), ∴k 3=3k -323=k -12,∴k 1+k 2=2k 3.故存在常数λ=2符合题意.13.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,其一个顶点的抛物线x 2=-43y 的焦点.(1)求椭圆C 的标准方程;(2)若过点P (2,1)的直线l 与椭圆C 在第一象限相切于点M ,求直线l 的方程和点M 的坐标;(3)是否存在过点P (2,1)的直线l 1与椭圆C 相交于不同的两点A ,B ,且满足P A →·PB →= PM →2?若存在,求出直线l 1的方程;若不存在,请说明理由. 解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1 (a >b >0),由题意得b =3,c a =12,解得a =2,c =1.故椭圆C 的标准方程为x 24+y 23=1.(2)因为过点P (2,1)的直线l 与椭圆C 在第一象限相切,所以直线l 的斜率存在, 故可设直线l 的方程为y =k (x -2)+1 (k ≠0). 由⎩⎪⎨⎪⎧x 24+y 23=1y =k (x -2)+1得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0. ①因为直线l 与椭圆C 相切,所以Δ=[-8k (2k -1)]2-4(3+4k 2)(16k 2-16k -8)=0. 整理,得32(6k +3)=0,解得k =-12.所以直线l 的方程为y =-12(x -2)+1=-12x +2.将k =-12代入①式,可以解得M 点的横坐标为1,故切点M 的坐标为⎝⎛⎭⎫1,32. (3)若存在直线l 1满足条件,则直线l 1的斜率存在,设其方程为y =k 1(x -2)+1,代入椭圆C 的方程得(3+4k 21)x 2-8k 1(2k 1-1)x +16k 21-16k 1-8=0.设A (x 1,y 1),B (x 2,y 2),因为直线l 1与椭圆C 相交于不同的两点A ,B ,所以Δ=[-8k 1(2k 1-1)]2-4(3+4k 21)(16k 21-16k 1-8)=32(6k 1+3)>0.所以k 1>-12.x 1+x 2=8k 1(2k 1-1)3+4k 21,x 1x 2=16k 21-16k 1-83+4k 21.因为P A →·PB →=PM →2,即(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=54,所以(x 1-2)(x 2-2)(1+k 21)=54, 即[x 1x 2-2(x 1+x 2)+4](1+k 21)=54. 所以⎣⎢⎡⎦⎥⎤16k 21-16k 1-83+4k 21-2·8k 1(2k 1-1)3+4k 21+4(1+k 21) =4+4k 213+4k 21=54, 解得k 1=±12.因为A ,B 为不同的两点,所以k 1=12.于是存在直线l 1满足条件,其方程为y =12x .。

2020版高考数学大二轮专题突破理科通用版 课件:第一部分 第3讲 一、分类讨论思想

2020版高考数学大二轮专题突破理科通用版 课件:第一部分 第3讲 一、分类讨论思想

(0,x0)内 p(x)单调递减,从而有:x∈(0,x0)时,p(x)<p(0)=0,不符合题意.
综上可知,a 的取值范围是(-∞,1].
-11-
思维升华 含有参数的分类讨论问题主要包括:(1)含有参数的不 等式的求解;(2)含有参数的方程的求解;(3)函数解析式中含参数的 最值与单调性问题;(4)二元二次方程表示曲线类型的判定等.
无极值点;
当 b>0 时,由 h'(x)=(e���e��� )���2��� -������=0,得 x=12ln b,
当 x<1ln b 时,h'(x)<0,所以 h(x)在 -∞,1ln b 内单调递减;
2
2
当 x>12ln b 时,h'(x)>0,所以 h(x)在 12ln b,+∞ 内单调递增. 所以 h(x)的极小值点为12ln b.
-3-
应用一 由数的概念引起的分类讨论
由t例antan1������(���+���2π401=9 江t1at-natan苏���n���+������������1卷=,1t3an)t已a������n(1知������-t+at1na���n���t)a=���n���+-������23π4,得=-323t,a则n2αsi-n5ta2nαα+-2π4=0的, 值 解是得 tan α=2 或. tan α=-13.
所以 q3-1≠0,则 2q3+1=0,
解得 q=-324.
关闭
C
解-析6-
答案
思维升华 1.在中学数学中,一次函数、二次函数、指数函数、对 数函数的单调性,基本不等式,等比数列的求和公式等在不同的条 件下有不同的结论,或者在一定的限制条件下才成立,应根据题目 条件确定是否进行分类讨论.

2020届高三理科数学二轮专题复习讲义(三)

2020届高三理科数学二轮专题复习讲义(三)

2020届高三理科数学二轮专题复习讲义(三)《直线、圆、圆锥曲线》 专题一、专题热点透析解析几何是高中数学的重点内容之一,也是高考考查的热点。

高考着重考查基础知识的综合,基本方法的灵活运用,数形结合、分类整合、等价转化、函数方程思想以及分析问题解决问题的能力。

其中客观题为基础题和中档题,主观题常常是综合性很强的压轴题。

本专题命题的热点主要有:①直线方程;②线性规划;③直线与圆、圆锥曲线的概念和性质;④与函数、数列、不等式、向量、导数等知识的综合应用。

二、热点题型范例 题型一、动点轨迹方程问题例1.如图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 2.PM PN -=(Ⅰ)求点P 的轨迹方程; (Ⅱ)设d 为点P 到直线l :12x =的距离,若22PM PN =,求PM d 的值。

解:(I )由双曲线的定义,点P 的轨迹是以M 、N 为焦点,实轴长2a=2的双曲线.,因此半焦距c =2,实半轴a =1,从而虚半轴b x 2-23y =1.(II)由(I )及(21)图,易知|PN|≥1,因|PM|=2|PN|2, ① 知|PM|>|PN|,故P 为双曲线右支上的点,所以|PM|=|PN|+2. ②将②代入①,得2||PN|2-|PN|-2=0,解得|PN|=1144±-舍去,所以|PN|=14+. 因为双曲线的离心率e=c a =2,直线l :x =12是双曲线的右准线,故||PN d =e=2,所以d=12|PN |,因此2||2||4||4||1||||PM PM PN PN d PN PN ====+变式:在平面直角坐标系xOy 中,点P 到两点(0,,(0的距离之和等于4,设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C是以(0(0,为焦点,长半轴为2的椭圆.它的短半轴1b ==,故曲线C 的方程为2214y x +=. (Ⅱ)设1122()()A x y B x y ,,,,其坐标满足22141.y x y kx ⎧+=⎪⎨⎪=+⎩, 消去y 并整理得22(4)230k x kx ++-=,故1212222344k x x x x k k +=-=-++,. OA OB ⊥,即12120x x y y +=.而2121212()1y y k x x k x x =+++, 于是222121222223324114444k k k x x y y k k k k -++=---+=++++. 所以12k =±时,12120x x y y +=,故OA OB ⊥. 当12k =±时,12417x x +=,121217x x =-.(AB x ==而22212112()()4x x x x x x -=+-23224434134171717⨯⨯=+⨯=,所以465AB =. 题型二、线性规划问题例2.①若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 ( C ) A .34B .1C .74D .5②在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y ,是ABC △围成的区域(含边界)上的点,那么当w xy =取到最大值时,点P 的坐标是 _____ 5,52⎛⎫ ⎪⎝⎭变式:1.若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)2.若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 ( C ) (A )12 (B )4π (C )1 (D )2π 题型三、圆锥曲线定义的应用例3. 已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB = 8例4. 已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.解:(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y k x =+代入22y x =得2220x kx --=,由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭, 将22y x =代入上式得222048mk k x mx -+-=,直线l 与抛物线C 相切, 2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0N A N B =,则NA NB ⊥,又M 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭.MN ⊥x 轴,22216||||2488M N k k k MN y y +∴=-=+-=.又2212121||||1()4AB x x kx x x x =-=++-2214(1)11622k k k ⎛⎫=-⨯-=++ ⎪⎝⎭.22161168k k +∴=+,解得2k =±.即存在2k =±,使0NA NB=.变式:已知双曲线2222:1(0,0)x y C a b a b-->>的两个焦点为:(2,0),:(2,0),F F P -点的曲线C 上.(Ⅰ)求双曲线C 的方程; (Ⅱ)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为求直线l 的方程解:(Ⅰ)依题意,由a 2+b 2=4,得双曲线方程为142222=--ay a x (0<a 2<4), 将点(3,7)代入上式,得147922=--aa .解得a 2=18(舍去)或a 2=2,故所求双曲线方程为.12222=-y x (Ⅱ)依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理,得(1-k 2)x 2-4kx-6=0.∵直线I 与双曲线C 相交于不同的两点E 、F , ∴⎩⎨⎧-±≠⇔⎪⎩⎪⎨⎧-⨯+-=∆≠-,33,10)1(64)4(,01222<<,>k k k k k ∴k ∈(-1,3-)∪(1,3).设E (x 1,y 1),F (x 2,y 2),则由①式得x 1+x 2=,16,142212kx x k k -=-于是|EF |=2212221221))(1()()(x x k y y x x -+=-+-=|1|32214)(1222212212k k k x x x x k--+=-++∙∙,而原点O 到直线l 的距离d =212k+,∴S ΔOEF =.|1|322|1|32211221||21222222k k k k k k EF d --=--++=∙∙∙∙ 若S ΔOEF =22,即,0222|1|3222422=--⇔=--k k k k 解得k =±2,满足②. 故满足条件的直线l 有两条,其方程分别为y =22+x 和.22+-=x y 题型四、圆锥曲线性质问题例5.①已知双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于( C )(A)24 (B)36 (C)48 (D)96②已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( C )A .(0,1)B .1(0,]2 C .(0,2 D .2变式:1.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( B )A .221+ B .231+ C . 21+ D .31+2.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 2题型五、直线与圆锥曲线位置关系问题例6.已知抛物线2y x =和三个点00000(,)(0,)(,)M x y P y N x y -、、2000(,0)y x y ≠>,过点M 的一条直线交抛物线于A 、B 两点,AP BP 、的延长线分别交曲线C 于E F 、. (1)证明E F N 、、三点共线;(2)如果A 、B 、M 、N 四点共线,问:是否存在0y ,使以线段AB 为直径的圆与抛物线有异于A 、B 的交点?如果存在,求出0y 的取值范围,并求出该交点到直线AB 的距离;若不存在,请说明理由.解:(1)设221122(,)(,)A x x B x x 、,(,)(,)E E F F E x y B x y 、则直线AB 的方程:()222121112x x y x x x x x -=-+-,即1212()y x x x x x =+- 因00(,)M x y 在AB 上,所以012012()y x x x x x =+-① 又直线AP 方程:21001x y y x y x -=+由210012x y y x y x x y ⎧-=+⎪⎨⎪=⎩得:221001x y x x y x ---=,所以22100012111,E E E x y y y x x x y x x x -+=⇒=-=同理,200222,F F y y x y x x =-=,所以直线EF 的方程:201201212()y x x y y x x x x x +=--令0x x =-得0120012[()]y y x x x y x x =+- 将①代入上式得0y y =,即N 点在直线EF 上,所以,,E F N 三点共线(2)由已知A B M N 、、、共线,所以()00,)A y B y 以AB 为直径的圆的方程:()2200x y y y +-=,由()22002x y y y x y⎧+-=⎪⎨=⎪⎩得()22000210y y y y y --+-= 所以0y y =(舍去),01y y =- 。

2020版高考数学大二轮专题突破理科通用版课件:2.3 热点小专题一 导数的应用

2020版高考数学大二轮专题突破理科通用版课件:2.3 热点小专题一 导数的应用


h(t)=43t-35������,则
h'(t)=43
+
5 3������ 2
>0,所以
h(t)在(0,1]上单调递增.
所以 h(t)max=h(1)=-13.
所以 a≥-13.
当-1≤t<0 时,a≤ 43t-35������.

g(t)=43t-35������,则
g'(t)=43
+
5 3������ 2
-12-
热点一
热点二
热点三
热点四
对点训练3(1)若函数f(x)=x-13sin 2x+asin x在区间(-∞,+∞)单调递
增,则a的取值范围是( )
A.[-1,1]
B. -1,13
C.
-13
,
1 3
D. -1,-13
(2)设 f(x)=ex(ln x-a),若函数 f(x)在区间 1e,e 上单调递减,则实数 a
1<
2
0(,2)
������1+,32 1,解得
1≤k<32.
关闭
解-1析1-
答案
热点一
热点二
热点三
热点四
解题心得已知函数的单调性求参数范围关键是转化,即“若函数 单调递增,则f'(x)≥0;若函数单调递减,则f'(x)≤0”.如本例(1)先转化为 f'(x)>0,由此分离出参数再转化为求函数最值.本例(2)中,若函数某 个区间内不是单调函数,可转化为函数的极值点在这个区间内.
2.3 热点小专题一 导数的应用
一、考情分析
从近几年高考客观题对导数应用的考查主要是:利用导数的几何

2020版高考数学大二轮专题突破理科通用版 课件:7.2 热点小专题三 圆锥曲线的离心率

2020版高考数学大二轮专题突破理科通用版 课件:7.2 热点小专题三 圆锥曲线的离心率
7.2 热点小专题三 圆锥曲线的离心率
一、考情分析 近几年高考对于圆锥曲线的离心率的考查,特别是直接求离心率 问题为高频考点,其中,一般以椭圆或双曲线为载体,主要考查直接 求解离心率或离心率的取值范围问题,或通过离心率求解参数或参 数的取值范围,在高考中题型以选择题或填空题为主,基本上都是 中等难度的试题.要求学生有较强的推理论证能力和准确的计算能 力以及数形结合的数学思想,教学中要注重对学生直观想象,数学 运算和数学建模等核心素养的培养.
∵若���������������������������������1������1������������������������������2���=2 =3,3,则双曲线的离心率为(
)

A������0.
������ 0 +������
·2 ������0
������ 0 -������
=3,即B������.02
=
������ ������+c .即 b2=a2+2ac.又 b2=c2-a2,∴c2-2ac-2a2=0.即 e2-2e-2=0,
������ 2
关闭
解A 得 e=1+ 3或 1- 3(舍).故选 A.
解析 -16-
答案
热点一
热点二
解题心得离心率e的求解中可以不求出a,c的具体值,而是得出a与 c的关系,从而求得e,这种方法的步骤如下:
答案
热点一
热点二
解题心得 1.椭圆(双曲线)的离心率有一个公式变形,e=������������ =
1-(������������) 2 1 + (������������) 2 ,所以由 a 与 b 的关系可以求离心率,相反,由离 心率也可以得出 a 与 b 的关系;

2020版高考数学大二轮培优理科通用版课件:专题七 第3讲 圆锥曲线综合问题

2020版高考数学大二轮培优理科通用版课件:专题七 第3讲 圆锥曲线综合问题

设 M 为线段 AB 的中点,则 M ������,������2 + 1 .
2
由于������������ ⊥ ������������,而������������=(t,t2-2),������������与向量(1,t)平行, 所以 t+(t2-2)t=0.
解得 t=0 或 t=±1. 当 t=0 时,S=3;当 t=±1 时,S=4 2.
1, 3
2
中恰有三点在椭圆 C 上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B 的斜率的和为-1,证明:l过定点.
解:(1)由于 P3,P4 两点关于 y 轴对称,故由题设知 C 经过 P3,P4 两点.
又由������12
+
1 ������ 2
>

k1+k2=���������1���1-1
+
���������2���2-1=������
������ 1 +������ ������1
-1
+
������
������ 2 +������ ������2
-1=2������
������1
������2
+(������ -1)(������ 1 ������ 1 ������ 2
如果 l 与 x 轴垂直,设 l:x=t,由题设知 t≠0,且|t|<2,可得 A,B 的坐标分
4-������ 2
4-������ 2
别为 ������, 2 , ������,- 2 .
4-������ 2-2
4-������ 2+2

2020版高考数学大二轮专题突破理科通用版 课件:第一部分 第1讲 选择题、填空题的解法

2020版高考数学大二轮专题突破理科通用版 课件:第一部分 第1讲 选择题、填空题的解法

答案 C 解析 如图,延长CA至D,使得AD=3,连接DB,PD,因为AD=AB=3,故 △ADB为等腰三角形.又∠DAB=180°-∠CAB=120°,故∠ADB= (180°-12012°)=30°,所以∠ADB+∠DCB=90°,即∠DBC=90°,故CB⊥DB. 因为PB=4,PC=5,BC=3,所以PC2=PB2+BC2,所以CB⊥PB. 因为DB∩PB=B,DB⊂平面PBD,PB⊂平面PBD,所以CB⊥平面
B. si1n1,+∞ D. co1s1,+∞
-11-
答案 (1)A (2)C 解析 (1)由题意得,抛物线y2=8x的准线方程为l:x=-2,直线y=k(x+2) 恒过定点P(-2,0).如图,过A,B分别作AM⊥l于M,BN⊥l于N,连接OB, 由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点,连接OB,则|OB|=1
|������������|=|������������|cos θ=������������·������������ =
|������������ |
������ 2-1 ������ 2+1
=
������2 + 1 − ������22+1,
令 ������2 + 1=t(t>1),则|������������|= ������������22-+11=t-2������ .令 f(t)=t-2������ ,则有 f'(t)=1+������22.在
-8-
例2
如图所示,在▱ABCD中,AP⊥BD,垂足为P,且AP=3,
则������������ ·������������=

2020版高考数学大二轮培优理科通用版课件:专题七 第1讲 直线与圆

2020版高考数学大二轮培优理科通用版课件:专题七 第1讲 直线与圆

C.x=1或4x-3y+4=0
D.x=1或4x+3y-4=0
(2)已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称,直线
4x-3y-2=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程
x-3
C.x-2y-1=0 D.3x+y+1=0
考点1解析考点:(21)∵考k点P3Q=������������+-11--������������=-1,∴kl=1.点 P(a,b)和 Q(b-1,a+1)的中点为
������+������-1 , ������+������+1 .
2
2
则直线
l
的方程是
y-������
+������ 2
+1=x-������
+������-1,整理得:x-y+1=0,故选
2
D.
(2)由题意可知,直线 AC 和直线 BC 关于直线 y=x+1 对称.设点
B(-1,2)关于直线 y=x+1 的对称点为 B'(x0,y0),则有
������0 -2 ������ 0 +1
=
-1,
������0 +2 2
=
������ 0 -1 2
+
1,
解得 率为
������0 = ������0 = k=13--01
10,,即
=
1
2,
B'(1,0).因为
B'(1,0)在直线
AC
上,所以直线
AC
的斜
所以直线 AC 的方程为 y-1=12(x-3),

2020版高考数学大二轮复习专题五解析几何第一讲直线与圆课件理

2020版高考数学大二轮复习专题五解析几何第一讲直线与圆课件理

1.两条直线平行与垂直的判定 若两条不重合的直线 l1,l2 的斜率 k1,k2 存在,则 l1∥l2⇔k1= k2,l1⊥l2⇔k1k2=-1.若给出的直线方程中存在字母系数,则要 考虑斜率是否存在. 2.求直线方程 要注意几种直线方程的局限性.点斜式、两点式、斜截式要求 直线不能与 x 轴垂直.而截距式方程不能表示过原点的直线, 也不能表示垂直于坐标轴的直线.
专题五 解析几何
第一讲 直线与圆
C目录 ONTENTS
考点一 考点二 考点三 4 限时规范训练
[考情分析·明确方向] 1.近两年圆的方程成为高考全国课标卷命题的热点,需重点 关注.此类试题难度中等偏下,多以选择题或填空题形式考查. 2.直线与圆的方程偶尔单独命题,单独命题时有一定的深度, 有时也会出现在压轴题的位置,难度较大,对直线与圆的方程 (特别是直线)的考查主要体现在圆锥曲线的综合问题上.
3.两个距离公式 (1)两平行直线 l1:Ax+By+C1=0,l2:Ax+By+C2=0 间的距 离 d= |CA1-2+CB2|2. (2)点(x0,y0)到直线 l:Ax+By+C=0 的距离公式 d=|Ax0+A2B+y0B+2 C|. 4.与已知直线 l:Ax+By+C=0(A≠0,B≠0)平行的直线可设 为 Ax+By+m=0(m≠C),垂直的直线可设为 Bx-Ay+m=0.
答案:D
2.(2019·呼和浩特一模)已知直线 y=-34x-3 与 x,y 轴分别交 于 A,B 两点,动点 P 在圆 x2+y2-2x-2y+1=0 上,则△ABP 面积的最大值为________.
解析:根据题意,直线 y=-34x-3 与 x,y 轴分别交于 A,B 两点, 则 A(-4,0),B(0,-3),|AB|=5,

(通用版)2020版高考数学大二轮复习专题突破练24直线与圆及圆锥曲线(理)

(通用版)2020版高考数学大二轮复习专题突破练24直线与圆及圆锥曲线(理)

专题突破练24 直线与圆及圆锥曲线1.(节选)已知圆M:x2+y2=r2(r>0)与直线l1:x-√3y+4=0相切,设点A为圆上一动点,AB⊥x轴于B,且⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,设动点N的轨迹为曲线C.动点N满足AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2AA(1)求曲线C的方程;(2)略.2.(2019甘肃武威第十八中学高三上学期期末考试)已知圆C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.(1)求证:圆C1和圆C2相交;(2)求圆C1和圆C2的公共弦所在直线的方程和公共弦长.3.已知圆O:x2+y2=4,点A(√3,0),以线段AB为直径的圆内切于圆O,记点B的轨迹为Γ.(1)求曲线Γ的方程;(2)直线AB交圆O于C,D两点,当B为CD的中点时,求直线AB的方程.的直线l与C的交点为A,B,与x 4.(2019全国卷1,理19)已知抛物线C:y2=3x的焦点为F,斜率为32轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,求|AB|.(2)若AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3AA5.(2019湖南长沙第一中学高三下学期高考一模)已知椭圆A2A2+A2A2=1(a>b>0)的离心率e=12,过焦点且垂直于x轴的直线被椭圆截得的线段长为3.(1)求椭圆的方程;(2)已知P为直角坐标平面内一定点,动直线l:y=12x+t与椭圆交于A,B两点,当直线PA与直线PB的斜率均存在时,若直线PA与PB的斜率之和为与t无关的常数,求出所有满足条件的定点P的坐标.6.(2019天津第一中学高三下学期第五次月考)已知椭圆C1:A2A2+A2A2=1(a>b>0)的左、右焦点为F1,F2,F2的坐标满足圆Q方程(x-√2)2+(y-1)2=1,且圆心Q满足|QF1|+|QF2|=2a.(1)求椭圆C1的方程;(2)过点P(0,1)的直线l1:y=kx+1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆Q于C,D两点,M为线段CD中点,若△MAB的面积为6√25,求k的值.参考答案专题突破练24 直线与圆及圆锥曲线1.解(1)设动点N (x ,y ),A (x 0,y 0),因为AB ⊥x 轴于B ,所以B (x 0,0).已知圆M 的方程为x 2+y 2=r 2,由题意得r=1+3=2,所以圆M 的方程为x 2+y 2=4.由题意,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以(0,-y 0)=2(x 0-x ,-y ),即{A 0=A ,A 0=2A .将A (x ,2y )代入圆M :x 2+y 2=4,得动点N 的轨迹方程为A 24+y 2=1.(2)略.2.(1)证明圆C 1的圆心C 1(1,3),半径r 1=√11,圆C 2的圆心C 2(5,6),半径r 2=4, 两圆圆心距d=|C 1C 2|=5,r 1+r 2=√11+4,|r 1-r 2|=4-√11, 所以|r 1-r 2|<d<r 1+r 2. 所以圆C 1和C 2相交.(2)解将圆C 1和圆C 2的方程相减,得4x+3y-23=0, 所以两圆的公共弦所在直线的方程为4x+3y-23=0.因为圆心C 2(5,6)到直线4x+3y-23=0的距离为d=√16+9=3,故两圆的公共弦长为2√16-9=2√7.3.解(1)设AB 的中点为M ,切点为N ,连接OM ,MN ,则|OM|+|MN|=|ON|=2,|AB|=|ON|-(|OM|-|MN|)=2-|OM|+12|AB|,即|AB|+2|OM|=4.取A 关于y 轴的对称点A',连接A'B ,则|A'B|=2|OM|,故|AB|+2|OM|=|AB|+|A'B|=4. 所以点B 的轨迹是以A',A 为焦点,长轴长为4的椭圆.其中a=2,c=√3,b=1,则曲线Γ的方程为A 24+y 2=1.(2)因为B 为CD 的中点,所以OB ⊥CD ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⊥AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ . 设B (x 0,y 0),则x 0(x 0-√3)+A 02=0.又A 024+A 02=1,解得x 0=√3,y 0=±√2√3.则k OB =±√22,k AB =∓√2,则直线AB 的方程为y=±√2(x-√3), 即√2x-y-√6=0或√2x+y-√6=0.4.解设直线l :y=32x+t ,A (x 1,y 1),B (x 2,y 2).(1)由题设得F (34,0),故|AF|+|BF|=x 1+x 2+32,由题设可得x 1+x 2=52.由{A =32A +A ,A 2=3A可得9x 2+12(t-1)x+4t 2=0,则x 1+x 2=-12(A -1)9.从而-12(A -1)9=52,得t=-78.所以l 的方程为y=32x-78.(2)由AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 可得y 1=-3y 2.由{A =32A +A ,A 2=3A可得y 2-2y+2t=0.所以y 1+y 2=2.从而-3y 2+y 2=2,故y 2=-1,y 1=3.代入C 的方程得x 1=3,x 2=13.故|AB|=4√133.5.解(1)设椭圆的半焦距为c ,则c 2=a 2-b 2,且e=A A =12.由题意得{A =A ,A 2A 2+A 2A 2=1,解得y=±A 2A .依题意,2A 2A=3,结合a 2=b 2+c 2,解得c=1,a=2,b=√3.于是椭圆的方程为A 24+A 23=1.(2)设A x 1,12x 1+t ,B x 2,12x 2+t ,P (m ,n ).将l :y=12x+t 代入椭圆方程得x 2+tx+t 2-3=0.则Δ=t 2-4(t 2-3)>0,t 2<4, 则有x 1+x 2=-t ,x 1x 2=t 2-3. 直线PA ,PB 的斜率之和k PA +k PB =A -12A 1-A A -A 1+A -12A 2-A A -A 2=(A -12A 1-A )(A -A 2)+(A -12A 2-A )(A -A 1)(A -A 1)(A -A 2)=(A -32A )A +2AA -3A 2+AA +A 2-3,当n=32m ,2mn=3时斜率的和恒为0,解得{A =1,A =32,或{A =-1,A =-32.综上所述,所有满足条件的定点P 的坐标为1,32或-1,-32.6.解(1)因为F 2的坐标满足圆Q 方程(x-√2)2+(y-1)2=1,故当y=0时,x=√2,即F 2(√2,0),故c=√2.因为圆心Q 满足|QF 1|+|QF 2|=2a ,所以点Q (√2,1)在椭圆上,故有2A 2+1A 2=1.联立方程组{2A 2+1A 2=1,A 2=A 2+2,解得{A =2,A =√2,所以椭圆方程为A 24+A 22=1.(2)因为直线l 2交圆Q 于C ,D 两点,M 为线段CD 的中点,所以QM 与直线l 2垂直. 又因为直线l 1与直线l 2垂直,所以QM 与直线l 1平行.所以点M 到直线AB 的距离即为点Q 到直线AB 的距离.即点M 到直线AB 的距离为d=√2A √.设点A (x 1,y 1),B (x 2,y 2).联立方程组{A 24+A 22=1,A =AA +1,解得(1+2k 2)x 2+4kx-2=0,Δ=b 2-4ac=16k 2+8(2k 2+1)=32k 2+8>0,由韦达定理可得{A 1+A 2=-4A1+2A 2,A 1A 2=-21+2A 2,则|x 1-x 2|=√(A 1+A 2)2-4A 1A 2=√(-4A 1+2A 2) 2-4·-21+2A 2=√32A 2+8(1+2A 2)2.所以AB=√1+A 2|x 1-x 2|=√1+A 2·√32A 2+8(1+2A 2)2.所以△MAB 的面积为12·√1+A 2·√32A 2+8(1+2A 2)√2A .所以12·√1+A 2·√32A 2+8(1+2A 2)2√2A =6√25.即√8A 2+2(1+2A 2)2·|k|=65,两边同时平方,化简得,28k 4-47k 2-18=0,解得k 2=2或k 2=-928(舍). 故k=±√2.此时l 2:y=±√22x+1.圆心Q 到l 2的距离h=|±√2×√2-1+1|√2+1=√23<1成立.综上所述,k=±√2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档