熟练使用SPSS进行单因素方差分析
spss中的单因素方差分析(onewayanova)
SPSS中的单因素方差分析(One-Way Anova)SPSS中的单因素方差分析(One-Way Anova) 一、基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
二、实验工具SPSS for Windows三、试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
灯泡 1 2 3 4 5 6 7 8 灯丝甲 1600 1610 1650 1680 1700 1700 1780乙 1500 1640 1400 1700 1750丙 1640 1550 1600 1620 1640 1600 1740 1800丁 1510 1520 1530 1570 1640 1680 四、不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova的顺序单击,打开“单因素方差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。
(5)在主对话框中,单击“OK”提交进行。
【精品】用SPSS进行单因素方差分析和多重比较
方差分析方差分析可以用来检验来多个均值之间差异的显著性,可以看成是两样本t 检验的扩展。
统计学原理中涉及的方差分析主要包括单因素方差分析、两因素无交互作用的方差分析和两因素有交互作用的方差分析三种情况。
虽然Excel可以进行这三种类型的方差分析,但对数据有一些限制条件,例如不能有缺失值,在两因素方差分析中各个处理要有相等的重复次数等;功能上也有一些不足,例如不能进行多重比较。
而在方差分析方面SPSS的功能特别强大,很多输出结果已经超出了统计学原理的范围。
用SPSS检验数据分布的正态性方差分析需要以下三个假设条件:(1)、在各个总体中因变量都服从正态分布;(2)、在各个总体中因变量的方差都相等;(3)、各个观测值之间是相互独立的。
在SPSS中我们很方便地对前两个条件进行假设检验。
同方差性检验一般与方差分析一起进行,这一小节我们只讨论正态性的检验问题。
[例7.4] 检验生兴趣对考试成绩的影响的例子中各组数据的正态性。
在SPSS中输入数据(或打开数据文件),选择Analyze→DescriptiveStatistics→Explore,在Explore对话框中将统计成绩作为因变量,兴趣作为分类变量(Fator),单击Plots按钮,选中“Histogram”复选框和“NormalityplotswithTest”,单击“Continue”按钮,在单击主对话框中的“OK”,可以得到分类别的描述统计信息。
从数据的茎叶图、直方图和箱线图都可以对数据分布的正态性做出判断,由于这些内容前面已经做过讲解,这里就不再进一步说明了。
图7-2用Expore过程进行正态性检验top↑输出结果中的Q-Q图是观察数据分布正态性的一种常用图形。
这类图形大致是这样绘制的:计算数据在样本中对应的经验分布函数值(类似于累积分布的函数值,取值在0-1之间);然后计算标准正态分布(或者均值、方差相同的正态分布)对应于经验分布函数值的分位数。
用SPSS进行单因素方差分析和多重比较
用SPSS进行单因素方差分析和多重比较在SPSS中进行单因素方差分析和多重比较可以帮助研究人员分析各组之间的差异,并确定是否存在显著性差异。
本文将详细介绍如何使用SPSS进行单因素方差分析和多重比较。
一、单因素方差分析1.数据准备首先,将数据导入SPSS软件。
确保每个观测值都位于独立的行中,并且将每个因素作为一个变量列。
确保每个变量的测量水平正确设置。
对于要进行单因素方差分析的变量,应该是连续型变量。
2.描述性统计在执行方差分析之前,我们需要进行描述性统计,以了解每个组的均值、标准差和样本数量。
在SPSS中,可以通过选择“统计”菜单,然后选择“描述统计”来执行描述性统计。
在弹出的对话框中,选择想要分析的变量,并选择“均值”和“标准差”。
3.单因素方差分析要进行单因素方差分析,在SPSS中选择“分析”菜单,然后选择“一元方差分析”。
在弹出的对话框中,将要分析的变量移入“因素”框中。
然后,点击“选项”按钮,选择想要输出的结果,如方差分析表和均值表。
最后,点击“确定”执行单因素方差分析。
4.结果解读方差分析表提供了重要的统计信息,包括组间和组内的平方和、自由度、均方、F值和p值。
其中,F值表示组间变异性和组内变异性的比值。
p值表示在原假设下观察到的差异是否显著。
如果p值小于设定的显著性水平(通常为0.05),则可以拒绝原假设,即存在显著差异。
二、多重比较当在单因素方差分析中发现存在显著组间差异时,下一步是进行多重比较,以确定哪些组之间存在显著差异。
1.多重比较检验在SPSS中,可以使用多种方法进行多重比较检验,如Tukey HSD、Bonferroni、LSD等。
这些方法可以通过选择“分析”菜单,然后选择“比较手段”来执行。
在弹出的对话框中,选择要进行比较的变量和方法。
点击“确定”执行多重比较检验。
2.结果解读多重比较结果表提供了各组之间的均值差异估计、标准误差、置信区间和p值。
根据p值,可以确定哪些组之间存在显著差异。
用SPSS进行单因素方差分析和多重比较
SPSS——单因素方差分析单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。
[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。
表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。
本例选择“幼虫”。
因素变量:选择一个因素变量进入“Factor”框中。
本例选择“品种”。
4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。
该对话框用于设置均值的多项式比较。
图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1. 1倍与第二组的均值相等。
单因素方差分析的“0ne-Way ANOVA”过程允许进行高达5次的均值多项式比较。
多项式的系数需要由读者自己根据研究的需要输入。
具体的操作步骤如下:①选中“Polynomial”复选项,该操作激活其右面的“Degree”参数框。
②单击Degree参数框右面的向下箭头展开阶次菜单,可以选择“Linear”线性、“Quadratic”二次、“Cubic”三次、“4th”四次、“5th”五次多项式。
③为多项式指定各组均值的系数。
方法是在“Coefficients”框中输入一个系数,单击Add按钮,“Coefficients”框中的系数进入下面的方框中。
SPSS方差分析
SPSS⽅差分析实验⽬的:1、学会使⽤SPSS的简单操作。
2、掌握⽅差分析。
实验内容:1.单因素⽅差分析;2.双因素⽅差分析。
实验步骤: 1.单因素⽅差分析,⽅差分析是基于变异分解的思想进⾏的,在单因数⽅差分析中,整个样本的变异可以看成由两个部分构成:总变异=随机变异+处理因数导致的变异,其中随机变异是永远存在的,确定处理因数导致的变异是否存在就是所要达到的研究⽬标,即只要能证明它不等于0,就等同于证明了处理因数的确存在影响。
这样可采⽤⼀定的⽅法来⽐较组内变异和组间变异的⼤⼩,如果后者远远⼤于前者,则说明处理因数的影响的确存在,如果两者相差⽆⼏,则说明该影响不存在。
SPSS操作:【分析】→【⼀般线性模型-单变量】,将因变量选⼊【因变量】,将⾃变量选⼊【固定因⼦】。
如果需要均值图⽰,【绘图】,将因⼦选⼊【⽔平轴】,【图】→【添加】。
如果需要多重⽐较时,【事后多重⽐较】,将因⼦选⼊【两两⽐较检验】,【假定⽅差齐性】→【LSD】。
如果需要相关统计量时,【选项】→【显⽰】→【描述统计量】。
如果需要⽅差齐性检验时,【选项】→【输出】→【齐性检验】。
如果需要对模型的参数进⾏估计时,【选项】→【输出】→【参数估计值】。
如果需要预测值时,【保存】→【预测值】→【未标准化】。
1 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /CRITERIA=ALPHA(0.05)5 /DESIGN=超市位置.⽅差单变量分析11 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /PLOT=PROFILE(超市位置) TYPE=LINE ERRORBAR=NO MEANREFERENCE=NO YAXIS=AUTO5 /CRITERIA=ALPHA(0.05)6 /DESIGN=超市位置.单因数⽅差分析2轮廓图1 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /POSTHOC=超市位置(LSD)5 /CRITERIA=ALPHA(0.05)6 /DESIGN=超市位置.单因数⽅差分析31 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /PRINT DESCRIPTIVE5 /CRITERIA=ALPHA(.05)6 /DESIGN=超市位置.单因数⽅差分析41 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /PRINT HOMOGENEITY5 /CRITERIA=ALPHA(.05)6 /DESIGN=超市位置.单因数⽅差分析51 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /PRINT PARAMETER5 /CRITERIA=ALPHA(.05)6 /DESIGN=超市位置.单因数⽅差分析61 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /SAVE=PRED5 /CRITERIA=ALPHA(.05)6 /DESIGN=超市位置.单因数⽅差分析7 2.双因数⽅差分析:分析两个因数对实验结果的影响。
最新SPSS单因素方差分析步骤
spss教程:单因素方差分析用来测试某一个控制变量的不同水平是否给观察变量造成显著差异和变动。
方差分析前提:不同水平下,各总体均值服从方差相同的正态分布。
所以方差分析就是研究不同水平下各个总体的均值是否有显著的差异。
统计推断方法是计算F统计量,进行F检验,总的变异平方和 SST,控制变量引起的离差SSA(Between Group离差平方和),另一部分随机变量引起的SSE(组内Within Group离差平方和),SST=SSA+SSE。
方法/步骤1.计算检验统计量的观察值和概率P_值:Spss自动计算F统计值,如果相伴概率P小于显著性水平a,拒绝零假设,认为控制变量不同水平下各总体均值有显著差异,反之,则相反,即没有差异。
2.方差齐性检验:控制变量不同水平下各观察变量总体方差是否相等进行分析。
采用方差同质性检验方法(Homogeneity of variance),原假设“各水平下观察变量总体的方差无显著差异,思路同spss两独立样本t检验中的方差分析”。
图中相伴概率0.515大于显著性水平0.05,故认为总体方差相等。
趋势检验:趋势检验可以分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,线性变化,二次、三次等多项式。
趋势检验可以帮助人们从另一个角度把握控制变量不同水平对观察变量总体作用的程度。
图中线性相伴概率为0小于显著性水平0.05,故不符合线性关系。
3.多重比较检验:单因素方差分析只能够判断控制变量是否对观察变量产生了显著影响,多重比较检验可以进一步确定控制变量的不同水平对观察变量的影响程度如何,那个水平显著,哪个不显著。
常用LSD、S-N-K方法。
LSD方法检测灵敏度是最高的,但也容易导致第一类错误(弃真)增大,观察图中结果,在LSD项中,报纸与广播没有显著差异,但在别的方法中,广告只与宣传有显著差异。
4. 相似性子集:由图可知,划分的子集结果是一样的。
通常在相似性子集划分时多采用S-N-K 方法的结论。
单因素方差分析spss
单因素方差分析spss单因素方差分析(ANOVA)是一种统计学方法,用于检验数据中每组样本均值是否有显著差异。
它也可用于比较多组样本间的均值差异。
SPSS(统计分析软件)是一款统计分析软件,它可以帮助用户进行单因素方差分析。
本文将对单因素方差分析的概念进行详细的讨论,并介绍SPSS在进行单因素方差分析时的实践方法。
首先,我们需要了解单因素方差分析的基本概念。
单因素方差分析是一种统计学方法,用于检验数据中每组样本均值是否有显著差异。
它也可以用于比较不同组样本的均值差异,将组之间的平均值的差异归因于某个因素的干预。
一般来说,单因素方差分析的研究对象只有一个变量,即被解释变量。
它与双变量分析、多变量分析等研究的本质区别在于,单因素方差分析只有一个被解释变量,变量之间没有任何关联。
SPSS单因素方差分析的实践方法,通常按照如下步骤进行:第一步:打开SPSS,打开新文件,将需要分析的数据粘贴到新文件中。
第二步:点击“分析”,从中选择适当的分析项目,如单因素方差分析。
第三步:根据实际需要,选择被解释变量,将其拖入“分组变量”栏目中。
第四步:添加任何需要的变量,如设计变量、试验变量等。
第五步:点击“确定”,出现单因素方差分析的结果。
此外,在使用SPSS进行单因素方差分析时,我们可以考虑增加多重比较功能,它可以帮助我们比较不同组的差异值。
此外,SPSS还可以计算校正检验值,进一步识别均值差异的有效性。
单因素方差分析是一种常用的统计分析方法,它可以用于检验数据中每组样本均值是否有显著差异,以及多组样本均值之间的差异性。
SPSS是一款统计分析软件,它可以帮助用户完成单因素方差分析的过程,其实践方法采用了五步曲的步骤,步骤清晰易懂。
同时,用户也可以运用多重比较功能和校正检验值来提高结果的准确性。
SPSS中的单因素方差分析(One-WayAnova)
SPSS中的单因素⽅差分析(One-WayAnova)SPSS中的单因素⽅差分析(One-Way Anova)SPSS中的单因素⽅差分析(One-Way Anova) ⼀、基本原理单因素⽅差分析也即⼀维⽅差分析,是检验由单⼀因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同⽔平会影响到因变量的取值。
⼆、实验⼯具SPSS for Windows三、试验⽅法例:某灯泡⼚⽤四种不同配料⽅案制成的灯丝(filament),⽣产了四批灯泡。
在每批灯泡中随机地抽取若⼲个灯泡测其使⽤寿命(单位:⼩时hours),数据列于下表,现在想知道,对于这四种灯丝⽣产的灯泡,其使⽤寿命有⽆显著差异。
灯泡 1 2 3 4 5 6 7 8 灯丝甲 1600 1610 1650 1680 1700 1700 1780⼄ 1500 1640 1400 1700 1750丙 1640 1550 1600 1620 1640 1600 1740 1800丁 1510 1520 1530 1570 1640 1680 四、不使⽤选择项操作步骤(1)在数据窗建⽴数据⽂件,定义两个变量并输⼊数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、⼄、丙、丁,格式为F1.0,标签为“灯丝”。
Hours变量,数值型,其值为灯泡的使⽤寿命,单位是⼩时,格式为F4.0,标签为“灯泡使⽤寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova的顺序单击,打开“单因素⽅差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours 即进⼊Dependent List框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进⼊Factor框中。
熟练使用SPSS进行单因素方差分析
熟练使用SPSS进行单因素方差分析
一、单因素方差分析介绍
单因素方差分析又称因子方差分析,是分析两组或多组数据中变量之
间差异大小的统计方法。
它利用方差分析检验对比数据之间的统计学差异,检验其中一成分是否有一定的影响,而其他成分是否能够有一定的共同作用。
单因素方差分析的设计以及分析结果解释与双因素方差分析大体类型,但是单因素方差分析只有一个变量,因果关系没有双因素方差分析的那么
清楚,只能用于衡量数据之间的统计学差异。
二、SPSS进行单因素方差分析步骤
1.打开spss统计软件,进入数据文件,“新建”,双击“统计分析”,“ANOVA”,“一因子方差分析”菜单,可以调出一因子方差分析
的菜单
2.选择数据输入框,点击“定义变量”,在工具栏出现的表格中,双
击“变量名”栏位,输入分析变量的名称(建议以英文字母表示)
3.点击定义按钮,定义变量类型,选择“基本类型”,输入变量名,
点击确定按钮
4.在定义按钮下,右击工具栏中的“数据”栏位,然后点击“设定数据”,在设定数据窗口中,选择“任何变量”,输入变量的值,点击确定
按钮,完成变量定义
5.点击完成按钮,输入变量名,点击确定按钮,至此。
单因素协方差分析-SPSS教程
单因素协方差分析【详】-SPSS教程一、问题与数据某研究者拟分析两种药物对血脂浓度的影响,招募45位中年男性分为三组,第一组给以药物1治疗(为期6周),第二组给以药物2治疗(为期6周),第三组作为空白对照组。
研究者测量了每位研究对象接受干预前的总胆固醇浓度(TC1)和干预后的总胆固醇浓度(TC2),部分数据图1。
图1 部分数据二、对问题分析研究者想判断不同干预方法(group)对因变量(治疗后TC2)的影响,但是不能忽视协变量(治疗前TC1)对因变量的作用。
针对这种情况,我们可以使用单因素协方差分析,但需要先满足以下10项假设:假设1:因变量是连续变量。
假设2:自变量存在2个或多个分组。
假设3:协变量是连续变量。
假设4:各研究对象之间具有相互独立的观测值。
假设5:各组内协变量和因变量之间存在线性关系。
假设6:各组间协变量和因变量的回归直线平行。
假设7:各组内因变量的残差近似服从正态分布。
假设8:各组内因变量的残差方差齐。
假设9:各组间因变量的残差方差齐。
假设10:因变量没有显著异常值。
经分析,本研究数据满足假设1-4,那么应该如何检验假设5-10,并进行单因素协方差分析呢?三、SPSS操作3.1 检验假设5:各组内协变量和因变量之间存在线性关系为检验假设5,我们需要先绘制协变量与因变量在不同组内的散点图。
在主界面点击Graphs→Chart Builder,在Chart Builder对话框下,从Choose from 选择Scatter/Dot。
在中下部的8种图形中,选择“Grouped Scatter”,并拖拽到主对话框中。
如图2。
图2 Chart Builder将TC1、TC2和group变量分别拖拽到“X-Axis?”、“Y-Axis?”和“Set color”方框内。
如图3。
图3 Chart Builder在Element Properties框内点击Y-Axis1 (Point1),在Scale Range框内取消对Minimum的勾选。
spss方差分析操作示范-步骤-例子
第五节方差分析的SPSS操作一、完全随机设计的单因素方差分析1.数据采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。
数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):图 6-3 单因素方差分析数据输入将上述数据文件保存为“6-6-1.sav”。
2.理论分析要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。
从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。
单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。
3.单因素方差分析过程(1)主效应的检验假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。
①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:图6-4:One-Way Anova主对话框②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。
设置如下图6-5所示:图6-5:One-Way Anova的Options对话框点击Continue,返回主对话框。
③在主对话框中点击OK,得到单因素方差分析结果4.结果及解释(1)输出方差齐性检验结果Test of Homogeneity of VariancesMATHLevene Statistic df1 df2 Sig.1.238 4 35 .313上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。
如何利用SPSS计算平均值标准差单因素方差
如何利用SPSS计算平均值,标准差,单因素方差单因素方差用于分析单一控制变量影响下的多组样本的均值是否存在显著差异。
在进行方差分析时要求样本满足以下几个条件:(1)可比性;(2)随机数据;(3)样本为正态分布;(4)方差齐性,要求各组间具有相同的方差,可以通过SPSS中“方差齐性检验”得出。
下面以医学中不同类型脑梗塞与年龄、性别和ApoB/AI值之间的相互关系来进行单因素方差分析。
(一)数据准备和SPSS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS 和NCAS三种,我们将这三组分类转化为数值分类其中ICAS用1表示,ECAS 用2表示,NCAS用3表示。
性别也转化为0、1分类,1为女,0为男。
其他数值变量正常输入。
图1-1第二步:打开“单因素方差(ANOVA)分析”对话框:沿着主菜单的“分析(Analyze)→比较均值→单因素ANOVA”的路径(图1-2)打开单因素方差分析分析选项框(图1-3)。
在“因子”中选入分组,在因变量列表中选入年龄,性别和Apobai。
这里需要注意的是一般“因子”为分类变量,而因变量为数值或分类变量。
第三步:对“对比”、“两两比较”、“选项”进行设置,设置方法参照任意一本SPSS 统计书籍中关于单因素方差分析的部分。
点击确定后输出数据,这里重点讲输出数据中各项所代表的意思。
我们经常会在其他文献中看到有关平均值(mean ),标准差(SD )和标准误差(SE ),即mean ±SD 或SE 的情况。
如图1-4所示“描述图”中,在该图中我们很容易找到以上几项。
如图1-4所示“方差齐性检验”中,我们可以找到各组的显著性(即P 值),也有软件表示为Sig.。
当该值大于0.05时说明各组间方差是齐性的,既满足前提的第四点。
可以进行后续分析。
一般我们需要的是多重比较的表格,如图1-5所示,该表中给出了年龄、性别和ApoB/AI 值中各组间的显著性水平(P 值),如年龄组中1、2组间显著性为0.972,差异不显著。
SPSS中的单因素方差分析(One-WayAnova)(可编辑)
SPSS中的单因素方差分析(One-WayAnova)SPSS统计分析软件应用一、SPSS中的单因素方差分析One-Way Anova(一)基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
(二)实验工具SPSS for Windows(三)试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
灯泡灯丝 1 2 3 4 5 6 7 8甲 1600 1610 1650 1680 1700 1700 1780乙 1500 1640 1400 1700 1750丙 1640 1550 1600 1620 1640 1600 1740 1800丁 1510 1520 1530 1570 1640 1680(四)不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova的顺序单击,打开“单因素方差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。
(5)在主对话框中,单击“OK”提交进行。
SPSS中的单因素方差分析(One-WayAnova)(可编辑)
SPSS中的单因素方差分析(One-WayAnova)SPSS统计分析软件应用一、SPSS中的单因素方差分析One-Way Anova(一)基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
(二)实验工具SPSS for Windows(三)试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
灯泡灯丝 1 2 3 4 5 6 7 8甲 1600 1610 1650 1680 1700 1700 1780乙 1500 1640 1400 1700 1750丙 1640 1550 1600 1620 1640 1600 1740 1800丁 1510 1520 1530 1570 1640 1680(四)不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova的顺序单击,打开“单因素方差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。
(5)在主对话框中,单击“OK”提交进行。
SPSS单因素方差分析
SPSS单因素方差分析单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measu re过程。
[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。
表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数水稻品种重复12345141333837312393735393434035353834数据保存在“data1.sav”文件中,变量格式如图1-1。
图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。
或者打开已存在的数据文件“dat a1.sav”。
2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。
图1-2 单因素方差分析窗口3)设置分析变量因变量: 选择一个或多个因子变量进入“Dependent List”框中。
本例选择“幼虫”。
因素变量: 选择一个因素变量进入“Factor”框中。
本例选择“品种”。
4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。
该对话框用于设置均值的多项式比较。
图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试以α=0.01的显著水平检验各地区平均每天交通事故次数是否相等。
1.数据录入。
以变量x 表示交通事故数据;g 表示组别,可设1 为东部,2 为北部,3为中部,4为南部,5为西部,比如东部数据1可以录入为x=15,g=1。
具体格式见下图。
2.统计分析。
依次选取“Analyze”、“Compare Means”、“One way ”。
图2 选择分析工具
ANOV A 弹出对话框如下图所示,将x 选入Dependent list(因变量框),g 选入Factor (研究因素框),对话框下方还有三个按钮:Contrast、Post Hoc 和Options 。
下面简单介绍其子对话框:
Post Hoc:指定一种多重比较检验方法和水准;
Options:指定要输出的统计量(方差齐性检验和统计描述结果)和处理缺失值的方法
图3 选择变量进入右侧的分析列表
本例要选用一种两两比较的方法,单击Post Hoc 弹出对话框如下图所示,对话框中列出了常用的两两比较方法,其中SNK 即q 检验,LSD least significant difference 即最小显著差法,本例选用SNK法,并设置下面的置信度significance level为0.01,单击Options,展开其对话框指定输出方差齐性检验结果。
P=0.983,所以认为方差齐次;第二个表格给出了方差分析的内容,Sum of Squares 为平方和,Mean Square 为均方和,df 为自由度,Between Groups为组间,Within Groups 为组内,F=3.676,所以接受原假设,即各地区每天发生的交通事故次数相等。