6年级奥数-不定方程
六年级奥数第28讲:不定方程
简单的不定方程所谓有定方程,是指未知数的个数多于方程个数的方程(组)。
解不定方程的方法是:(1)根据整除知识,缩小未知数的取值范围,然后试算求解。
(2)分析末位数字,缩小未知数的取值范围,寻求方程的整数解。
(3)求出一个未知数用另一个未知数表示的式子,然后试算求解。
(4)直接根据方程确定未知数的取值范围,通过试算求解。
例1、马小富在甲公司打工,几个月后又在乙公司兼职。
甲公每月付给他薪金470元,乙公司每月付给他薪金350元。
年终,马小富从两家公司共获薪金7 620元。
问他在甲公司打工多少个月,在乙公司兼职多少个月。
做一做:有A、B、C三种商品若干,价值共300元,其中A商品单价为16元,B商品单价为158元,C商品单价为19元。
那么,全部C商品至少价值多少元?最多价值多少元?例2、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都损耗1毫米铜管,那么,只有当锯得的38毫米铜管和90毫米的铜管各为多少段时,所损耗的铜管才能最少?做一做:一个同学把他生日的月份乘以31,日期乘以12,然后加起来的和是170,你知道他出生于何月何日吗?例3、某单位的职工到效外植树,其中的男职工,也有女职工,并有31的职工各带一个孩子参加,男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们共种了216棵树,那么其中女职工有多少人?做一做:一群猴子采摘水蜜桃。
猴王不在的时候,一只大猴子1小时可采摘15千克,一只小猴子1小时可采摘11千克;猴王在场监督的时候,大猴子的51和小猴子的51必须停止采摘,去伺候猴王,有一天采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共摘3 382千克水密桃。
问:在这个猴群中,共有大猴子多少只?例4、小明用5天时间看完一本200页的故事书。
已知第二天看的页数比第一天多,第三天看的页数是第一天、第二天看的页数之和,第四天看的页数是第五天至少看了多少页?做一做:有一堆围棋子,白子颗数是黑子颗数的3倍。
六年级奥数第23讲 - 不定方程
【例1】求3x+4y=23的自然数解。
解:先将原方程变形, 。可列表试验求解:
X
1
2
3
4
5
6
7
Y
5
×
×
×
2
×
×
所以方程3x+4y=23的自然数解为 或
【变式1-1】求3x+2y=25的自然数解。
【变式1-2】求4x+5y=37的自然数解。
【例2】求方程组的自然数解:
解:这是一个三元一次不定方程组。解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程:
解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。
对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。
解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。
【例5】某次数学竞赛准备例2枝铅笔作为奖品发给获得一、二、三等奖的学生。原计划一等奖每人发6枝,二等奖每人发3枝,三等奖每人发2枝。后又改为一等奖每人发9枝,二等奖每人发4枝,三等奖每人发1枝。问:一、二、三等奖的学生各有几人?
解:设一等奖有x人,二等奖有y人,三ห้องสมุดไป่ตู้奖有z人。则
由 ×2- ,得12x+5y=22,可得
苹果
9
8
7
6
5
4
3
2
1
橘子
2
4
6
8
10
12
14
16
18
梨
19
六年级奥数不定方程
六年级奥数不定方程Prepared on 21 November 2021第六讲不定方程【知识要点】1、许多数学家需要用方程或方程组来求解。
要想获得未知数的唯一解,能独立列出的方程个数必须与未知数的个数相等。
如果方程个数少于未知数的个数,则称之为不定方程或不定方程组,以为此时未知数一般有无数多个解,解是不确定的。
但如果结合具体问题,增加一些对解的限制条件,如只求自然数解等,这样的不定方程的解就只有有限个或唯一一个了。
必须注意,限制条件中,有些是明显的,有些则是隐藏的。
2、求不定方程的自然数解或正整数解,关键是充分利用整除特征,尝试找出第一解;对于其他的所有解,可通过解的规律,逐一罗列出来,并不困难。
【例题精讲】例1:求下列方程的整数解(x>0,y>0)。
(1)5x+10y=14;(2)11x+3y=89.【思路点拨】5和10有公因数5,而14没有公因数5,所以原方程无整数解;y=29-3211x,11x-2能被3整除且x<9。
模仿练习:(1)求满足方程5x+3y=40的自然数解。
(2)设A 和B 都是自然数,且满足11A +7B =7757,求A+B 的值。
例2:某单位职工到郊外植树,其中31的职工各带了一个孩子参加,男职工每人种13棵树,女职工每人种10棵,每个孩子种6棵树,他们共种了216棵树,那么其中有女职工多少人【思路点拨】设有女职工x 人,男职工y 人,那么有孩子3y x +人,这个条件说明3|x+y 。
模仿练习:某小学共有大、中、小宿舍12间,能住80人。
每间大宿舍能住8人,每间中宿舍能住7人,每间小宿舍能住5人。
问中、小宿舍共有多少间例3:有四个自然数A 、B 、C 、D ,它们的和不超过除以B 商5余5;A 除以C 商6余6;A 除以D 商7余7,这四个自然数的和是多少【思路点拨】A=5B+5=6C+6=7D+7,A 一定是5,6,7的公倍数。
模仿练习:有三张扑克牌,牌的数字各不相同,并且都小于10,把三张牌洗好后,分别发给甲、乙、丙三人,每人记下自己牌的数字,再重新洗牌、发牌、记数。
六年级奥数专题培优讲义不定方程及解析全国通用
六年级奥数专题培优讲义——不定方程及解析知识点梳理:在列方程组解答应用题时,有两个未知数,就需要有两个方程。
有三个未知数,就需要有三个方程。
当未知数的个数多于方程的个数时,这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。
不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足轻重的地位。
而在小学阶段打下扎实的基础,无疑很重要。
不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。
不过,我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。
这种情况也不排除它的取值不止一种。
不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。
如果考虑到题中以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整数的分拆有很大关系)。
解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确求解。
【例1】★求方程2725=+y x 的正整数解。
【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==15,63,111y x y x y x【小试牛刀】求方程4x +10y =34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得 2x +5y =17,5y 的个位是0或5两种情况,2x 是偶数,要想和为17,5y 的个位只能是5,y 为奇数即可;2x 典型例题的个位为2,所以x 的取值为1、6、11、16……x =1时,17-2x =15,y =3,x =6时,17-2x = 5,y =1,x =11时,17-2x =17 -22,无解所以方程有两组整数解为:16,31x x y y ==⎧⎧⎨⎨==⎩⎩ 【例2】★ 设A ,B 都是正整数,并且满足3317311=+B A ,求B A +的值。
高斯小学奥数六年级上册含答案第07讲 不定方程
练习2、点心店里卖大、小两种蛋糕.一个大蛋糕恰好够7个人吃,一个小蛋糕恰好够4个人吃,现在有100个人要吃蛋糕,应该准备大、小蛋糕各多少个才不浪费?如果每个大蛋糕10元,每个小蛋糕7元,那么至少要花多少钱?
前面的两道例题只要求方程的解是自然数即可,但有的问题除了要求“解必须是自然数”外,还会有一些其它的约束.下面我们就来看几道这样例题.
例3.甲、乙两个小队去植树.甲小队有一人植树12棵,其余每人植树13棵;乙小队有一人植树8棵,其余每人植树10棵.已知两小队植树棵数相等,且每小队植树的棵数都是四百多棵.问:甲、乙两小队共有多少人?
「分析」不妨设甲小队有 人,乙小队有 人.由“两小队植树棵数相等”,你能列出一个关于 与 的不定方程吗?所列出来的不定方程又该如何求解?
5.甲、乙、丙三个班向希望工程捐赠图书.已知甲班有1人捐6册,有2人各捐7册,其余都各捐11册;乙班有1人捐6册,3人各捐8册,其余各捐10册;丙班有2人各捐4册,6人各捐7册,其余各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101册,且每个班捐赠的册数都在400与600之间.各班各有多少人?48,49,41
例题3.答案:76
详解:设甲、乙两小队分别有 人和 人.则两队植树棵数分别为 棵和 棵.由分析得: .将 0、1、2、……代入方程验证 是否是自然数,可以求出方程的 值最小的一组自然数解 ,此时每队的植树棵数均为38棵.
方程的所有其他的自然数解都可以由进行若干次的“ 值增加13且同时 值增加10”得到(也就是方程的其他所有自然数解是 , , ,……),每次“ 值增加13且同时 值增加10”意味着每队植树棵数增加130棵,38棵要变为四百多棵,意味着要增加3次,符合要求的自然数解是 .所以甲队有33人,乙队有43人,两队共有 人.
六年级上册奥数第八讲不定方程
第八讲不定方程一个方程中有两个未知数,未知数的个数多于方程的个数,这样的方程叫做不定方程。
古希腊的数学家丢番图曾写过关于不定方程的书《算术》,所以不定方程又叫丢番图方程,不定方程往往有无数解,但如果有限制条件,例如求自然数解,往往会使解的个数变成有限。
例题精讲例1、一个工人将99颗弹子装入两种盒子中,每个大盒子装12颗,小盒子装5颗,恰好装完,已知盒子数大于10, 问这两种盒子各有多少?例2、甲级铅笔7块钱一支,乙级铅笔3块钱一支。
问张明用60元恰好买两种铅笔共多少支?例3、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1亳米铜管,那么,只有当锯得的38毫米的铜管和90毫米的铜管各为多少段时,所损耗的铜管才能最少?例4、小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分,小明其套了10次,每次都套中了,每个小玩具都至少被套中一次。
小明套10次共得了61分。
问:小鸡至多被套中多少次?例5、学校里共有12间宿舍,可以住80人,大宿舍住8人,中宿舍住7人,小宿舍住5人,问中宿舍和小宿舍共有多少间?例6、某地水费,不超过10度时,每度0. 45元;超过10度时,每度0.80元。
张家比李家多交水费3.30元,如果两家的用水量都是整数度,问张家、李家各交水费多少元?例7、将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管(加工损耗忽略不计),问剩余部分铝管最少是多少厘米?例8、某种考试已举行24次,共出了426道题。
每次出的题目,有25题,或者16题,或者20题,那么,其中考25题的有多少次?同步训练1、一个布袋中装有红、黄、蓝三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字的和等于21,问小明摸出的球中红球最多不超过多少个?2、篮、排、足球放在一堆共25个,其中篮球个数是足球个数的7倍,求其中排球的个数。
(完整版)小学奥数-不定方程(教师版)
不定方程如$知识梳理]在列方程组解答应用题时,有两个未知数,就需要有两个方程。
有三个未知数,就需要有三个 方程。
当未知数的个数多于方程的个数时, 这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。
不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足 轻重的地位。
而在小学阶段打下扎实的基础,无疑很重要。
不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。
不过, 我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而 且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。
这种 情况也不排除它的取值不止一种。
不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。
如果考虑到题中 以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整 数的分拆有很大关系)。
解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确 求解。
特色讲解]【例1】★求方程5x 2y 27的正整数解。
【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数x 1x 3 x 5 , ,y 11 y 6 y 1【小试牛刀】求方程 4x + 10y = 34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得2x + 5y = 17, 5y 的个位是0 或5两种情况,2x 是偶数,要想和为17, 5y 的个位只能是5, y 为奇数即可;2x 的个位为2,所以 x 的取值为1、6、11、16……x= 1 时,17-2x = 15, y = 3, x= 6 时,17-2x = 5 , y = 1 , x= 11 时,17 — 2x = 17 — 22,无解 所以方程有两组整数解为:dx 1 x y 3,y【例2】★ 设A , B 都是正整数,并且满足 A11[解析]3A 11B 17 33333A+11B=17,因为 A 、B 为正整数,所以 A=2, B=1, A+B=3【例3】★ ★(北大附中入学考试真题) 14个大、中、小号钢珠共重 100克,大号钢珠每个重 12克,中号每个重 8克,小号每个重 5克。
小学六年级奥数 第八章 不定方程
第八章不定方程知识要点如果方程(组)中未知数的个数多于方程的个数,此方程(组)称为不定方程(组)。
如x+y=10,1512x ay a-=⎧⎨+=⎩,。
不定方程(组)的解是不确定的。
一般地,如果没有给不定方程的制约条件,那么它就有无限多个解。
小学阶段主要涉及整系数不定方程的整数解。
关于参数方程,就是有时题中给的条件过少,就设一个未知数参与运算,这个参数不影响结果。
例1 (第五届“希望杯”邀请赛试题)一个两位数的中间加上一个0,得到的三位数比原两位数的8倍小1,原来的两位数是。
点拨根据题意,可由原来的两位数和变化后的三位数之间的数量关系列出方程。
解设原来的两位数是ab=10a+b,则新数是0a b=100a+b。
依题意得 100a+b+1=8(10a+b)即 20a+1=7b所以 a=71 20 b-因为a,b是整数,且1≤a≤9,0≤b≤9,所以 a=1,b=3即原来的两位数是13。
说明如果方程存在的解不止一个,则要逐一解出,并检验,千万不要漏掉或出现与题意相矛盾的解。
例2 (“迎春杯”邀请赛试题)某工厂为优秀职工发奖金,一等奖每人1800元,二等奖每人1200元,三等奖每人800元。
每种奖都有人领,共有15名优秀职工领取奖金的总数为16000元,获一、二、三等奖的职工各有多少人?点拨根据题意,一、二、三等奖人数之和等于15这一等量关系显而易见,而15名职工领取奖金的总和为16000元这一等量关系也给出,可列出方程。
解设一、二、三等奖依次有x人、y人、z人,则有1800x+1200y+800z=16000即 9x+6y+4z=80又x+y+z=15,将z=15-x-y代入上式,得9x+6y+60-4x-4y=80整理得 5x+2y=20又x,y,z是正整数,解得 x=2,y=5,z=15-x-y=8。
答:获一等奖的有2人,二等奖的有5人,三等奖的有8人。
例3 100头驴驮100袋物品,一头大驴驮3袋,一头中驴驮2袋,两头小驴驮1袋。
小学六年级奥数第40讲 不定方程(含答案分析)
第40讲不定方程一、知识要点当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。
如5x-3y =9就是不定方程。
这种方程的解是不确定的。
如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。
如5x-3y=9的解有:x=2.4 x=2.7 x=3.06 x=3.6y=1 y=1.5 y=2.1 y=3如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。
因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。
解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。
解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。
对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。
解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。
二、精讲精练【例题1】求3x+4y=23的自然数解。
先将原方程变形,y=23-3x4。
可列表试验求解:所以方程3x+4y=23的自然数解为X=1 x=5 Y=5 y=2 练习11、求3x+2y=25的自然数解。
2、求4x+5y=37的自然数解。
3、求5x-3y=16的最小自然数解。
【例题2】求下列方程组的正整数解。
5x+7y+3z=253x-y-6z=2这是一个三元一次不定方程组。
解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。
5x+7y+3z=25 ①3x-y-6z=2 ②由①×2+②,得13x+13y=52X+y=4 ③把③式变形,得y=4-x。
因为x、y、z都是正整数,所以x只能取1、2、3.当x=1时,y=3当x=2时,y=2当x=3时,y=1把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。
x=2,y=2时,z也无正整数解。
x=3时,y=1时,z=1.所以,原方程组的正整数解为 x=1y=1z=1求下面方程组的自然数解。
高斯小学奥数六年级上册含答案第07讲不定方程
第七讲不定方程前我们学习的方程一般都有唯一解,比如方程 3x 4 19只有一个解x 5,方程组x 2y 5只有一组解 2x 3y 8什么样的方程,解不唯一呢?举个简单的例子,二元一次方程唯一,因为每当y 取定一个数值时,x 就会有相应的取值和它对应,使方程成立,这样一来就会有无穷多组解.通常情况下,当未知数的个数大于方程个数时.,这个方程.(或 方程组).就会有无穷多个解.可是方程的解那么多, 究竟哪个才是正确的呢?应该说, 如果不加任何额外的限制条件, 这 无穷多个解都是正确的. 但在实际情况中,我们通常会限定方程的解必须是自然数,这样一来,往往就只有少数几个解能符合要求,甚至在某些情况下所有的解都不对.x 2y 5的解就不対刖•所以这杆的方程才 囚平处方程啊 x+y=10陕。
一个右程龙么含右两个木 如数啊”这样的力稈论町好 多桦1方程个数小于未知数个数怖方 程如叫不罡方4T.不定方程,顾名思义就是“不确定”的方程,这里的不确定主要体现在方程的解上.之本讲我们要学习的就是这样的一类方程(或方程组):它们所含未知数的个数往往求下列方程的自然数解:(1) x 2y 5 ;(2) 2x 3y 8 ;(4) 4x 5y 20 .本讲我们要学习的就是这样的一类方程(或方程组) :它们所含未知数的个数往往大于方程的个数, 而未知数本身又有一定的取值范围, 这个范围通常都是自然数——这 类方程就是“不定方程” .形如 ax by c ( a 、b 、c 为正整数)的方程是二元一次不定方程的标准形式.解 这样的方程, 最基本的方法就是枚举. 那怎样才能枚举出方程的全部自然数解呢?我们 下面结合例题来进行讲解.例1.甲级铅笔 7角一支,乙级铅笔 3角一支,张明用 5元钱买这两种铅笔, 钱恰好花完. 请 问:张明共买了多少支铅笔?「分析」设张明买了甲级铅笔 x 支,乙级铅笔y 支,可以列出不定方程:7x 3y 50, 其中x 和y 都是自然数.怎么求解呢?x 19 x 22 x 25、、y 4 y 2 y 0的不定方程的自然数解时,我们可以先找出一组解,之后其余的所有解都可由这一组解的次变化 a 得到(注意变化的方向相反, 一个增加, 另一个就得减少, 才能保证 ax by 的 大小不变)练习 1、(1)求 3x 5y 35的所有自然数解;(2)求11x 12y160 的所有自然数解.般地,如果m是ax nby xmax byc 的一组解,那么yn 这naam abbn abam bn c .另外,也是 ax by c 的一组解,理由相同.2x 这条性质有什么用呢?我们以求x 10一组自然数解x 10.应用上面的规律,y 10 然数),所得结果仍然是x 25都是 2x 3y y0增加 2,所得结果也是 b(当n a 时)也是3y 50的自然数解为例, 2x 3y 50的一组解, 所以y 50的自然数解.另外x 每次减少2x 是2x 3y 50的自然数解. 而且这样就已经求出了2x 是:因 b . ,(当 m b 时) a我们容易看出它有13 x 16 x 19 x 228 、 y 、 6 y 、 4 y 2 、 3(只要 x 还是自然数) ,y 每次 x 7x 4 x 1、、也都y12 y 14 y163y 50的自然数解,所以50 的所有自然数解,它们3y x 每次增加3, y 每次减少2 (只要y 还是自x x 16 y6 ax by c ( a 、b 、c 为正整数)7 x 10 x 13 、、 12 y 10 y 8 x 值每次变化 b , y 值每例2.采购员去超市买鸡蛋.每个大盒里有23 个鸡蛋,每个小盒里有16 个鸡蛋.采购员要恰好买500 个鸡蛋,他一共要买多少盒?「分析」采购员要买多少个大盒,多少个小盒?大盒个数与小盒个数之间有什么联系?练习2、点心店里卖大、小两种蛋糕.一个大蛋糕恰好够7 个人吃,一个小蛋糕恰好够4 个人吃,现在有100 个人要吃蛋糕,应该准备大、小蛋糕各多少个才不浪费?如果每个大蛋糕10 元,每个小蛋糕7 元,那么至少要花多少钱?前面的两道例题只要求方程的解是自然数即可,但有的问题除了要求“解必须是自然数”外,还会有一些其它的约束.下面我们就来看几道这样例题.例3.甲、乙两个小队去植树.甲小队有一人植树12 棵,其余每人植树13 棵;乙小队有一人植树8 棵,其余每人植树10 棵.已知两小队植树棵数相等,且每小队植树的棵数都是四百多棵.问:甲、乙两小队共有多少人?「分析」不妨设甲小队有X人,乙小队有y人•由“两小队植树棵数相等”,你能列出一个关于x与y的不定方程吗?所列出来的不定方程又该如何求解?练习3、天气炎热,高思学校购置了大、小空调若干.每台大空调每天耗电38 度,每台小空调每天耗电13 度.已知所有大空调日耗电量之和恰好比所有小空调日耗电量之和少 1 度.请问:单位里最少购进了多少台空调?例4.将一根长为380厘米的合金铝管截成若干根长为36厘米和24 厘米两种型号的短管,加工损耗忽略不计.问:剩余部分最少是多少厘米?「分析」不妨设已经截出了x根长36厘米的管子和y根长24厘米的管子.合金铝管如果刚好能够被用完,方程应该怎么列?列出来的方程有自然数解吗?练习4、酒店里有500 升女儿红,李一白每次路过这里就打走35 升,杜二甫每次路过这里就打走21 升.那么若干天后,酒店剩余的女儿红最少是多少升?二元一次不定方程只要找到一组自然数解,就能利用方程系数有规律地写出所有自然数解•而含有更多未知数的不定方程又当如何求解呢?例5.我国古代数学家张丘建在《算经》一书中提出了“百鸡问题”:鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?这个问题是说:每只公鸡价值5文钱,每只母鸡价值3文钱,每3只小鸡价值1文钱•要想用100文钱恰好买100只鸡,公鸡、母鸡和小鸡应该分别买多少只?「分析」题中有几个未知量?由这些未知量你能列出几个方程?:;《张丘建算经》■- 张丘建,北魏清河(今山东邢台市清河县)人,中国古代数学家,著有《张丘建算.经》.该书的体例为问答式,条理精密、文辞古雅,是中国古代数学史上少有的杰作.;;《张丘建算经》现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,:各种等差数列问题的解决,某些不定方程问题的求解. 百鸡问题就是其中一个著名的不定方程问题.- 张丘建所处的年代是中国古代的南北朝时期•尽管当时的中国战火连年,朝代更迭::频繁,且一直处于分裂状态,但数学发展的脚步依然没有停下•与《张丘建算经》同时代的算经还有《孙子算经》和《夏侯阳算经》,而与张丘建本人同时代的数学家还有大>名鼎鼎的祖冲之.例6.卡莉娅到商店买糖,巧克力糖13元一包,奶糖17元一包,水果糖7.8元一包,酥糖10.4元一包,最后她共花了360元,且每种糖都买了•请问:卡莉娅买了多少包奶糖?「分析」题目中出现了四种糖果,我们不妨设巧克力糖、奶糖、水果糖和酥糖分别有x 包、y包、z包和w包,再由已知的单价、总价可以列出方程13x 17y 7.8z 10.4w 360 .这是一个四元一次方程,如果按通常的解法枚举出所有解,势必会有太多可能性需要讨论,过于繁琐•而且题目也没要我们求出所有解,只要我们求出奶糖的数量即可.那有没有办法不求其它糖果,只求奶糖的数量呢?练习6、求22x 26y 33z 65w 194的所有自然数解.气象学家Lorenz 提出一篇论文,名叫“一只蝴蝶拍一下翅膀会不会在德克萨斯州引起 龙卷风?”论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴 蝶效应」•就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点 数也不一定是相同的.Lorenz 为何要写这篇论文呢?这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑.平时,他只 需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下 一刻可能的气象数据,因此模拟出气象变化图.这一天,Lorenz 想更进一步了解某段纪录的后续变化, 他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果•当时,电脑处理数据资料的数度不快,在结果出来之 前,足够他喝杯咖啡并和友人闲聊一阵•在一小时后,结果出来了,不过令他目瞪口呆•结 果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两 笔资讯.而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别•所以长期的准确预测天气是不可能的.蝴蝶效应课 内 外 堂作业5x 2 y 4z 601. (1)求5x 7y 31的所有自然数解;(2)求5x 2y 4z 60的所有自然数解.x 2 y z 362. 在一次植树节的活动中,参加活动的男生每个人种11 棵树,女生每个人种7棵树,最后所有人一共种了100棵树,那么参加活动的一共有多少人?3. 一张纸上写有25个1.21 和25个1.3.现在要划去其中的一些数,使留下来的数的总和为20.08,那么应划去多少个 1.3?4. 樱木同学特别喜欢吃包子,每天早上都到学一食堂买包子吃.(1)第一天早上,樱木同学花了6元买了一些冬菜包和豆香包,两种包子他都买了.已知冬菜包每个7 角,豆香包每个 5 角,那么樱木同学一共买了多少个包子?(2)第二天早上,樱木同学去学一食堂的路上遇到了晴子.于是樱木邀请晴子一起去吃包子.到学一食堂后,两人除了吃冬菜包和豆香包以外还点了几串羊肉串.已知羊肉串每串1 .2元,最后一共花了18元,所点包子与羊肉串数量总和是25.那么两人最多吃了多少串羊肉串?5. 甲、乙、丙三个班向希望工程捐赠图书.已知甲班有1 人捐6册,有2人各捐7册,其余都各捐11 册;乙班有 1 人捐6册,3人各捐8册,其余各捐 1 0册;丙班有2人各捐4册,6人各捐7册,其余各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101 册,且每个班捐赠的册数都在400与600之间.各班各有多少人?第七讲不定方程例题:例题1. 答案:14 或10详解:由于方程两边除以 3 的余数相同, 7x 3y x mod3 , 50 2 mod3 ,所以x除以3余2 .又因为7x 50,所以x是不超过7的自然数,只能取2或5.当x 2时,y 50 2 7 3 12 , x y 14;当x 5 时, y 50 5 7 3 5 , x y 10.所以张明共买了14支或10支铅笔.例题2. 答案:26详解:设买了大盒鸡蛋x盒,小盒鸡蛋y盒,则23x 16y 500 .考虑方程两边除以16 的余数,得:7x除以16的余数是4.首先要求7x是4的倍数,所以x是4的倍数,验证x 4、8、12、……发现满足7x除以16的余数是4的最小x值是12,相应的y的值是14,即x 12.由于12 16 且14 23,所以方程没有其它自然数解,采购员一共y 14买了12 14 26 盒鸡蛋.例题3. 答案:76详解:设甲、乙两小队分别有x人和y人.则两队植树棵数分别为13x 1棵和10y 2棵.由分析得:10y 13x 1 .将y 0、1、2、……代入方程验证x是否是自然数,可以求出方程的y值最小的一组自然数解y 4,此时每队的植树棵数均为38棵.x3方程的所有其他的自然数解都可以由进行若干次的“y值增加13且同时x值增加10”得到(也就是方程的其他所有自然数解是y 17, y 30, y 43,……),每次“ yx 13 x 23 x 33值增加13且同时x值增加10”意味着每队植树棵数增加130棵,38棵要变为四百多棵,意味着要增加 3 次,符合要求的自然数解是y 43.所以甲队有33 人,乙队有x 3343 人,两队共有33 43 76 人.例题4. 答案:8详解:设已经截出了x根长36厘米的管子和y根长24厘米的管子,那么被截出的管子一共长36x 24y厘米.由36,24 12,得:36x 24y一定是12的倍数.而380不是12 的倍数,所以36x 24y 380是没有自然数解的!管子不可能刚好被用尽,那么最少会剩下多少厘米呢?由于36x 24y —定是12的倍数,小于 380且能被12整除的最大自然数是372,而36x 24y 372的自然数解是存在的,如X 1,也就是截出1根长36厘米的管子和y 1414根长24厘米的管子,能够使得截出的管子总长度达到最大值372厘米•所以剩余部分最少是380372 8厘米.x y z 100详解:设公鸡、母鸡和小鸡分别买了 x 只、y 只和z 只•依题意,得: 1•要5x 3y - z 100 3求这个方程的自然数解, 我们用“消元”的想法把它转化成二元一次不定方程求自然 数解的问题.我们选择“消去” z :将第二个方程乘以3,然后减去第一个方程, 得:例题6.答案:12详解:不妨设巧克力糖、奶糖、水果糖和酥糖分别有x 包、y 包、z 包和w 包,则13x 17y 7.8z 10.4w 360 .把系数都化成整数,得:65x 85 y 39z 52w 1800 .由于我们只关心奶糖的数量,我们将未知数y 分为一组,其余未知数分为另一组:65x39z 52w85y1800 .也就是 13 5x 3z 4w 85y1800 .令 u 5x 3z 4w ,则13u 85y 1800 .它的自然数解只有U 60,所以阿奇共买了 12包奶糖.y 12x 0x 4x 8x 12有自然数解是: y 25、 y 18、 y 11和 y 4 .所以我们有四种符合要求的买z 75 z 78 z 81 z 84 x y 4z 值分别为75、78、81、84都是自然数,于是原不定方程的所鸡方案:公鸡 0只,母鸡25只,小鸡75只;公鸡4只,母鸡18只,小鸡78只;公例题5.答案:有四种符合要求的买鸡方案:公鸡 母鸡18只,小鸡78只;公鸡8只,母鸡 小鸡84只 0只,母鸡25只,小鸡75只;公鸡4只, 11只,小鸡81只;公鸡12只,母鸡4只,14x 8y 200,即 7x 4y100,它的所有自然数解是x 0 x 4 x 8 、 、y25y 18y1112 .它们对应的鸡8只,母鸡 11只,小鸡81只;公鸡12只,母鸡4只,小鸡84只.练习:1. 答案: ( 1 )有三组解: x 0 ; x 5;x 1010;(2)有一组解:x8y 7 y 4y1 y6简答: ( 1)考虑方程两边除以 3 的余数; ( 2) 考虑方程两边除以11 的余数2.答案:有四种购买方案: 1 2个大蛋糕, 4个小蛋糕; 8个大蛋糕, 11 个小蛋糕; 4个大 蛋糕, 18 个小蛋糕; 0 个大蛋糕, 25 个小蛋糕;第一个方案最省钱,只要花12 10 4 7 148 元 简答:求不定方程 7x 4y 100的自然数解即可.3. 答案: 4 台简答: 38x 13y 1 的最小自然数解为x 1, 最少需要大空调 1 台,小空调 3 台y34. 答案:3简答: 注意 35x 21y 是7的倍数.x7 x 6x 55. 答案:( 1) 有三组解: y 1 、 y3 、 y5; (2) 1; 2; 6z2 x 1x简答: ( 1) 消去 x 可解;( 2)求 x yz 9的正整数解即可.16x12y 1 0z 1006 x 015 ; y 140 z 83的余数;(2)消去未知数y ,转化成二元一次不定方程.2. 答案: 12x4x 4,所以参加活动的共有 4 8 12 人. y83. 答案: 17作业:x x2 1. 答案:( 1 )x 2;( 2) yy3z 简答:( 1 )考虑方程两边除以简答:由 11x 7y 100 ,得:简答:设留下来的数中有x 个 1.21 和y 个 1.3,则 1.21x 1.3y 20.08.由于总和的百分位是8,说明x 8或18.仅当x 8相应的y 是整数,求得y 8,所以应该划去25 8 17 个 1.3.4. 答案:( 1) 10;(2) 7x5简答:( 1)设买了冬菜包x 个,豆香包y 个.由7x 5y 60,得:x 5,所以樱木同y5x24x17x10学一共买了5 5 10个包子;( 2)由7x 5y 12z 180,得:y0、y5、y10 x y z 25135z z zx3或y 15 ,所以羊肉串最多有7 串. z75. 答案:甲51 ;乙53;丙49 简答:设甲、乙、丙三个班分别有x 人、y 人、z 人,则由已知可得:20 11(x 3) 30 10(y 4) 28 11x 31 10y,即,所以可知x 是除以10 余 1 的数,y30 10(y 4) 50 9(z 8) 101 10y 89 9z是除以9余8的数.又因为每班捐书册数在400与600之间,所以x只能取51,此时才同时满足y是除以9余8的数,即为53,则z为49.x 1 x 4 x、、y 16 y 14 y 这就告诉我们,在求形如。
6年级奥数-不定方程
不定方程讲义讲义编号 LTJYsxsrl005学员编号:LTJY001 年 级:六年级 课时数: 学员姓名: 辅导科目:数学 学科教师: 学科组长签名及日期教务长签名及日期课 题一次不定方程(组)的整数解问题授课时间:备课时间:教学目标 1.理解不定方程(组)的含义2.掌握一次不定方程(组)的定理和相关解题方法 重点、难点 重点:不定方程定理的理解难点:解不定方程方法与技巧的灵活运用 考点及考试要求 不定方程(组)是数论中的一个重要课题教学内容【写在前面】不定方程(组)是数论中的一个重要课题. 对于不定方程(组),我们往往只求整数解,甚至是只求正整数解,加上条件限制后,解就可确定.有时还可以解决计数、求最值等方面的问题.二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)常常要转化为二元一次不定方程问题加以解决. 【本讲重点】求一次不定方程(组)的整数解 【知识梳理】不定方程(组)是指未知数的个数多于方程的个数的方程(组),其特点是往往有无穷多个解,不能唯一确定. 重要定理:设a 、b 、c 、d 为整数,则不定方程c by ax =+有:定理1 若,),(d b a =且d 不能整除c ,则不定方程c by ax =+没有整数解;定理2 若),(00y x 是不定方程c by ax =+且的一组整数解(称为特解),则⎩⎨⎧-=+=aty y bt x x 00,(t 为整数)是方程的全部整数解(称为通解). (其中d b a =),(,且d 能整除c ).定理 3 若),(00y x 是不定方程1=+by ax ,1),(=b a 的特解,则),(00cy cx 是方程c by ax =+的一个特解. (其中d b a =),(,且d 能整除c ).求整系数不定方程c by ax =+的正整数解,通常有以下步骤: (1) 判断有无整数解; (2) 求出一个特解; (3) 写出通解;(4) 有整数t 同时要满足的条件(不等式组),代入命题(2)中的表达式,写出不定方程的正整数解. 解不定方程(组),需要依据方程(组)的特点,并灵活运用以下知识和方法:(1)分离整系数法; (2)穷举法; (3)因式分解法; (4)配方法; (5)整数的整除性; (6)奇偶分析; (7)不等式分析; (8)乘法公式.【学法指导】【例1】求下列不定方程的整数解(1)862=+y x ; (2)13105=+y x . 【分析】根据定理1、定理2确定方程的整数解.【解答】(1)原方程变形为:43=+y x , 观察得到⎩⎨⎧==1,1y x 是43=+y x 的一组整数解(特解),根据定理2 ,)(1,31是整数t t y t x ⎩⎨⎧-=+=是原方程的所有整数解.(2)∵(5,10)=5,但5不能整除13,∴根据定理1,原方程的无整数解.【点评】先判断方程是否有整数解,多于系数不大的题目优先选用观察法寻找特解. 求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.【实践】求下列不定方程的整数解(1)211147=+y x ; (2)11145=-y x .【例2】求方程213197=+y x 的所有正整数解.【分析】此方程的系数较大,不易用观察法得出特解.根据方程用y 来表示x ,再将含y 的代数式分离出整系数部分,然后对分数系数部分进行讨论,赋予y 不同的整数,寻找一个使分数系数部分成为正整数的y 0,然后再求x 0,写出通解,再解不等式组确定方程的正整数解.【解答】∵(7,19)=1,根据定理2,原方程有整数解.由原方程可得75323075314210719213yy y y y x -+-=-+-=-=, 由此可观察出一组特解为x 0=25,y 0=2.∴方程的通解为)(72,1925是整数t ty t x ⎩⎨⎧-=+=.其中⎩⎨⎧>->+072,01925t t ∴⎪⎪⎩⎪⎪⎨⎧<->72,1925t t ∴721925<<-t ∴0,1-=t 代入通解可得原方程的正整数解为⎩⎨⎧==⎩⎨⎧==.2,25.9,6y x y x 或 【点评】根据定理2解这类方程,若未知数的系数较大不容易观察出一组整数解时,可用一个未知数去表示另一个未知数,再利用整数的知识,这是解二元一次不定方程基本的方法,称为分离整系数法. 这样就容易找出一组整数解来. 【实践】求方程2654731=+y 的正整数解.【例3】大客车能容纳54人,小客车能容纳36人,现有378人要乘车,问需要大、小客车各几辆才能使每个人都能上车且各车都正好坐满.【分析】本题是不定方程的应用,根据题意列出方程并求出非负整数解即可.【解答】设需要大客车x 辆,小客车y 辆,根据题意可列方程 3783654=+y x ,即2123=+y x .又(3,2)=1,根据定理2,原方程有整数解. 易知⎩⎨⎧==9,1y x 是一个特解,通解为)(99,21是整数t t y t x ⎩⎨⎧-=+=由题意可知⎩⎨⎧≥-≥+099,021t t 解得.3,2,1,0=t 相应地⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.0,7.3,5.6,3.9,1y x y x y x y x 答:需要大客1车辆,小客车9辆;或需要大客车3辆,小客车6辆;或需要大客车5辆,小客车3辆;也可以只要大客车7辆,不要小客车.【点评】一般来说实际问题通常取正整数解或者非负整数解.【实践】某次考试共需做20道小题,对1道得8分,错一道扣5分,不做不得分.某生共得13分,他没做的题目有几道?【例4】某人的生日月份数乘以31,生日的日期数乘以12,相加后得347,求此人的生日. 【分析】本题的隐含条件是:月份的取值[1,12],日期的取值[1,31].【解答】设此人生日的月份数为x ,日期数y. 根据题意可列方程 31x+12y=347.〈方法一〉 〈方法二〉特解:)(3116125165是整数通解:t ty t x y x ⎩⎨⎧-=+=⎩⎨⎧== )31347(|123134712x x y -∴-=答:此人的生日为5月16日.【点评】求出通解后,要利用隐含条件求出符合题意的解. 其中方法二是利用了同余的知识. 【实践】已知有一个三位数,如果它本身增加3,那么新的三位数的各位数字和就减少到原来的31,求一切这样三位数的和.【例5】(新加坡数学竞赛题)设正整数m,n 满足698+=+mn n m ,则m 的最大值为 . 【分析】把m 用含有n 的代数式表示,用分离整系数法,再结合整除的知识,求出m 的最大值. 【解答】∵698+=+mn n m ,∴n mn m 968-=-,n m n 96)8(-=- 由题意可得,n≠8,∴8669866729869896-+=-+-=--=--=n n n n n n n m , ∵m,n 为正整数, ∴ 当n=9时,m 有最大值为75.【点评】此题是求最值的问题,利用分离整系数法是一种典型的常用方法.【实践】(北京市数学竞赛题)有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能3个连续的正整16550125121121)(512)12(mod 711)12(mod 31347===∴=∴≤+≤∴≤≤+=∴≡∴≡∴y x x t t x t t x x x 代入原方程得:把是整数 .16503131161121251311121是符合题意解解得⎩⎨⎧==∴=∴⎩⎨⎧≤-≤≤+≤∴⎩⎨⎧≤≤≤≤y x t t t y x数的和,那么这8个连续的正整数中最大数的最小值是 .【例6】我国古代数学家张建丘所著《算经》中的“百钱买百鸡”问题:鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,百钱买百鸡,问鸡翁,鸡母,鸡雏各几何?【分析】分析:用x,y,z 来表示鸡翁,鸡母,鸡雏的只数,则可列方程组:⎪⎩⎪⎨⎧=++=++1001003135z y x z y x如何解这个不定方程组?消元转化为不定方程.【解答】解:设鸡翁,鸡母,鸡雏的只数分别为x,y,z.⎪⎩⎪⎨⎧=++=++)2(1003135)1(100z y x z y x (2)×3-(1)得:14x +8y =200,即7x +4y =100.〈方法一〉)(71844.184是整数通解:,特解:t t y t x y x ⎩⎨⎧-=+=⎩⎨⎧== .2,1,07181071804400=∴⎪⎩⎪⎨⎧<->⎩⎨⎧>->+∴⎩⎨⎧>>t t t t t y x 解得 ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===844128111878184,z y x z y x z y x 原方程有三组解:相应地 〈方法二〉〉下面的方法同〈方法一为整数)(通解:的特解是其特解为令.75004300.1004750030053,147t ty t x y x y x y x y x ⎩⎨⎧--=+==+⎩⎨⎧-==∴⎩⎨⎧-===+ 〈方法三〉下面方法同〈一〉是整数得:代入把是整数,即,,).(71844718)3(44).(44)4(mod 30:)4(mod 7100)7100(|4)3(71004t ty tx ty t x t t x x x x x y ⎩⎨⎧-=+=∴-=+=+=∴≡≡∴-∴-= 【点评】充分挖掘题目的隐含条件,进而求整数解.【实践】如果1只兔可换2只鸡,2只兔可换3只鸭,5只兔可换7只鹅.某人用20只兔换得鸡、鸭、鹅共30只.问:其中的鸡、鸭、鹅各多少只? 答案:(2,21,7)、(4,12,14)、(6,3,21)【例7】求方程23732=++z y x 的整数解.【分析】对于三元一次不定方程,可以另外引进一个未知数,将其转化为方程组,然后分别解方程组中的各个方程,从而得到原方程的解.【解答】设t y x =+32,则原方程可看作⎩⎨⎧=+=+)2(.237)1(,32z t t y x 对于方程(1)x =-t ,y =t 是一个特解, 从而(1)的整数解是)()4(.2)3(,3-是整数u u t y u t x ⎩⎨⎧+=-= 又t =2,z =3是方程(2)的一个特解,于是(2)的整数解是)()6(.72)5(,3是整数v v t v z ⎩⎨⎧+=-= 将(6)代入(3)、(4)消去t 得到原方程的所有整数解为:)(.3,272,372是整数、v u v z u v y u v x ⎪⎩⎪⎨⎧-=++=---=【点评】一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的,将解中的参数作适当代换,就可以化为同一形式. 【实践】求方程7892439=+-z y x 的整数解.【例8】(海峡两岸友谊赛试题)甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学没人有31个核桃,三组共有核桃总数是365个.问:三个小组共有多少名同学?【分析】设甲组同学a 人,乙组同学b 人,丙组同学c 人,由题意得365313028=++c b a . 要求c b a ++,可以运用放缩法从确定c b a ++的取值范围入手.【解答】设甲组同学a 人,乙组同学b 人,丙组同学c 人,则365313028=++c b a .∵)(31365313028)(28c b a c b a c b a ++<=++<++,∴2836531365<++<c b a .∵c b a ++是整数,∴c b a ++=12或13.但当c b a ++=13时,得132=+c b ,无正整数解. 答:三个小组共有12名同学.【点评】整体考虑和的问题,巧妙运用放缩法.【实践】Alice wants to buy some radios, pens and bags. If she buys 3 radios,6 pens,2 bags,she will pay ¥302. If she buys 5radios,11 pens,3 bags,she will pay ¥508. Question: How much will Alice pay for 1 radio,1 pen and 1 bag?【例9】一个布袋里有红、黄、蓝三种颜色大小相同的木球.红球上标有数字1,黄球上标有数字2,蓝球上标有数字3.小明从布袋中摸出10个球,它们上面所标的数字和等于21.(1) 小明摸出的球中,红球的个数最多不超过几个?(2) 若摸出的球中三种颜色都有,有多少种不同的摸法?【分析】由于知道三种球的个数和,因此可设二元.第(2)问计数问题的实质是就是求正整数解的组数. 【解答】(1)设小明摸的红球有x 个,黄球有y 个,蓝球有)(y x --10个,则21)10(32=--++y x y x , 整理,得x y 29-=,因为x 、y 均为正整数,可知x 的最大值为4.即红球最多不超过4个.(2)由(1)知蓝球的个数是1)29(1010+=---=--=x x x y x z ,又∵.290.01,029,0,0,0,0<<⎪⎩⎪⎨⎧>+>->∴⎪⎩⎪⎨⎧>>>x x x x z y x 解得 ∴.4,3,2,1=x因此共有4种不同的摸法,如下:(1,7,2),(2,5,3),(3,3,4),(4,1,5).【点评】此题求的是未知数的范围及可能取值的个数,因此不需要求出方程的通解,而是根据题意对未知数的限制利用不等式分析出未知数的取值范围,以及整数解的个数.【实践】已知有两堆水泥,若从第一堆中取出100袋放进第二堆,则第二堆比第一堆多一倍;相反,若从第二堆中取出一些放进第一堆,则第一堆比第二堆多5倍.问第一堆中可能的最少水泥袋数是多少?并在这种情况下求出第二堆水泥的袋数.【例10】设非负整数n ,满足方程n z y x =++2的非负整数(x,y,z )的组数记为n a . (1)求3a 的值;(2)求2001a 的值.【分析】审清题中n a 的n 与方程n z y x =++2是同一个非负整数,3a 的含义是方程32=++z y x 的非负整数解的(x,y,z )的组数.【解答】(1)当n=3时,原方程为32=++z y x ,由于.10,0,0≤≤≥≥z y x 得 当z=1时,方程为x+y=1,其解(x,y )=(0,1),(1,0) 有2组;当z=0时,方程为x+y=3,其解(x,y )=(0,3),(1,2),(2,1),(3,0) 有4组. 综上,3a =6.(2)当n=2001时,原方程为20012=++z y x ,由于.10000,0,0≤≤≥≥z y x 得当z=1000时,方程为x+y=1,其解有2组;当z=999时,方程为x+y=3,其解有4组; 当z=998时,方程为x+y=5,其解(x,y )=(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)有6组;…; 当z=0时,方程为x+y=2001,其解(x,y )=(0,2001),(1,2000),…,(2001,0) 有2002组.综上,2001a =2+4+6+…+2002=1003002.【点评】此题综合较强,涉及解不定方程、分类讨论、计数等方面的知识,需要灵活运用所学只是解决问题. 【实践】一次不定方程x+y+z=1999的非负整数解有( )个 CA.20001999B.19992000C.2001000D.2001999【总结反思】以上介绍了初中数学竞赛中一次不定方程的基本解法、各种解题技巧以及应用. 解不定方程的基本方法是分离整系数法,要熟练掌握. 在具体应用问题上,能将实际问题转化为不定方程的问题,并根据题意挖掘题目的隐含条件,也就是未知数的取值范围.【题海拾贝】1.(2000年希望杯竞赛题)若a 、b 均为正整数,且2a>b ,2a+b=10,则b 的值为( ) A. 一切偶数 B.2、4、6、8 C.2、4、6 D.2、42. 若正整数x,y 满足2004a=15y ,则 x+y 的最小值为 .3. 如果三个既约真分数6,432b a ,的分子都加上b ,这时得到的三个分数之和为6. 求这三个既约真分数的和.4. (重庆市竞赛题)一个盒子里装有不多于200粒棋子,如果每次2粒、3粒、4粒或6粒地取出,最终盒内都剩余1粒棋子;如果每次11粒地取出,那么正好取完.问:盒子里装有多少粒棋子?5. (2006年国际城市竞赛题)一辆汽车下坡的速度是72km/h ,在平地上的速度是63km/h ,上坡的速度是56km/h.汽车从A 地到B 地用了4h ,而返程用了4小时40分,求AB 两地的距离.学生签名: 签字日期:。
六年级上奥数第3讲 不定方程
六秋第3讲不定方程一、教学目标当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。
如5x-3y=9就是不定方程。
这种方程的解是不确定的。
如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。
这种方程的解是不确定的。
如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。
解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。
二、例题精选【例1】求下列方程的自然数解:①23x+16y=500 ②39x+30y=267【巩固1】求下列方程的自然数解:①3x+5y=127 ②11x+12y=160【例2】小明把他生日的月份乘以31,再把生日的日期乘以12,然后把两个乘积加起来刚好等于400.你知道小明的生日是几月几日吗?【巩固2】有大小、两种蛋糕。
一个大蛋糕够7个人吃,一个小蛋糕够4个人吃。
现在有100人需要招待,应该分别准备大、小蛋糕多少个才不会浪费?【例3】张师傅每天能缝制 3 件上衣,或者 9 件裙裤,李师傅每天能缝制 2 件上衣,或者 7 件裙裤,两人 20 天共缝制上衣和裙裤 134 件.那么其中上衣是多少件?【巩固3】要把一根长 36.9 厘米的木料锯成长 3.9 厘米和 6.9 厘米两种规格的小木料.每锯一次要耗损0.1厘米的木料,要求除了每次锯木时的损耗外不能浪费.那么这两种规格的木料各锯多少段?【例4】 某工厂为优秀职工发奖金,一等奖每人 1800 元,二等奖每人 1200 元,三等奖每人 800 元,每种奖都有人领,共有 15 名优秀职工领有奖金的总数为 16000 元, 获得一、二、三等奖的职工各有多少人?【巩固4】有 100 个同学去操场踢足球、打排球和打篮球,每个足球场地 22 人,每个排球场地 12 人,每个篮球场地 10 人,他们共占了 8 个场地.问:其中足球场、排球场和篮球场各几个?【例5】 某次聚餐,每一位男宾付130 元,每一位女宾付100 元,每带一个孩子付60元,现有31的成人各带了一个孩子,主办方总共收到了2160元。
六年级奥数试题及答案:不定方程问题(高难度)
六年级奥数试题及答案:不定方程问题(高难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?考点:不等方程的分析求解.分析:假设一开始A桶中有液体x升,B桶中有y升,第一次将A桶的液体倒入B桶后,B桶有液体2y升,A桶剩(x-y)升;第二次将B桶液体倒入A桶后,A桶有液体2(x-y)升,B桶是(3y-x)升,第三次将A桶的液体倒入B桶后,B桶有液体(6y-2x)升,A桶剩下(3x-5y)升,由此时两桶的液体体积相等,可得方程3x-5y=6y-2x,整理可以得出5x=11y,所以x:y=11:5,据此再进行推理即可解答问题.解答:解:设一开始A桶中有液体x升,B桶中有y升,第一次将A桶的液体倒入B桶后,B桶有液体2y升,A桶剩(x-y)升;第二次将B桶液体倒入A桶后,A桶有液体2(x-y)升,B桶是(3y-x)升,第三次将A桶的液体倒入B桶后,B桶有液体(6y-2x)升,A 桶剩下(3x-5y)升,由此时两桶的液体体积相等,可得方程:3x-5y=6y-2x,整理可以得出5x=11y,所以x:y=11:5,现在还不知道A桶中装的是水还是牛奶,可以将牛奶稀释的过程列成下表:由上表看出,B桶中的液体,原来A桶液体与原来B桶液体的比是5:3,而题目中说水比牛奶多1升,所以原来A桶中是水,B桶中是牛奶,因为在5:3中,5-3 相当于1升,所以2个单位相当于1升,所以A桶中原有水11/2升,B桶中原有牛奶5/2升;结束时,A桶中有3升水和1升牛奶,B桶中有5/2升水和3/2升牛奶.点评:解答此题的关键是,根据题意,设出未知数,再根据所给出的信息,列出方程或不定方程,解答即可,难度较大.。
六年级知识点不定方程
六年级知识点不定方程不定方程是数学中的一个重要概念,对于六年级的学生来说,掌握不定方程的解法对于提高数学解题能力至关重要。
本文将为大家介绍六年级知识点不定方程的概念、解法及应用。
一、不定方程的概念不定方程是指方程中含有未知数的数值不确定,通常表示为形如ax + by = c的方程,其中a、b、c为已知的系数,x、y为未知数。
不定方程中,我们需要找到满足方程的整数解。
二、不定方程的解法1. 列举法列举法是最常用的解不定方程的方法。
具体步骤是:(1)将方程中的系数a、b与结果c分别取不同的整数值,列出方程的多组解;(2)逐个验证所列出的解是否满足原方程,验证通过即为方程的解。
2. 辗转相除法当方程中的系数a、b较大时,使用列举法效率较低,这时可以尝试使用辗转相除法。
具体步骤是:(1)先令a、b互换,使得a > b;(2)用b去除以a,得到余数r;(3)如果r为0,则a为原方程的最大公约数,b为原方程的解之一;(4)如果r不为0,则继续用r去除以b;(5)重复以上步骤,直到余数为0为止,最后一个余数不为0的除数即为原方程的最大公约数。
三、不定方程的应用不定方程在实际生活中有广泛的应用。
以下举例说明:1. 整数约分在分数的运算中,我们需要进行整数的约分操作。
不定方程的解法可以帮助我们快速找到分数的最大公约数,从而进行有效地约分操作。
2. 货币找零问题在日常购物中,我们经常遇到需要找零的情况。
不定方程的解法可以帮助我们计算出最少需要的货币张数,从而进行合理的找零操作。
3. 奥数问题奥数中有很多涉及不定方程的问题,掌握不定方程的解法可以帮助我们更好地解决这类问题,提高奥数竞赛的成绩。
四、总结六年级的学生通过掌握不定方程的概念、解法及应用,可以提高数学解题的能力,为提高数学成绩打下坚实基础。
在实际生活中,不定方程的应用也随处可见,能够帮助我们解决各种问题。
以上是关于六年级知识点不定方程的相关介绍。
通过学习和掌握,相信大家能够在数学学习中取得更好的成绩!。
六年级奥数:第40讲 不定方程
第40講不定方程一、知識要點當方程的個數比方程中未知數的個數少時,我們就稱這樣的方程為不定方程。
如5x-3y=9就是不定方程。
這種方程的解是不確定的。
如果不加限制的話,它的解有無數個;如果附加一些限制條件,那麼它的解的個數就是有限的了。
如5x-3y=9的解有:x=2.4 x=2.7 x=3.06 x=3.6y=1 y=1.5 y=2.1 y=3如果限定x、y的解是小於5的整數,那麼解就只有x=3,Y=2這一組了。
因此,研究不定方程主要就是分析討論這些限制條件對解的影響。
解不定方程時一般要將原方程適當變形,把其中的一個未知數用另一個未知數來表示,然後再一定範圍內試驗求解。
解題時要注意觀察未知數的特點,儘量縮小未知數的取值範圍,減少試驗的次數。
對於有3個未知數的不定方程組,可用削去法把它轉化為二元一次不定方程再求解。
解答應用題時,要根據題中的限制條件(有時是明顯的,有時是隱蔽的)取適當的值。
二、精講精練【例題1】求3x+4y=23的自然數解。
先將原方程變形,y=23-3x4。
可列表試驗求解:所以方程3x+4y=23的自然數解為X=1 x=5Y=5 y=2 練習11、求3x+2y=25的自然數解。
2、求4x+5y=37的自然數解。
3、求5x-3y=16的最小自然數解。
【例題2】求下列方程組的正整數解。
5x+7y+3z=253x-y-6z=2這是一個三元一次不定方程組。
解答的實話,要先設法消去其中的一個未知數,將方程組簡化成例1那樣的不定方程。
5x+7y+3z=25 ①3x-y-6z=2 ②由①×2+②,得13x+13y=52X+y=4 ③把③式變形,得y=4-x。
因為x、y、z都是正整數,所以x只能取1、2、3.當x=1時,y=3當x=2時,y=2當x=3時,y=1把上面的結果再分別代入①或②,得x=1,y=3時,z無正整數解。
x=2,y=2時,z也無正整數解。
x=3時,y=1時,z=1.所以,原方程組的正整數解為x=1y=1z=1練習2求下麵方程組的自然數解。
六年级奥数拉分提升-第33讲不定方程
不定方程是指未知数个数多于方程个数,且对解有一定限制(比如要求解为正整数等)的方程。
1.倍数确定法
2.尾数确定法
3.余数确定法
4.崔氏瞪眼法
5.蒙猜凑试多位一体傻算法
(★★)
搞定以下三个小题,别用傻算法啦(*^__^*)
()145100x y +=
()24598x y += ()34599x y +=
(★★★)
求7x +19y =213的所有正整数解。
(★★★)
崔气球把他的生日的月份乘以30,日期乘以11,然后加起来和数是350,他是生日是几月几日?
(★★★)
大客车有48个座位,小客车有30个座位.现有306名旅客,要使每个旅客都有座位而且车上无空位。
需要大、小客车各多少辆?
(★★★)
豆花和麦口是一对好朋友,它们在早晚见面时总要叫上几声表示问候。
若是早晨见面,豆花叫两声,麦口叫一声;若是晚上见面,豆花叫两声,麦口叫三声。
帅帅对它们的叫声统计了不定方程。
六年级奥数专题不定方程
十一、不定方程(一)年级班姓名得分 一、填空题1.已知1999×△+4×□=9991,其中△, □是自然数,那么□=.2.数学测试卷有20道题.做对一道得7分;做错一道扣4分;不答得0分.张红得了100分,她有道题没答.3.x 是自然数,∙∙=÷52.0810a x ,字母a 表示一个数字,x 是.4.不定方程172112=+y x 的整数解是.5.某青年1997年的年龄等于出生年份各数字的和,那么,他的出生年份是.6.如果在分数4328的分子分母上分别加上自然数a 、b ,所得结果是127,那么a+b的最小值等于.7.40只脚的蜈蚣与3个头的龙同在一个笼子中,共有26个头和298只脚,若40只脚的蜈蚣有1个头,那么3个头的龙有只脚.8.甲、乙两个小队的同学去植树.甲小队一人植树6棵,其余每人都植树13棵;乙小队有一人植树5棵,其余每人都植树10棵.已知两小队植树棵数相等,且每小时植树的棵数大于100而不超过200,那么甲、乙两小队共有人.9.小明用5天时间看完了一本200页的故事书.已知第二天看的页数比第一天多,第三天看的页数是第一、二两天看的页数之和,第四天看的页数是第二、三两天看的页数之和,第五天看的页数是第三、四两天看的页数之和.那么,小明第五天至少看了 页.10.一群猴子采摘水蜜挑.猴王不在的时候,一个大猴子一小时可采摘15公斤,一个小猴子一小时可采11公斤;猴王在场监督的时候,大猴子的51和小猴子的51必须停止采摘,去伺侯猴王.有一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘3382公斤水密桃,那么在这个猴群中,大猴子共有个.二、解答题11.今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.用100个钱买100只鸡,问公鸡、母鸡、小鸡各买了多少只?12.某地收取电费的标准是:每月用电不超过50度,每度收5角;如果超过50度,超出部分按每度8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?13.哲洙替爸爸买了50张圣诞节卡片.他先到“甲”文具店去买了几张每张500分钱的卡片,剩余的卡片到“乙”文具店去买了.“乙”文具店的一张卡价格是以每百分为单位,且小于2000分.哲洙买了50张卡片共花了30400分.请你写出他在“乙”文具店买的卡片数量的所有可能情形.14.现有两小堆小石头,如果从第一堆中取出100块放进第二堆,那么第二堆比第一堆多一倍,相反,如果从第二堆中取出一些放进第一堆,那么第一堆比第二堆多五倍.问第一堆中可能的最少石头块数等于多少?并在这种情况下求出第二堆的石头块数.———————————————答案——————————————————————1. 1998.提示: △是小于4的奇数,检验△=1或3两种情况即可.2. 1.设张红做对x 道题,做错y 道题,依题意得:10047=-y x ①所以74100y x +=≥72147100=.又x +y ≤20 ② 所以x ≤20-y ≤20,故7214≤x ≤20.又4|4 y ,4|100,由①知4|7 x ,又4与7互质,所以4| x ,故 x=16或20. 当x=20时,由①得y=10,与②产生矛盾.因此x=16,代入①得y=3.张红共有20-x -y=1(道)题没做.3. 750.根据题意,99925100810+=a x ,整理得, 37)14(2530999)25100(810+⨯⨯=+⨯=a a x . 因为x 为自然数,37是质数,所以4a +1一定能被37整除, 推知a=9,因此7502530=⨯=x .4. 没有整数解.若方程有整数解,则x 123,y 213,因此y x 21123+,且3|17,产生矛盾,因此原方程没有整数解. 5. 1975.设他出生年份为ab 19,依题意,得:b a ab +++=-91191997 整理得:87211=+b a所以11287ba -=由0≤b ≤9得1192871136⨯-=≤11287b -≤111071187=,即1136≤a ≤11107.故a =7,从而b =5,他出生于1975年.6. 24.依题意,有1274328=++b a , 于是可得12(28+a )=7(43+b ) 即 12a +35=7b ①显然,7|35.又因(12,7)=1,故7|a .由①知, b 随a 增大而增大,所以a 取最小值7时, b 也取最小值,是17. 所以, a +b 的最小值是7+17=24.7. 14.设有x 只蜈蚣,y 只三头龙,每只三头龙有n 只脚,依题意得方程组:⎩⎨⎧=+=+29840263ny x y x① ②①×40-②,得()742120=-y n ,即5372)120(⨯⨯=-y n ③由于x 和y 都是正整数,从①式得y ≤8.又因为537120120⨯<<-n , 所以从③式得y =7,106120=-n ,由此得n =14.8. 32.设甲小队有x 人,乙小队有y 人.由两小队植树棵数相等,得到 13 x -7=10 y -5.因为上式右端个位数为5,所以13x 的个位数应是2,得到x =4, y =5是上式的一组解,且x 每增大10, y 就增大13,仍是上式的解.为使10y -5在100与200之间,只有y =5+13=18,所以乙小队有18人,甲小队有4+10=14(人),共有18+14=32(人).9. 84.设小明第一天看了a 页,第二天看了b 页,则前五天看的页数依次为: a , b , a+b , a+2b ,2a+3b .上面各个数的和是200,得到 5a +7b =200.因为5a 与200都是5的倍数,所以b 是5的倍数.因为b >a ,所以上式只有两组解:b =20, a =12; b =25, a =5.将这两组解分别代入2a +3b ,得到第五天至少看了84页.10. 15.以5只大猴子为一组,根据题意,一组大猴子这天可采摘15×38(千克).同理,以5只小猴子为一组,这天可采摘11×38(千克).设有大猴子x 组,小猴子y 组,则有338238113815=⨯⨯+⨯⨯y x , 891115=+y x .易知其整数解为x =3, y =4,所以有大猴子5×3=15(只).11. 设公鸡、母鸡、小鸡各买x , y , z 只,由题意列方程组:⎪⎩⎪⎨⎧=++=++1001003135z y x z y x 3×①-②整理得10047=+y x . 又4|4 y ,4|100,所以4|7 x ,又(4,7)=1,所以4| x .又74100y x -=≤72147100=.① ②所以x=4,8或12.x=4时,y=18, z=78; x=8时,y=11,z=81; x=12时,y=4,z=84.即可能有三种情况:4只公鸡,18只母鸡,78只小鸡;或8只公鸡,11只母鸡,81只小鸡;12只公鸡,4只母鸡,84只小鸡.12. 因为33既不是5的倍数又不是8的倍数,所以甲用电超过50度,乙用电不足50度.设甲用电(50+x )度,乙用电(50- y )度.因为甲比乙多交33角电费,所以有: 8x+5y=33.容易看出x=1时,y=5.推知甲用电51度,乙用电45度.13. 设哲洙在乙文具店买了x 张卡片,花了⨯y 100分.由共花钱数可列方程()3040010050500=⨯⨯+-⨯x y x 整理得54)5(=-y x因为x 是小于50的54的约数,则x 与y 的关系如下表:因为乙文具店一张卡片的价格小于2000分,推知y 小于2000÷100=20,即y -5<15,所以x 的可能取值是6,9,18,27.14. 设第一堆有x 块石头,第二堆有y 块石头,并设z 为从第二堆取出放进第一堆的块数,由题意:⎩⎨⎧-=++=-)(6100)100(2z y z x y x 由①得1002-=x y .代入②整理得1800711=-z x .所以11)1(71631171800++=+=z z x . 又x ,z 自然数,所以11|z+1,当z=10时, x 有最小值,此时x=170,y=40,即第一堆中最少有170块.在这种情况下,第二堆40块.十一、不定方程(二)年级班姓名得分 一、填空题①②1.已知△和☆分别表示两个自然数,并且 ,△+☆=.2.箱子里有乒乓球若干个,其中25%是一级品,五分之几是二级品,其余91个是三级品.那么,箱子里有乒乓球个.3.某班同学分成若干小组去值树,若每组植树n 棵,且n 为质数,则剩下树苗20棵;若每组植树9棵,则还缺少2棵树苗.这个班的同学共分成了组.4.不定方程23732=++z y x 的自然数解是.5.王老师家的电话号码是七位数,将前四位数组成的数与后四位数组成的数相加得9063;将前三位组成的数与后四位组成的数相加得2529.王老师家的电话号码是.6.有三个分子相同的最简假分数,化成带分数后为87,65,32c b a .已知a ,b ,c 都小于10,a ,b ,c 依次为,,.7.全家每个人各喝了一满碗咖啡加牛奶,并且李明喝了全部牛奶(若干碗)的41和全部咖啡(若干碗)的61.那么,全家有口人.8.某单位职工到郊外植树,其中31的职工各带一个孩子参加,男职工每人种13棵树,女职工每人种10棵,每个孩子种6棵,他们共种了216棵树,那么其中有女职工人.9.将一个棱长为整数(单位:分米)的长方体6个面都涂上红色,然后把它们全部切成棱长为1厘米的小正方体.在这些小正方体中,6个面都没涂红色的有12块,仅有2面涂红色的有28块,仅有1面涂红色的有块.原来长方体的体积是立方分米.10.李林在银行兑换了一张面额为100元以内的人民币支票,兑换员不小心将支票上的元与角、分数字看倒置了(例如,把12.34元看成34.12元),并按看错的数字支付.李林将其款花去 3.50元之后,发现其余款恰为支票面额的两倍,于是急忙到银行将多领的款额退回.那么,李林应退回的款额是元.二、解答题11.一队旅客乘坐汽车,要求每辆汽车的乘客人数相等,起初每辆汽车乘22人,结果剩下一人未上车;如果有一辆汽车空车开走,那么所有旅客正好能平均分乘到其它各车上.已知每辆汽车最多只能容纳32人,求起初有多少辆汽车?有多少旅客?12.小王用50元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为200分、80分、30分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?13.一次数学竞赛准备了22支铅笔作为奖品发给一、二、三等奖的学生,原计划发给一等奖每人6支,二等奖每人3支,三等奖每人2支,后来改为一等奖每人9支,二等奖每人4支,三等奖每人1支,问:获一、二、三等奖的学生各几人?14.采购员用一张1万元支票去购物.购单价590元的A 种物若干,又买单价670元的B 种物若干,其中B 种个数多于A 种个数,找回了几张100元和几张10元的(10元的不超过9张).如把购A 种物品和B 种物品的个数互换,找回的100元和几张10元的钞票张数也恰好相反.问购A 物几个,B 物几个?———————————————答案——————————————————————1. 5.依题意得11△+5☆=37,易知其自然数解为△=2,☆=3.所以△+☆=5.2. 260.设箱子里共有n 个乒乓球,二级品占5a.依题意,得n an n =++⨯915%25整理得9120)415(⨯=-a n ①易知 15-4 a >0,所以a ≤3.将a=1,2,3代入①知,只有a=2符合要求,此时n=260(个).设共分为x 组.由树苗总数可列方程 2029+=-nx x22)9(=-x n因为22=1×22=2×11, n 是小于9的质数,对比上式得x=11(组).4. ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===213125142z y x z y x z y x显然z 只能取1,2,3.当z=1时,1632=+y x ,其自然数解为x=2, y=4; x=5, y=2. 当z=2时,932=+y x ,其自然数解为x=3, y=1. 当z=3时,232=+y x ,显然无自然数解.所以原方程的自然数解为:⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===213125142z y x z y x z y x5. 8371692.设电话号码的前三位为x ,后三位y ,第四位为a (a ≠0).由题意有⎩⎨⎧=++=++25291000906310y a x y a x ①-②,化简得a x 111726+=. 当a=1时, x=837, y=692; 当a ≥2时, y <0,不合题意. 所以电话号码为8371692.6. 7,3,2.由题意有785623+=+=+c b a .解这个不定方程,得2,3,7===c b a .7. 5.设全家共喝了x 碗牛奶和y 碗咖啡,依题意得:16141=+y x整理得1223=+y x .易得其自然数为x=2, y=3.故共喝牛奶和咖啡2+3=5(碗).因此,全家有5口人.① ②设有女职工x 人,男职工y 人,那么有孩子3yx +人.这个条件说明3| x + y . 由已知216631310=⨯+++yx y x 即7254=+y x72)(4=++y y x由12|4(x + y ),12|72.所以12| y ,又5472x y -=≤5414572=.所以, y=12, x=3.即有女职工3人.9. 32,80.画个示意图就不难推知:小正方体中仅两面涂色的每条棱上都有,并在同一个方向的4条棱上2面涂色的小正方体数相等,设它们分别为z y x ,,,则()⎩⎨⎧==++⨯12284xyz z y x 剥去所有涂色的小块,得到上图.由上面两上算式可以推算出2,3===z y x ,仅2)232223(2)(⨯⨯+⨯+⨯=⨯⨯+⨯+⨯z x z y y x32216=⨯=(块).原来长方体的体积为80445)2()2()2(=⨯⨯=+⨯+⨯+=z y x V (立方分米).10. 17.82设支票上的元数与角、分数分别为x 和y ,则可列得方程)100(2350)100(y x x y +=-+,其中x ,y 为整数且0≤x ,y <100. 化简方程得35019998+=x y由此推知2x <y 且为x 偶数,其可能取值为2,4, (48)又985633298350199+++=+=x x x y , 56≤563+x ≤20056483=+⨯ 所以98563=+x 或298⨯.所以324642==x x 或(舍去).故42=x ,此时32=y .即李林的支票面额为14.32元,竞换时误看成32.14元,李林应退款额为32.14-14.32=17.82元.11. 设起初有x 辆汽车,开走一辆汽车后每车乘n 人,依题意,得)1(122-⨯=+⨯x n x ,所以123221122-+=-+=x x x n 又n , x 为整数,所以(x -1)|23,故x -1=1或23,即x=2或x=24.若x=2,则45122322=-=n 与n ≤32产生矛盾.因此x=24或n=23,故起初有24辆汽车,有旅客22 x +1=529(名).12. 设苹果、梨子、杏子分别买了z y x ,,个,则⎩⎨⎧=++=++4050003080200z y x z y x 消去z 得380517=+y x ①所以175380yx -=由0<y <40得176221738017538017405380171010=<-<⨯-=y即17622171010<<x又 5|5 y ,5|380,(5,17)=1,由①得5| x .所以x=15或x=20. 当x=15时, y=25, z=0,不合题意. 因此x=20, y=8, z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.13. 设获一、二、三等奖的人数分别为z y x ,,,根据题意有:⎩⎨⎧=++=++224922236z y x z y x 2×②得4422818=++y x ③ ③-①得22512=+y x ④①②学习好资料 欢迎下载解④求得整数解为x=1, y=2.代入②可求得z=5.答:获得一等奖的有1人,获得二等奖的有2人,获三等奖的有5人.14. 设买A 种物品a 个, B 种物品b 个,找回100元的m 张,10元的n 张,则有: ⎩⎨⎧--=+--=+n m b a n m b a 10010100005906701010010000670590 其中b >a ,n <10.①-②得)(9)(8m n a b -=-③ 所以)(98m n -,故m n -8, 由b >a ,n <10知m <n <10,因此, m -n =8,从而b -a =9.由此推知n=9, m=1, b=a+9.代入①式,解得a=3. B=12.答:购A 物3个,B 物12个.① ②。
小学六年级奥数不定方程(最新)
【#小学奥数# 导语】方程(equation)是指含有未知数的等式。
是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为解或根。
以下是?无忧考网整理的《小学六年级奥数不定方程》相关资料,希望帮助到您。
1.小学六年级奥数不定方程1、圆珠笔每支5角,彩色日记本每本8角现在有6元3角钱。
问圆珠笔和彩色日记本各买多少,才使钱正好用光?答案:圆珠笔11支,笔记本1本。
2、六年级某班同学48人到公园里去划船,如果每只小船可坐3人,每只大船可坐5人,那么需要小船和大船各几只?(大船小船都有)答案:小船x大船y列方程:3x+5y=48x,y都是正整数解得:x=1,y=9x=6,y=6x=11,y=33、装水瓶的盒子有大小两种,大的能装7个,小的能装4个,要把41个水瓶装入盒内。
问需大、小盒子个多少个?答案:设大的x个,小的y个,有:7x+4y=41根据奇偶关系知道:x只能取奇数x=1,y=8.5舍去x=3,y=5满足x=5,y=1.5舍去2.小学六年级奥数不定方程1、一个工人将99颗弹子装入两种盒子中,每个大盒子装12颗,小盒子装5颗,恰好装完,已知盒子数大于10,两种盒子各有多少?2、某水果店运来桔子、苹果、香蕉共15筐,价值860元,已知每箱桔子40元,每箱苹果50元,每箱香蕉70元,三种水果各运多少箱?3、一次数学竞赛准备了22只铅笔作为奖品发给一、二、三等奖的学生,原计划发给一等奖每人6只,二等奖每人3只,三等奖每人2支,后来改为一等奖每人9只,二等奖每人4只,三等奖每人1只,一、二、三等奖的学生各有几人?4、小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分,小明共套10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分,小鸡至多被套中多少次?5、庙里有若干个大和尚和若干个小和尚,已知每7个大和尚每天共吃41个馒头,每29个小和尚每天共吃11个馒头。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生签名:签字日期:
【实践】求方程 的正整数解.
【例3】大客车能容纳54人,小客车能容纳36人,现有378人要乘车,问需要大、小客车各几辆才能使每个人都能上车且各车都正好坐满.
【分析】本题是不定方程的应用,根据题意列出方程并求出非负整数解即可.
【解答】设需要大客车x辆,小客车y辆,根据题意可列方程 ,即 .
又(3,2)=1,根据定理2,原方程有整数解.易知 是一个特解,通解为
【分析】分析:用x,y,z来表示鸡翁,鸡母,鸡雏的只数,则可列方程组:
如何解这个不定方程组?消元转化为不定方程.
【解答】解:设鸡翁,鸡母,鸡雏的只数分别为x,y,z.
(2)×3-(1)得:14x+8y=200,即7x+4y=100.
〈方法一〉
〈方法二〉
〈方法三〉
【点评】充分挖掘题目的隐含条件,进而求整数解.
【实践】如果1只兔可换2只鸡,2只兔可换3只鸭,5只兔可换7只鹅.某人用20只兔换得鸡、鸭、鹅共30只.问:其中的鸡、鸭、鹅各多少只?答案:(2,21,7)、(4,12,14)、(6,3,21)
【例7】求方程 的整数解.
【分析】对于三元一次不定方程,可以另外引进一个未知数,将其转化为方程组,然后分别解方程组中的各个方程,从而得到原方程的解.
A.一切偶数B.2、4、6、8 C.2、4、6 D.2、4
2.若正整数x,y满足2004a=15y,则x+y的最小值为.
3.如果三个既约真分数 的分子都加上b,这时得到的三个分数之和为6.求这三个既约真分数的和.
4.(重庆市竞赛题)一个盒子里装有不多于200粒棋子,如果每次2粒、3粒、4粒或6粒地取出,最终盒内都剩余1粒棋子;如果每次11粒地取出,那么正好取完.问:盒子里装有多少粒棋子?
综上, =2+4+6+…+2002=1003002.
【点评】此题综合较强,涉及解不定方程、分类讨论、计数等方面的知识,需要灵活运用所学只是解决问题.
【实践】一次不定方程x+y+z=1999的非负整数解有( )个C
A.20001999 B.19992000 C.2001000 D.2001999
【总结反思】
【分析】审清题中 的n与方程 是同一个非负整数, 的含义是方程 的非负整数解的(x,y,z)的组数.
【解答】(1)当n=3时,原方程为 ,由于
当z=1时,方程为x+y=1,其解(x,y)=(0,1),(1,0)有2组;
当z=0时,方程为x+y=3,其解(x,y)=(0,3),(1,2),(2,1),(3,0)有4组.
不定方程讲义
讲义编号LTJYsxsrl005
学员编号:LTJY001年级:六年级课时数:
学员姓名:辅导科目:数学学科教师:
学科组长签名及日期
教务长签名及日期
课题
一次不定方程(组)的整数解问题
授课时间:
备课时间:
教学目标
1.理解不定方程(组)的含义
2.掌握一次不定方程(组)的定理和相关解题方法
重点、难点
【例2】求方程 的所有正整数解.
【分析】此方程的系数较大,不易用观察法得出特解.根据方程用y来表示x,再将含y的代数式分离出整系数部分,然后对分数系数部分进行讨论,赋予y不同的整数,寻找一个使分数系数部分成为正整数的y0,然后再求x0,写出通解,再解不等式组确定方程的正整数解.
【解答】∵(7,19)=1,根据定理2,原方程有整数解.
以上介绍了初中数学竞赛中一次不定方程的基本解法、各种解题技巧以及应用.解不定方程的基本方法是分离整系数法,要熟练掌握.在具体应用问题上,能将实际问题转化为不定方程的问题,并根据题意挖掘题目的隐含条件,也就是未知数的取值范围.
【题海拾贝】
1.(2000年希望杯竞赛题)若a、b均为正整数,且2a>b,2a+b=10,则b的值为()
【实践】求方程 的整数解.
【例8】(海峡两岸友谊赛试题)甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学没人有31个核桃,三组共有核桃总数是365个.问:三个小组共有多少名同学?
【分析】设甲组同学a人,乙组同学b人,丙组同学c人,由题意得 .要求 ,可以运用放缩法从确定 的取值范围入手.
【例9】一个布袋里有红、黄、蓝三种颜色大小相同的木球.红球上标有数字1,黄球上标有数字2,蓝球上标有数字3.小明从布袋中摸出10个球,它们上面所标的数字和等于21.
(1)小明摸出的球中,红球的个数最多不超过几个?
(2)若摸出的球中三种颜色都有,有多少种不同的摸法?
【分析】由于知道三种球的个数和,因此可设二元.第(2)问计数问题的实质是就是求正整数解的组数.
【实践】已知有两堆水泥,若从第一堆中取出100袋放进第二堆,则第二堆比Байду номын сангаас一堆多一倍;相反,若从第二堆中取出一些放进第一堆,则第一堆比第二堆多5倍.问第一堆中可能的最少水泥袋数是多少?并在这种情况下求出第二堆水泥的袋数.
【例10】设非负整数n,满足方程 的非负整数(x,y,z)的组数记为 .
(1)求 的值;(2)求 的值.
(1)分离整系数法;(2)穷举法;(3)因式分解法;(4)配方法;
(5)整数的整除性;(6)奇偶分析;(7)不等式分析;(8)乘法公式.
【学法指导】
【例1】求下列不定方程的整数解(1) ;(2) .
【分析】根据定理1、定理2确定方程的整数解.
【解答】(1)原方程变形为: ,观察得到 是 的一组整数解(特解),
【实践】已知有一个三位数,如果它本身增加3,那么新的三位数的各位数字和就减少到原来的 ,求一切这样三位数的和.
【例5】(新加坡数学竞赛题)设正整数m,n满足 ,则m的最大值为.
【分析】把m用含有n的代数式表示,用分离整系数法,再结合整除的知识,求出m的最大值.
【解答】∵ ,∴ ,
由题意可得,n≠8,∴ ,
【本讲重点】
求一次不定方程(组)的整数解
【知识梳理】
不定方程(组)是指未知数的个数多于方程的个数的方程(组),其特点是往往有无穷多个解,不能唯一确定.
重要定理:
设a、b、c、d为整数,则不定方程 有:
定理1若 且d不能整除c,则不定方程 没有整数解;
定理2若 是不定方程 且的一组整数解(称为特解),则 (t为整数)是方程的全部整数解(称为通解).(其中 ,且d能整除c).
【解答】(1)设小明摸的红球有x个,黄球有y个,蓝球有 个,则 ,
整理,得 ,因为x、y均为正整数,可知x的最大值为4.即红球最多不超过4个.
(2)由(1)知蓝球的个数是 ,
又∵ ∴
因此共有4种不同的摸法,如下:(1,7,2),(2,5,3),(3,3,4),(4,1,5).
【点评】此题求的是未知数的范围及可能取值的个数,因此不需要求出方程的通解,而是根据题意对未知数的限制利用不等式分析出未知数的取值范围,以及整数解的个数.
【例4】某人的生日月份数乘以31,生日的日期数乘以12,相加后得347,求此人的生日.
【分析】本题的隐含条件是:月份的取值[1,12],日期的取值[1,31].
【解答】设此人生日的月份数为x ,日期数y.根据题意可列方程31x+12y=347.
〈方法一〉〈方法二〉
特解:
答:此人的生日为5月16日.
【点评】求出通解后,要利用隐含条件求出符合题意的解.其中方法二是利用了同余的知识.
【解答】设 ,则原方程可看作 对于方程(1)x=-t,y=t是一个特解,
从而(1)的整数解是
又t=2,z=3是方程(2)的一个特解,于是(2)的整数解是
将(6)代入(3)、(4)消去t得到原方程的所有整数解为:
【点评】一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的,将解中的参数作适当代换,就可以化为同一形式.
重点:不定方程定理的理解
难点:解不定方程方法与技巧的灵活运用
考点及考试要求
不定方程(组)是数论中的一个重要课题
教学内容
【写在前面】
不定方程(组)是数论中的一个重要课题.对于不定方程(组),我们往往只求整数解,甚至是只求正整数解,加上条件限制后,解就可确定.有时还可以解决计数、求最值等方面的问题.二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)常常要转化为二元一次不定方程问题加以解决.
由原方程可得 ,
由此可观察出一组特解为x0=25,y0=2.
∴方程的通解为 .
其中 ∴ ∴ ∴
代入通解可得原方程的正整数解为
【点评】根据定理2解这类方程,若未知数的系数较大不容易观察出一组整数解时,可用一个未知数去表示另一个未知数,再利用整数的知识,这是解二元一次不定方程基本的方法,称为分离整系数法.这样就容易找出一组整数解来.
综上, =6.
(2)当n=2001时,原方程为 ,由于
当z=1000时,方程为x+y=1,其解有2组;当z=999时,方程为x+y=3,其解有4组;
当z=998时,方程为x+y=5,其解(x,y)=(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)有6组;…;
当z=0时,方程为x+y=2001,其解(x,y)=(0,2001),(1,2000),…,(2001,0)有2002组.
【解答】设甲组同学a人,乙组同学b人,丙组同学c人,则 .
∵ ,∴ .
∵ 是整数,∴ =12或13.但当 =13时,得 ,无正整数解.