2013年七年级下册相交线与平行线测试题
七年级下册数学 第五章 相交线与平行线 单元检测题
七年级下册数学第五章相交线与平行线单元检测题七年级下册数学第五章相交线与平行线单元检测题第五章相交线与平行线一、选择题:(每小题3分,共30分)1、下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直.其中正确的个数为().A.4 B.3 C.2 D.12、如图1,下列说法错误的是()。
A、∠A与∠C是同旁内角B、∠1与∠3是同位角C、∠2与∠3是内错角D、∠3与∠B是同旁内角3、三条直线相交于一点,构成的对顶角共有()。
A、3对B、4对C、5对D、6对4、如图2,∠1=20°,AO⊥CO,点B、O、D在同一直线上,则∠2的度数为()。
A、70°B、20°C、110°D、160°5、在5×5方格纸中将图3-(1)中的图形N平移后的位置如图3-(2)所示,那么下面平移中正确的是()。
A. 先向下移动1格,再向左移动1格;B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格;D. 先向下移动2格,再向左移动2格6、两条直线被第三条直线所截,那么内错角之间的大小关系是().(A)相等(B)互补(C)不相等(D)无法确定7、如图4,AB∥DE,∠1=∠2,则AE与DC的位置关系是()。
A、相交B、平行C、垂直D、不能确定8、如图5,AB∥EF∥DC,EG∥BD,则图中与∠1相等的角有()。
A、2个B、4个C、5个D、6个9、如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为()。
A、30B、36C、42D、1810、如图7,如图,∥DE,∠E=65º,则∠B+∠C=()A. 135º B.115º C.36º D.65º二、填空题:(每小题3分,共24分)11.在同一平面内,不重合的两直线的位置关系有______种。
七年级下册相交线与平行线测试题(含答案)
七年级下册相交线与平行线测试题(含答案)一、选择题1. 下列正确说法的个数是()①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等A . 1, B. 2, C. 3, D. 42. 下列说法正确的是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D.在平面内过一点有且只有一条直线垂直于已知直线.3. 下列图中∠1和∠2是同位角的是()A. ⑴、⑵、⑶,B. ⑵、⑶、⑷,C. ⑶、⑷、⑸,D. ⑴、⑵、⑸4. 如果一个角的补角是150°,那么这个角的余角的度数是( )A.30°B.60°C.90°D.120°5. 下列语句中,是对顶角的语句为( )A.有公共顶点并且相等的两个角B.两条直线相交,有公共顶点的两个角C.顶点相对的两个角D.两条直线相交,有公共顶点没有公共边的两个角6. 下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行7. 两平行直线被第三条直线所截,同旁内角的平分线( )A.互相重合B.互相平行C.互相垂直D.无法确定8. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
下列图案中,不能由一个图形通过旋转而构成的是()A B C DA、3对B、4对C、5对D、6对10. 如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有( )A.5个B.4个C.3个D.2个11. 如图6,BO 平分∠ABC ,CO 平分∠ACB ,且MN ∥BC ,设AB =12,BC =24,AC =18,则△AMN 的周长为( )。
A 、30 B 、36 C 、42 D 、18 12. 如图,若AB ∥CD ,则∠A 、∠E 、∠D 之间的关系是 ( )A.∠A +∠E +∠D =180°B.∠A -∠E +∠D =180°C.∠A +∠E -∠D =180°D.∠A +∠E +∠D =270°二、填空题13. 一个角的余角是30º,则这个角的补角是 . 14. 一个角与它的补角之差是20º,则这个角的大小是 . 15. 时钟指向3时30分时,这时时针与分针所成的锐角是 . 16. 如图②,∠1 = 82º,∠2 = 98º,∠3 = 80º,则∠4 = 度.17. 如图③,直线AB ,CD ,EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD = 28º,则∠BOE = 度,∠AOG = 度. 18. 如图④,AB ∥CD ,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度.19. 把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′= 70º,则∠OGC = . 20. 如图⑦,正方形ABCD 中,M 在DC 上,且BM = 10,N 是AC 上一动点,则DN + MN 的最小值为 .21. 如图所示,当半径为30cm 的转动轮转过的角度为120 时,则传送带上的物体A 平移的距离为 cm 。
初一七年级下数学相交线与平行线探究题含答案详细解析v1
初一三线八角探究题V1一.解答题(共30小题)1.(2013春•海陵区期末)如图,已知平面内有两条直线AB 、CD ,且AB ∥CD ,P 为一动点.点.(1)当点P 移动到AB 、CD 之间时,如图(1),这时∠P 与∠A 、∠C 有怎样的关系?证明你的结论.明你的结论.(2)当点P 移动到AB 的外侧时,如图(2),是否仍有(1)的结论?如果不是的结论?如果不是 ,请写出你的猜想(不要求证明).(3)当点P 移动到如图(3)的位置时,∠P 与∠A 、∠C 又有怎样的关系?能否利用(1)的结论来证明?还有其他的方法吗?请写出一种.的结论来证明?还有其他的方法吗?请写出一种.2.(2009•青岛)如图,在梯形ABCD 中,AD ∥BC ,AD=6cm ,CD=4cm ,BC=BD=10cm ,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(0<t <5).解答下列问题:下列问题:(1)当t 为何值时,PE ∥AB ;(2)设△PEQ 的面积为y (cm 2),求y 与t 之间的函数关系式;之间的函数关系式;(3)是否存在某一时刻t ,使S △PEQ =S △BCD ?若存在,求出此时t 的值;若不存在,说明理由;明理由;(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.的面积是否发生变化?说明理由.3.(2005•陕西)已知:直线a ∥b ,P 、Q 是直线a 上的两点,M 、N 是直线b 上两点.上两点. (1)如图①,线段PM 、QN 夹在平行直线a 和b 之间,四边形PMNQ 为等腰梯形,其两腰PM=QN .请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a 和b 之间的两条线段相等;之间的两条线段相等;(2)我们继续探究,发现用两条平行直线a 、b 去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a 和b 之间的两条曲线段相等;曲线段相等;(3)如图④,若梯形PMNQ 是一块绿化地,梯形的上底PQ=m ,下底MN=n ,且m <n .现计划把价格不同的两种花草种植在S 1、S 2、S 3、S 4四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由.4.(2016春•北流市校级期中)(1)如图甲,AB∥CD,试问∠2与∠1+∠3的关系是什么,为什么?为什么?一样大吗?为什么?(2)如图乙,AB∥CD,试问∠2+∠4与∠1+∠3+∠5一样大吗?为什么?哪个大?为什么?(3)如图丙,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7哪个大?为什么?你能将它们推广到一般情况吗?请写出你的结论.你能将它们推广到一般情况吗?请写出你的结论.5.(2015•凉山州一模)我们知道两直线交于一点,对顶角有2对,三条直线交于一点,对顶角有6对,四条直线交于一点,对顶角有12对,…对.(1)10条直线交于一点,对顶角有条直线交于一点,对顶角有 对.)条直线交于一点,对顶角有 对.对.(2)n(n≥2)条直线交于一点,对顶角有6.(2015•长春二模)探究:如图①,点A在直线MN上,点B在直线MN外,连结AB,过线段AB的中点P作PC∥MN,交∠MAB的平分线AD于点C,连结BC,求证:BC⊥AD.应用:如图②,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM,交∠MAB 的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连结BC、BE.若∠MAN=150°,则∠CBE的大小为的大小为度.7.(2015秋•东明县期末)如图,直线AB与CD相交于点O,∠AOM=90°.的度数;(1)如图1,若OC平分∠AOM,求∠AOD的度数;(2)如图2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度数.的度数.8.(2015秋•麒麟区期末)如图,直线AB、CD相交于点O,∠BOE=90°,OM平分∠AOD,ON平分∠DOE.(1)若∠EON=18°,求∠AOC的度数.的度数.的数量关系,并说明理由.(2)试判断∠MON与∠AOE的数量关系,并说明理由.9.(2015春•苏州期末)如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON 的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.并说明理由.10.(2015秋•吴江区期末)如图,点P是∠AOB的边OB上的一点.上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH 的长度是点P 到 的距离,线段的距离,线段 是点C 到直线OB 的距离.的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC 、PH 、OC 这三条线段大小关系是这三条线段大小关系是 (用“<”号连接)号连接)11.(2015秋•内江期末)将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB 的度数为的度数为 ;②若∠ACB=140°,求∠DCE 的度数;的度数;(2)由(1)猜想∠ACB 与∠DCE 的数量关系,并说明理由.的数量关系,并说明理由.(3)当∠ACE <180°且点E 在直线AC 的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE 角度所有可能的值(不必说明理由);若不存在,请说明理由.13.(2015秋•南岗区期末)如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,且∠EOC :∠EOD=2:3.(1)求∠BOD 的度数;的度数;12.(2015秋•江西期末)如图,△ABC 中,∠ABC=∠ACB ,BD 平分∠ABC ,CE 平分∠ACB ,BD ,CE 交于点O ,F ,G 分别是AC ,BC 延长线上一点,且∠EOD+∠OBF=180°,∠DBC=∠G ,指出图中所有指出图中所有平行线平行线,并说明理由.(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.14.(2015秋•蓝田县期末)如图,已知∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC=∠F,求证:EC∥DF.15.(2015春•天河区期末)已知:如图,AD⊥BC,FG⊥BC.垂足分别为D,G.且∠ADE=∠CFG.求证:DE∥AC.16.(2015春•霸州市期末)如图,AB∥CD,分别探讨下面四个图形中∠APC与∠P AB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)17.(2015春•东莞校级期末)如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠P AC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索之间的关系又是如何?∠P AC,∠APB,∠PBD之间的关系又是如何?18.(2015春•荣昌县期末)如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF 于O,AE∥OF,且∠A=30°.的度数;(1)求∠DOF的度数;(2)试说明OD平分∠AOG.19.(2015春•澧县期末)已知如图,AB∥CD,试解决下列问题:,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.20.(2015春•成都校级月考)如图:成都校级月考)如图:的度数;(1)已知AB∥CD,EF∥MN,∠1=115°,求∠2和∠4的度数;)的结果进行归纳,试着用文字表述出来; (2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来;(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的两倍,求这两个角的大小.这两个角的大小.21.(2015春•晋安区期末)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF 的度数;(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.度数;若不存在,说明理由.22.(2015春•微山县校级期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;之间的关系;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;之间的关系并给予证明;之间的关系.(4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系.23.(2015春•芦溪县期末)已知一个角的两边与另一个角的两边分别平行,结合下图,试探索这两个角之间的关系,并说明你的结论.探索这两个角之间的关系,并说明你的结论.(1)如图1,AB∥EF,BC∥DE.∠1与∠2的关系是:,理由:;(2)如图2,AB∥EF,BC∥DE.∠1与∠2的关系是:,理由:.,那么 .(3)由(1)(2)你得出的结论是:如果)你得出的结论是:如果 ,那么(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角度数的分别是别是24.(2015春•垦利县校级期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;之间的关系;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;之间的关系并给予证明.(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.25.(2015春•繁昌县期末)如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°的位置关系并说明理由;(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.猜想结论并说明理由.26.(2015春•开江县期末)如图,已知直线m∥n,A、B是直线m上的任意两点,C、D 是直线n上的任意两点,连AD、BC,∠ABC与∠ADC的平分线相交于点E,若∠BAD=80°.(1)求∠EDC的度数;的度数;的度数.(2)若∠BCD=30°,试求∠BED的度数.27.(2015春•下城区期末)如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.的度数;(1)∠DAB=15°,求∠ACD的度数;是否成立,并说明理由.(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.28.(2015秋•黄岛区期末)如图①,若AB∥CD,点P在AB,CD外部,则有∠D=∠BOD,又因为∠BOD是△POB的外角,故∠BOD=∠BPD+∠B,得∠BPD=∠D﹣∠B.探究一:将点P移到AB,CD内部,如图②,则∠BPD,∠B,∠D之间有何数量关系?并证明你的结论;并证明你的结论;探究二:在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD延长线于点Q,之间又有何数量关系?并证明你的结论;如图③,则∠BPD,∠B,∠PDQ,∠BQD之间又有何数量关系?并证明你的结论;的度数. 探究三:在图④中,直接根据探究二的结论,写出∠A+∠B+∠C+∠D+∠E+∠F的度数.29.(2015春•盐都区期末)(1)AB∥CD,如图1,点P在AB、CD外面时,由AB∥CD,有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.如图2,将点P移到AB、CD内部,以上结论是否成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.之间有何数量关系?请证明你的结论.(2)如图3,若AB、CD相交于点Q,则∠BPD、∠B、∠D、∠BQD之间有何数量关系(不需证明)?(不需证明)?(3)根据(2)的结论求图4中∠A+∠B+∠C+∠D+∠E+∠F的度数.的度数.(4)若平面内有点A1、A2、A3、A4、A5、A6、A7、A8,连结A1A3、A2A4、A3A5、A4A6、A5A7、A6A8、A7 A1、A8 A2,如图5,则∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7+∠A8的度数是多少(直接写出结果)?的度数是多少(直接写出结果)?若平面内有n个点A1、A2、A3、A4、A5、…,A n,且这n个点能围成的多边形为凸多边形,连结A1A3、A2A4、A3A5、A4A6、A5A7,…,A n﹣1A1、A n A2,则∠A1+∠A2+∠A3+∠A4+…+∠A n﹣1+∠A n的度数是多少(直接写出结果,用含n的代数式表示)?的代数式表示)?30.(2015春•高新区期末)已知:直线AB∥CD,点M,N分别在直线AB,CD上,点E 为平面内一点.为平面内一点.(1)如图1,∠BME,∠E,∠END的数量关系为的数量关系为 ;(直接写出答案)(直接写出答案) (2)如图2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度数.(用含m的式子表示)的式子表示)(3)如图3点G为CD上一点,∠BMN=n•∠EMN,∠GEK=n•∠GEM,EH∥MN交AB 于点H,探究∠GEK,∠BMN,∠GEH之间的数量关系(用含n的式子表示)的式子表示)初一三线八角探究题V1参考答案与试题解析一.解答题(共30小题) 1.(2013春•海陵区期末)如图,已知平面内有两条直线AB 、CD ,且AB ∥CD ,P 为一动点.点.(1)当点P 移动到AB 、CD 之间时,如图(1),这时∠P 与∠A 、∠C 有怎样的关系?证明你的结论.明你的结论.(2)当点P 移动到AB 的外侧时,如图(2),是否仍有(1)的结论?如果不是)的结论?如果不是 ∠P=∠C ﹣∠A 【解答】证明:(1)∠P=∠A+∠C , 延长AP 交CD 与点E .∵AB ∥CD ,∴∠A=∠AEC . 又∵∠APC 是△PCE 的外角,的外角, ∴∠APC=∠C+∠AEC . ∴∠APC=∠A+∠C .(2)否;∠P=∠C ﹣∠A . (3)∠P=360°﹣(∠A+∠C ).①延长BA 到E ,延长DC 到F , 由(1)得∠P=∠P AE+∠PCF .∵∠PAE=180°﹣∠P AB ,∠PCF=180°﹣∠PCD , ∴∠P=360°﹣(∠P AB+∠PCD ). ②连接AC .∵AB ∥CD ,∴∠CAB+∠ACD=180°. ∵∠P AC+∠PCA=180°﹣∠P ,∴∠CAB+∠ACD+∠P AC+∠PCA=360°﹣∠P ,,请写出你的猜想(不要求证明). (3)当点P 移动到如图(3)的位置时,∠P 与∠A 、∠C 又有怎样的关系?能否利用(1)的结论来证明?还有其他的方法吗?请写出一种.的结论来证明?还有其他的方法吗?请写出一种. 【考点】平行线的性质;三角形的外角性质. 【专题】压轴题.压轴题. 【分析】(1)延长AP 后通过外角定理可得出结论.后通过外角定理可得出结论. (2)利用外角定理可直接得出答案.)利用外角定理可直接得出答案.(3)延长BA 到E ,延长DC 到F ,利用内角和定理解答.,利用内角和定理解答.=S △BCD ?若存在,求出此时t 的值;若不存在,说明理由;明理由;(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.的面积是否发生变化?说明理由.【考点】平行线的判定;根据实际问题列二次函数关系式;三角形的面积;勾股定理;相似三角形的判定与性质. 【专题】压轴题.压轴题. 【分析】(1)若要PE ∥AB ,则应有,故用t 表示DE 和DP 后,代入上式求得t 的值;值; (2)过B 作BM ⊥CD ,交CD 于M ,过P 作PN ⊥EF ,交EF 于N .由题意知,四边形CDEF 是平行四边形,可证得△DEQ ∽△BCD ,得到,求得EQ 的值,再由△PNQ ∽△BMD ,得到,求得PN 的值,利用S △PEQ =EQ •PN 得到y 与t 之间的函数关系式;之间的函数关系式;(3)利用S △PEQ =S △BCD 建立方程,求得t 的值;的值;(4)易得△PDE ≌△FBP ,故有S 五边形PFCDE =S △PDE +S 四边形PFCD=S △FBP +S 四边形PFCD =S △BCD ,即五边形的面积不变.即五边形的面积不变. 【解答】解:(1)当PE ∥AB 时,时, ∴.而DE=t ,DP=10﹣t , ∴, ∴,∴当(s ),PE ∥AB .即∠P=360°﹣(∠P AB+∠PCD ). 【点评】本题考查本题考查平行线平行线的性质,难度不大,注意图形的变化带来的影响,不要有惯性思维. 2.(2009•青岛)如图,在梯形ABCD 中,AD ∥BC ,AD=6cm ,CD=4cm ,BC=BD=10cm ,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(0<t <5).解答下列问题:下列问题:(1)当t 为何值时,PE ∥AB ;(2)设△PEQ 的面积为y (cm 2),求y 与t 之间的函数关系式;之间的函数关系式; (3)是否存在某一时刻t ,使S △PEQ(2)∵线段EF由DC出发沿DA方向匀速运动,方向匀速运动,∴EF平行且等于CD,是平行四边形.∴四边形CDEF是平行四边形.∴∠DEQ=∠C,∠DQE=∠BDC.∵BC=BD=10,∴△DEQ∽△BCD.∴..∴.过B作BM⊥CD,交CD于M,过P作PN⊥EF,交EF于N,∵BC=BD,BM⊥CD,CD=4cm,∴CM=CD=2cm,∴cm,∵EF∥CD,∴∠BQF=∠BDC,∠BFG=∠BCD,又∵BD=BC,∴∠BDC=∠BCD,∴∠BQF=∠BFG,∵ED∥BC,∴∠DEQ=∠QFB,又∵∠EQD=∠BQF,∴∠DEQ=∠DQE,∴DE=DQ,∴ED=DQ=BP=t,∴PQ=10﹣2t.又∵△PNQ∽△BMD,∴.∴.∴.∴S△PEQ=EQ•PN=××.(3)S△BCD=CD•BM=×4×4=8,若S△PEQ=S△BCD,则有﹣t 22+t=×8,解得t 1=1,t 2=4.(4)在△PDE 和△FBP 中,中,∵DE=BP=t ,PD=BF=10﹣t ,∠PDE=∠FBP , ∴△PDE ≌△FBP (SAS ).∴S 五边形PFCDE =S △PDE +S 四边形PFCD=S △FBP +S 四边形PFCD =S △BCD =8.∴在运动过程中,五边形PFCDE的面积不变.由.【考点】平行线的性质;梯形;相似三角形的应用. 【专题】压轴题.压轴题. 【分析】(1)根据夹在两条平行线间的线段相等,进行画图或构造等腰三角形等均可;)根据夹在两条平行线间的线段相等,进行画图或构造等腰三角形等均可; (2)只要画出一个轴对称图形和两条平行线相交形成一个轴对称图形即可;)只要画出一个轴对称图形和两条平行线相交形成一个轴对称图形即可;(3)根据题意,即是比较(S 1+S 2)和(S 3+S 4)的大小,根据平行得到相似三角形,进一步求得相似三角形的相似比,根据三角形的面积公式和相似三角形的面积比等于相似比的平方,运用其中一个三角形的面积表示出其它三个三角形的面积,再进一步运用求差法进行比较大小.较大小.【点评】本题利用了本题利用了平行线平行线的性质,的性质,相似三角形和全等三角形的判定和性质,勾股定理,三相似三角形和全等三角形的判定和性质,勾股定理,三角形的面积公式求解.综合性较强,难度较大.角形的面积公式求解.综合性较强,难度较大.3.(2005•陕西)已知:直线a ∥b ,P 、Q 是直线a 上的两点,M 、N 是直线b 上两点.上两点. (1)如图①,线段PM 、QN 夹在平行直线a 和b 之间,四边形PMNQ 为等腰梯形,其两腰PM=QN .请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a 和b 之间的两条线段相等;之间的两条线段相等;(2)我们继续探究,发现用两条平行直线a 、b 去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a 和b 之间的两条曲线段相等;曲线段相等;(3)如图④,若梯形PMNQ 是一块绿化地,梯形的上底PQ=m ,下底MN=n ,且m <n .现计划把价格不同的两种花草种植在S 1、S 2、S 3、S 4四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理【解答】解:(1)(3分)分)分)(2)(6分)同底等高,(3)∵△PMN和△QMN同底等高,∴S△PMN=S△QMN.∴S3+S2=S4+S2.分)∴S3=S4.(7分)∵△POQ∽△NOM,∴==,分).(8分)∴S2=.∵,分)∴.(9分)分) ∴(S1+S2)﹣(S3+S4)=S1+S1﹣2•S1=S1(1+﹣2•)=S1(1﹣)2(10分)∵m<n,∴()2>0.分)∴S1+S2>S3+S4.(11分)故园艺师应选择S1和S2两块地种植价格较便宜的花草,因为这两块的面积之和大于另两块分)地的面积之和.(12分)【点评】此题中能够根据三角形的面积公式和相似三角形的面积比是相似比的平方找到三角形中的面积关系.形中的面积关系.4.(2016春•北流市校级期中)(1)如图甲,AB∥CD,试问∠2与∠1+∠3的关系是什么,为什么?为什么?一样大吗?为什么?(2)如图乙,AB∥CD,试问∠2+∠4与∠1+∠3+∠5一样大吗?为什么?哪个大?为什么?(3)如图丙,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7哪个大?为什么?你能将它们推广到一般情况吗?请写出你的结论.你能将它们推广到一般情况吗?请写出你的结论.【考点】平行线的性质.【分析】(1)首先过点E作EF∥AB,由AB∥CD,可得AB∥CD∥EF,根据平行线的性质,易得∠2=∠BEF+∠CEF=∠1+∠3;(2)首先分别过点E,G,M,作EF∥AB,GH∥AB,MN∥AB,由AB∥CD,可得AB∥CD∥EF∥GH∥MN,由平行线的性质,可得∠2+∠4=∠1+∠3+∠5.(3)首先分别过点E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,由AB∥CD,可得AB∥CD∥EF∥GH∥MN∥KL∥PQ,然后利用平行线的性质,即可证得∠2+∠4+∠6=∠1+∠3+∠5+∠7.【解答】解:(1)∠2=∠1+∠3.过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠1,∠CEF=∠3,∴∠2=∠BEF+∠CEF=∠1+∠3;(2)∠2+∠4=∠1+∠3+∠5.分别过点E,G,M,作EF∥AB,GH∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥EF∥GH∥MN,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠CMN=∠5,∴∠2+∠4=∠BEF+∠FEG+∠GMN+∠CMN=∠1+∠EGH+∠MGH+∠5=∠1+∠3+∠5;(3)∠2+∠4+∠6=∠1+∠3+∠5+∠7.分别过点E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,∵AB∥CD,∴AB∥CD∥EF∥GH∥MN∥KL∥PQ,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠KMN=∠LKM,∠LKP=∠KPQ,∠QPC=∠7,∴∠2+∠4+∠6=∠1+∠3+∠5+∠7.归纳:开口朝左的所有角度之和与开口朝右的所有角度之和相等.归纳:开口朝左的所有角度之和与开口朝右的所有角度之和相等.对.对. (2)n (n ≥2)条直线交于一点,对顶角有)条直线交于一点,对顶角有 n (n ﹣1) 对.对. 【考点】对顶角、邻补角;规律型:图形的变化类. 【分析】(1)仔细观察计算对顶角的式子,发现式子不变的部分及变的部分的规律,求出本题结论;题结论;(2)利用(1)中规律得出答案即可.)中规律得出答案即可. 【解答】解:(1)如图①两条直线交于一点,图中共有=2对对顶角;如图②三条直线交于一点,图中共有=6对对顶角;如图③四条直线交于一点,图中共有=12对对顶角;对对顶角;…;按这样的规律,10条直线交于一点,那么对顶角共有:=90,故答案为:90;(2)由(1)得:n (n ≥2)条直线交于一点,对顶角有:=n (n ﹣1). 故答案为:n (n ﹣1).【点评】此题主要考查了对顶角以及图形变化规律,此题主要考查了对顶角以及图形变化规律,本题是一个探索规律型的题目,本题是一个探索规律型的题目,本题是一个探索规律型的题目,解决时解决时注意观察每对数之间的关系.这是中考中经常出现的问题.注意观察每对数之间的关系.这是中考中经常出现的问题.【点评】此题考查了此题考查了平行线平行线的性质.的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.结合思想的应用. 5.(2015•凉山州一模)我们知道两直线交于一点,对顶角有2对,三条直线交于一点,对顶角有6对,四条直线交于一点,对顶角有12对,… (1)10条直线交于一点,对顶角有条直线交于一点,对顶角有 906.(2015•长春二模)探究:如图①,点A 在直线MN 上,点B 在直线MN 外,连结AB ,过线段AB 的中点P 作PC ∥MN ,交∠MAB 的平分线AD 于点C ,连结BC ,求证:BC ⊥AD . 应用:如图②,点B 在∠MAN 内部,连结AB ,过线段AB 的中点P 作PC ∥AM ,交∠MAB的平分线AD 于点C ;作PE ∥AN ,交∠NAB 的平分线AF 于点E ,连结BC 、BE .若∠MAN=150°,则∠CBE 的大小为的大小为 105度. 【考点】平行线的性质;垂线.【分析】探究:根据角平分线的定义和平行线的性质得出∠PCA=∠P AC ,根据等角对等边得出PC=P A ,再得出PC=PB ,利用三角形的内角和证明即可;,利用三角形的内角和证明即可; 应用:根据探究中的证明得出∠BAC+∠BAE+∠CBA+∠ABE=180°,再由角平分线得出∠BAC+∠BAE=75°,最后得出答案即可.,最后得出答案即可. 【解答】解:探究:∵PC ∥MN , ∴∠PCA=∠MAC .∵AD 为∠MAB 的平分线,的平分线, ∴∠MAC=∠P AC . ∴∠PCA=∠P AC ,∴PC=P A . ∵P A=PB , ∴PC=PB ,∴∠B=∠BCP .∵∠B+∠BCP+∠PCA+∠PAC=180°, ∴∠BCA=90°,∴BC ⊥AD ;应用:∵∠MAB 的平分线AD ,∠NAB 的平分线AF ,∠MAN=150°, ∴∠BAC+∠BAE=75°,∵∠BAC+∠BAE+∠CBA+∠ABE=180°, ∴∠CBE=∠CBA+∠ABE=180°﹣75°=105° 故答案为:105.【点评】本题考查了平行线的性质,本题考查了平行线的性质,角平分线的定义,是基础题,角平分线的定义,是基础题,角平分线的定义,是基础题,熟记性质与概念并准确识熟记性质与概念并准确识图是解题的关键.图是解题的关键. 7.(2015秋•东明县期末)如图,直线AB 与CD 相交于点O ,∠AOM=90°. (1)如图1,若OC 平分∠AOM ,求∠AOD 的度数;的度数;(2)如图2,若∠BOC=4∠NOB ,且OM 平分∠NOC ,求∠MON 的度数.的度数.【考点】对顶角、邻补角;角平分线的定义.,然后根据邻补角的定义求解即可; 【分析】(1)根据角平分线的定义求出∠AOC=45°,然后根据邻补角的定义求解即可;(2)设∠NOB=x°,∠BOC=4x°,根据角平分线的定义表示出∠COM=∠MON=∠CON,,然后求解即可.再根据∠BOM列出方程求解x,然后求解即可.【解答】解(1)∵∠AOM=90°,OC平分∠AOM,∴∠AOC=∠AOM=×90°=45°,∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣45°=135°,即∠AOD的度数为135°;(2)∵∠BOC=4∠NOB ∴设∠NOB=x°,∠BOC=4x°,∴∠CON=∠COB﹣∠BON=4x°﹣x°=3x°,∵OM平分∠CON,∴∠COM=∠MON=∠CON=x°,∵∠BOM=x+x=90°,∴x=36°,∴∠MON=x°=×36°=54°,即∠MON的度数为54°.本题考查了对顶角、邻补角,角平分线的定义,此类题目熟记概念并准确识图是解此类题目熟记概念并准确识图是解【点评】本题考查了对顶角、邻补角,角平分线的定义,列出方程.题的关键,(2)难点在于根据∠BOM列出方程.8.(2015秋•麒麟区期末)如图,直线AB、CD相交于点O,∠BOE=90°,OM平分∠AOD,ON平分∠DOE.(1)若∠EON=18°,求∠AOC的度数.的度数.的数量关系,并说明理由.(2)试判断∠MON与∠AOE的数量关系,并说明理由.【考点】对顶角、邻补角;角平分线的定义;垂线.【分析】(1)直接利用角平分线的性质得出∠DOE的度数,再求出∠DOB的度数,进而得出答案;出答案;进而求出答案.(2)直接利用未知数表示出∠AOD、∠MOD、∠MON进而求出答案.【解答】解:(1)∵ON平分∠DOE,∴∠DOE=2∠EON=36°,∵∠BOE=∠DOE+∠DOB=90°,∴∠DOB=∠BOE﹣∠DOE=54°,∴∠AOC=∠DOB=54°;(2)∠DON=∠AOE 理由:设∠DON=x°,∵ON平分∠DOE,∴∠DOE=2∠DON=2x°,∵∠AOE+∠BOE=180°,∠BOE=90°,∴∠AOE=180°﹣∠BOE=90°,∴∠AOD=∠AOE+∠DOE=(90+2x)°,∵OM平分∠AOD,∴∠MOD=(90+2x)°=(45+x)°,∴∠MON=∠MOD﹣∠DON=45°,∴∠MON=∠AOE=45°.【点评】此题主要考查了角平分线的性质以及垂线定义和邻补角的定义,正确表示出∠AOD 的度数是解题关键.的度数是解题关键.9.(2015春•苏州期末)如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON 的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=180°;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.并说明理由.平行线的判定.垂线;平行线【考点】垂线;,然后利用四边形内角和求解;【分析】(1)先利用垂直定义得到∠MON=90°,然后利用四边形内角和求解;(2)延长DE交BF于H,如图,由于∠OBC+∠ODC=180°,∠OBC+∠CBM=180°,根据等角的补角相等得到∠ODC=∠CBM,由于DE平分∠ODC,BF平分∠CBM,则∠CDE=∠FBE,然后根据三角形内角和可得∠BHE=∠C=90°,于是DE⊥BF;(3)作CQ∥BF,如图2,由于∠OBC+∠ODC=180°,则∠CBM+∠NDC=180°,再利用BF、DG分别平分∠OBC、∠ODC的外角,则∠GDC+∠FBC=90°,根据平行线的性质,由CQ∥BF 得∠FBC=∠BCQ,加上∠BCQ+∠DCQ=90°,则∠DCQ=∠GDC,于是可判断CQ∥GD,所以BF∥DG.【解答】(1)解:∵OM⊥ON,∴∠MON=90°,在四边形OBCD中,∠C=∠BOD=90°,∴∠OBC+∠ODC=360°﹣90°﹣90°=180°;故答案为180°;(2)证明:延长DE交BF于H,如图1,∵∠OBC+∠ODC=180°,而∠OBC+∠CBM=180°,∴∠ODC=∠CBM,∵DE平分∠ODC,BF平分∠CBM,∴∠CDE=∠FBE,而∠DEC=∠BEH,∴∠BHE=∠C=90°,∴DE⊥BF;.理由如下:(3)解:DG∥BF.理由如下:作CQ∥BF,如图2,∵∠OBC+∠ODC=180°,∴∠CBM+∠NDC=180°,的外角,∵BF、DG分别平分∠OBC、∠ODC的外角,∴∠GDC+∠FBC=90°,∵CQ ∥BF ,∴∠FBC=∠BCQ ,而∠BCQ+∠DCQ=90°, ∴∠DCQ=∠GDC ,∴CQ ∥GD ,∴BF ∥DG. 的距离,线段的距离,线段 PC 的长的长 是点C 到直线OB 的距离.距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC 、PH 、OC 这三条线段大小关系是这三条线段大小关系是 PH <PC <OC (用“<”号连接)号连接)【考点】垂线段最短;点到直线的距离;作图—基本作图.【专题】作图题.作图题.【分析】(1)(2)利用方格线画垂线;)利用方格线画垂线;(3)根据点到直线的距离的定义得到线段PH 的长度是点P 到OA 的距离,线段OP 的长是点C 到直线OB 的距离;的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC >PH ,CO >CP ,即可得到线段PC 、PH 、OC 的大小关系.的大小关系.【解答】解:(1)如图:)如图:(2)如图:)如图:(3)直线0A 、PC 的长.的长.【点评】本题考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.它们的交点叫做垂足.它们的交点叫做垂足.也考也考查了查了平行线平行线的判定与性质.的判定与性质.10.(2015秋•吴江区期末)如图,点P 是∠AOB 的边OB 上的一点.上的一点.(1)过点P 画OB 的垂线,交OA 于点C ,(2)过点P 画OA 的垂线,垂足为H ,(3)线段PH 的长度是点P 到 直线OA。
七年级数学(下)第五章《相交线与平行线》单元检测题含答案
七年级数学(下)第五章《相交线与平行线》单元检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个2.点P是直线l外一点,A为垂足,,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定3.(2013•安徽)如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°第3题图第4题图4.(2013•襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°5.(2013•孝感)如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个第5题图第6题图7.如图,点在的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠D.∠+∠BDC=180°第7题图第8题图8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.2个B.3个C.4个D.5个9. 下列条件中能得到平行线的是()①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线.A.①②B.②③C.②D.③10. 两平行直线被第三条直线所截,同位角的平分线()A.互相重合B.互相平行C.互相垂直D.相交二、填空题(共8小题,每小题3分,满分24分)11.如图,直线a、b相交,∠1=,则∠2=.第11题图12.(2013•镇江)如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B= °.第12题图第13题图第14题图13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.15.(2013•江西)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.第15题图第16题图16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= .17.如图,直线a∥b,则∠ACB= .第17题图第18题图18.(2012•郴州)如图,已知AB∥CD,∠1=60°,则∠2= 度.三、解答题(共6小题,满分46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.第19题图20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)第20题图21.(8分)已知:如图,∠BAP+∠APD =,∠1 =∠2.求证:∠E =∠F.第21题图第22题图22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED ∥FB.23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.第23题图第24题图24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.参考答案1.B 解析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.2. B 解析:根据点到直线的距离为点到直线的垂线段的长度(垂线段最短),所以点P到直线l的距离等于4 cm,故选B.3. C 解析:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°.∵AB∥CD,∴∠C=∠EOB=75°,故选C.4. A 解析:∵CD∥AB,∴∠ABC+∠DCB=180°.∵∠BCD=70°,∴∠ABC=180°-70°=110°.∵BD平分∠ABC,∴∠ABD=55°.5. C 解析:如题图所示,∵∠1=∠2,∴a∥b,∴∠3=∠5.∵∠3=40°,∴∠5=40°,∴∠4=180°-∠5=180°-40°=140°,故选C.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. A 解析:选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD (内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被直线AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.8. D 解析:如题图所示,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:结合已知条件,利用平行线的判定定理依次推理判断.10. B 解析:∵两条平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.11. 144°解析:由题图得,∠1与∠2互为邻补角,即∠1+∠2=180°.又∵∠1=36°,∴∠2=180°36°=144°.12. 50 解析:∵∠BAC=80°,∴∠EAC=100°.∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=50°.∵AD∥BC,∴∠B=∠EAD=50°.故答案为50.13. 垂线段定理:直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 65°解析:∵∠1=155°,∴∠EDC=180°-155°=25°.∵DE∥BC,∴∠C=∠EDC=25°.∵在△ABC中,∠A=90°,∠C=25°,∴∠B=180°-90°-25°=65°.故答案为65°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与直线a相交于点D,∵a∥b,∴∠ADC=∠DBE=50°. ∴∠ACB=∠ADC +28°=50°+28°=78°. 故应填78°.18. 120 解析:∵AB ∥CD ,∴∠1=∠3,而∠1=60°,∴∠3=60°.又∵∠2+∠3=180°,∴∠2=180°-60°=120°.故答案为120.19.解:(1)(2)如图所示.第19题答图(3)∠PQC=60°. 理由:∵ PQ ∥CD,∴ ∠DCB+∠PQC=180°.∵ ∠DCB=120°,∴ ∠PQC=180°120°=60°.20. 解:(1)小鱼的面积为7×621 ×5×621 ×2×521 ×4×221 ×1.5×121×21 ×11=16. (2)将每个关键点向左平移3个单位,连接即可.第20题答图21.证明:∵ ∠BAP+∠APD = 180°,∴ AB ∥CD.∴ ∠BAP =∠APC.又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2.即∠EAP =∠APF.∴ AE ∥FP.∴ ∠E =∠F.22.证明:∵ ∠3 =∠4,∴ AC ∥BD.∴ ∠6+∠2+∠3 = 180°.∵ ∠6 =∠5,∠2 =∠1,∴ ∠5+∠1+∠3 = 180°.∴ ED ∥FB.23. 解:∵ DE ∥BC ,∠AED=80°,∴ ∠EDC=∠BCD ,∠ACB=∠AED=80°.∵ CD 平分∠ACB ,∴ ∠BCD = 21∠ACB =40°,∴ ∠EDC =∠BCD =40°. 24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补).∵ ∠B =65°,∴ ∠BCE =115°.∵ CM 平分∠BCE ,∴ ∠ECM =21 ∠BCE =57.5°. ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.。
七年级数学(下)《相交线与平行线》复习测试题 含答案
七年级数学(下)《相交线与平行线》复习测试题一、选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠__________=∠__________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________.选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223×70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8 复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12×∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13×90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,∴EF∥CD,∠PAB+∠APF=180°.∴∠PCD+∠CPF=180°.∴∠PAB+∠APC+∠PCD=360°.。
七年级数学下《相交线与平行线》测试卷.docx
马鸣风萧萧 图2abM P N123七年级数学下《相交线与平行线》测试卷一、选择题(每题4分,共40分)1. 体育课上,老师测量跳远成绩的依据是( ).A 、平行线间的距离相等B 、两点之间,线段最短C 、垂线段最短D 、两点确定一条直线2. 如图1,给出了过直线外一点作已知直线的平行线的方法,其依据是( ) A 、同位角相等,两直线平行 B 、内错角相等,两直线平行 C 、同旁内角互补,两直线平行 D 、两直线平行,同位角相等3. 如图2所示是“福娃欢欢”的五幅图案,②、③、④、⑤哪一个图案可以通过平移图案①得到( )A 、②B 、③C 、④D 、⑤4.如图3,若∠1=70°,∠2=110°,∠3=70°,则有( ). A 、a ∥b B 、c ∥dC 、a ⊥dD 、任两条都无法判定是否平行5.一副三角扳按如图4方式摆放,且∠1的度数比∠2的度数大54°,则∠1=( ) A 、 18° B 、54° C 、72° D 、70° 6.如图5,图中对顶角共有( )对A 、6B 、1C 、12D 、137. 如图6,直线AB ,CD 与EF 相交于G ,H ,下列条件:①∠1=∠2; ②∠3=∠6;③∠2=∠8;④∠5+∠8=180º,其中能判定AB ∥CD 的是( )A 、①③B 、①②④C 、①③④D 、②③④图1图3图4图5图6马鸣风萧萧ADOBC 图8 图78.如图7,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A .180B .270C .360D .5409. 下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直.其中正确的个数为( ). A 、4B 、3C 、2D 、110.如图8探照灯、锅形天线、汽车灯以及其它很多灯具都与抛物线形状有关,如图所示是一探照灯灯碗的纵剖面,从位于O 点的灯泡发出的两束光线OB OC 、经灯碗反射以后平行射出.如果图中ABO DCO αβ∠=∠=,,则BOC ∠的度数为( )A 、180αβ--B 、αβ+C 、1()2αβ+ D 、90()βα+- 二、填空题(每题3分,共18分)11. 命题“同角的补角相等”是 (选填“真”或“假”)命题,写成“如果……那么……的形式如果 ,那么 。
七年级下册《相交线与平行线》测试题
①2121②12③12④七年级下册《相交线与平行线》测试题一、选择题:1.下列所示的四个图形中,1∠和2∠是同位角...的是( )A. ②③B. ①②③C. ①②④D. ①④2.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D. ο180=∠+∠ACD D3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A. 第一次向左拐ο30,第二次向右拐ο30 B. 第一次向右拐ο50,第二次向左拐ο130 C. 第一次向右拐ο50,第二次向右拐ο130 D. 第一次向左拐ο50,第二次向左拐ο130 4.两条平行直线被第三条直线所截,下列命题中正确..的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 5.下列说法中错误..的个数是( ) (1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1个 B. 2个 C. 3个 D. 4个 6.下列说法中,正确..的是( ) A. 图形的平移是指把图形沿水平方向移动。
B. 平移前后图形的形状和大小都没有发生改变。
EDC BA4321C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
7.如右图,CD AB //,且ο25=∠A ,ο45=∠C ,则E ∠的度数是( ) A. ο60 B. ο70 C. ο110 D. ο808.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那 么以下线段大小的比较必定成立....的是( ) A. AD CD > B. BC AC < C. BD BC > D. BD CD <9.在一个平面内,任意四条直线相交,交点的个数最多有( )A. 7个B. 6个C. 5个D. 4个10. 如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( )A. 3对B. 4对C. 5对D. 6对二、填空题1.把命题“等角的余角相等”写成“如果……,那么……。
七年级数学《相交线与平行线》测试卷及答案
123(第三题)A B C D E (第10题)ABCD 1234(第2题)12345678(第4题)ab cA B CD(第7题)七年级数学《相交线与平行线》测试卷及答案班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
七年级数学下册第五章《相交线与平行线》经典测试(1)
一、选择题1.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A .在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误; B .两直线相交,对顶角相等,故本选项错误;C .垂线段最短,故本选项正确;D .直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误; 故选:C .【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.2.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤D解析:D【分析】 根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;而BD 与CH 不一定相等,故③不正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤.故选:D .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键.3.下列命题中是真命题的有( )①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B 由图形A 平移得到,则图形B 与图形A 中的对应点所连线段平行(或在同一条直线上)且相等;A .1个B .2个C .3个D .4个B 解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B 由图形A 平移得到,则图形B 与图形A 中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B .【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.4.下列说法正确的是( )A .命题一定是正确的B .定理都是真命题C .不正确的判断就不是命题D .基本事实不一定是真命题B 解析:B根据命题的定义、真命题与假命题的定义逐项判断即可得.【详解】A 、命题有真命题和假命题,此项说法错误;B 、定理都是经过推论、论证的真命题,此项说法正确;C 、不正确的判断是假命题,此项说法错误;D 、基本事实是真命题,此项说法错误;故选:B .【点睛】本题考查了命题、真命题与假命题,熟练掌握理解各概念是解题关键.5.如图a 是长方形纸带,26DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是( )A .102°B .112°C .120°D .128°A解析:A【分析】根据两条直线平行,内错角相等,则∠BFE=∠DEF=26°,根据平角定义,则∠EFC=154°(图a ),进一步求得∠BFC=154°-26°=128°(图b ),进而求得∠CFE=128°-26°=102°(图c ).【详解】解:∵AD ∥BC ,∠DEF=26°,∴∠BFE=∠DEF=26°,∴∠EFC=154°(图a ),∴∠BFC=154°-26°=128°(图b ),∴∠CFE=128°-26°=102°(图c ).故选:A .【点睛】本题考查了翻折变换,平行线的性质和平角定义,根据折叠能够发现相等的角是解题的关键.6.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37°B【分析】作GH ∥FG ,推出GH ∥FG ∥DE ,得到∠1=∠3,∠2=∠4,由90C ∠=︒, 137∠=︒,即可求解.【详解】作GH ∥FG ,∵DE ∥FG ,∴GH ∥FG ∥DE ,∴∠1=∠3,∠2=∠4,∵90C ∠=︒, 137∠=︒,∴∠3+∠4=90︒,即37︒+∠2=90︒,∴∠2=53︒,故选:B .【点睛】本题考查了平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键. 7.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图所示,已知 AB ∥CD ,下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠4C解析:C【分析】 根据平行线的性质即可得到结论.【详解】∵AB ∥CD ,∴∠1=∠4,故选 C .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.9.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,∠B =90°,AB =8,DH =3,平移距离为4,求阴影部分的面积为( )A .20B .24C .25D .26D 解析:D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S 四边形HDFC =S 梯形ABEH=12(AB+EH )×BE=12(8+5)×4=26.故选D. 10.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2B解析:B【详解】解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B.二、填空题11.如图,点A在直线m上,点B在直线l上,点A到直线l的距离为a,点B到直线m 的距离为b,线段AB的长度为c,通过测量等方法可以判断在a,b,c三个数据中,最大的是_____________.【分析】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB根据点到直线垂线段最短可知AB >ADAB>BH可得最大【详解】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB由题意得解析:c【分析】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,根据点到直线垂线段最短,可知AB>AD,AB>BH,可得c最大.【详解】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,由题意得:AD=a, BH=b,AB=c;根据点到直线垂线段最短,可知AB>AD,AB>BH∴c >a ,c >b ;∴c 最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.12.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.50或130【分析】由∠A 与∠B 的两边分别平行可得∠A=∠B 或∠A+∠B=180°继而求得答案【详解】解:∵∠A 与∠B 的两边分别平行∴∠A=∠B 或∠A+∠B=180°∵∠A=50°∴∠B=50°或∠解析:50或130【分析】由∠A 与∠B 的两边分别平行,可得∠A=∠B 或∠A+∠B=180°,继而求得答案.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A=∠B 或∠A+∠B=180°,∵∠A=50°,∴∠B=50°,或∠B=180°-∠A=180°-50°=130°.故答案为:50或130.【点睛】此题考查了平行线的性质.此题难度适中,注意由∠A 与∠B 的两边分别平行,可得∠A 与∠B 相等或互补.13.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.55或20【分析】根据平行线性质得出∠A+∠B =180°①∠A =∠B②求出∠A =3∠B ﹣40°③把③分别代入①②求出即可【详解】解:∵∠A 与∠B 的两边分别平行∴∠A+∠B =180°①∠A =∠B②∵∠解析:55或20【分析】根据平行线性质得出∠A+∠B =180°①,∠A =∠B②,求出∠A =3∠B ﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A+∠B =180°①,∠A =∠B②,∵∠A 比∠B 的3倍少40°,∴∠A =3∠B ﹣40°③,把③代入①得:3∠B ﹣40°+∠B =180°,∠B =55°,把③代入②得:3∠B ﹣40°=∠B ,∠B =20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A 和∠B 的两边分别平行,即可得∠A =∠B 或∠A +∠B =180° ,注意分类讨论思想的应用.14.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.40°【分析】先根据对顶角相等的性质得出∠1=∠2即可求出α的度数【详解】解:∵∠1与∠2是对顶角∠2=50°∴∠1=∠2∵∠2=50°∴α+10°=50°∴α=40°故答案为:40°【点睛】本题考 解析:40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,110α∠=+︒,∠2=50°,∴∠1=∠2,∵110α∠=+︒,∠2=50°,∴α+10°=50°,∴α=40°.故答案为:40°.【点睛】本题考查了对顶角相等的性质以及角度的计算.15.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔;(答案不唯一)【分析】画出图形再由平行线的判定与性质求出旋转角度【详解】图中当时DE//AC ;图中当时CE//AB 图中当时DE//BC 故答案为:;(答案不唯一)【点睛】考查了平行线的判定和性质解题解析:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图③中,当45DCF D α=∠=∠=时,DE//AC ;图④中,当9090120DCF DCB BCF B α=∠=∠+∠=︒-∠+︒=︒ 时,CE//AB ,图⑤中,当90135a DCF DCB BCF D =∠=∠+∠=∠+=︒ 时,DE//BC .故答案为:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一).【点睛】考查了平行线的判定和性质,解题关键是理解平行线的判定与性质,并且利用了数形结合.16.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.4【分析】观察图象发现平移前后BE对应CF对应根据平移的性质易得平移的距离为BE=BC-EC=4进而可得答案【详解】由题意平移的距离为BE=BC-EC=10-6=4故答案为:4【点睛】本题考查了平移解析:4【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.17.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草,则道路的面积是________平方米.79【分析】可以根据平移的性质此小路相当于一条横向长为50米与一条纵向长为30米的小路道路的面积=横纵小路的面积-小路交叉处的面积计算即可【详解】由题意可得道路的面积为:(30+50)×1−1=79解析:79【分析】可以根据平移的性质,此小路相当于一条横向长为50米与一条纵向长为30米的小路,道路的面积=横纵小路的面积-小路交叉处的面积,计算即可.【详解】由题意可得,道路的面积为:(30+50)×1−1=79(m2).故答案为79.【点睛】此题考查生活中的平移现象,解题关键在于掌握运算公式.18.如图,已知AB∥DE,∠ABC=76°,∠CDE=150°,则∠BCD的度数为__°.46【分析】过点C作CF∥AB根据平行线的传递性得到CF∥DE根据平行线的性质得到∠ABC=∠BCF∠CDE+∠DCF=180°根据已知条件等量代换得到∠BCF=76°由等式性质得到∠DCF=30°解析:46【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠ABC=∠BCF,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=76°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠ABC=∠BCF,∠CDE+∠DCF=180°,∵∠ABC=76°,∠CDE=150°,∴∠BCF=76°,∠DCF=30°,∴∠BCD=46°,故答案为:46.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系.19.如图,CB∥OA,∠B=∠A=100°,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF,若平行移动AC,当∠OCA的度数为_____时,可以使∠OEB=∠OCA.60°【分析】设∠OCA=a∠AOC=x利用三角形外角内角和定理平行线定理即可解答【详解】解:设∠OCA=a∠AOC=x已知CB∥OA∠B=∠A=100°即a+x=80°又因为∠OEB=∠EOC+∠解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.20.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,DH=4,平移距离为8,则阴影部分的面积是_______________.64【分析】根据平移变化只改变图形的位置不改变图形的形状可得出两个三角形大小一样阴影部分面积等于梯形ABEH的面积;DE=AB根据线段的和差关系可求出HE的长度再根据梯形的面积公式即可得答案【详解】解析:64【分析】根据平移变化只改变图形的位置,不改变图形的形状,可得出两个三角形大小一样,阴影部分面积等于梯形ABEH的面积;DE=AB,根据线段的和差关系可求出HE的长度,再根据梯形的面积公式即可得答案.【详解】∵两个三角形大小一样,∴S△ABC=S△DEF,∴S△ABC-S△HEC=S△DEF-S△HEC,∴S阴影=S梯形ABEH,∵其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,∴DE=AB=10,∵DH=4,∴HE=DE-DH=6,∵平移距离是8,∴BE=8,∴S 阴影=S 梯形ABEH =12(HE+AB )·BE=12×(10+6)×8=64, 故答案为:64【点睛】 本题主要考查了平移的性质,通过观察图形把阴影部分的面积转化为熟知图形的面积是关键的一步.三、解答题21.如图,AD 平分∠BAC ,点E ,F 分别在边BC ,AB 上,且∠BFE =∠DAC ,延长EF ,CA 交于点G ,求证:∠G =∠AFG .解析:见解析【分析】先利用角平分线的定义得到∠BAD =∠DAC ,结合已知条件∠BFE =∠DAC ,可得∠BFE =∠BAD ,根据平行线的判定可证EG ∥AD ,再由平行线的性质得∠G =∠DAC ,∠AFG =∠BAD ,则利用等量代换即可证得结论.【详解】证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵∠BFE =∠DAC ,∴∠BFE =∠BAD ,∴EG ∥AD ,∴∠G =∠DAC ,∠AFG =∠BAD ,∴∠G =∠AFG .【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.22.完成下面推理过程,在括号内的横线上填空或填上推理依据.如图,已知://AB EF ,EP EQ ⊥,90EQC APE ∠+∠=︒,求证://AB CD证明://AB EFAPE ∴∠=__________(__________)EP EQ ⊥ PEQ ∴∠=_________(___________)即90QEF PEF ∠+∠=︒90APE QEF ∴∠+∠=︒90EQC APE ∠+∠=︒EQC ∠=________//EF ∴_______(__________________)//AB CD ∴(________________)解析:∠PEF ;两直线平行,内错角相等;90°;垂直的定义;∠QEF ;CD ;内错角相等,两直线平行;同一平面内,平行于同一条直线的两条直线互相平行.【分析】根据平行线的性质得到∠APE=∠PEF ,根据余角的性质得到∠EQC=∠QEF 根据平行线的判定定理即可得到结论.【详解】证明:∵AB ∥EF∴∠APE=∠PEF (两直线平行,内错角相等)∵EP ⊥EQ∴∠PEQ=90°(垂直的定义)即∠QEF+∠PEF=90°∴∠APE+∠QEF=90°∵∠EQC+∠APE=90°∴∠EQC=∠QEF∴EF ∥CD (内错角相等,两直线平行)∴AB ∥CD (同一平面内,平行于同一条直线的两条直线互相平行),故答案为:∠PEF ;两直线平行,内错角相等;90°;垂直的定义;∠QEF ;CD ;内错角相等,两直线平行;同一平面内,平行于同一条直线的两条直线互相平行.【点睛】本题考查了平行线的判定和性质,垂直的定义,熟练掌握平行线的判定和性质是解题的关键.23.三角形ABC 中,D 是AB 上一点,//DE BC 交AC 于点E ,点F 是线段DE 延长线上一点,连接FC ,180BCF ADE ∠+∠=︒.(1)如图1,求证://CF AB ;(2)如图2,连接BE ,若40ABE ∠=︒,60ACF ∠=︒,求BEC ∠的度数; (3)如图3,在(2)的条件下,点G 是线段FC 延长线上一点,若:7:13EBC ECB ∠∠=,BE 平分ABG ∠,求CBG ∠的度数.解析:(1)证明见解析;(2)100°;(3)12°.【分析】(1)根据平行线的判定及其性质即可求证结论;(2)过E 作//EK AB 可得//CF AB ∥EK ,再根据平行线的性质即可求解;(3)根据题意设7EBC x ∠=︒,则13ECB x ∠=︒,根据∠AED +∠DEB +BEC =180°,可得关于x 的方程,解方程即可求解.【详解】(1)证明:∵DE ∥BC ,∴ADE B ∠=∠,又∵∠BCF +∠ADE =180°,∴180BCF B ∠+∠=︒,∴//CF AB ,(2)解:过E 作//EK AB ,∵//CF AB ,∴//CF EK ,∵//EK AB ,40ABE ∠=︒,∴40BEK ABE ∠=∠=︒,∵//CF EK ,60ACF ∠=︒,∴60CEK ACF ∠=∠=︒,又∵BEC BEK CEK ∠=∠+∠,∴4060100BEC ∠=︒+︒=︒,答:BEC ∠的度数是100°,(3)解:∵BE 平分ABG ∠, 40ABE ∠=︒,∴40EBG ABE ∠=∠=︒,∴:7:13EBC ECB ∠∠=,∴设7EBC x ∠=︒,则13ECB x ∠=︒,∵DE ∥BC ,∴7DEB EBC x ∠=∠=︒,13AED ECB x ∠=∠=︒,∵180AED DEB BEC ∠+∠+∠=︒,∴137100180x x ++=,∴4x =,∴728EBC x ∠=︒=︒,又∵EBG EBC CBG ∠=∠+∠,∴CBG EBG EBC ∠=∠-∠,∴402812CBG ∠=-=︒,答:CBG ∠的度数是12°.【点睛】本题考查平行线的判定及其性质,解题的关键是熟练掌握平行线的判定及其性质的有关知识.24.如图,AE //CF ,∠A =∠C .(1)若∠1=35°,求∠2的度数;(2)判断AD与BC的位置关系,并说明理由.解析:(1)∠2=145°;(2)BC∥AD,理由见解析.【分析】(1)由平行线的性质求得∠BDC=∠1=35°,再根据邻补角的定义即可求得∠2;(2)由平行线的性质可知:∠A+∠ADC=180°,然后根据∠A=∠C,可证得∠C+∠ADC=180°,从而可证得BC∥AD.【详解】解:(1)∵AE∥CF,∴∠BDC=∠1=35°,又∵∠2+∠BDC=180°,∴∠2=180°-∠BDC=180°-35°=145°;(2)BC∥AD.理由:∵AE∥CF,∴∠A+∠ADC=180°,又∵∠A=∠C,∴∠C+∠ADC=180°,∴BC∥AD.【点睛】本题考查平行线的性质和判定.在本题中能正确识图找出同位角和同旁内角是解题关键.25.如图,已知∠1=∠2,∠A=29°,求∠C的度数.解析:∠C的度数是151°.【分析】根据对顶角相等,等量代换得∠1=∠3,根据同位角相等判断两直线平行,再由两直线平行得同旁内角互补则可解答.【详解】解:如图,∵∠1=∠2又∵∠2=∠3∴∠1=∠3∴AB∥CD∴∠A+∠C=180°,又∵∠A=29°∴∠C=151°答:∠C的度数是151°.【点睛】本题考查了对顶角的性质、平行线的性质和判定,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.26.如图,已知∠1+∠2=180°,∠B=∠DEF,求证:DE∥BC.请将下面的推理过程补充完整.证明:∵∠1+∠2=180(已知)∠2=∠3(对顶角相等)∴∠1+∠3=180°∴AB∥EF(),∴∠B=∠EFC()∵∠B=∠DEF(),∴∠DEF=()∴DE∥BC()解析:见解析【分析】根据平行的性质和判定定理填空.【详解】解:证明:∵∠1+∠2=180(已知),∠2=∠3(对顶角相等),∴∠1+∠3=180°,∴AB∥EF(同旁内角互补,两直线平行),∴∠B=∠EFC(两直线平行,同位角相等),∵∠B=∠DEF(已知),∴∠DEF=∠EFC(等量代换),∴DE∥BC(内错角相等,两直线平行).【点睛】本题考查平行的性质和判定,解题的关键是掌握平行的性质和判定定理.27.已知:如图,∠AGD=∠ACB,∠1=∠2,CD与EF平行吗?为什么?解析:平行,见解析.【分析】先判定GD//CB,然后根据平行的性质得到∠1=∠BCD,然后利用同位角相等、两直线平行即可证明.【详解】解:平行. 理由如下:∵∠AGD =∠ACB,(已知)∴ GD∥BC(同位角相等,两直线平行)∴∠1=∠BCD(两直线平行,内错角相等)∵∠1=∠2,(已知)∴∠2=∠BCD(等量代换)∴ CD∥EF(同位角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,灵活运用同位角相等、两直线平行是解答本题的关键.28.试用举反例的方法说明下列命题是假命题.例如:如果ab<0,那么a+b<0.反例:设a=4,b=-3,ab=4⨯(-3)=-12<0,而a+b=4+(-3)=1>0,所以这个命题是假命题.(1)如果a+b>0,那么ab>0.(2)如果a是无理数,b也是无理数,那么a+b也是无理数.解析:(1)见解析;(2)见解析.【分析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b>0,那么ab>0;所举的反例就是,a、b一个为正数,一个为负数,且正数的绝对值大于负数.(2)可利用平方差公式找这样的无理数,比如【详解】解:(1)取a=2,b=-1,则a+b=1>0,但ab=-2<0.所以此命题是假命题.(2)取,,a、b均为无理数.但a+b=2是有理数,所以此命题是假命题.【点睛】本题主要锻炼了学生的逆向思维.在证明几何题的过程中,有时需从反例上先去判断,然后再证明.。
(完整版)七年级数学下册相交线与平行线测试题
七年级下册相交线与平行线测试题一、选择题1. 下列正确说法的个数是()①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等A . 1, B。
2, C. 3, D。
42。
下列说法正确的是()A.两点之间,直线最短;B。
过一点有一条直线平行于已知直线;C。
和已知直线垂直的直线有且只有一条;D.在平面内过一点有且只有一条直线垂直于已知直线。
3. 下列图中∠1和∠2是同位角的是()A. ⑴、⑵、⑶, B。
⑵、⑶、⑷, C. ⑶、⑷、⑸, D。
⑴、⑵、⑸4. 如果一个角的补角是150°,那么这个角的余角的度数是 ( )A。
30° B。
60° C.90° D.120°5。
下列语句中,是对顶角的语句为 ( )A.有公共顶点并且相等的两个角B。
两条直线相交,有公共顶点的两个角C。
顶点相对的两个角D.两条直线相交,有公共顶点没有公共边的两个角6。
下列命题正确的是 ( )A。
内错角相等B.相等的角是对顶角C。
三条直线相交 ,必产生同位角、内错角、同旁内角D。
同位角相等,两直线平行7。
两平行直线被第三条直线所截,同旁内角的平分线() A.互相重合B。
互相平行 C.互相垂直 D。
无法确定8。
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
下列图案中,不能由一个图形通过旋转而构成的是()A B C D9。
三条直线相交于一点,构成的对顶角共有( )A、3对B、4对C、5对D、6对10. 如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有 ( )A。
5个B。
4个 C.3个D。
2个11。
如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为( )。
A、30B、36C、42D、1812。
如图,若AB∥CD,则∠A、∠E、∠D之间的关系是 ( )A。
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。
七年级下册相交线与平行线测试题
《相交线与平行线》单元测试题(1)一、选择题:(每小题3分,共30分)1、同一平面内,三条直线相交的交点个数为( )A .0个或1个 B.1个或2个 C.2个或3个 D.0个或1个或2个或3个 2、 如图2所示是“福娃欢欢”的五幅图案,②、③、④、⑤哪一个图案可以通过平移图案①得到( )A .②B .③C .④D .⑤3、一副三角扳按如图3方式摆放,且∠1的度数比∠2的度数大54°,则∠1=( ) A . 18° B .54° C .72° D .70°4、 如图4,已知直线AB,CD,MN相交于O,若∠1=22°,∠2=46°,则∠3的度数为( ).5、汉字“王、人、木、水、口、立”中能通过平移组成一个新的汉字的有( ) A. 1个 B. 2个 C. 3个 D. 4个6、如图所示,1∠和2∠是同位角的是( )A 、②③B 、①②③C 、①②④D 、①④7、 同学们,你一定练过跳远吧!在测量跳远成绩时,从落地点拉向起跳线的皮尺,应当与起跳线( )A 、平行B 、垂直C 、成︒45D 、以上都不对8、如图8所示,一束光线垂直照射水平地面,在地面上放一个平面镜,欲使这束光线经平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为( ) A .45° B .60° C .75° D .80°图2图4图39、如图8,在A 、B 两座工厂之间要修一条笔直的公路,从A 地测得B 地的方向是南偏东 52°,现A 、B 两地要同时开工,若要公路接通,则B 地所修公路的走向是( ) A.北偏西52° B.南偏东52° C.西偏北52° D.北偏西38°10、如图4,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在( )A. A 点B. B 点C. C 点D. D 点二、填空题(每小题3分,共30分)11、如图11,直线12l l ∥,∠1=120°,则∠2= 度.12、如图12,∠1=82°,∠2=98°,∠3=80°,则∠4=_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学周练
一、填空题 2*23=46
1、如图1,计划把河水引到水池A 中,可以先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是________________。
2、设c b a ,,为平面内三条不同的直线,①若a ∥b ,l ⊥a ,则l 与b 的位置关系是______;②若l ⊥a ,l ⊥b ,则a 与b 的位置关系是___________;③若a ∥b ,l ∥a ,则l 与b 的位置关系是____________。
图1 图2 图3
3.如图2,已知直线a ∥b ,c ∥d ,∠1=115°,则∠2=_____,∠3=_____.
4.一个角的余角比这个角的补角小_____.
5如图3,AB ∥CD ,∠1=39°,∠C 和∠D 互余,则∠D=________,∠B=________。
6.如图4,AB ∥CD ,AD ∥BC ,则图中与∠A 相等的角有_____个.
图4 图5 图6 图7
7.如图5,标有角号的7个角中共有_____ 对内错角,_____ 对同位角,_____ 对同旁内角. 8.如图6,(1)∵∠A =_____(已知),
∴AC ∥ED ( ) (2)∵∠2=_____(已知),
∴AC ∥ED ( ) (3)∵∠A +_____=180°(已知),
∴AB ∥FD ( ) (4)∵AB ∥_____(已知),
∴∠2+∠AED =180°( ) (5)∵AC ∥_____(已知),
∴∠C =∠1 ( ) 二、选择题 3*4=12
9.下列命题正确的是 ( ) A.内错角相等 B.相等的角是对顶角
C.三条直线相交 ,必产生同位角、内错角、同旁内角
D.同位角相等,两直线平行
10.两平行直线被第三条直线所截,同位角的平分线 ( ) A.互相重合 B.互相平行 C.互相垂直 D.相交
11.如图7,若AB ∥CD ,则∠A 、∠E 、∠D 之间的关系是 ( ) A.∠A +∠E +∠D =180° B.∠A -∠E +∠D =180° C.∠A +∠E -∠D =180°
D.∠A +∠E +∠D =270°
12、在下列说法中:⑴△ABC 在平移过程中,对应线段一定相等;⑵△ABC 在平移过程中,对应线段一定平行;⑶△ABC 在平移过程中,周长保持不变;⑷△ABC 在平移过程中,对应边中点的连线段的长等于平移的距离;⑸△ABC 在平移过程中,面积不变,其中正确的有( ) A 、⑴⑵⑶⑷ B 、⑴⑵⑶⑷⑸ C 、⑴⑵⑶⑸ D 、⑴⑶⑷⑸ 三、解答题 10+10+2*11=42
13.如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.
14、如图,CD AB //,AE 平分BAD ∠,CD 与AE 相交于F ,E CFE ∠=∠。
求证:BC AD //。
15、完成下面的证明:已知,如图,AB ∥CD ∥GH ,EG 平分∠BEF ,FG
平分∠EFD 求证:∠EGF=90°
证明:∵HG ∥AB(已知)
∴∠1=∠3 ( ) 又∵HG ∥CD(已知)
∴∠2=∠4 ( ) ∵AB ∥CD(已知)
∴∠BEF+___________=180°( ) 又∵EG 平分∠BEF(已知) ∴∠1=
2
1
∠_____________( ) 又∵FG 平分∠EFD(已知) ∴∠2=
2
1
∠_____________( ) ∴∠1+∠2=
2
1
(_________ __+______________) ∴∠1+∠2=90°
∴∠3+∠4=90°( )即∠EGF=90°
B D
C
D
G A E B
H C
F 1 2
3 4
21F
E
D C
B
A A
B
D 1。