2014年高考数学(文)真题分类汇编:计数原理

合集下载

2014届高考数学总复习(考点引领+技巧点拨)第十一章 计数原理、随机变量及分布列第5课时 独立性及二项分布

2014届高考数学总复习(考点引领+技巧点拨)第十一章 计数原理、随机变量及分布列第5课时 独立性及二项分布

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第十一章 计数原理、随机变量及分布列第5课时 独立性及二项分布1. (选修23P 59练习2改编)省工商局于2003年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x 饮料的合格率为80%,现有甲、乙、丙3人聚会,选用6瓶x 饮料,并限定每人喝2瓶.则甲喝2瓶合格的x 饮料的概率是________.答案:0.64解析:记“第一瓶x 饮料合格”为事件A 1,“第二瓶x 饮料合格”为事件A 2,A 1与A 2是相互独立事件,“甲喝2瓶x 饮料都合格就是事件A 1、A 2同时发生,根据相互独立事件的概率乘法公式得P(A 1·A 2)=P(A 1)·P(A 2)=0.8×0.8=0.64.2. (选修23P 63练习2改编)某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为________.答案:54125解析:本题符合独立重复试验,是二项分布问题,所以此人恰有两次击中目标的概率为C 23(0.6)2·(1-0.6)=54125.3. 甲、乙两地都位于长江下游,根据天气预报记录知,一年中下雨天甲市占20%,乙市占18%,假定在这段时间内两市是否降雨相互之间没有影响,则甲、乙两市同时下雨的概率为________.答案:0.036解析:设甲市下雨为事件A ,乙市下雨为事件B ,由题设知,事件A 与B 相互独立,且P(A)=0.2,P(B)=0.18,则P(AB)=P(A)P(B)=0.2×0.18=0.036.4. (选修23P 63练习2改编)某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.则3个景区都有部门选择的概率是________.答案:49解析:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.3个景区都有部门选择可能出现的结果数为C 24·3!(从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有C 24=6种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为P(A 1)=C 24·3!34=49. 5. 在4次独立试验中,事件A 出现的概率相同,若事件A 至少发生1次的概率是6581,则事件A 在一次试验中出现的概率是________.答案:13解析:设A 发生概率为P ,1-(1-P)4=6581,P =13.1. 相互独立事件(1) 对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 相互独立. (2) 若A 与B 相互独立,则P(AB)=P(A)P(B).(3) 若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4) 若P(AB)=P(A)P(B),则A 、B 相互独立. 2. 二项分布如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P(X =k)=C k n p k q n -k,其中k =0,1,2,3,…,n ,q =1-p.于是得到随机变量X 的概率分布如下:nn n +…+C k n p q +…+n q 0中的第k +1项(k =0,1,2,…,n)中的值,故称随机变量X 为二项分布,记作X ~B(n ,p).3. “互斥”与“相互独立”的区别与联系题型1 相互独立事件例1 A 高校自主招生设置了先后三道程序:部分高校联合考试、本校专业考试、本校面试.在每道程序中,设置三个成绩等级:优、良、中.若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序.考生只有全部通过三道程序,自主招生考试才算通过.某中学学生甲参加A 高校自主招生考试,已知该生在每道程序中通过的概率均为34,每道程序中得优、良、中的概率分别为p 1、12、p 2.(1) 求学生甲不能通过A 高校自主招生考试的概率;(2) 设ξ为学生甲在三道程序中获优的次数,求ξ的分布列.解:由题意,得11213,241,2p p p ìïï+=ïïíïï+=ïïïî解得p 1=p 2=14.(1) 设事件A 为学生甲不能通过A 高校自主招生考试,则P(A)=14+34×14+34×34×14=3764. 答:学生甲不能通过A 高校自主招生考试的概率为3764.(2) 由题意知:ξ=0,1,2,3.P(ξ=0)=14+12×14+12×12×14+12×12×12=916,P(ξ=2)=14×14×14+14×14×12+14×12×14+12×14×14=764,P(ξ=3)=14×14×14=164,∵i =03P (ξ=i)=1,∴P(ξ=1)=1-P(ξ=0)-P(ξ=2)-P(ξ=3)=516. 故ξ的分布列为变式训练有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第n(n =1,2,3)关时,需要抛掷n 次骰子,当n 次骰子面朝下的点数之和大于n 2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.(1) 求仅闯过第一关的概率;(2) 记成功闯过的关数为ξ,求ξ的分布列.解:(1) 记“仅闯过第一关的概率”这一事件为A ,则P(A)=34·616=932.(2) 由题意得,ξ的取值有0,1,2,3,且P(ξ=0)=14,P(ξ=1)=932,P(ξ=2)=34·1016·5464=4051 024,P(ξ=3)=34·1016·1064=751 024,即随机变量ξ的概率分布列为题型2 独立重复试验与二项分布例2 设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1) 求进入商场的1位顾客购买甲、乙两种商品中的一种的概率; (2) 求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3) 记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列.解:记A 表示事件:进入商场的1位顾客购买甲种商品;记B 表示事件:进入商场的1位顾客购买乙种商品;记C 表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种;记D 表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种.(1) C =A·B +A ·B,P(C)=P(A·B +A ·B)=P(A·B)+P(A ·B)=P(A)·P(B)+P(A -)·P(B)=0.5×0.4+0.5×0.6=0.5.(2) D =A ·B ,P(D)=P(A ·B)=P(A )·P(B)=0.5×0.4=0.2, P(D)=1-P(D)=0.8.(3) ξ~B(3,0.8),故ξ的分布列P(ξ=0)=0.23=0.008;P(ξ=1)=C 13×0.8×0.22=0.096;P(ξ=2)=C 23×0.82×0.2=0.384;P(ξ=3)=0.83=0.512.某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门.该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同.(1) 求3个学生选择了3门不同的选修课的概率; (2) 求恰有2门选修课这3个学生都没有选择的概率;(3) 设随机变量X 为甲、乙、丙这三个学生选修数学史这门课的人数,求X 的分布列.解:(1) 3个学生选择了3门不同的选修课的概率:P 1 =A 3443=38.(2) 恰有2门选修课这3个学生都没有选择的概率:P 2=C 24·C 23·A 2243=916.(3) X =0,1,2,3,则有P (ξ= 0 ) =3343=2764;P (X = 1) =C 13·3243=2764;P (X = 2 ) =C 23·343=964;P (X = 3 ) =C 3343=164.∴ X 的概率分布表为:题型3 独立性及二项分布的应用例3 某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖.(1) 求一次抽奖中奖的概率;(2) 若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布.解:(1) 设“一次抽奖中奖”为事件A ,则P(A)=C 12C 24+C 22C 14C 36=1620=45. 答:一次抽奖中奖的概率为45.(2) X 可取0,10,20,P(X =0)=(0.2)2=0.04,P(X =10)=C 12×0.8×0.2=0.32,P(X =20)=(0.8)2=0.64. X 的概率分布列为备选变式(教师专享)甲、乙、丙三名射击运动员射中目标的概率分别为12、a 、a(0<a <1),三人各射击一次,击中目标的次数记为ξ.(1) 求ξ的分布列及数学期望;(2) 在概率P(ξ=i)(i =0、1、2、3)中,若P(ξ=1)的值最大,求实数a 的取值范围. 解:(1) P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.P(ξ=0)=C 01⎝ ⎛⎭⎪⎫1-12C 02(1-a)2=12(1-a)2;P(ξ=1)=C 11·12C 02(1-a)2+C 01⎝ ⎛⎭⎪⎫1-12C 12a(1-a)=12(1-a 2);P(ξ=2)=C 11·12C 12a(1-a)+C 01⎝ ⎛⎭⎪⎫1-12C 22a 2=12(2a -a 2); P(ξ=3)=C 11·12C 22a 2=a22.所以ξ的分布列为ξ的数学期望为E(ξ)=0×12(1-a)2+1×12(1-a 2)+2×12(2a -a 2)+3×a 22=4a +12.(2) P(ξ=1)-P(ξ=0)=12[(1-a 2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=12[(1-a 2)-(2a -a 2)]=1-2a 2;P(ξ=1)-P(ξ=3)=12[(1-a 2)-a 2]=1-2a 22.由2(1)0,120,21202a a a a ìïïï- ïïïï-ï³íïïïï-ï³ïïïî和0<a <1,得0<a≤12, 即a 的取值范围是⎝ ⎛⎦⎥⎤0,12.1. (2013·福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X≤3的概率.解:由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分X≤3”的事件为A ,则A 事件的对立事件为“X=5”,∵ P(X =5)=23×25=415,∴ P(A)=1-P(X =5)=1115.∴ 这两人的累计得分X≤3的概率为1115.2. (2013·山东理)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(1) 分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2) 若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X 的分布列.解:(1) 记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故P(A 1)=⎝ ⎛⎭⎪⎫233=827,P(A 2)=C 23⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23×23=827,P(A 3)=C 24⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-232×12=427.所以,甲队以3∶0、3∶1、3∶2胜利的概率分别是827、827、427;(2) 设“乙队以3∶2胜利”为事件A 4,由题意,各局比赛结果相互独立,所以P(A 4)=C 24⎝ ⎛⎭⎪⎫1-232×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427.由题意,随机变量X 的所有可能的取值为0,1,2,3,根据事件的互斥性得 P(X =0)=P(A 1+A 2)=P(A 1)+P(A 2)=1627,P(X =1)=P(A 3)=427,P(X =2)=P(A 4)=427,P(X =3)=1-P(X =0)-P(X =1)-P(X =2)=327.故X 的分布列为3. (2013·陕西理)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2) X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列. 解:(1) 设事件A 表示:观众甲选中3号歌手且观众乙未选中3号歌手.观众甲选中3号歌手的概率为23,观众乙未选中3号歌手的概率为1-35.所以P(A)=23·⎝ ⎛⎭⎪⎫1-35=415.因此,观众甲选中3号歌手且观众乙未选中3号歌手的概率为415.(2) X 表示3号歌手得到观众甲、乙、丙的票数之和,则X 可取0,1,2,3. 观众甲选中3号歌手的概率为23,观众乙选中3号歌手的概率为35.当观众甲、乙、丙均未选中3号歌手时,这时X =0,P(X =0)=⎝ ⎛⎭⎪⎫1-23·⎝ ⎛⎭⎪⎫1-352=475.当观众甲、乙、丙中只有1人选中3号歌手时,这时X =1,P(X =1)=23·⎝ ⎛⎭⎪⎫1-352+⎝ ⎛⎭⎪⎫1-23·35·⎝ ⎛⎭⎪⎫1-35+⎝ ⎛⎭⎪⎫1-23·⎝ ⎛⎭⎪⎫1-35·35=8+6+675=2075. 当观众甲、乙、丙中只有2人选中3号歌手时,这时X =2,P(X =2)=23·35·⎝ ⎛⎭⎪⎫1-35+⎝ ⎛⎭⎪⎫1-23·35·35+23·⎝ ⎛⎭⎪⎫1-35·35=12+9+1275=3375. 当观众甲、乙、丙均选中3号歌手时,这时X =3,P(X =3)=23·⎝ ⎛⎭⎪⎫352=1875.X 的分布列如下表:4. (2013·南京市、盐城市一模)某射击小组有甲、乙两名射手,甲的命中率为P 1=23,乙的命中率为P 2,在射击比赛活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中数相等且都不少于一发,则称该射击小组为“先进和谐组”.(1) 若P 2=12,求该小组在一次检测中荣获“先进和谐组”的概率;(2) 计划在2013年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为ξ,如果E(ξ)≥5,求P 2的取值范围.解:(1) 可得P =⎝⎛⎭⎪⎫C 12×23×13(C 12×12×12)+⎝ ⎛⎭⎪⎫23×23⎝ ⎛⎭⎪⎫12×12=13.(2) 该小组在一次检测中荣获“先进和谐组”的概率为P =⎝⎛⎭⎪⎫C 12×23×13[C 12×P 2×(1-P 2)]+⎝ ⎛⎭⎪⎫23×23P 22=89P 2-49P 22,而ξ~B(12,P),所以E(ξ)=12P ,由E(ξ)≥5,知(89P 2-49P 22)×12≥5,解得34≤P 2≤1.1. 为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.(1) 求4人恰好选择了同一家公园的概率;(2) 设选择甲公园的志愿者的人数为X ,试求X 的分布列. 解:(1) 设“4人恰好选择了同一家公园”为事件A.每名志愿者都有3种选择,4名志愿者的选择共有34种等可能的情况. 事件A 所包含的等可能事件的个数为3,∴ P(A)=334=127.即4人恰好选择了同一家公园的概率为127.(2) 设“一名志愿者选择甲公园”为事件C ,则P(C)=13.4人中选择甲公园的人数X 可看作4次独立重复试验中事件C 发生的次数, 因此,随机变量X 服从二项分布.X 可取的值为0,1,2,3,4.P(X =i)=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i , i =0,1,2,3,4. X 的分布列为:2. 甲、乙两支足球队鏖战90分钟踢成平局,加时赛30分钟后仍成平局,现决定各派5名队员,每人射一点球决定胜负,设甲、乙两队每个队员的点球命中率均为0.5.(1) 不考虑乙队,求甲队仅有3名队员点球命中,且其中恰有2名队员连续命中的概率; (2) 求甲、乙两队各射完5个点球后,再次出现平局的概率.解:(1) 甲队3名队员射中,恰有2名队员连续命中的情形有A 23种,故所求的概率为P 1=A 23×0.53×(1-0.5)2=316.(2) 再次出现平局包括0∶0,1∶1,…,5∶5等6种可能性,故其概率为P 2=[C 05×0.50×(1-0.5)5]2+[C 15×0.51×(1-0.5)4]2+…+[C 55×0.55×(1-0.5)0]2=36256. 3. 有一批数量很大的环形灯管,其次品率为20%,对这批产品进行抽查,每次抽出一件,如果抽出次品,则抽查中止,否则继续抽查,直到抽出次品,但抽查次数最多不超过5次.求抽查次数ξ的分布列.解:抽查次数ξ取1~5的整数,从这批数量很大的产品中每次抽取一件检查的试验可以认为是彼此独立的,取出次品的概率为0.2,取出正品的概率为0.8,前(k -1)次取出正品而第k 次(k =1,2,3,4)取出次品的概率:P(ξ=k)=0.8k -1×0.2,k =1,2,3,4.P(ξ=5)=0.84×0.2+0.85=0.4096. 所以ξ的概率分布列为:4. 电视台综艺频道组织的闯关游戏,游戏规定前两关至少过一关才有资格闯第三关,闯关者闯第一关成功得3分,闯第二关成功得3分,闯第三关成功得4分.现有一位参加游戏者单独闯第一关、第二关、第三关成功的概率分别为12、13、14,记该参加者闯三关所得总分为ξ.(1) 求该参加者有资格闯第三关的概率; (2) 求ξ的分布列和数学期望.解:(1) 设该参加者单独闯第一关、第二关、第三关成功的概率分别为p 1=12,p 2=13,p 3=14,该参加者有资格闯第三关为事件A.则P(A)=p 1(1-p 2)+(1-p 1)p 2+p 1p 2=23.(2) 由题意可知,ξ的可能取值为0,3,6,7,10, P(ξ=0)=(1-p 1)(1-p 2)=13,P(ξ=3)=p 1(1-p 2)(1-p 3)+(1-p 1)p 2(1-p 3)=14+18=38,P(ξ=6)=p 1p 2(1-p 3)=18,P(ξ=7)=p 1(1-p 2)p 3+(1-p 1)p 2p 3=112+124=18,P(ξ=10)=p 1p 2p 3=124,∴ ξ的分布列为事件的独立性中的注意问题: (1) 事件A 与B 独立是相互的,表明事件A(事件B)的发生对事件B(事件A)的发生没有产生影响.(2) 若事件A 、B 相互独立,则A 与B -,A -与B ,A -与B -也是相互独立的.(3) 两个事件的独立性可以推广到n(n>2)个事件的独立性,且若事件A 1、A 2、…、A n相互独立,则这n 个事件同时发生的概率P(A 1A 2…A n )=P(A 1)P(A 2)…P(A n ).(4) 注意辨别两个事件互斥与两个事件独立的区别.请使用课时训练(A )第5课时(见活页).第11 页共11 页。

高考数学试题逐类透析——计数原理

高考数学试题逐类透析——计数原理

精品基础教育教学资料,仅供参考,需要可下载使用!九、计数原理与古典概率(一)计数原理一、高考考什么?[考试说明]1. 理解分类加法计数原理和分步乘法计数原理.2. 了解排列、组合的概念,会用排列数公式、组合数公式.解决简单的实际问题[知识梳理] 1.排列数公式!(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-;!(1)(2)21nn A n n n n ==--⋅。

2.组合数公式()(1)(1)!()(1)21!!mmn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01=!,01n C =. 3.排列数、组合数的性质:①m n mn n C C -=; ②111m m m n n n C C C ---=+;③; ④1121++++=++++r n r n r r r r r r C C C C C ; 4.解排列组合11k k n n kC nC --=问题的常用方法:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。

(2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉))。

(3)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)。

(4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间)。

[全面解读]考试说明寥寥数语,仅需掌握两个原理,两个概念,但具体到题上却灵活多变,主要要解决几个数学模型:排数问题、排队问题、涂色问题,解题时要注意是有序的还是无序的,是相邻的还是互不相邻的,有没有特殊元素或特殊位置,这些注意到了,正确率就提高了。

2014年普通高等学校招生全国统一考试数学文试题(天津卷, 解析版)

2014年普通高等学校招生全国统一考试数学文试题(天津卷, 解析版)

x2014年普通高等学校招生全国统一考试(某某卷)数学(文史类)解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的某某、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2本卷共8小题,每小题5分,共40分。

参考公式:•如果事件A ,B 互斥,那么•圆锥的体积公式13V Sh =. ()()()P A B P A P B =+其中S 表示圆锥的底面面积,•圆柱的体积公式V Sh =.h 表示圆锥的高. 其中S 表示棱柱的底面面积,h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数734i i( )(A )1i (B )1i (C )17312525i (D )172577i 解:73472525134343425i i i i i i i i,选(2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5 解:作出可行域,如图结合图象可知,当目标函数通过点1,1时,z 取得最小值3,选B. (3)已知命题p :0x,总有11xx e ,则p 为( )(A )00x ,使得011x x e (B )00x ,使得011x x e(C )0x ,总有11x x e (D )0x,总有11xx e解:依题意知p 为:00x ,使得0011x x e ,选B.(4)设2log a,12log b,2c,则( )(A )a b c (B )b a c (C )ac b (D )c b a解:因为1a,0b ,01c,所以acb ,选C.(5)设n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a ( )(A )2 (B )-2 (C )12 (D )12- 解:依题意得2214S S S ,所以21112146a a a ,解得112a ,选D. (6)已知双曲线22221x y a b 0,0a b 的一条渐近线平行于直线l :210yx,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y (B )221205x y (C )2233125100x y (D )2233110025x y解:依题意得22225ba cc a b ,所以25a,220b ,选A.(7)如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF ;②2FB FD FA ;③AE CE BE DE ;④AF BDAB BF .FED CBA 则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ 解:由弦切角定理得FBD EAC BAE ,又BFD AFB ,所以BFD ∽AFB ,所以BF BDAFAB, 即AF BD AB BF ,排除A 、C. 又FBDEACDBC ,排除B ,选D.(8)已知函数3sin cos f x x x0,x R ,在曲线y f x 与直线1y 的交点中,若相邻交点距离的最小值为3,则f x 的最小正周期为( )(A )2(B )23(C ) (D )2 解:因为2sin6f x x,所以1f x得1sin 62x, 所以266xk或5266xk ,k Z .因为相邻交点距离的最小值为3,所以233,2,T,选C.第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。

2014-2019年高考数学真题分类汇编专题12:计数原理

2014-2019年高考数学真题分类汇编专题12:计数原理

2014-2019年高考数学真题分类汇编专题12:计数原理(一)排列组合选择题1.(2014•大纲版理)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( C ) A .60种B .70种C .75种D .150种2.(2014•安徽理)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60︒的共有( C ) A .24对B .30对C .48对D .60对3.(2014•广东理)设集合1{(A x =,2x ,3x ,4x ,5)|{1i x x ∈-,0,1},{1i =,2,3,4,5},那么集合A 中满足条件“123451||||||||||3x x x x x ++++剟”的元素个数为( D )A .60B .90C .120D .1304.(2014•辽宁理)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为( D ) A .144B .120C .72D .245.(2014•四川理)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( B ) A .192种B .216种C .240种D .288种6.(2014•重庆理)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( B ) A .72B .120C .144D .1687.(2015•广东文)若集合{(E p =,q ,r ,)|04s p s <剟,04q s <剟,04r s <剟且p ,q ,r ,}s N ∈,{(F t =,u ,v ,)|04w t u <剟,04v w <剟且t ,u ,v ,}w N ∈,用()card X 表示集合X 中的元素个数,则card (E )()(card F += A ) A .200B .150C .100D .508.(2015•四川理)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有(B ) A .144个B .120个C .96个D .72个9.(2016•新课标Ⅱ理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( B )A .24B .18C .12D .910.(2016•四川理)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( D ) A .24B .48C .60D .7211.(2017•新课标Ⅱ理)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( D ) A .12种B .18种C .24种D .36种12.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( D )A .4B .8C .12D .16填空题1.(2014•北京理)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 36 种.2.(2014•浙江理)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).3.(2015•广东理)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 1560 条毕业留言.(用数字作答) 4.(2015•上海理)在1020151(1)x x++的展开式中,2x 项的系数为 45 (结果用数值表示). 5.(2015•上海文理)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 120 (结果用数值表示).6.(2017•天津理)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 1080 个.(用数字作答)7.(2017•浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 660 种不同的选法.(用数字作答) 8.(2017•上海)若排列数6654m P =⨯⨯,则m = 3 .9.(2018•浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 1260 个没有重复数字的四位数.(用数字作答)10.(2018•新课标Ⅰ理)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 16 种.(用数字填写答案)11.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 24 种(结果用数值表示)(二)二项式定理选择题1.(2014•湖北理)若二项式7(2)a x x +的展开式中31x的系数是84,则实数(a = C )A .2BC .1D .42.(2014•湖南理)51(2)2x y -的展开式中23x y 的系数是( A )A .20-B .5-C .5D .203.(2014•四川理)在6(1)x x +的展开式中,含3x 项的系数为( C ) A .30B .20C .15D .104.(2014•浙江理)在64(1)(1)x y ++的展开式中,记m n x y 项的系数为(,)f m n ,则(3f ,0)(2f +,1)(1f +,2)(0f +,3)(= C )A .45B .60C .120D .2105.(2015•新课标Ⅰ理)25()x x y ++的展开式中,52x y 的系数为( C ) A .10B .20C .30D .606.(2015•湖北理)已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( D ) A .122B .112C .102D .927.(2015•湖南理)已知5的展开式中含32x 的项的系数为30,则(a = D )A B .C .6 D .6-8.(2015•陕西理)二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则(n = B ) A .7B .6C .5D .49.(2016•四川理)设i 为虚数单位,则6()x i +的展开式中含4x 的项为( A ) A .415x -B .415xC .420ix -D .420ix10.(2017•新课标Ⅰ理)621(1)(1)x x++展开式中2x 的系数为( C ) A .15B .20C .30D .3511.(2017•新课标Ⅲ理)5()(2)x y x y +-的展开式中的33x y 系数为( C ) A .80-B .40-C .40D .8012.(2018•新课标Ⅲ理5)252()x x+的展开式中4x 的系数为( C )A .10B .20C .40D .8013.(2019•新课标Ⅲ理4)24(12)(1)x x ++的展开式中3x 的系数为( A ) A .12B .16C .20D .24填空题1.(2014•新课标Ⅱ理)10()x a +的展开式中,7x 的系数为15,则a =12. 2.(2014•新课标Ⅰ理)8()()x y x y -+的展开式中27x y 的系数为 20- .(用数字填写答案) 3.(2014•大纲版)6(2)x -的展开式中3x 的系数是 160- .(用数字作答) 4.(2014•大纲版)8的展开式中22x y 的系数为 70 .(用数字作答)5.(2014•安徽理)设0a ≠,n 是大于1的自然数,(1)n x a +的展开式为2012n n a a x a x a x +++⋯+.若点(i A i ,)(0i a i =,1,2)的位置如图所示,则a = 3 .6.(2014•山东理)若26()bax x+的展开式中3x 项的系数为20,则22a b +的最小值为 2 .7.(2015•新课标Ⅱ理)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a = 3 . 8.(2015•北京理)在5(2)x +的展开式中,3x 的系数为 40 (用数字作答) 9.(2015•福建理)5(2)x +的展开式中,2x 的系数等于 80 .(用数字作答) 项的系数,属于基础题.10.(2015•广东理)在41)的展开式中,x 的系数为 6 . 11.(2015•上海文)在621(2)x x +的二项式中,常数项等于 240 (结果用数值表示). 12.(2015•四川理)在5(21)x -的展开式中,含2x 的项的系数是 40- (用数字填写答案). 13.(2015•天津理)在61()4x x -的展开式中,2x 的系数为1516 . 14.(2015•重庆理)35(x 的展开式中8x 的系数是52 (用数字作答). 15.(2015•安徽理)371()x x+的展开式中的5x 的系数是 35 (用数字填写答案)16.(2016•新课标Ⅰ理)5(2x 的展开式中,3x 的系数是 10 .(用数字填写答案) 17.(2016•天津理)281()x x-的展开式中7x 的系数为 56- (用数字作答)18.(2016•上海文理)在2)n x 的二项式中,所有的二项式系数之和为256,则常数项等于 112 .19.(2016•山东理)若25(ax+的展开式中5x 的系数是80-,则实数a = 2- .20.(2016•北京理)在6(12)x -的展开式中,2x 的系数为 60 .(用数字作答)21.(2017•浙江)已知多项式32543212345(1)(2)x x x a x a x a x a x a ++=+++++,则4a = 16 ,5a = . 22.(2017•山东理)已知(13)n x +的展开式中含有2x 的系数是54,则n = 4 . 23.(2018•天津理10)在5(x 的展开式中,2x 的系数为52.24.(2018•浙江)二项式81)2x的展开式的常数项是 7 . 25.(2018•上海)在7(1)x +的二项展开式中,2x 项的系数为 21 (结果用数值表示). 26.(2019•天津理10)831(2)8x x -的展开式中的常数项为 28 . 27.(2019•上海)在6(x+的展开式中,常数项等于 15 .28.(2019•浙江)在二项式9)x 的展开式中,常数项是 系数为有理数的项的个数是 5 .解答题1.(2014•江西文)将连续正整数1,2,⋯,*()n n N ∈从小到大排列构成一个数123n ⋯,()F n 为这个数的位数(如12n =时,此数为123456789101112,共15个数字,(12)15)F =,现从这个数中随机取一个数字,()p n 为恰好取到0的概率. (1)求(100)p ;(2)当2014n …时,求()F n 的表达式;(3)令()g n 为这个数中数字0的个数,()f n 为这个数中数字9的个数,()()()h n f n g n =-,{|()1S n h n ==,100n …,*}n N ∈,求当n S ∈时()p n 的最大值.2.(2016•江苏)(1)求346774C C -的值; (2)设m ,*n N ∈,n m …,求证:21212(1)(2)(3)(1)(1)m m m m m m m m m n n n m C m C m C nC n C m C +++-+++++++⋯+++=+.3.(2018•江苏26)设*n N ∈,对1,2,⋯⋯,n 的一个排列12n i i i ⋯⋯,如果当s t <时,有s t i i >,则称(s i ,)t i 是排列12n i i i ⋯⋯的一个逆序,排列12n i i i ⋯⋯的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,⋯,n 的所有排列中逆序数为k 的全部排列的个数. (1)求3f (2),4f (2)的值;(2)求n f (2)(5)n …的表达式(用n 表示).4.(2019江苏24)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =. (1)求n 的值;(2)设(1n a +=+a ,*b N ∈,求223a b -的值.。

江苏省2014年高考数学(文)二轮复习简易通配套课件:常考问题17 计数原理、随机变量及其分布列

江苏省2014年高考数学(文)二轮复习简易通配套课件:常考问题17 计数原理、随机变量及其分布列
•常考问题17 计数原理、随机变 量 • 及其分布列
[真题感悟]
[考题分析]
1.两种计数原理 分类计数原理和分步计数原理. 2.排列 (1)排列的定义;(2)排列数公式:Am n =n(n-1)(n-2)„ n! (n-m+1)= (m≤n,m,n∈N*). n-m!
3.组合 (1)组合的定义; (2) 组 合 数 公 式 : C

• •
【 训 练 1】 (2012· 江 苏 卷 ) 设 集 合 Pn = {1,2,„,n},n∈N*.记f(n)为同时满足下 列条件的集合 A 的个数:① A⊆Pn ;②若 x∈A , 则 2x∉A ; ③ 若 x∈∁PnA , 则 2x∉∁PnA. (1)求f(4); (2)求f(n)的解析式(用n表示).
解 (1)设 A 表示事件“观众甲选中 3 号歌手”,B 表示事件“观
1 2 C2 2 C4 3 众乙选中 3 号歌手”,则 P(A)= 2= ,P(B)= 3= .∵事件 A 与 C3 3 C5 5
B 相互独立,∴观众甲选中 3 号歌手且观众乙未选中 3 号歌手的 2 2 4 概率为 P(A B )=P(A)· P( B )=P(A)· [1-P(B)]=3×5=15,

(1)甲从 1 到 m(m 为给定的正整数,且 2≤m≤n-2)号中任选
两款,乙从(m+1)到 n 号中任选两款的所有等可能基本事件的种
2 数为 C2 C m n-m,
记“款式 s 和 t(1≤s≤m,m+1≤t≤n)同时被选中”为事件 A,则
1 1 1 事件 A 包含的基本事件的种数为 C1 C · C - 1 m 1 1Cn-m+1, 1 1 1 C1 C1 Cn-m+1 4 1Cm-1· 所以 P(A)=Pst= = , 2 C2 C m n - m m n -m

(专题密卷)河北省衡水中学2014届高考数学 万卷检测 计数原理

(专题密卷)河北省衡水中学2014届高考数学 万卷检测 计数原理

计数原理本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

考试时间120分钟,满分150分。

考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效。

第I 卷一、选择题1.如图,用四种不同颜色给图中的A.B.C.D.E.F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有( ). A.288种 B.264种 C.240种 D.168种2.如图,四棱锥的8条棱代表8种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是危险的,没有公共项点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①.②.③.④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A.96B. 48C.24D.03.用6种不同的颜色把图中A.B.C.D 四块区域分开,若相邻的区域不能涂同一种颜色,则不同的途法共有() A.400种B.460种C.480种D.496种4.红蓝两色车.马.炮棋子各一枚,将这6枚棋子排成一列,其中每对同字的棋子中,均为红棋子在前,蓝棋子在后,满足这种条件的不同的排列方式共有( )(A) 36种 (B) 60种 (C) 90种 (D)120种5.欲将正六边形的各边和各条对角线都染为n 种颜色之一,使得以正六边形的任何3个顶点ABCD作为顶点的三角形有3种不同颜色的边,并且不同的三角形使用不同的3色组合,则n 的最小值为( )(A )6 (B )7 (C )8 (D )96.现安排甲.乙.丙.丁.戊5名同学参加上海世博会志愿者服务活动,每人从事翻译.导游.礼仪.司机四项工作之一,每项工作至少有一人参加。

甲.乙不会开车但能从事其他三项工作,丙.丁.戊都能胜任四项工作,则不同安排方案的种数是( ) A.152 B.126 C.90 D.547.在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量a(a ,b).从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形。

2014数学高考题型历炼(Word解析版):1-3 不等式与线性规划、计数原理与二项式定理

2014数学高考题型历炼(Word解析版):1-3 不等式与线性规划、计数原理与二项式定理

1.(交汇新)已知函数f(x)的定义域为(-∞,+∞),f ′(x)为f(x)的导函数,函数y =f ′(x)的图象如图所示,且f(-2)=1,f(3)=1,则不等式f(x 2-6)>1的解集为________.2.(背景新)给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D|x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.3.(交汇新)已知f (x )=(ax +2)6,f ′(x )是f (x )的导数,若f ′(x )的展开式中x 的系数大于f (x )的展开式中x 的系数,则a 的取值范围是________.[历 炼]1.解析:由导函数图象知当x <0时,f ′(x)>0,即f(x)在(-∞,0)上为增函数;当x >0时,f ′(x)<0,即f(x)在(0,+∞)上为减函数,故不等式f(x 2-6)>1等价于f(x 2-6)>f(-2)或f(x 2-6)>f(3),即-2<x 2-6≤0或0≤x 2-6<3,解得x ∈(-3,-2)∪(2,3).答案:(-3,-2)∪(2,3)解析:解决本题的关键是要读懂数学语言,x 0,y 0∈Z ,说明x 0,y 0是整数,作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.答案:63.解析:f (x )的展开式中x 的系数是C 5625a 6-5=192a ,f ′(x )=6(ax+2)5(ax +2)′=6a (ax +2)5,f ′(x )的展开式中x 的系数是6a C 4524a5-4=480a 2,依题意得480a 2>192a ⇒a >25或a <0.所以a 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫25,+∞. 答案:(-∞,0)∪⎝ ⎛⎭⎪⎫25,+∞。

2014届高考数学总复习(考点引领+技巧点拨)第十一章 计数原理、随机变量及分布列第1课时分类加法分步乘法

2014届高考数学总复习(考点引领+技巧点拨)第十一章 计数原理、随机变量及分布列第1课时分类加法分步乘法

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第十一章 计数原理、随机变量及分布列第1课时 分类加法计数原理与分步乘法1. (选修23P 8练习3改编)某班级有男生5人,女生4人,从中任选一人去领奖,有________种不同的选法.答案:9解析:不同选法种数共有N =5+4=9种. 2. (选修23P 8例4改编)书架上层放有6本不同的数学书,下层放有5本不同的语文书,从中任取数学书与语文书各一本,有________种不同的取法.答案:30解析:共有5×6=30种不同取法.3. (选修23P 8练习5改编)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有________种.答案:32解析:每位同学有2种不同的报名方法,故5位同学有25=32种不同的报名方法. 4. (选修23P 9习题3改编)从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通.则从甲地到丙地共有________种不同的走法.答案:14解析:共有2×3+4×2=14种不同的走法.5. 如图,一环形花坛分成A 、B 、C 、D 四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为________.答案:84解析:分两类:A、C种同种花有4×3×3=36种不同的种法; A、C种不同种花有4×3×2×2=48种不同的种法.故共有36+48=84种不同的种法.1. 分类加法计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2. 分步乘法计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3. 分类和分步区别,关键是看事件能否完成,事件完成了就是分类;必须要连续若干步才能完成的则是分步.分类要用分类计数原理将种数相加;分步要用分步计数原理,分步后要将种数相乘.[备课札记]题型1 分类计数原理例1满足A∪B={1,2}的集合A、B共有多少组?解:集合A、B均是{1,2}的子集:Æ,{1},{2},{1,2},但不是随便两个子集搭配都行,本题尤如含A、B两元素的不定方程,其全部解分为四类:①当A=Æ时,只有B={1,2},得1组解;②当A={1}时,B={2}或B={1,2},得2组解;③当A={2}时,B={1}或B={1,2},得2组解;④当A={1,2}时,B=Æ或{1}或{2}或{1,2},得4组解.根据分类计数原理,共有1+2+2+4=9组解.变式训练如下图,共有多少个不同的三角形?解:所有不同的三角形可分为三类:第一类:其中有两条边是原五边形的边,这样的三角形共有5个;第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个;第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个.由分类计数原理得,不同的三角形共有5+20+10=35个.题型2 分步计数原理例2用五种不同颜色给图中四个区域涂色,每个区域涂一种颜色.(1) 共有多少种不同的涂色方法?(2) 若要求相邻(有公共边)的区域不同色,那么有多少种不同的涂色方法?解:(1) 每一个区域都有5种不同的涂色的方法,所以涂完四个区域共有5×5×5×5=625种不同的涂色方法.(2) 若2号,4号区域同色,有5×4×3=60种涂法;若2号,4号区域异色,有5×4×3×2=120种涂法.所以共有60+120=180种涂法.备选变式(教师专享)用三种不同的颜色填涂下图3×3方格中的9个区域,要求每行、每列的三个区域都不同色,则不同的填涂方法共有________种.分析:将9答案:12解析:可将9个区域标号如图:用三种不同颜色为9个区域涂色,可分步解决:第一步,为第一行涂色,有3×2×1=6种方法;第二步,用与1号区域不同色的两种颜色为4、7两个区域涂色,有2×1=2种方法;剩余区域只有一种涂法.综上由分步计数原理可知共有6×2=12种涂法.题型3 两个基本原理的联系例3某同学有12本课外参考书,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆去阅读.(1) 若从这些参考书中带一本去图书馆,有多少种不同的带法?(2) 若带外语、数学、物理参考书各一本,有多少种不同的带法?(3) 若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?解:(1) 完成的事情是带一本书,无论是带外语书,还是带数学书、物理书,事情都已经完成,从而应用加法原理,结果为5+4+3=12种.(2) 完成的事情是带三本不同学科的参考书,只有从外语、数学、物理中各选一本后,才能完成这件事,因此应用乘法原理,结果为5×4×3=60种.(3) 要完成的这件事是带2本不同的书,先乘法原理,再用加法原理,结果为5×4+5×3+3×4=47种选法.备选变式(教师专享)三边长均为整数,且最大边长为7的三角形的个数为_______. 答案:16解析:另两边长用x 、y 表示,且不妨设1≤x≤y≤7,要构成三角形,必须有x +y≥8. 当y 取值7时,x =1,2,3,…,7,可有7个三角形;当y 取值6时,x =2,3,4,5,6,可有5个三角形;当y 取值5时,x =3,4,5,可有3个三角形;当y 取值4时,x =4,可有1个三角形,所求三角形的个数合计为16个.1. (2013·山东理)用0,1,…,9这十个数字,可以组成有重复数字的三位数的个数为________.答案:252解析:组成三位数的个数为9×10×10=900.没有重复数字的三位数有C 19A 29=648,所以有重复数字的三位数的个数为900-648=252.2. (2013·福建理)满足a 、b∈{-1,0,1,2},且关于x 的方程ax 2+2x +b =0有实数解的有序数对(a ,b)的个数为________.答案:13解析:方程ax 2+2x +b =0有实数解,分析讨论.① 当a =0时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对;② 当a≠0时,需要Δ=4-4ab≥0,即ab≤1.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).∵ (a,b)共有16种实数对,故答案应为16-3=13.3. 将字母a 、a 、b 、b 、c 、c ,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有________种.答案:12解析:第一步先排第一列有A 33=6,再排第二列,当第一列确定时,第二列有2种方法,如图,所以共有6×2=12种. 4. (2013·四川理)从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lga -lgb 的不同值的个数是________.答案:18解析:首先从1,3,5,7,9这五个数中任取两个不同的数排列,共有5×4=20种排法.因为31=93,13=39,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a、b,共可得到lga-lgb的不同值的个数是20-2=18.1. 某赛季足球比赛的规则是:胜一场,得3分;平一场,得1分;负一场,得0分.一球队打完15场,积33分.若不考虑顺序,该队胜、负、平的情况共有________种.答案:3解析:利用加法原理,考虑胜11场、胜10场、胜9场等情况.2. 一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有________________.答案:65解析:分两类:第一类,甲上7楼,有52种;第二类:甲不上7楼,有4×2×5种.故52+4×2×5=65.3. 现有5位同学准备一起做一项游戏,他们的身高各不相同.现在要从他们5个人当中选择出若干人组成A、B两个小组,每个小组都至少有1人,并且要求B组中最矮的那个同学的身高要比A组中最高的那个同学还要高.则不同的选法共有______种.答案:49解析:给5位同学按身高的不同由矮到高分别编号为1,2,3,4,5,组成集合M={1,2,3,4,5}.①若小组A中最高者为1,则能使B中最矮者高于A中最高者的小组B是{2,3,4,5}的非空子集,这样的子集有C14+C24+C34+C44=24-1=15个,∴不同的选法有15个;②若A中最高者为2,则这样的小组A有2个:{2}、{1,2},能使B中最矮者高于A中最高者的小组B是{3,4,5}的非空子集,这样的子集(小组B)有23-1=7个,∴不同的选法有2×7=14个;③若A中最高者为3,则这样的小组A有4个:{3}、{1,3}、{2,3}、{1,2,3},能使B中最矮者高于A中最高者的小组B是{4,5}的非空子集,这样的子集(小组B)有22-1=3个,∴不同的选法有4×3=12个;④若A中最高者为4,则这样的小组A有8个:{4}、{1,4}、{2,4}、{3,4}、{1,2,4}、{1,3,4}、{2,3,4}、{1,2,3,4},能使B中最矮者高于A中最高者的小组B只有{5} 1个,∴不同的选法有8个.∴ 综上,所有不同的选法是15+14+12+8=49个.4. 75 600有多少个正约数?有多少个奇约数?解:75 600的约数就是能整除75 600的整数,所以本题就是分别求能整除75 600的整数和奇约数的个数.由于 75 600=24×33×52×7.(1) 75 600的每个约数都可以写成2i·3j·5k·7l的形式,其中0≤i≤4,0≤j≤3,0≤k≤2,0≤l≤1.于是,要确定75 600的一个约数,可分四步完成,即i,j,k,l分别在各自的范围内任取一个值,这样i有5种取法,j有4种取法,k有3种取法,l有2种取法,根据分步计数原理得约数的个数为5×4×3×2=120个.(2) 奇约数中不含有2的因数,因此75 600的每个奇约数都可以写成3j·5k·7l的形式,同上奇约数的个数为4×3×2=24个.在应用两个计数原理解决具体问题时,常用以下几种方法技巧:(1) 建模法:建立数学模型,将所给问题转化为数学问题,这是计数方法中的基本方法.(2) 枚举法:利用枚举法(如树状图,表格)可以使问题的分析更直观、清楚,便于发现规律,从而形成恰当的分类或分步的设计思想.(3) 直接法和间接法:在实施计算中,可考虑用直接法或间接法(排除法),用不同的方法,不同的思路来验证结果的正误.(4) 分类计数原理和分步计数原理多数情形下是结合使用的,根据问题特点,一般是先分类再分步,某些复杂情形下,也可先分步再分类.分类要“不重不漏”,分步要“连续完整”.请使用课时训练(A)第1课时(见活页).。

2014年全国统一高考数学试卷(文科)(大纲版)(含解析版)

2014年全国统一高考数学试卷(文科)(大纲版)(含解析版)

2014 年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12 小题,每小题5 分)1.(5 分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N 中元素的个数为()A.2 B.3 C.5 D.72.(5分)已知角α 的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.(5 分)不等式组的解集为()A.{x|﹣2<x<﹣1} B.{x|﹣1<x<0}C.{x|0<x<1} D.{x|x>1}4.(5分)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为()A.B.C.D.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)6.(5 分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1 B.0 C.1 D.27.(5 分)有6 名男医生、5 名女医生,从中选出2 名男医生、1 名女医生组成一个医疗小组,则不同的选法共有()A.60 种B.70 种C.75 种D.150 种8.(5 分)设等比数列{a n}的前n 项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.649.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l 交C 于A、B 两点,若△AF1B 的周长为4,则C 的方程为()A.+=1 B.+y2=1 C.+=1 D.+=110.(5 分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.11.(5 分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C 的焦距等于()A.2 B.2C.4 D.412.(5 分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2 B.﹣1 C.0 D.1二、填空题(本大题共4 小题,每小题5 分)13.(5 分)(x﹣2)6的展开式中x3的系数是.(用数字作答)14.(5 分)函数y=cos2x+2sinx 的最大值是.15.(5 分)设x,y 满足约束条件,则z=x+4y 的最大值为.16.(5 分)直线l1 和l2 是圆x2+y2=2 的两条切线,若l1 与l2 的交点为(1,3),则l1 与l2 的夹角的正切值等于.三、解答题17.(10 分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(I)设b n=a n+1﹣a n,证明{b n}是等差数列;(II)求{a n}的通项公式.18.(12 分)△ABC 的内角A、B、C 的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.19.(12 分)如图,三棱柱ABC﹣A1B1C1 中,点A1 在平面ABC 内的射影D 在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(I)证明:AC1⊥A1B;(II)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C 的大小.20.(12 分)设每个工作日甲,乙,丙,丁4 人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(I)求同一工作日至少3 人需使用设备的概率;(II)实验室计划购买k 台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k 的最小值.21.(12 分)函数f(x)=ax3+3x2+3x(a≠0).(I)讨论f(x)的单调性;(II)若f(x)在区间(1,2)是增函数,求a 的取值范围.22.(12 分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4 与y 轴的交点为P,与C 的交点为Q,且|QF|=|PQ|.(I)求C 的方程;(II)过F 的直线l 与C 相交于A、B 两点,若AB 的垂直平分线l′与C 相交于M、N 两点,且A、M、B、N 四点在同一圆上,求l 的方程.2014 年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12 小题,每小题5 分)1.(5 分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N 中元素的个数为()A.2 B.3 C.5 D.7【考点】1A:集合中元素个数的最值;1E:交集及其运算.【专题】5J:集合.【分析】根据M 与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N 中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5 分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【考点】G9:任意角的三角函数的定义.【专题】56:三角函数的求值.【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5 分)不等式组的解集为()A.{x|﹣2<x<﹣1} B.{x|﹣1<x<0} C.{x|0<x<1}D.{x|x>1}【考点】7E:其他不等式的解法.【专题】59:不等式的解法及应用.【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5G:空间角.【分析】由E 为AB 的中点,可取AD 中点F,连接EF,则∠CEF 为异面直线CE 与BD 所成角,设出正四面体的棱长,求出△CEF 的三边长,然后利用余弦定理求解异面直线CE 与BD 所成角的余弦值.【解答】解:如图,取AD 中点F,连接EF,CF,∵E 为AB 的中点,∴EF∥DB,则∠CEF 为异面直线BD 与CE 所成的角,∵ABCD 为正四面体,E,F 分别为AB,AD 的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF 中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】由已知式子解出x,然后互换x、y 的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=e y,即=e y﹣1,∴x=(e y﹣1)3,∴所求反函数为y=(e x﹣1)3,、 故选:D .【点评】本题考查反函数解析式的求解,属基础题.6.(5 分)已知,为单位向量,其夹角为 60°,则(2﹣)•=( )A .﹣1B .0C .1D .2【考点】9O :平面向量数量积的性质及其运算. 【专题】5A :平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得的值,可得(2﹣)•的值.【解答】解:由题意可得, =1×1×cos60°=, =1,∴(2﹣)•=2﹣=0,故选:B .【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5 分)有 6 名男医生、5 名女医生,从中选出 2 名男医生、1 名女医生组成一个医疗小组,则不同的选法共有( ) A .60 种B .70 种C .75 种D .150 种【考点】D9:排列、组合及简单计数问题. 【专题】5O :排列组合.【分析】根据题意,分 2 步分析,先从 6 名男医生中选 2 人,再从 5 名女医生中 选出 1 人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从 6 名男医生中选 2 人,有 C 62=15 种选法,再从 5 名女医生中选出 1 人,有 C 51=5 种选法, 则不同的选法共有 15×5=75 种;故选:C .【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5 分)设等比数列{a n}的前n 项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.64【考点】89:等比数列的前n 项和.【专题】54:等差数列与等比数列.【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4 成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4 成等比数列,即3,12,S6﹣15 成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4 成等比数列是解决问题的关键,属基础题.9.(5 分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2 的直线l 交C 于A、B 两点,若△AF1B 的周长为4 ,则C 的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B 的周长为4 ,求出a= ,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B 的周长为4,∵△AF1B 的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C 的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5 分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD 的外接球的球心在它的高PO1 上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5 分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C 的焦距等于()A.2 B.2C.4 D.4【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y= ,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0 的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C.【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(5 分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2 B.﹣1 C.0 D.1【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,∴设g(x)=f(x+2),则g(﹣x)=g(x),即f(﹣x+2)=f(x+2),∵f(x)是奇函数,∴f(﹣x+2)=f(x+2)=﹣f(x﹣2),即f(x+4)=﹣f(x),f(x+8)=f(x+4+4)=﹣f(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,∴f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题(本大题共4 小题,每小题5 分)13.(5 分)(x﹣2)6的展开式中x3的系数是﹣160 .(用数字作答)【考点】DA:二项式定理.【专题】11:计算题.【分析】根据题意,由二项式定理可得(x﹣2)6的展开式的通项,令x 的系数为3,可得r=3,将r=3 代入通项,计算可得T4=﹣160x3,即可得答案.66 r+1 6【解答】解:根据题意,(x﹣2)6的展开式的通项为T =C r x6﹣r(﹣2)r=(﹣1)r•2r•C r x6﹣r,令6﹣r=3 可得r=3,此时T4=(﹣1)3•23•C3x3=﹣160x3,即x3的系数是﹣160;故答案为﹣160.【点评】本题考查二项式定理的应用,关键要得到(x﹣2)6的展开式的通项.14.(5 分)函数y=cos2x+2sinx 的最大值是.【考点】HW:三角函数的最值.【专题】11:计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=1 ﹣2sin2x+2sinx= ,结合﹣1≤sinx≤1 及二次函数的性质可求函数有最大值【解答】解:∵y=cos2x+2sinx=1﹣2sin2x+2sinx=又∵﹣1≤sinx≤1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意﹣1≤sinx≤1 的条件.15.(5 分)设x,y 满足约束条件,则z=x+4y 的最大值为 5 .【考点】7C:简单线性规划.【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y 为直线方程的斜截式,得.由图可知,当直线过C 点时,直线在y 轴上的截距最大,z 最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5 分)直线l1 和l2 是圆x2+y2=2 的两条切线,若l1 与l2 的交点为(1,3),则l1 与l2 的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.【专题】5B:直线与圆.【分析】设l1 与l2 的夹角为2θ,由于l1 与l2 的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ的值,再根据tan2θ=,计算求得结果.【解答】解:设l1 与l2 的夹角为2θ,由于l1 与l2 的交点A(1,3)在圆的外部,且点A 与圆心O 之间的距离为OA==,圆的半径为r=,∴sinθ== ,∴cosθ=,tanθ==,∴tan2θ== =,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题17.(10 分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(I)设b n=a n+1﹣a n,证明{b n}是等差数列;(II)求{a n}的通项公式.【考点】83:等差数列的性质;84:等差数列的通项公式;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)将a n=2a n+1﹣a n+2 变形为:a n+2﹣a n+1=a n+1﹣a n+2,再由条件得+2b n+1=b n+2,根据条件求出b1,由等差数列的定义证明{b n}是等差数列;(Ⅱ)由(Ⅰ)和等差数列的通项公式求出b n,代入b n=a n+1﹣a n 并令n 从1 开始取值,依次得(n﹣1)个式子,然后相加,利用等差数列的前n 项和公式求出{a n}的通项公式a n.=2a n+1﹣a n+2 得,【解答】解:(Ⅰ)由a n+2a n+2﹣a n+1=a n+1﹣a n+2,由b n=a n+1﹣a n 得,b n+1=b n+2,即b n﹣b n=2,+1又b1=a2﹣a1=1,所以{b n}是首项为1,公差为2 的等差数列.(Ⅱ)由(Ⅰ)得,b n=1+2(n﹣1)=2n﹣1,由b n=a n+1﹣a n 得,a n+1﹣a n=2n﹣1,则a2﹣a1=1,a3﹣a2=3,a4﹣a3=5,…,a n﹣a n﹣1=2(n﹣1)﹣1,所以,a n﹣a1=1+3+5+…+2(n﹣1)﹣1==(n﹣1)2,又a1=1,所以{a n}的通项公式a n=(n﹣1)2+1=n2﹣2n+2.【点评】本题考查了等差数列的定义、通项公式、前n 项和公式,及累加法求数列的通项公式和转化思想,属于中档题.18.(12 分)△ABC 的内角A、B、C 的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.(12 分)如图,三棱柱ABC﹣A1B1C1 中,点A1 在平面ABC 内的射影D 在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(I)证明:AC1⊥A1B;(II)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C 的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD 为二面角A1﹣AB﹣C 的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C 为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E 为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E 为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C 为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F 为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD 为二面角A1﹣AB﹣C 的平面角,由AD==1 可知D 为AC 中点,∴DF==,∴tan∠A1FD== ,∴二面角A1﹣AB﹣C 的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12 分)设每个工作日甲,乙,丙,丁4 人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(I)求同一工作日至少3 人需使用设备的概率;(II)实验室计划购买k 台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k 的最小值.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(Ⅰ)把4 个人都需使用设备的概率、4 个人中有3 个人使用设备的概率相加,即得所求.(Ⅱ)由(Ⅰ)可得若k=2,不满足条件.若k=3,求得“同一工作日需使用设备的人数大于3”的概率为0.06<0.1,满足条件,从而得出结论.【解答】解:(Ⅰ)由题意可得“同一工作日至少3 人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)由(Ⅰ)可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.31>0.1,不满足条件.若k=3,则“同一工作日需使用设备的人数大于3”的概率为0.6×0.5×0.5×0.4=0.06<0.1,满足条件.故k 的最小值为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题.21.(12 分)函数f(x)=ax3+3x2+3x(a≠0).(I)讨论f(x)的单调性;(II)若f(x)在区间(1,2)是增函数,求a 的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】53:导数的综合应用.【分析】(Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a 的范围讨论f(x)的单调性;(Ⅱ)当a>0,x>0 时,f(x)在区间(1,2)是增函数,当a<0 时,f(x)在区间(1,2)是增函数,推出f′(1)≥0 且f′(2)≥0,即可求a 的取值范围.【解答】解:(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1﹣a),①若a≥1 时,则△≤0,f′(x)≥0,∴f(x)在R 上是增函数;②因为a≠0,∴a≤1 且a≠0 时,△>0,f′(x)=0 方程有两个根,x1=,x2=,当0<a<1 时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0 时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(Ⅱ)当a>0,x>0 时,f′(x)=3ax2+6x+3>0 故a>0 时,f(x)在区间(1,2)是增函数,当a<0 时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0 且f′(2)≥0,解得﹣,a 的取值范围[ )∪(0,+∞).【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.22.(12 分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4 与y 轴的交点为P,与C 的交点为Q,且|QF|=|PQ|.(I)求C 的方程;(II)过F 的直线l 与C 相交于A、B 两点,若AB 的垂直平分线l′与C 相交于M、N 两点,且A、M、B、N 四点在同一圆上,求l 的方程.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q 的坐标为(x0,4),把点Q 的坐标代入抛物线C 的方程,求得x0=,根据|QF|=|PQ|求得p 的值,可得C 的方程.(Ⅱ)设l 的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN 垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,由此求得m 的值,可得直线l 的方程.【解答】解:(Ⅰ)设点Q 的坐标为(x0,4),把点Q 的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C 的方程为y2=4x.(Ⅱ)由题意可得,直线l 和坐标轴不垂直,y2=4x 的焦点F(1,0),设l 的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB 的中点坐标为 D (2m2+1 ,2m ),弦长|AB|= |y1 ﹣y2|= =4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F 的直线l 与C 相交于A、B 两点,若AB 的垂直平分线l′与C 相交于M、N 两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN 的中点 E 的坐标为(+2m2+3,),∴|MN|=|y3 ﹣y4|=,∵MN 垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,∴+DE2= MN2,∴4(m2+1)2+ + =×,化简可得m2﹣1=0,∴m=±1,∴直线l 的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。

2014年高考真题及模拟新题 文科数学分类汇编:14份 纯word版解析可编辑

2014年高考真题及模拟新题 文科数学分类汇编:14份 纯word版解析可编辑

2014高考真题+模拟新题之文科数学分类汇编:A单元集合与常用逻辑用语.doc 2014高考真题+模拟新题之文科数学分类汇编:B单元函数与导数.doc2014高考真题+模拟新题之文科数学分类汇编:C单元三角函数.doc2014高考真题+模拟新题之文科数学分类汇编:D单元数列.doc2014高考真题+模拟新题之文科数学分类汇编:E单元不等式.doc2014高考真题+模拟新题之文科数学分类汇编:F单元平面向量.doc2014高考真题+模拟新题之文科数学分类汇编:G单元立体几何.doc2014高考真题+模拟新题之文科数学分类汇编:H单元解析几何.doc2014高考真题+模拟新题之文科数学分类汇编:I单元统计.doc2014高考真题+模拟新题之文科数学分类汇编:J单元计数原理.doc2014高考真题+模拟新题之文科数学分类汇编:K单元概率.doc2014高考真题+模拟新题之文科数学分类汇编:L单元算法初步与复数.doc 2014高考真题+模拟新题之文科数学分类汇编:M单元推理与证明.doc2014高考真题+模拟新题之文科数学分类汇编:N单元选修4系列.doc数学A单元集合与常用逻辑用语A1 集合及其运算1.[2014·北京卷] 若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4} B.{0,4}C.{1,2} D.{3}1.C[解析] A∩B={0,1,2,4}∩{1,2,3}={1,2}.1.[2014·福建卷] 若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4} B.{x|3<x<4}C.{x|2≤x<3} D.{x|2≤x≤3}1..A[解析] 把集合P={x|2≤x<4}与Q={x|x≥3}在数轴上表示出来,得P∩Q={x|3≤x<4},故选A.16.,[2014·福建卷] 已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b =2;③c≠0有且只有一个正确,则100a+10b+c等于________.16.201[解析] (i)若①正确,则②③不正确,由③不正确得c=0,由①正确得a=1,所以b=2,与②不正确矛盾,故①不正确.(ii)若②正确,则①③不正确,由①不正确得a=2,与②正确矛盾,故②不正确.(iii)若③正确,则①②不正确,由①不正确得a=2,由②不正确及③正确得b=0,c=1,故③正确.则100a+10b+c=100³2+10³0+1=201.1.[2014·广东卷] 已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2} B.{2,3}C.{3,4} D.{3,5}1.B[解析] ∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3}.1.[2014·湖北卷] 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}1.C[解析] 由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁U A={2,4,7}.故选C.2.[2014·湖南卷] 已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1}C.{x|2<x<3} D.{x|1<x<3}2.C[解析] 由集合运算可知A∩B={x|2<x<3}.11.[2014·重庆卷] 已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B =________.11.{3,5,13}[解析] 由集合交集的定义知,A∩B={3,5,13}.1.[2014·江苏卷] 已知集合A={-2,-1,3,4},B={-1,2,3},则A∩B=________.1.{-1,3}[解析] 由题意可得A∩B={-1,3}.2.[2014·江西卷] 设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=()A.(-3,0) B.(-3,-1)C.(-3,-1] D.(-3,3)2.C[解析] ∵A=(-3,3),∁R B=(-∞,-1]∪(5,+∞),∴A∩(∁R B)=(-3,-1].1.[2014·辽宁卷] 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=() A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}1.D[解析] 由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)=x|0<x<1}.1.[2014·全国卷] 设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N 中元素的个数为()A.2 B.3C.5 D.71.B[解析] 根据题意知M∩N={1,2,4,6,8}∩{1,2,3,5,6,7}={1,2,6},所以M∩N中元素的个数是3.1.[2014·新课标全国卷Ⅱ] 已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B =()A.∅B.{2}C.{0} D.{-2}1.B[解析] 因为B={-1,2},所以A∩B={2}.1.[2014·全国新课标卷Ⅰ] 已知集合M={x|-1<x<3},N={-2<x<1},则M∩N=()A.(-2,1) B.(-1,1)C.(1,3) D.(-2,3)1.B[解析] 利用数轴可知M∩N={x|-1<x<1}.2.[2014·山东卷] 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2)C.[1,2) D.(1,4)2.C[解析] 因为集合A={x|0<x<2},B={x|1≤x≤4},所以A∩B={x|1≤x<2},故选C.1.[2014·陕西卷] 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1) C.(0,1] D.[0,1)1.D[解析] 由M={x|x≥0},N={x|x2<1}={x|-1<x<1},得M∩N=[0,1).1.[2014·四川卷] 已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=() A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}1.D[解析] 由题意可知,集合A={x|(x+1)(x-2)≤0}={x|-1≤x≤2},所以A∩B ={-1,0,1,2}.故选D.20.、、[2014·天津卷] 已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.20.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2²2+x3²22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i =1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q-1)(1-q n-1)1-q-q n-1=-1<0,所以s<t.1.[2014·浙江卷] 设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]1.D[解析] 依题意,易得S∩T=[2,5] ,故选D.A2 命题及其关系、充分条件、必要条件5.[2014·北京卷] 设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.D[解析] 当ab<0时,由a>b不一定推出a2>b2,反之也不成立.7.、[2014·广东卷] 在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件7.A[解析] 设R是三角形外切圆的半径,R>0,由正弦定理,得a=2R sin A,b=2R sin B.故选A.∵sin≤A sin B,∴2R sin A≤2R sin B,∴a≤b.同理也可以由a≤b推出sin A≤sin B.6.[2014·江西卷] 下列叙述中正确的是()A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C .命题“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2≥0”D .l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β6.D [解析] 对于选项A ,a >0,且b 2-4ac ≤0时,才可得到ax 2+bx +c ≥0成立,所以A 错.对于选项B ,a >c ,且b ≠0时,才可得到ab 2>cb 2成立,所以B 错. 对于选项C ,命题的否定为“存在x ∈R ,有x 2<0”, 所以C 错.对于选项D ,垂直于同一条直线的两个平面相互平行,所以D 正确. 5.、[2014·辽宁卷] 设a ,b ,c 是非零向量,已知命题p :若a ²b =0,b ·c =0,则=0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q ) 5.A [解析] 由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题.3.[2014·新课标全国卷Ⅱ] 函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0,q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件3.C [解析] 函数在x =x 0处有导数且导数为0,x =x 0未必是函数的极值点,还要看函数在这一点左右两边的导数的符号,若符号一致,则不是极值点;反之,若x =x 0为函数的极值点,则函数在x =x 0处的导数一定为0 ,所以p 是q 的必要不充分条件.4.[2014·山东卷] 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根B .方程x 2+ax +b =0至多有一个实根C .方程x 2+ax +b =0至多有两个实根D .方程x 2+ax +b =0恰好有两个实根4.A [解析] 方程“x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.故选A.8.[2014·陕西卷] 原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假8.A [解析] 由a n +a n +12<a n ,得a n +1<a n ,所以数列{a n }为递减数列,故原命题是真命题,其逆否命题为真命题.易知原命题的逆命题为真命题,所以其否命题也为真命题.15.、、[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确2.[2014·浙江卷] 设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 2.A [解析] 若四边形ABCD 为菱形,则AC ⊥BD ;反之,若AC ⊥BD ,则四边形ABCD 不一定为平行四边形.故“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.故选A.6.[2014·重庆卷] 已知命题p :对任意x ∈R ,总有|x |≥0,q :x =1是方程x +2=0的根.则下列命题为真命题的是( )A .p ∧綈qB .綈p ∧qC .綈p ∧綈qD .p ∧q6.A [解析] 由题意知 p 为真命题,q 为假命题,则綈q 为真命题,所以p ∧綈q 为真命题.A3 基本逻辑联结词及量词 2.[2014·安徽卷] 命题“∀x ∈R ,|x |+x 2≥0”的否.定是( ) A .∀x ∈R ,|x |+x 2<0 B .∀x ∈R ,|x |+x 2≤0 C .∃x 0∈R ,|x 0|+x 20<0 D .∃x 0∈R ,|x 0|+x 20≥02.C [解析] 易知该命题的否定为“∃x 0∈R ,|x 0|+x 20<0”. 5.[2014·福建卷] 命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( ) A .∀x ∈(-∞,0),x 3+x <0 B .∀x ∈(-∞,0),x 3+x ≥0 C .∃x 0∈[0,+∞),x 30+x 0<0 D .∃x 0∈[0,+∞),x 30+x 0≥05.C [解析] “∀x ∈[0,+∞),x 3+x ≥0”是含有全称量词的命题,其否定是“∃x 0∈[0,+∞),x 30+x 0<0”,故选C.3.[2014·湖北卷] 命题“∀x ∈R ,x 2≠x ”的否定是( ) A .∀x ∈/R ,x 2≠x B .∀x ∈R ,x 2=xC .∃x 0∈/R ,x 20≠x 0D .∃x 0∈R ,x 20=x 03.D [解析] 特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x ∈R ,x 2≠x ”的否定是“∃x 0∈R ,x 20=x 0”. 故选D.1.[2014·湖南卷] 设命题p :∀x ∈R ,x 2+1>0,则綈p 为( )A .∃x 0∈R ,x 20+1>0B .∃x 0∈R ,x 20+1≤0C .∃x 0∈R ,x 20+1<0 D .∀x ∈R ,x 2+1≤01.B [解析] 由全称命题的否定形式可得綈p :∃x 0∈R ,x 20+1≤0. 3.[2014·天津卷] 已知命题p :∀x >0,总有(x +1)e x >1,则綈p 为( ) A .∃x 0≤0,使得(x 0+1)e x 0≤1 B. ∃x 0>0,使得(x 0+1)e x 0≤1 C. ∀x >0,总有(x +1)e x ≤1 D. ∀x ≤0,总有(x +1)e x ≤13.B [解析] 含量词的命题的否定,先改变量词的形式,再对命题的结论进行否定.A4 单元综合4.[2014·湖南雅礼中学月考] 设全集U ={a ,b ,c ,d ,e },集合M ={a ,d },N ={a ,c ,e },则N ∩(∁U M )=( )A .{c ,e }B .{a ,c }C .{d ,e }D .{a ,e }4.A [解析] 因为∁U M ={b ,c ,e },所以N ∩(∁U M )={a ,c ,e }∩{b ,c ,e }={c ,e }. 7.[2014·宁德质检] 已知集合A ={0,1},B ={-1,0,a +2},若A ⊆B ,则a 的值为( )A .-2B .-1C .0D .17.B [解析] ∵A ⊆B ,∴a +2=1,解得a =-1. 8.[2014·蚌埠质检] 已知全集U =R ,集合A ={x |x 2-1≥0},B ={x |x -1≤0},则(∁U A )∩B =( )A .{x |x ≥1}B .{x |-1<x <1}C .{x |-1<x ≤1}8.B [解析] ∵集合A ={x |x 2-1≥0}={x |x ≥1或x ≤-1},∴∁U A ={x |-1<x <1}.又集合B ={x |x -1≤0}={x |x ≤1},∴(∁U A )∩B ={x |-1<x <1}. 4.[2014·湖南雅礼中学月考] 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 4.B [解析] 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故选B.7.[2014·济南模拟] 已知命题p :∀a ∈R ,且a >0,a +1a≥2,命题q :∃x 0∈R ,sin x 0+cos x 0=3,则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧(綈q )是真命题D .(綈p )∧q 是真命题7.C [解析] 依题意可知,命题p 为真,命题q 为假,故选C.12.[2014·长沙联考] 若命题“∃x 0∈R ,x 20+mx 0+2m -3<0”为假命题,则实数m 的取值范围是__________.12.2≤m ≤6 [解析] 由题意可知,命题“∀x ∈R ,x 2+mx +2m -3≥0”为真命题,故Δ=m2-4(2m-3)=m2-8m+12≤0,解得2≤m≤6.数 学B 单元 函数与导数B1 函数及其表示 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 14.516 [解析] 由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516. 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -x B .y =x 3 C .y =ln x D .y =|x |2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 21.、、[2014·江西卷] 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率.(1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.21.解:(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p (100)=11192.(2)F (n )=⎩⎪⎨⎪⎧n ,1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ⎩⎪⎨⎪⎧0,1≤n ≤9,k ,n =10k +b ,11,n =100.1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N , 同理有f (n )= ⎩⎪⎨⎪⎧0,1≤n ≤8,k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,n -80,89≤n ≤98,20,n =99,100.由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90, 所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p (9)=0.当n =90时,p (90)=g (90)F (90)=9171=119.当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8169.又8169<119,所以当n ∈S 时,p (n )的最大值为119. 3.[2014·山东卷] 函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)3.C [解析] 若函数f (x )有意义,则log 2x -1>0,∴log 2x >1,∴x >2.B2 反函数5.[2014·全国卷] 函数y =ln(3x +1)(x >-1)的反函数是( ) A .y =(1-e x )3(x >-1) B .y =(e x -1)3(x >-1) C .y =(1-e x )3(x ∈R ) D .y =(e x -1)3(x ∈R )5.D [解析] 因为y =ln(3x +1),所以x =(e y -1)3.因为x >-1,所以y ∈R ,所以函数y =ln(3x +1)(x >-1)的反函数是y =(e x -1)3(x ∈R ).B3 函数的单调性与最值 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -x B .y =x 3 C .y =ln x D .y =|x |2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对.19.、、、[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0, 故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.15.、、[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确21.、[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.B4 函数的奇偶性与周期性 4.[2014·重庆卷] 下列函数为偶函数的是( ) A .f (x )=x -1 B .f (x )=x 2+xC .f (x )=2x -2-xD .f (x )=2x +2-x4.D [解析] A 中,f (-x )=-x -1,f (x )为非奇非偶函数;B 中,f (-x )=(-x )2-x =x 2-x ,f (x )为非奇非偶函数;C 中,f (-x )=2-x -2x =-(2x -2-x )=-f (x ),f (x )为奇函数;D 中,f (-x )=2-x +2x =f (x ),f (x )为偶函数.故选D.14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 14.516 [解析] 由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516. 5.[2014·广东卷] 下列函数为奇函数的是( ) A .2x -12x B .x 3sin xC .2cos x +1D .x 2+2x5.A [解析] 对于A 选项,令f (x )=2x -12x =2x -2-x ,其定义域是R ,f (-x )=2-x -2x=-f (x ),所以A 正确;对于B 选项,根据奇函数乘奇函数是偶函数,所以x 3sin x 是偶函数;C 显然也是偶函数;对于D 选项,根据奇偶性的定义,该函数显然是非奇非偶函数.9.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}9.D [解析] 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x . 求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解. 当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D. 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对. 15.[2014·湖南卷] 若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.15.-32[解析] 由偶函数的定义可得f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,∴2ax =-ln e 3x =-3x ,∴a =-32.19.、、、[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立. 令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0, 故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.12.[2014·全国卷] 奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .112.D [解析] 因为f (x +2)为偶函数,所以其对称轴为直线x =0,所以函数f (x )的图像的对称轴为直线x =2.又因为函数f (x )是奇函数,其定义域为R ,所以f (0)=0,所以f (8)=f (-4)=-f (4)=-f (0)=0,故f (8)+f (9)=0+f (-5)=-f (5)=-f (-1)=f (1)=1.15.[2014·新课标全国卷Ⅱ] 偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________.15.3 [解析] 因为函数图像关于直线x =2对称,所以f (3)=f (1),又函数为偶函数,所以f (-1)=f (1),故f (-1)=3.5.[2014·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数5.C [解析] 因为f (x )是奇函数,g (x )是偶函数,所以有f (-x )=-f (x ),g (-x )=g (x ),于是f (-x )·g (-x )=-f (x )g (x ),即f (x )g (x )为奇函数,A 错;|f (-x )|g (-x )=|f (x )|g (x ),即|f (x )|g (x )为偶函数,B 错;f (-x )|g (-x )|=-f (x )|g (x )|,即f (x )|g (x )|为奇函数,C 正确; |f (-x )g (-x )|=|f (x )g (x )|,即f (x )g (x )为偶函数,所以D 也错. 13.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 13.1 [解析] 由题意可知,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12f ⎝⎛⎭⎫-12=-4⎝⎛⎭⎫-122+2=1.B5 二次函数 10.[2014·江苏卷] 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.10.⎝⎛⎭⎫-22,0 [解析] 因为f (x )=x 2+mx -1是开口向上的二次函数,所以函数的最大值只能在区间端点处取到,所以对于任意x ∈[m ,m +1],都有f (x )<0,只需⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,解得⎩⎨⎧-22<m <22,-32<m <0,即m ∈⎝⎛⎭⎫-22,0.14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.14.32 [解析] 因为y =cos 2x +2sin x =1-2sin x 2+2sin x =-2⎝⎛⎭⎫sin x -122+32,所以当sin x =12时函数y =cos 2x +2sin x 取得最大值,最大值为32.B6 指数与指数函数 5.[2014·安徽卷] 设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C .c <b <a D .a <c <b5.B [解析] 因为2>a =log 37>1,b =21.1>2,c =0.83.1<1,所以c <a <b . 8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b3.D [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.15.(-∞,8] [解析] 当x <1时,由e x -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值范围为x ≤8.5.,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A .x 3>y 3 B .sin x >sin yC .ln(x 2+1)>ln(y 2+1)D.1x 2+1>1y 2+15.A [解析] 因为a x <a y (0<a <1),所以x >y ,所以x 3>y 3恒成立.故选A. 7.[2014·陕西卷] 下列函数中,满足“f (x +y )= f (x )f (y )”的单调递增函数是( )A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝⎛⎭⎫12x7.B [解析] 由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=⎝⎛⎭⎫12x为单调递减函数,所以排除选项D. 12.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.12.10 [解析] 4a =2,即22a =2,可得a =12,所以lg x =12,所以x =1012=10.7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A .d =acB .a =cdC .c =adD .d =a +c7.B [解析] 因为5d =10,所以d =log 510,所以cd =lg b ²log 510=log 5b =a ,故选B.9.、[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ]9.B [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直, 则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10,即|P A |+|PB |≥|AB |=10. 又|P A |+|PB |=(|P A |+|PB |)2= |P A |2+2|P A ||PB |+|PB |2≤ 2(|P A |2+|PB |2)=2 5,所以|P A |+|PB |∈[10,2 5],故选B.4.[2014·天津卷] 设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a4.C [解析] ∵a =log 2π>1,b =log 12π<0,c =1π2<1,∴b <c <a .B7 对数与对数函数 12.[2014·天津卷] 函数f (x )=lg x 2的单调递减区间是________.12.(-∞,0) [解析] 函数f (x )=lg x 2的单调递减区间需满足x 2>0且y =x 2单调递减,故x ∈(-∞,0).11.[2014·安徽卷] ⎝⎛⎭⎫1681-34+log 354+log 345=________.11.278 [解析] 原式=⎣⎡⎦⎤⎝⎛⎭⎫234-34 +log 3⎝⎛⎭⎫54³45=⎝⎛⎭⎫23-3=278. 8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-28.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.13.5 [解析] 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25,所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b3.D [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <16.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =ad D .d =a +c7.B [解析] 因为5d =10,所以d =log 510,所以cd =lg b ²log 510=log 5b =a ,故选B.9.、[2014·重庆卷] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 39.D [解析] 由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,则4a +3b=1,所以a +b =(a+b )⎝⎛⎭⎫4a +3b =7+4b a +3a b ≥7+2 4b a ²3a b =7+4 3,当且仅当4b a =3a b ,即a =4+2 3,b =2 3+3时等号成立,故其最小值是7+4 3.B8 幂函数与函数的图像 8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-28.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.15.[2014·湖北卷] 如图1-4所示,函数y =f (x )的图像由两条射线和三条线段组成. 若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.图1-415.⎝⎛⎭⎫0,16 [解析] “∀x ∈R ,f (x )>f (x -1)”等价于“函数y =f (x )的图像恒在函数y =f (x -1)的图像的上方”,函数y =f (x -1)的图像是由函数y =f (x )的图像向右平移一个单位得到的,如图所示.因为a >0,由图知6a <1,所以a 的取值范围为⎝⎛⎭⎫0,16.13.、[2014·江苏卷] 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.13.⎝⎛⎭⎫0,12 [解析] 先画出y =x 2-2x +12在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈⎝⎛⎭⎫0,12.15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.15.(-∞,8] [解析] 当x <1时,由e x -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值范围为x ≤8.6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <16.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.B9 函数与方程6.[2014·北京卷] 已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )的零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)6.C [解析] 方法一:对于函数f (x )=6x -log 2x ,因为f (2)=2>0,f (4)=-0.5<0,根据零点的存在性定理知选C.方法二:在同一坐标系中作出函数h (x )=6x 与g (x )=log 2x 的大致图像,如图所示,可得f (x )的零点所在的区间为(2,4).7.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >97.C [解析] 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,而0<f (-1)≤3,故0<-6+c ≤3,∴6<c ≤9,故选C.10.[2014·重庆卷] 已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 10.A [解析] 作出函数f (x )的图像,如图所示.函数g (x )=f (x )-mx -m 的零点为方程f (x )-mx -m =0的根,即为函数y =f (x )与函数y =m (x +1)图像的交点.而函数y =m (x +1)。

2014年全国高考数学真题 文科 及答案详解

2014年全国高考数学真题 文科 及答案详解

2014年普通高等学校招生全国统一考试数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则MB =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-正确答案:A(2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 正确答案:A(3)设i iz ++=11,则=||z A. 21 B. 22 C. 23 D. 2正确答案:B(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25D. 1正确答案:D(5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数正确答案:A(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+ A. B.21 C. 21D. 正确答案:C(7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③ 正确答案:C8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱正确答案:B9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203B.72C.165D.158正确答案:D10.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,zxxk xF A 045=,则=x 0( )A. 1B. 2C. 4D. 8正确答案:C(11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-3 正确答案:B(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-(B )正确答案:A第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 正确答案:2/3(14)甲、乙、丙三位同学被问到是否去过A 、B 、zxxk C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________. 正确答案:A(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.正确答案:((16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .本文来自正确答案:150三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

2014届高考数学总复习(考点引领+技巧点拨)第十一章 计数原理、随机变量及分布列第3课时 二项式定理

2014届高考数学总复习(考点引领+技巧点拨)第十一章 计数原理、随机变量及分布列第3课时 二项式定理

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第十一章 计数原理、随机变量及分布列第3课时 二项式定理1. (选修23P 32练习5改编)在(x -3)10的展开式中,x 6的系数是________. 答案:1 890 解析:T r +1=C r10x10-r(-3)r,令10-r =6,r =4,T 5=9C 410x 6=1 890x 6.2. (选修23P 32练习6改编)⎝ ⎛⎭⎪⎫x -1x 212的展开式的常数项是________.答案:495解析:展开式中,T r +1=C r12x12-r·⎝ ⎛⎭⎪⎫-1x 2r =(-1)r C r 12x 12-3r ,当r =4时,T 5=C 412=495为常数项.3. (选修23P 35习题2改编)若C 23+C 24+C 25+…+C 2n =363,则自然数n =________. 答案:13解析:C 33+C 23+C 24+C 25+…+C 2n =363+1,C 34+C 24+C 25+…+C 2n =364,C 35+C 25+…+C 2n =…=C 3n +1=364,n =13.4. (选修23P 36习题12改编)已知(1-2x)7=a 0+a 1x +a 2x 2+…+a 7x 7,那么a 1+a 2+…+a 7=________.答案:-2解析:设f(x)=(1-2x)7,令x =1,得a 0+a 1+a 2+…+a 7=(1-2)7=-1,令x =0,得a 0=1,a 1+a 2+…+a 7=-1-a 0=-2.5. (选修23P 35习题10改编)在(x +y)n的展开式中,若第七项系数最大,则n 的值可能为________.答案:11,12,13解析:分三种情况:① 若仅T 7系数最大,则共有13项,n =12;② 若T 7与T 6系数相等且最大,则共有12项,n =11;③ 若T 7与T 8系数相等且最大,则共有14项,n =13,所以n 的值可能等于11,12,13.1. 二项式定理(a +b)n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n∈N).这个公式所表示的定理叫做二项式定理,右边的多项式叫做(a +b)n的二项展开式,其中的系数C r n (r =0,1,2,…,n)叫做第r +1项的二项式系数.式中的C r n a n -r b r叫做二项式展开式的第r +1项(通项),用T r +1表示,即展开式的第r +1项;T r +1=C r n a n -r b r.2. 二项展开式形式上的特点 (1) 项数为n +1.(2) 各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n. (3) 字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n.(4) 二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C nn . 3. 二项式系数的性质(1) 在二项展开式中,与首末两端“等距离”的两项的二项式系数相等. (2) 如果二项式的幂指数是偶数,中间项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.(3) 二项式系数的和等于2n ,即C 0n +C 1n +…+C n n =2n.(4) 二项式展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和,即C 0n +C 2n +…=C 1n +C 3n +…=2n -1.[备课札记]题型1 二项式展开式的特定项例1 如果⎝⎛⎭⎪⎫x 2-1x 3n的展开式中,第四项和第七项的二项式系数相等,求:(1) 展开式的中间项;(2) ⎝⎛⎭⎪⎪⎫x -124x n -1展开式中所有的有理项. 解:(1) ⎝⎛⎭⎪⎫x 2-1x 3n展开式中,第四项和第七项的二项式系数分别是C 3n ,C 6n ,由C 3n =C 6n ,得n =9,所以⎝ ⎛⎭⎪⎫x 2-1x 39展开式的中间项为第5项和第6项,即T 5=(-1)4C 49(x -3)4(x 2)5=126x 2,T 6=(-1)5C 59(x -3)5(x 2)4=-126x7.(2) 通项为T r +1=C r 8(x)8-r ⎝ ⎛⎭⎪⎪⎫-124x r =⎝ ⎛⎭⎪⎫-12r C r 8x 16-3r 4(r =0,1,2,…,8),为使T r +1为有理项,必须r 是4的倍数,所以r =0,4,8,共有三个有理项,分别是T 1=⎝ ⎛⎭⎪⎫-120C 08x4=x 4,T 5=⎝ ⎛⎭⎪⎫-124C 48x =358x ,T 9=⎝ ⎛⎭⎪⎫-128C 88x -2=1256x 2.变式训练 (1) 若(1+x)n 的展开式中,x 3的系数是x 的系数的7倍,求n ;(2) 已知(ax +1)7(a≠0)的展开式中,x 3的系数是x 2的系数与x 4的系数的等差中项,求a ;(3) 已知(2x +x lgx )8的展开式中,二项式系数最大的项的值等于1 120,求x. 解:(1) C 3n =7C 1n ,n (n -1)(n -2)6=7n ,即n 2-3n -40=0.由n∈N *,得n =8.(2) C 57a 2+C 37a 4=2C 47a 3,21a 2+35a 4=70a 3,a ≠0,得5a 2-10a +3=0 a =1±105. (3) C 48(2x)4(x lgx )4=1 120,x 4(1+lgx)=1,所以x =1,或lgx =-1,x =110.题型2 二项式系数例2 已知(x 23+3x 2)n的展开式中,各项系数和比它的二项式系数和大992,求: (1) 展开式中二项式系数最大的项; (2) 展开式中系数最大的项.解:令x =1,则展开式中各项系数和为(1+3)n =22n.又展开式中二项式系数和为2n,∴ 22n -2n=992,n =5.(1) ∵ n=5,展开式共6项,二项式系数最大的项为第3、4两项,∴ T 3=C 25(x 23)3(3x 2)2=90x 6,T 4=C 35(x 23)2(3x 2)3=270x 223.(2) 设展开式中第r +1项系数最大, 则T r +1=C r 5(x 23)5-r (3x 2)r =3r C r5x 10+4r 3,∴ ⎩⎪⎨⎪⎧3r C r 5≥3r -1C r -15,3r C r 5≥3r +1C r +15, 72≤r ≤92,∴ r =4, 即展开式中第5项系数最大,T 5=C 45(x 23)(3x 2)4=405x 263.备选变式(教师专享)已知⎝ ⎛⎭⎪⎫x +12n 的展开式中前三项的系数成等差数列.设⎝ ⎛⎭⎪⎫x +12n=a 0+a 1x +a 2x 2+…+a n x n.求:(1) a 5的值;(2) a 0-a 1+a 2-a 3+…+(-1)na n 的值; (3) a i (i =0,1,2,…,n)的最大值.解:(1) 由题设,得C 0n +14×C 2n =2×12×C 1n ,即n 2-9n +8=0,解得n =8,n =1(舍).T r +1=C r 8x 8-r ⎝ ⎛⎭⎪⎫12r,令8-r =5 r =3,所以a 5=7.(2) 在等式的两边取x =-1,得a 0-a 1+a 2-a 3+…+a 8=1256. (3) 设第r +1的系数最大,则⎩⎪⎨⎪⎧12r C r 8≥12r +1C r +18,12r C r8≥12r -1C r -18,即⎩⎪⎨⎪⎧18-r ≥12(r +1),12r ≥19-r ,解得r =2或r =3.所以a i 系数最大值为7.题型3 二项式定理的综合应用例3 已知⎝ ⎛⎭⎪⎫x 2-1x n 展开式中的二项式系数的和比(3a +2b)7展开式的二项式系数的和大128,求⎝⎛⎭⎪⎫x 2-1x n展开式中的系数最大的项和系数最小的项.解:2n -27=128,n =8,⎝ ⎛⎭⎪⎫x 2-1x 8的通项T r +1=C r 8(x 2)8-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r C r 8x 16-3r,当r =4时,展开式中的系数最大,即T 5=70x 4为展开式中的系数最大的项;当r =3,或5时,展开式中的系数最小,即T 4=-56x 7,T 6=-56x 为展开式中的系数最小的项.备选变式(教师专享) 已知(2-3x)50=a 0+a 1x +a 2x 2+…+a 50x 50,其中a 0,a 1,a 2…,a 50是常数,计算(a 0+a 2+a 4+…+a 50)2-(a 1+a 3+a 5+…+a 49)2.解:设f(x)=(2-3x)50,令x =1,得a 0+a 1+a 2+…+a 50=(2-3)50,令x =-1,得a 0-a 1+a 2-…+a 50=(2+3)50,(a 0+a 2+a 4+…+a 50)2-(a 1+a 3+a 5+…+a 49)2=(a 0+a 1+a 2+…+a 50)(a 0-a 1+a 2-…+a 50) =(2-3)50(2+3)50=1.1. (2013·新课标Ⅱ)已知(1+ax)(1+x)5的展开式中x 2的系数为5,则a =________. 答案:-1解析:已知(1+ax)(1+x)5的展开式中x 2的系数为C 25+a·C 15=5,解得a =-1.2. (2013·天津理)⎝⎛⎭⎪⎫x -1x 6的二项展开式中的常数项为________.答案:15解析:展开式的通项公式为T k +1=C k 6x 6-k ·⎝ ⎛⎭⎪⎫-1x k =C k 6x6-32k(-1)k.由6-32k =0,得k=4.所以常数项为T 4+1=C 46(-1)4=15.3. (2013·大纲版理)(1+x)3(1+y)4的展开式中x 2y 2的系数是________. 答案:18解析:(x +1)3的展开式的通项为T r +1=C r 3x r ,令r =2得到展开式中x 2的系数是C 23=3.(1+y)4的展开式的通项为T r +1=C r 4y r ,令r =2得到展开式中y 2的系数是C 24=6,(1+x)3(1+y)4的展开式中x 2y 2的系数是3×6=18.4. (2013·辽宁理)使得⎝⎛⎭⎪⎫3x +1x x n(n∈N +)的展开式中含有的常数项最小的n 为________.答案:5解析:展开式的通项公式为T k +1=C k n (3x)n -k·⎝ ⎛⎭⎪⎫1x x k =C k n 3n -k xn -5k 2.由n -5k 2=0,得n=5k2,所以当k =2时,n 有最小值5.1. 若n 是奇数,则7n +C 1n 7n -1+C 2n 7n -2+…+C n -1n 7被9除的余数是________. 答案:7解析:原式=(7+1)n -1=(9-1)n-1=9k -2=9k′+7(k 和k ′均为正整数).2. 0.9915的近似值是___________.(精确到0.001) 答案:0.956解析:0.9915=(1-0.009)5=1-5×0.009+10×(0.009)2-…≈1-0.045+0.000 81≈0.956.3. 用二次项定理证明32n +2-8n -9能被64整除(n∈N ).证明:32n +2-8n -9=9n +1-8n -9=(8+1)n +1-8n -9 =C 0n +18n +1+C 1n +18n +…+C n -1n +182+C n n +18+C n +1n +1-8n -9=64(C 0n +18n -1+C 1n +18n -2+…+C n -1n +1)+8(n +1)+1-8n -9=M×64(记M =C 0n +18n -1+C 1n +18n -2+…+C n -1n +1). ∵ M 为整数,∴ 64M 能被64整除.4. (1) 在(1+x)n的展开式中,若第3项与第6项系数相等,则n 等于多少?(2) ⎝⎛⎭⎪⎪⎫x x +13x n的展开式奇数项的二项式系数之和为128,求展开式中二项式系数最大项.解:(1) 由已知得C 2n =C 5n n =7.(2) 由已知得C 0n +C 2n +C 4n +…=128,2n -1=128,n =8,而展开式中二项式系数最大项是T 4+1=C 48(x x)4⎝ ⎛⎭⎪⎪⎫13x 4=70x 43x 2.一般地,对于多项式g(x)=(px +q)n=a 0+a 1x +a 2x 2+…+a n x n,则有: (1) g(x)的常数项的系数为g(0); (2) g(x)的各项的系数和为g(1);(3) g(x)的奇数项的系数和为12[g(1)+g(-1)];(4) g(x)的偶数项的系数和为12[g(1)-g(-1)].请使用课时训练(A )第3课时(见活页).[备课札记]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档