逐次超松弛法因子的选取
数值分析大作业 超松弛迭代法如何选取最佳松弛因子
超松弛迭代法如何选取最佳松弛因子船建学院B1301095 wj一、课题背景逐次超松弛迭代法是Gauss-Seidel方法的一种加速方法,是解大型稀疏矩阵方程组的有效方法之一,它具有计算公式简单,程序设计容易,占用计算机内存较少等优点,但需要选择好的加速因子(即最佳松弛因子)。
最佳松弛因子ω的确定是数值代数中的一个理论难题,对于不同的矩阵,其最佳松弛因子往往相差很大,没有统一的计算公式来确定ω。
由于对称正定矩阵sor方法收敛的充分必要条件为w在0到2之间,故利用对称正定矩阵一定收敛的性质,本文提供一种针对于系数矩阵为对称正定矩阵时,如何选取合适的最佳松弛因子的方法。
二、课题研究流程图三、SOR迭代公式逐次超松弛(Successive Over Relaxation)迭代法,简称SOR迭代法,它是在GS法基础上为提高收敛速度,采用加权平均而得到的新算法,设解方程的GS法记为(1)再由与加权平均得这里ω>0称为松弛参数,将(1)式代入则得(2)称为SOR迭代法,[WTBX]ω>0称为松弛因子,当ω=1时(2)式即为GS法,将(2)式写成矩阵形式,则得即于是得SOR迭代的矩阵表示(3)四、Matlab程序%sor法确定对称正定矩阵的最佳松弛因子w%clc;clear;n=100;%矩阵的阶数%for num=1:100X=diag(rand(n,1));U=orth(rand(n,n)-0.5);a=U'*X*U;%以上是利用随机对角矩阵和随机正交矩阵,产生随机的对称正定矩阵,正交变化不改变特征值%L=zeros(n,n);U=zeros(n,n);%分配L和U的内存空间%step=0.02;%定义w的计算精度%for k=1:(2/step) %由于对称正定矩阵sor方法收敛的充分必要条件为w在0到2之间%w=(k-1)*step;for i=1:n %一个总的for循环给三个矩阵赋值D-L-U=A,%for j=1:i-1L(i,j)=-a(i,j);%L矩阵的赋值%endfor j=i+1:nU(i,j)=-a(i,j);%U矩阵的赋值%endD(i,i)=a(i,i);%D矩阵的赋值%endH=inv(D-w*L)*((1-w)*D+w*U);%sor方法的核心,H矩阵为迭代矩阵%p(k)=max(abs(eig(H)));%利用此函数求矩阵的谱半径%endk_min=find(p==min(p));%find函数寻找不同的w中谱半径的最小值,即寻找收敛最快的w%w_min(num)=(k_min-1)*step;%由最小值的序号得到最优的w%endhist(w_min,100)%对数量足够多的随机对称正定矩阵做频率统计,w划分100份,做出统计图%mean(w_min)%对不同矩阵的最小谱半径所对应的w对平均统计%五、结果对于不同阶数,计算得到的最佳收敛因子w不同,大致是随阶数增大而增大。
关于逐次超松弛迭代法(SOR方法)的教学
关于“逐次超松弛迭代法(SOR 方法)”的教学一、SOR 迭代公式逐次超松弛(Successive Over Relaxation)迭代法,简称SOR 方法,它是在GS 法基础上为提高收敛速度,采用加权平均而得到的新算法,设求解线性代数方程组b Ax =的GS 法记为(1)再由与加权平均得这里ω>0称为松弛参数,将(1)代入则得(2)称为SOR 迭代法,ω>0称为松弛因子,当ω=1时,(2)即为GS 法,将(2)写成矩阵形式则得即,于是得SOR 迭代的矩阵表示(3)其中(4)亦可作矩阵分解ωωN M A -=,其中有.从而SOR 迭代矩阵 ωωωN M G 1-=. 例1 给定方程组精确解,用SOR法求解,分别取ω=1及ω=125.解用SOR迭代公式(2)可得取,迭代7次后分别为若要精确到小数后7位,对ω=1(即GS法)需迭代34次,而对ω=1.25的SOR法,只需迭代14次.它表明松弛因子ω选择的好坏,对收敛速度影响很大。
二、SOR迭代法收敛性根据迭代法收敛性定理,SOR法收敛的充分必要条件为,收敛的充分条件为,但要计算比较复杂,通常都不用此结论,而直接根据方程组的系数矩阵A 判断SOR迭代收敛性,下面先给出收敛必要条件定理1设,则解方程的SOR迭代法收敛的必要条件是0<ω<2.证明因为SOR迭代矩阵为,于是另一方面,设的特征值为,由特征根性质,有若SOR法收敛,则,由,则得0<ω<2.定理2若对称正定,且0<ω<2,则解Ax=b的SOR迭代法(3)对迭代收敛。
证明设的特征值为(可能是复数),对应特征向量x≠0, 由(4)得因为实对称矩阵,故, 上式两边与x作内积,得(5)因A正定,故D也正定,记.又记,,由内积性质得于是由(5)有由于A正定及0<ω<2,故,于是。
注一:当ω=1时SOR法即为GS法,故GS法也收敛,此即为GS法的收敛定理结论。
对于SOR迭代法,松弛因子的选择对收敛速度影响较大,关于最优松弛因子研究较为复杂,且已有不少理论结果。
【分析】数值分析迭代法
【关键字】分析数值分析实验报告(3)学院:信息学院班级:计算机0903班姓名:王明强学号:课题三线性方程组的迭代法一、问题提出1、设线性方程组=x= ( 1, -1, 0, 1, 2, 0, 3, 1, -1, 2 )2、设对称正定阵系数阵线方程组=x = ( 1, -1, 0, 2, 1, -1, 0, 2 )3、三对角形线性方程组=x= ( 2, 1, -3, 0, 1, -2, 3, 0, 1, -1 )试分别选用Jacobi 迭代法,Gauss-Seidol迭代法和SOR方法计算其解。
二、要求1、体会迭代法求解线性方程组,并能与消去法做以比较;2、分别对不同精度要求,如由迭代次数体会该迭代法的收敛快慢;3、对方程组2,3使用SOR方法时,选取松弛因子=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者;4、给出各种算法的设计程序和计算结果。
三、目的和意义1、通过上机计算体会迭代法求解线性方程组的特点,并能和消去法比较;gauss消去法是一种规则化的加减消元法。
它的基本思想是:通过逐次消元计算把需要求求解的线性方程转化成上三角形方程组,也就是把线性方程组的系数矩阵转化为上三角矩阵,从而使一般线性方程组求解转化为等价(同解)的上三角方程组的求解。
消去法是直接方法的一种。
优点:对于简单的方程组可以很快得出结果,计算中如果没有舍入误差,在稳定的方程组中容易得到精确解,理论上可以求解任何可以求出解得方程组。
缺点:数值有的时候不稳定(可采用列主元gauss消去法),既要消去,又要回代,算法实现起来比较复杂,不适用于大规模方程组。
迭代法是从某一取定的初始向量x(0)出发,按照一个适当的迭代公式,逐次计算出向量x(1),x(2),......,使得向量序列{ x(k)}收敛于方程组的精确解,这样,对于适当大的k,可取x(k)作为方程组的近似解。
优点:算法简单,程序易于实现,特别适用求解庞大稀疏线性方程组。
matlab逐次超松弛迭代法
matlab逐次超松弛迭代法
逐次超松弛迭代法(Gauss-Seidel Overrelaxation Method)
是一种用于求解线性方程组的数值方法,常用于解决大型稀疏矩阵
的方程组。
在MATLAB中,可以通过编写逐次超松弛迭代法的代码来
实现该算法。
首先,让我们回顾一下逐次超松弛迭代法的基本原理。
该方法
是基于迭代的思想,通过不断迭代计算得到线性方程组的近似解。
在每一次迭代中,通过更新当前解向量的各个分量来逐步逼近方程
组的精确解。
逐次超松弛迭代法引入了松弛因子,可以加速收敛速度。
在MATLAB中,可以使用以下步骤来实现逐次超松弛迭代法:
1. 首先,编写一个函数来表示线性方程组的系数矩阵和右侧向量。
这个函数可以接受系数矩阵、右侧向量和当前解向量作为输入,并返回更新后的解向量。
2. 接下来,编写主程序来调用这个函数,并设置迭代的终止条件。
可以选择设置最大迭代次数或者设定一个收敛精度作为终止条
件。
3. 在主程序中,使用一个循环来进行迭代计算,直到满足设定的终止条件为止。
在每一次迭代中,调用上述编写的函数来更新解向量。
4. 最后,输出得到的近似解向量作为结果。
需要注意的是,逐次超松弛迭代法的收敛性与松弛因子的选择有关,通常需要根据具体的线性方程组进行调整。
总之,在MATLAB中实现逐次超松弛迭代法需要编写系数矩阵和右侧向量的函数以及主程序来进行迭代计算,并且需要注意收敛性和松弛因子的选择。
希望这个回答能够帮助你更好地理解和实现逐次超松弛迭代法。
天津大学《数值计算方法》在线作业二答案
A.按模最大
B.按模最小
C.全部
D.任意一个
?
正确答案:B
8. ()是利用函数的值求自变量的值。
A.三次样条插值
B.反插值
C.分段插值
D.爱尔米特插值
?
正确答案:B
9. A.
B.
C.
D.
?
正确答案:B
10.梯形公式是求解常微分方程的()阶方法。
《数值计算方法》在线作业二
一,单选题
1. A. 1
B. 2
C. 0
D. 3
?
正确答案:A
2.设f(-1)=1,f(0)=3,f(2)=4,则抛物插值多项式中x2的系数为()。
A. -0.5
B. 0.5
C. 2
D. -2
?
正确答案:A
3.求解一阶常微分方程初值问题的梯形公式为()步法。
A.多
B. 2
C. 3
A.错误
B.正确
?
正确答案:A
8.高斯-塞德尔迭代法一定比雅可比迭代法收敛快。()
A.错误
B.正确
?
正确答案:A
9. A.错误
B.正确
?
正确答案:A
10.逐次超松弛迭代法是高斯-赛.正确
?
正确答案:B
A. 2
B. 4
C. 3
D. 5
?
正确答案:A
二,判断题
1.梯形方法是一种隐式的多步法。()
A.错误
B.正确
?
正确答案:A
2.求解微分方程初值问题的向后Euler法是隐式方法。()
A.错误
B.正确
超松弛迭代法及其松弛因子的选取
电子科技大学数值分析实验报告题目:超松弛迭代法及其松弛因子的选取学生姓名:学号:日期:年月日超松弛迭代法及其松弛因子的选取问题提出:在Gauss-Seidel 迭代法基础上,人们发现通过迭代-松弛—再迭代的方法,能更加减少计算步骤,极大的缩短计算时间,在此基础上,超松弛迭代法被学者们研究出来。
在求解大型稀疏线性方程组中超松弛迭代法得到广泛应用.而SOR 迭代方法中松弛因子ω的取值直接影响到算法的收敛性及收敛速度,是应用超松弛迭代法的关键.选择得当,可以加快收敛速度,甚至可以使发散的迭代变成收敛。
因此, 超松弛因子的选取是学者们又一个研究目标.通过一些被验证的定理,我们知道为了保证迭代过程的收敛,必须要求1<ω<2,而且松弛因子和迭代矩阵谱半径之间有着密切的联系,现今学者们已经研究出部分特殊矩阵的最优松弛因子的计算公式.对于一般的矩阵,我们也可以从松弛因子和谱半径的关系着手研究最优松弛因子的选取。
问题分析:1.超松弛迭代基本知识1.1 超松弛迭代法定义[1]超松弛(Successive Over Relaxation)迭代法,简称SOR 迭代法,它是在Gauss-Seidel 法基础上为提高收敛速度,采用加权平均而得到的新算法.设解方程组的Gauss-Seidel 法记为1(1)(1)()111(),1,2,,i nk k k ii ij j ij j j j i ii x b a x a x i na -++==+=--=∑∑ (1)再由()k i x 与(1)k i x +加权平均得(1)(1)(1)()()()(1)(),1,2,,k k k k k k i i i ii x x xx x x i nωωω+++=-+=+-=这里ω>0称为松弛参数,将(1)代入则得1(1)()(1)()11(1)(),1,2,,i nk k k k iii ij jijjj j i iix x b a x a xi na ωω-++==+=-+--=∑∑ (2)称为SOR 迭代法,ω>0称为松弛因子,当ω=1时(2)即为Gauss-Seidel 法,将(2)写成矩阵形式,则得(1)()(1)()(1)()k k k k Dx Dx b Lx Ux ωω++=-+++于是得SOR 迭代的矩阵表示[3](1)()k k i x G x f ωω+=+ (3)其中1()[(1)]G D L D U ωωωω-=--+1()f D L b ωωω-=-1.2 收敛性判别条件根据迭代法收敛性定理[2],SOR 法收敛的充分必要条件为()1G ωρ<,但要计算()G ωρ比较复杂,通常都不用此结论,而直接根据方程组的系数矩阵A 判断SOR 迭代收敛性,下面先给出收敛必要条件. 定理1]4[ 设(),0(1,2,...,)n nij ii A a Ra i n ⨯=∈≠=,则解方程Ax b =的SOR 迭代法收敛的必要条件是0<ω<2. 定理2]5[ 若n nA R⨯∈对称正定,且0<ω<2,则解Ax=b 的SOR 迭代法(3)对nx R ∀∈迭代收敛.对于SOR 迭代法,松弛因子的选择对收敛速度影响较大,关于最优松弛因子研究较为复杂,且已有不少理论结果.下面只给出一种简单且便于使用的结论. 1.3 收敛速度的估计SOR 迭代法的迭代矩阵G ω与ω有关,当选取不同的ω时,其迭代速度也有所不同.因此,需要找到最优的松弛因子b ω,使对应b ω的SOR 方法收敛最快. 定理3]7[ 设n A Rn⨯∈,如果存在排列矩阵P ,使1122T D M PAP M D =其中,1D ,2D 为对角矩阵,则称A 是2-循环的.此外,若当0α≠时,矩阵11-1D U D L αα--+的特征值都和α无关,则称A 是相容次序矩阵.定理4]7[ 设n A Rn⨯∈,A 有非零的对角元,且是2-循环和相容次序的矩阵.又设1(U)J B D L -=+是方程组A x b =的Jacobi 法迭代的迭代矩阵,且2B 的所有特征值均在(0,1)上,若()1J B ρ<,记()J B μρ=,则SOR 法的最优松弛因子b ω为2211b ωμ=+-且222[4(1)],0()41,2bb G ωωμωμωωωρωωω⎧+--⎪<<=⎨⎪-<<⎩02()min ()bb G G ωωωρρ≤≤=图12 松弛因子选取方法方法思想]8[:(1)给出ω的范围,当取不同的ω值时,进行迭代,在符合同一个精度要求下依次求出谱半径的值,比较出最小的谱半径,那么这个最小的谱半径所对应的的ω,即为所求最佳松弛因子.(2)给出ω的范围,当取不同的ω值时,进行迭代,看它们在相同精度范围内的迭代次数,找到迭代次数最少的那一个,其所对应的ω即为最佳松弛因子.”2.1 逐步搜索法 算法:Step 1:读入线性方程组的系数矩阵,常数向量,初值,精度,给出ω的取值范围,以及其变化步长;Step 2:按照如下公式迭代(1)()k k i x G x f ωω+=+找出符合精度要求ε的迭代次数及谱半径;Step 3:循环迭代,最后找到最优松弛因子Step 4: 改变ω的取值范围,重新设定变化步长,重复Step2. 2.2 黄金分割法从定理4我们可以看到,最优松弛因子对应的谱半径最小,而黄金分割法对于数值求解单调函数的极小和极大值是非常方便和有效的]9[,因此,我们可以把黄金分割法应用在求最优松弛因子上,其算法与主要思想是: Step1:利用优选法思想,在)2,1(之间选取四个点,12441314141,0.618(),0.618(),2p p p p p p p p p p ==--=+-=Step 2: 分别取2p 与3p 作为松弛因子代入迭代程序,比较出最少的迭代次数,如果对2p 应的迭代次数少,则选取),(31p p 作为收敛区间,如果是对应的3p 迭代次数少,则选取),(42p p 作为收敛区间.Step 3: 在所选取的收敛区间里循环进行上述的两个步骤,直到选取出满足精度要求且2p ,3p 所对应的迭代次数差不超过某个数∆时选3p 为最优松弛因子.3 数值算例例1: 矩阵3101130000311013A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦(1,2,2,1)T b =----,精度为161.0*10k k x x ---≤解法1:黄金分割法令05.0=∆,程序结果如下:由上可以看出我们只需作几次0.618法就可以找到最优松弛因子,本例中最优松弛因子0901.1=ω,迭代次数为8次.解法2:逐步搜索法,步长为0.1,21<≤ω程序结果如下:图3图3中,其横坐标表示松弛因子,纵坐标表示谱半径.也可以求出最优松弛因子为1.1,迭代次数为8.然后我们改变松弛因子区间,令1.11≤≤ω以步长为0.01来继续求更精确的松弛因子.程序结果如下:图4图4中,其横坐标表示松弛因子,纵坐标表示谱半径.这样继续缩小松弛因子范围,以更小的步长求得的最优松弛因子为1.0900,更加精确. 例2 方程组A x b =,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=40001-1-1-0004001-01-1-0004001-1-01-0004001-1-1-1-1-00400001-01-00400001-1-1-0040001-01-00040001-1-00004AT (2,2,0,2,2,1,1,1,1)b =.精度为161.0*10k k x x ---≤.初始迭代值为0(0,0,0,0,0,0,0,0,0)T x =.求最优松弛因子.解法1 黄金分割法令001.0=∆,程序结果如下:求得最优松弛因子为1.1772. 解法2 逐步搜索法首先以21<≤ω,步长为0.1搜索求得的最优松弛因子为1.2000,然后重新设定范围,以步长为0.01运行程序在改变范围,以步长为0.001运行,程序结果如下:求得的最优松弛因子为1.1780.由这两个例子可以看出利用黄金分割法求最优松弛因子比用逐步搜索法更加简便快速,但是用逐步搜索法步长取的很小时求得的松弛因子比黄金分割法更加精确。
雅可比迭代法和高斯超松弛迭代
雅可比迭代法分量形式(63)式也可改写为
(64)
(64)式更方便于编程求解。
雅可比迭代法公式简单,迭代思路明确。每迭代一次只需计算n个方程的向量乘法,程序编制时需设二个数组分别存放xk和xk+1便可实现此迭代求解。
2、高斯-赛德尔(Gauss-seidel)迭代法
由雅可比迭代法可知,在计算xk+1的过程中,采用的都是上一迭代步的结果xk。考察其计算过程,显然在计算新分量xik+1时,已经计算得到了新的分量, 。有理由认为新计算出来的分量可能比上次迭代得到的分量有所改善。希望充分利用新计算出来的分量以提高迭代解法的效率,这就是高斯-赛德尔迭代法(简称G-S迭代法)对(64)式进行改变可以得到G-S迭代法的分 量形式
(75)
其中ω称为松弛因子。
式(75)是迭代公式(74)的一个改进,可以选择松弛因子ω加速迭代过程的收敛。 式(75)的分量形式为
(76)
若对上述改进的迭代公式,按高斯-赛德尔迭代法尽量利用最新迭代得到的分量的原则,又可得到新的迭代公式
(77)
当线性方程组的系数矩阵A具有非零主元(aii≠0,i=1,2,3,…n)的特点时,可 以得到主元为1的方程组形式
雅可比迭代法和高斯-赛德尔迭代法以及超松弛迭代
对于给定的方程 用下式逐步代入求近似解的方法称为迭代法。如xk(当 )的极限存在,此极限即方程组的真正解,此迭代法收敛,否则称迭代法收敛。
1、雅可比(Jacobi)迭代法
设有方程组
Ax=b (56)
其展开形式为
(57)
系数矩阵A为非奇异阵,且 (i=1-n)A可分解为
高斯-赛德尔迭代的矩阵形式可表达为
(69)
高斯-赛德尔迭代法每步迭代的计算量与雅可比迭代相当,但在计算机进行计算时,只需存放x一个数组。
松弛因子的取值范围
松弛因子的取值范围
松弛因子(Relaxation Factor)在不同的上下文中有不同的应用,通常是指在迭代求解算法中的一个参数,用于控制每一步迭代的步长或权重。
常见的应用包括迭代法求解线性方程组、优化问题等。
1.迭代法中的松弛因子:
•在迭代法中,例如迭代法求解线性方程组的过程中,松弛因子通常表示为符号ω(omega)。
其取值范围通常
为(0, 2) 之间,包括0和2。
常见的取值有1、1.1、1.2
等,取决于具体问题和算法。
2.松弛法(Relaxation Methods)中的松弛因子:
•在一些优化问题的求解中,也可以采用松弛法,松弛因子的选择可能依赖于问题的性质。
一般而言,松弛因
子的取值范围也是在(0, 2) 之间。
3.有限元分析中的松弛因子:
•在有限元分析等领域,松弛因子通常用于控制迭代法的收敛速度,取值范围也在(0, 2) 之间。
总体而言,松弛因子的合适取值依赖于具体问题的性质和迭代算法的特点。
通常来说,选择一个适当的松弛因子可以加速算法的收敛,提高求解效率。
然而,选择过大或过小的松弛因子可能导致算法不稳定或者收敛速度过慢,因此在实际应用中需要进行调试和优化。
第九节 逐次超松弛法(SOR方法)
第九节 逐次超松弛法(SOR方法)
逐次超松驰法是高斯——塞德尔迭代方法的一种加速 方法,是解大型稀疏矩阵方程组的有效方法。
建立迭代格式
x
(k1) i
1 a ii
(
i1
a
i
j
x
(k1) j
j1
n
aij
ji1
x
(kk1) i
x
(k) i
(
x
(k1) i
x
( i
k
))
a ii
(
i1 j1
a
i
jx
(k1)
j
n
a
ji1
i
jx
(k) j
b
i)
( i 1,2,
,n)
k 1, 2, 3,
称为松弛法,=1为Gauss—Seidel 迭代法。
松弛法也可写成矩阵形式
x(k1) ( D L)1[(1 )D U]x(k) ( D L)1b
其迭代矩阵为
B ( D L)1[(1 )D U]
x2k 0 0.955788 1.20059 1.19989 1.20005 1.2 …
x3k 0 1.24815 1.29918 1.30021 1.3
1.3 …
对 w 取其它值,计算结果满足误差
x(k ) x* 105
的迭代次数如下
w 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 k 163 77 49 34 26 20 15 12 9 k 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 w 6 6 8 10 13 17 22 31 51 105
最优松弛因子的选择方法
SOR方法中最优松弛因子的几种选择方法学习了解线性方程组的SOR方法后,老师给我们强调了SOR方法中松弛因子的重要性,但却并没有明确告诉我们如何更好的选取最佳的松弛因子,我想这可能是暗示我们自己课下去查阅资料研究。
所以我这次选取了这一课题作为我的一次大作业。
通过学习我们知道了SOR方法中的松弛因子w的取值直接影响到算法的收敛性和收敛速度。
w选取得当,可以加快收敛速度,甚至可以使发散的迭代变成收敛。
因此,参数w的选取是SOR方法能否成功的关键。
为了保证迭代过程的收敛,必须要求0<w<2,而对超松弛法取1<w<2。
通过查阅资料,我找到了三种对超松弛因子的的选取的简单实用的方法,这些方法还能够运用到计算机算法中去,便于算法的实行。
一、松弛因子的选择方法1.二分比较法将松弛因子w的区间(1,2)进行二分,每个小区间的长度为1/2,w取区间中点值3/2,按照课本上(3.2.15)的公式迭代,求出迭代次数k。
如果k不超过指定的发散常数,则可确定w的值;否则将(1,2)区间四等分,每个小区间的长度为1/4,w取各分点的值继续迭代。
一般地,将区间(1,2)二分M次,每次二分步长为1/2^M,w依次取各二分点的值,同样按照课本中(3.2.15)的公式迭代,并求出迭代次数k值。
如果k值不超过指定的发散常数,则可确定w的值,这种方法总能找到一个不超过指定发散常数的w值。
用算法描述如下:第一步,给定发散常数RADIATION的值,令二分次数M的初始值为1;第二步,将区间(1,2)二分M次,每次二分的步长为1/2^M,w取各二分点的值;第三步,对每一个二分点按照课本中(3.2.15)中公式迭代求出迭代次数K;第四步,比较各二分点的K值找出最少迭代次数的Kmin值;第五步,判断若Kmin小于RADIATION,则结束;否则二分次数M++,跳至第二步继续二分。
2.逐步搜索法将w的取值区间(1,2)进行M等分,w分别取1+1/M,1+2/M,1+3/M,……,1+(M-1/M)。
逐次超松弛迭代法 matlab -回复
逐次超松弛迭代法matlab -回复什么是逐次超松弛迭代法(Gauss-Seidel)?为什么需要这种迭代方法?如何在MATLAB中实现逐次超松弛迭代法?有哪些注意事项和应用场景?我们将逐一解答这些问题。
逐次超松弛迭代法,也被称为Gauss-Seidel迭代法,是一种数值计算方法,用于解决线性方程组。
它采用逐步逼近的方式求解,相较于直接求解的方法,计算上更加简化。
为什么需要逐次超松弛迭代法呢?当涉及到解决大型线性方程组时,直接解法可能会面临计算量大、迭代时间长的问题。
而逐次超松弛迭代法通过逼近的方式,可以将线性方程组划分为多个小规模问题,分步进行迭代,有效降低了计算时间。
在MATLAB中,我们可以使用以下步骤实现逐次超松弛迭代法:1. 构建线性方程组表达式:首先,将线性方程组转换为矩阵形式Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。
2. 初始化参数:设定初始值x0,并指定迭代的最大次数N和误差控制值epsilon。
3. 迭代计算:循环进行迭代计算直到满足结束条件,具体步骤如下:a. 根据逐次超松弛迭代法公式,更新x的值:x(i+1) = (1 - w) * x(i) + (w / A(i,i)) * (b(i) - A(i,:)*x(i) + A(i,i)*x(i))其中,w(w > 0)是松弛因子,可以理解成迭代的步长。
通常情况下,根据实际问题的特点和经验选择合适的w值。
b. 判断迭代是否终止:计算当前迭代的相对误差,如果小于设定的误差控制值epsilon,则停止迭代。
c. 更新迭代次数,并检查是否达到最大迭代次数N,如果达到则停止迭代。
4. 输出结果:返回迭代最终结果x,作为线性方程组的解。
在使用逐次超松弛迭代法时,需要注意以下几点:1. 松弛因子w的选择:选择合适的松弛因子w对收敛速度和精度有较大影响。
如果选择不当,可能会导致迭代结果不收敛或者收敛速度很慢。
通常情况下,可以通过试验和调整,选择使得迭代过程尽快收敛的合适值。
matlab逐次超松弛迭代法
matlab逐次超松弛迭代法
逐次超松弛迭代法(Gauss-Seidel迭代法)是一种用于解线性方程组的迭代方法,通常用于求解大型稀疏线性方程组。
在MATLAB 中,可以使用该方法来解决线性方程组的数值解。
首先,让我们来了解一下逐次超松弛迭代法的基本原理。
该方法是基于迭代的思想,通过不断迭代更新解向量的各个分量,直到满足一定的收敛条件为止。
具体步骤如下:
1. 首先,需要将线性方程组表示为矩阵形式 Ax = b,其中A 是系数矩阵,x是未知向量,b是常数向量。
2. 然后,将系数矩阵A分解为下三角矩阵L、对角矩阵D和上三角矩阵U,即A = L + D + U。
3. 接下来,可以根据逐次超松弛迭代法的迭代公式来更新解向量x的各个分量,直到满足一定的精度要求或者迭代次数达到指定的值为止。
在MATLAB中,可以通过编写相应的代码来实现逐次超松弛迭代
法。
具体步骤如下:
1. 首先,需要编写一个函数来实现逐次超松弛迭代法的迭代过程,可以使用for循环来进行迭代更新解向量的各个分量。
2. 其次,需要编写主程序来调用该函数,并传入系数矩阵A、常数向量b以及迭代的初始解向量作为输入参数。
3. 最后,可以设置迭代的终止条件,例如迭代次数的最大值或者解的精度要求,以及初始解向量的初值。
需要注意的是,在实际应用中,逐次超松弛迭代法的收敛性和稳定性需要进行分析和验证,以确保得到正确的数值解。
此外,还需要注意选择合适的松弛因子来加速收敛速度。
总的来说,逐次超松弛迭代法是一种常用的求解线性方程组的数值方法,在MATLAB中可以通过编写相应的代码来实现该方法,并得到线性方程组的数值解。
超松弛迭代法中松弛因子ω的选取方法
超松弛迭代法中松弛因子ω的选取方法一、超松弛迭代算法基本概念超松弛迭代法简称为SOR(Successive Over -- Relaxation)法,是求解线性代数方程组的一种迭代加速方法,它是在高斯--塞德尔迭代法的基础上进行加速的,将前一步的结果x k i )(与高斯--塞德尔迭代方法的迭代值x k i )1(+适当的加权平均,期望获得更好的近似值x k i )1(+。
其迭代公式如下:x k i )1(+=(1--ω)x k i )(+a iiw (b i --x a k j i j ij )1(11+-=∑--x a j n i j ij (k)∑=) i =1,2,…,n;k =0,1,2,…(1.1)SOR 法中ω的取值对迭代公式的收敛速度影响很大,它的好坏直接影响到加速的快慢。
为了保证迭代过程的收敛,必须要求0<ω<2,超松弛法取1<ω<2。
但是在1和2之间仍然有很多的取值,究竟如何取值没有同意的规定。
经过多次的实验、分析与研究提出了ω选取的几种方法。
二、松弛因子ω的选取方法1、逐步实验法将ω的取值区间(1,2)进行M 等分,ω分别取1+1/M ,1+2/M ,……,1+(M--1)/M ,通过公式1.1依次对同一精度要求求出迭代次数k 的值,在求的同时比较出最少的迭代次数k ,并将此次ω的值保留,这样就得到了1+1/M ,1+2/M ,……,1+(M--1)/M 中最优的ω值,算法步骤如下:第一步:给定M 的值第二步:对于,ω分别取1+1/M ,1+2/M ,……,1+(M--1)/M 按照公式 x k i )1(+=(1--ω)x k i )(+a iiw (b i ---x a k j i j ij )1(11+-=∑---x a j n i j ij (k)∑=) i =1,2,…,n;k =0,1,2,…根据给定的精度要求迭代,求出迭代次数k 的值。
SOR迭代法超松弛因子选取
《计算方法》实验报告(二)实验名称:SOR迭代法松弛因子的选取班级:数学1402班姓名:高艺萌学号:14404210一、实验目的通过本实验学习线性方程组的SOR迭代解法以及SOR迭代法的编程与应用。
对比分析不同条件下的超松弛因子的取值大小会对方程组的解造成影响,通过这个实验我们可以了解的不同取值会对方程组的解产生的影响。
培养编程与上机调试能力。
二、实验题目用逐次超松弛(SOR)迭代法求解方程组,其中(1)给定迭代误差,选取不同的超松弛因子进行计算,观察得到的近似解向量并分析计算结果,给出你的结论;(2)给定迭代误差,选取不同的超松弛因子进行计算,观察得到的近似解向量并分析计算结果,给出你的结论;三、实验原理1.逐次超松弛迭代法可以看作Gauss-Seidel迭代法的加速,2.SOR迭代计算格式其中,w叫松弛因子,当w>1时叫超松弛,0<w<1时叫低松弛,w=1时就是Gauss-Seidel迭代法。
3.利用SOR迭代算法进行求解。
4.算法原理:SOR迭代法%masor.mfunction x=masor(A,b,omega,x0,ep,N)n=length(b);if nargin<6,N=500;endif nargin<5,ep=1e-6;endif nargin<4,x0=zeros(n,1);endif nargin<3,omega=1.5;endx=zeros(n,1);k=0;while k<Nfor i=1:nif i==1 x1(1)=(b(1)-A(1,2:n)*x0(2:n))/A(1,1);else if i==n x1(n)=(b(n)-A(n,1:n-1)*x(n:n-1)/A(n,n);else x1(i)=(b(i)-A(i,1;i-1)*x(1:i-1)-A(i,i+1:n)*x0(i+1:n))/A(i,i); endendx(i)=(1-omega)*x0(i)+omega*x1(i); endif norm(x0-x,inf)<ep,break;endk=k+1;x0=x; endif k==N Warning; enddisp([’k=’,num2str(k)])运行程序四、实验内容根据实验题目,分别对问题一,问题二进行求解。
超松弛迭代法
xk 1 1 xk D1 b Lx( k 1) Ux( k )
xk 1 L x( k ) ( D L)1b
(5.3.2)
再整理得
其中,迭代矩阵为
L ( D L)11 D U
4 3 0 x1 24 3 4 1 x2 30 0 1 4 x 24 3
(1 )D U x (D L) x
D L U 是实对称矩阵,所以有LT U 。上式两边与x 作内积得 (5. 3. 4) (1 )(Dx, x) (Ux, x) [(Dx, x) ( Lx, x)] 因为A正定,D亦正定,记 p ( Dx, x) ,有 p 0 。又记 ( Lx, x) i , A 这里,
k 1
xi(k 1) xi(k 1) (1 ) xi(k ) xi( k ) ( xi( k 1) xi( k )
经整理得
x
( k 1) i
x
(k ) i
(bi aij x
j 1
i 1
( k 1) j
aij x (jk ) ) aii
opt
其中
2 1 1 u2
opt 的条件。在实际应 可以证明,对称正定的三对角矩阵满足最优松弛因子 用中,一般地说计算 ( BJ ) 较困难。对某些微分方程数值解问题,可以考虑用 求特征值的近似值的方法,也可以由计算实践摸索出近似最佳松弛因子。
( BJ ) 是 J 法迭代矩阵BJ 的谱半径。
按一般的迭代法收敛的理论,SOR迭代法收敛的充分必要条件是 ( L ) 1 在什么范围内取值,SOR迭 而 ( L ) 与松弛因子 有关。下面讨论松弛因子 代法可能收敛。 定理5.7 证 如果解方程组Ax 设 L 的特征值为
理解松弛因子
由于流体力学中要求解非线性的方程,在求解过程中,控制变量的变化是很必要的,这就通过松弛因子来实现的.它控制变量在每次迭代中的变化.也就是说,变量的新值为原值加上变化量乘以松弛因子.如:A1=A0+B*DETAA1新值 A0原值 B松弛因子 DETA变化量松弛因子可控制收敛的速度和改善收敛的状况!为1,相当于不用松弛因子大于1,为超松弛因子,加快收敛速度小于1,欠松弛因子,改善收敛的条件一般来讲,大家都是在收敛不好的时候,采用一个较小的欠松弛因子。
Fluent里面用的是欠松弛,主要防止两次迭代值相差太大引起发散。
松弛因子的值在0~1之间,越小表示两次迭代值之间变化越小,也就越稳定,但收敛也就越慢。
a 亚松弛因子1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。
用通用变量来写出时,为松驰因子(Relaxation Factors)。
《数值传热学-214》2、FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制的变化。
一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了的变化量。
亚松驰最简单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。
这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。
注:在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。
这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高Rayleigh数自然对流问题),在计算开始时要慎重减小亚松驰因子。
使用默认的亚松驰因子开始计算是很好的习惯。
如果经过4到5步的迭代残差仍然增长,你就需要减小亚松驰因子。
有时候,如果发现残差开始增加,你可以改变亚松驰因子重新计算。
数值分析Python实现系列——二、逐次超松弛迭代法(SOR)
数值分析Python 实现系列——⼆、逐次超松弛迭代法(SOR )⼆、超松弛迭代法(SOR)1.原理:回顾:在⼀般情况下 : 收敛过慢甚⾄不收敛的B 与f ,经过对系数矩阵A 分裂成A =M −N 的形式, 使得迭代公式变为: x k +1=(I −M −1)Ax k +M −1f 雅克⽐迭代法选取 : 现将A 如下分解A =D −L −U ,D 为对⾓阵,L 为下三⾓阵,U 为上三⾓阵,取M ≡D ,取N ≡L +U ,在这⼀章中我们选取下三⾓矩阵M =1ω(D −ωL ),ω>0,其中ω为松弛因⼦,我们可以发现当ω为1时,M =D −L ,正是⾼思-赛德尔迭代法,下⾯推导迭代公式:x k +1=I −M −1A x k +M −1bx k +1=I −ω(D −ωL )−1A x k +ω(D −ωL )−1bx k +1=(D −ωL )−1((1−ω)D +ωU )x k +ω(D −ωL )−1b推导完毕,我们较为常⽤的是下式:(D −ωL )x k +1=((1−ω)D +ωU )x k +ωb以及:x (0)=(x (0)1,...,x (0)n )T ,x (k +1)i =x (k +)i +Δx i Δx i =ωb i −i −1∑j =1a ij x (k +1)j −n ∑j =1a ij x (k )j a ii i =1,2,...,n ,k =0,1,...,ω为松弛因⼦当ω>1时为超松弛迭代,当ω<1时为低松弛迭代迭代终⽌条件:max 1≤i ≤n |Δx i |=max1≤i ≤n |x (k +1)i −x (k )i |<ε,下⾯我们试试⽤Python 实现这⼀功能.2.实现:import numpy as npimport matplotlib.pyplot as pltMAX = 110 # 遍历最⼤次数A = np.array([[-4, 1, 1, 1], [1, -4, 1, 1], [1, 1, -4, 1], [1, 1, 1, -4]])b = np.array([[1], [1], [1], [1]]) # 注意这⾥取列向量omega_list = [1 + 0.005 * i for i in range(100)] # 取到不同的omega 值,观察趋势length = len(A)count = [] # 记录遍历的次数for omega in omega_list: # 遍历每⼀个omega 值times = 0x_0 = np.zeros((length, 1))x_hold = x_0 + np.ones((length, 1))while (np.linalg.norm(x_hold - x_0, ord=2) >= 10 ** (-5)) and (times <= MAX):# 遍历停⽌条件以k+1次与k 次迭代的向量差的⼆范数以及遍历最⼤次数为标准x_hold = x_0.copy() # 这⾥不要⽤赋值,要⽤copyx_new = x_0.copy()for i in range(length):# 根据迭代公式迭代x_new[i][0] = x_0[i][0] + omega * (b[i][0] - sum([A[i][j] * x_new[j][0] for j in range(i)]) - sum([A[i][j] * x_0[j][0] for j in range(i, length)])) / A[i][i]x_0 = x_new.copy()times += 1count.append(times)plt.plot(omega_list, count) # 观察omega 与迭代次数的关系plt.show()思路:1.遍历设限:第⼀种是到达精度,到达精度停⽌迭代,第⼆种是到达规定最⼤次数,这个可以⾃⼰设定.2.在根据迭代公式改变各个向量分量时,要注意遍历范围.结果:{。
第六章第三节逐次超松弛迭代法
xk T xk1 (I L)1 D 1b (3.4)
其中
Tw (I L)1 ((1 )I U ) (3.5)
它是 SOR 方法的迭代矩阵.特别,若取 1,则 T1 (I L)1U 是 Gauss-Seidel 迭代法的
迭代矩阵.
若将矩阵 A 分裂成
A 1 (D DL) 1 ((1 )D DU ), 0
现在,我们来讨论逐次超松弛迭代法的收敛性问题.
定理 1 设方程组 Ax b 的系数矩阵 A 的主对角元素 aij 0,i 1,, n ,则 SOR 方法 收敛的充分必要条件为
(T ) 1 其中 T 是 SOR 方法的迭代矩阵.
定理 2 设方程组 Ax b 的系数矩阵 A 的主对角元素 aij 0,i 1,, n ,则 SOR 方法 的迭代矩阵了。的谱半径大于等于 1 ,即
我们把(3.1)式中的中间 ~xi(k) 消去,则有
~xi(k)
aii
(bi
i 1
aij
x
(k j
)
j 1
n
aij
x
(k j
1)
)
(1
)
xi(
k
1)
i1
i 1,2,, n, k 1,2 (3.2)
上式的矩阵表示形式是
或者
xk (Lxk Ux k1 D 1b) (1 )xk1 (3.3)
x2(k )
x3(k ) )
k 1,2,
4
第4页,共42页。
取初始向量 x0 0,0,0,0T ,迭代六次得结果见表 6.1.
从表 6.1 得到 x6 x 1.022103
图表6.1
应用 SOR 方法(取 O=1.2)的迭代公式为
MATLAB实现迭代法最佳松弛因子的选取
迭代法最佳松弛因子的选取一、问题提出:针对矩阵430341014A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,b=[24;30;-24],用SOR 迭代求解。
并选出最佳松弛因子。
理论分析 1.24ω==≈。
做出()L ωρ关于ω函数的图像。
二、理论基础选取分裂矩阵M 为带参数的下三角矩阵)(1wL D wM -=, 其中w>0为可选择的松弛因子. 于是,由⎪⎩⎪⎨⎧+=+f Bx xx k k )()1()0()(初始向量 (k=0,1,…,)可构造一个迭代法,其迭代矩阵为A wL D w I L w 1)(---≡=).)1(()(1wU D w wL D +---从而得到解Ax=b 的主次逐次超松弛迭代法. 解Ax=b 的SOR 方法为⎪⎩⎪⎨⎧+=+f Bx xx k k )()1()0()(初始向量 (k=0,1,…,) (1) 其中w L =).)1(()(1wU D w wL D +---(2) b wL D w f 1)(--=下面给出解Ax=b 的SOR 迭代法的分量计算公式.记 ,),...,,...,()()()(1)(T k n k i k k x x x x =由(1)式可得,))1(()()()1(wb x wU D w x wL D k k ++-==-+).()()()1()()1(k k k k k Dx Ux Lx b w Dx Dx -+++=++ (3) 由此,得到解Ax=b 的SOR 方法的计算公式⎪⎪⎪⎩⎪⎪⎪⎨⎧==--+==∑∑-==++.),1,0;,...,2,1(/)(,),...,(11)(1)()1()0()0(1)0(为松弛因子w k n i a x a x a b w x x x x x iii j ni j k j ij k j ij i k i k i T n (4)或⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==--=∆∆+==∑∑-==++.,...),1,0;,...,2,1()/(,,),...,(.11)()1()()1()0()0(1)0(为松弛因子w k n i a x a x a b w x x x x x x x i j n i j ii k j ij k j ij i i i k i k iT n (5)※ 若要求选取出最佳松弛因子,则有两种方法:⑴、 给出w 的最佳范围,当取不同的w 值时,会求出不同的谱半径R 的值,然后判断出值最小的谱半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 2期
太 原 师 范 学 院 学 报 ( 自然 科 学 版 )
V li No 2 o・ i ・
21 年6 02 月
JU N LO AY A O M Lu IE s Y N t aSi c Ei n O R A F IU NN R A NV R I ( a r e e d i ) T T u lcn t o
6 2
太 原 师 范 学 院 学 报( 自然 科 学 版 )
第 1 卷 1
专 一 r一寺 zA ( 一 r) TL) E + (—A ) 1 z xb 1 +wb xA +砌( L 一x T x wb s + [ 6 A a c
(b— L x) 一 r + w( —z A) +W 6L L A ] - b x b r b ( 一z A 6 = L )]= =
[ 章 编 号 ] 1 7— 0 7 2 1 ) 20 6 -3 [ 图 分 类 号 ] 文 6 2 2 2 ( 0 2 0 - 0 10 中 02 2 2 ( 献 标 识 码 ] A 4 .6 文
O 引 言
在许 多工 程和科 学技 术 问题 中 , 经常 会 遇 到求 解 大 型 稀 疏矩 阵 的线 性 方 程 组 , 迭代 法 是 求 解 其有 效 算 法 , 中逐 次超 松 弛法 ( OR) 其 S 因其松 弛 因子 选取 的灵 活性 而备 受人 们 的关 注 , 0R 中矩 阵在 属 于 某些 特 殊 s 类 型矩 阵的情 况下 , 出了最佳 松 弛 因子 的计算 公 式 , 给 其计算 公 式 涉及 到 了 Jc b 迭代 矩 阵 的谱 半径 , 谱 ao i 而 半径 的计 算是 相 当复杂 的口 , 以这 几年来 人们 在计算 机 上操作 都是 根据 经验 选取 松 弛 因子. ] 所 而本 文 我们
叫 . L
第一 步 : 首先把 ( —w 的近似代 入 S R公 式 : J L) O
z 一 ( J一 L) 1一 ) 一 (( J+ wU) x ̄+ 训( J— wL) b≈
( J+ wL + W ( 1 ∞ ) L )( 一 I+ wU) + 叫 ( z I+ w + 砌。 b= L L ) ( - J4 wL + L ) J+ w( — J ) p+ ( ( U )z wI+ L + 。 ) 一 L 6
提 出 了一类新 的 S R方 法来解 大 型稀疏 矩 阵的线 性方 程组 , 在 理论 上证 明其 收敛 性 , 方 法是 在 系数 矩 O 并 此
阵满 足对 称正 定 的情 况 下通过 极小 化二 次 函数 来 获得松 弛 因子.
R 表 示 × 维实 矩阵空 间 , ” 示 n维 实 向量 空 问 , ” R 表 A 表 示 A 的转置 , 表示 3 的转置 . z 2 以下 用假 定 A 的对 角矩 阵 为单位 矩阵 J 分 别令 一L与 一【 为 A 的严格 上三 角与 严格 下 三角 矩 阵 , A , , 则
—J —u, A 为对称 矩 阵 , U—L , —L 若 则 T A—J —L~ . OR方 法 可 以表 示 为 5 一h( )2+g ) 其 中 S C p . 3 p ( ,
h 叫) J ( 一( 一叫 ) ( 1 L ( ~叫) +w , ( 一叫( ~w _ b 若 叫一1 则 S R 法 为 C u s ed I U) g 叫) I L) 。. , o a s— ie迭代 法 . S 并 且 当 A为 对称 正定 矩阵 时 ,< <2 则 S 0 , OR方法 收敛 于 A z—b的唯 一解 … . 5 ]
1 算 法
一
般, S 在 OR方 法 的计算 过 程 中 , 佳松 弛 因子 的选 取 比较 困难 , 最 选取 不 当 , 收敛 会很 慢 , 面 我 们 下
给 出一 种 新 方 法 而 生 成 叫 :
因为 ~L是严 格 下 三 角 矩 阵 , 阵 I 矩 —w 可 逆 , 且 L 一 0 0为 零 矩 阵 , ( —w 叫 ≈ J w L 并 ” , 则 I L) + L+
[ 一 I
1
一叫 L 4+ 叫。 。u— J ] + 曲 +叫。 + 叫。 L( )z L 6≈
+ + 砌 一 5p+ w ( C b— Ac )+ 砌。 L c ( b~ l aw )
( J— wA 一 硼 LA)
第 二步 : 把 z 代入 zA 再 x一3 b 2 :
J .2】 u n O 兰
逐次超松弛法 因子的选取
柳 杨 王 川 龙 。
(_ 1 山西 大 学 数 学 科 学 学 院 , 西 太原 0 0 0 ; . 原 师 范 学 院 数 学 系 , 山 3062太 山西 太 原 0 0 1 ) 3 0 2
[ 要 ] 文 章 在 系 数 矩 阵 A 满 足 对 称 正 定 的 情 况 下 给 出 了 一 类 解 大 型 稀 疏 线 性 系 统 Az — b 摘 的 最 新 方 法 , 渐 近 最 优 超 松 弛 迭 代 法 , 免 了 传 统 选 择 最 佳 松 弛 因 子 带 来 的 不 便 , 通 过 理 论 性 即 避 并 证 明 此 算 法 收 敛 于 Ar— b的 解 或 近 似 解 . [ 键 词 ] 超 松 弛 迭 代 ; 弛 因 子 ; 次 函 数 ; 性 等 式 系 统 关 松 二 线
厶
( ) 一 ( + w ( 一 ( ) z z ) b A)+ 砌 6 L 一 ( p ) ( z ) AL
收 稿 E 期 : 0 20 — 8 t 2 1 —4 1 作者简介 : 柳 杨 ( 9 6)女 , 1 8 一 , 山西 运 城 人 , 西 大 学 数学 科 学 学 院在 读 硕 士 研 究 生 , 要 从 事 矩 阵 计算 和优 化 理 论 的 研 究 山 主