高考数学(一):第20炼-一元不等式的证明-Word版含解析

合集下载

基本不等式及其应用-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版

基本不等式及其应用-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版

2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第04练基本不等式及其应用(精练)1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在生活实际问题中的应用.一、单选题1.(2022·全国·高考真题)已知910,1011,89m m m a b ==-=-,则()A .0a b >>B .0a b >>C .0b a >>D .0b a>>二、多选题2.(2022·全国·高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥三、填空题3.(2023·天津·高考真题)在ABC 中,160BC A =∠= ,,11,22AD AB CE CD == ,记,AB a AC b ==,用,a b表示AE =;若13BF BC = ,则AE AF ⋅ 的最大值为.四、解答题4.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.【A 级基础巩固练】一、单选题1.(23-24高二下·福建三明·阶段练习)若0x >,则22y x x=+的最小值是()A .B C .4D .22.(2024高二下·湖南株洲·学业考试)已知04x <<)A .12B .1C D .33.(23-24高一下·贵州贵阳·阶段练习)已知02x <<,则()32x x -的最大值是()A .3-B .3C .1D .6【答案】B【分析】利用基本不等式,直接计算即可.取得等号,满足题意4.(23-24高一下·河南周口·阶段练习)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为()A .4B .6C .8D .165.(2023·湖南岳阳·模拟预测)若0,0a b >>且1a mb +=,若ab 的最大值为8,则正常数m =()A .1B .2C .3D .46.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为()A .1B .2C .4D .87.(23-24高一下·福建南平·期中)已知0a >,0b >,230a b +-=,则21a b++的最小值为()A .2B .1C .32D .348.(23-24高一下·湖南衡阳·阶段练习)已知向量()2,1a m m =+,(),12b n =,若向量a ,b 共线且0m >,则n 的最大值为()A .6B .4C .8D .39.(23-24高一下·浙江·期中)已知实数a ,b ,满足310ab +=(1b >),则31b a ++的取值范围是()A .()(),04,-∞⋃+∞B .()4,+∞C .(][),04,-∞+∞U D .[)4,+∞10.(2024·辽宁葫芦岛·一模)已知0a >,0b >,2a b +=,则()A .01a <≤B .01ab <≤C .222a b +>D .12b <<11.(2024·山东枣庄·一模)已知0,0a b >>,则“2a b +>”是“222a b +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.(23-24高一下·辽宁抚顺·阶段练习)已知,a b 均为正实数,240a b -+≤,则23a ba b++的最小值为()A .135B .145C .3D .513二、多选题13.(2024高三·全国·专题练习)已知x ≥1,则下列函数的最小值为2的有()A .22xy x =+B .2y =C .13y xx=-D .411y x x =-+14.(23-24高三上·云南楚雄·期末)已知正数a ,b 满足5a b ab +=,则()A .151a b+=B .a 与b 可能相等C 6≥D .a b +的最小值为6+【答案】BD15.(23-24高二下·浙江·期中)已知正数,a b 满足()()111a b --=,则下列选项正确的是()A .111a b+=B .25ab b+³C .4a b +≥D .228a b +≤三、填空题16.(23-24高一上·北京·期中)已知()8233y x x x =+>,则当x =时,y 取最小值为.17.(2024·上海徐汇·二模)若正数a b 、满足1a b+=,则2a b +的最小值为.18.(2024·河南商丘·模拟预测)若正数,a b 满足232a b a b =+,则a 的最小值是.19.(23-24高二下·云南·阶段练习)设0,0m n >>,若直线:22l mx y +=过曲线11x y a -=+(0a >,且1a ≠)的定点,则11m n+的最小值为.20.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.21.(2023·湖南岳阳·模拟预测)如图,某人沿围墙CD 修建一个直角梯形花坛ABCD ,设直角边AD x =米,2BC x =米,若12AD AB BC ++=米,问当x =米时,直角梯形花坛ABCD 的面积最大.22.(23-24高二下·湖南长沙·阶段练习)已知02a <<,则2a a+-的最小值为.四、解答题23.(23-24高二下·全国·期中)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用32年的隔热层,每厘米厚的隔热层建造成本为8万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位;cm )满足关系:()()161102C x x x =≤≤+,设()f x 为隔热层建造费用与32年的能源消耗费用之和.(1)求()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小,并求最小值.24.(23-24高一上·陕西渭南·阶段练习)已知0a >,0b >,0c >,求证:(1)6b c a c a ba b c+++++≥;(2)()()()2222226a b c b a c c a b abc +++++≥.25.(23-24高一上·浙江·期末)为了进一步增强市场竞争力,某公司计划在2024年利用新技术生产某款运动手表,经过市场调研,生产此款运动手表全年需投入固定成本100万,每生产x (单位:千只)手表,需另投入可变成本()R x 万元,且()228020,05064002015200,50x x x R x x x x ⎧++<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.2万元,且全年生产的手机当年能全部销售完.(利润=销售额-固定成本-可变成本)(1)求2024年的利润()W x (单位:万元)关于年产量x (单位:千只)的函数关系式.(2)2024年的年产量为多少(单位:千只)时,企业所获利润最大?最大利润是多少?26.(23-24高一上·黑龙江哈尔滨·阶段练习)完成下列不等式的证明:(1)对任意的正实数a ,b ,c,证明:a b c ++(2)设a ,b ,c 为正实数,且1a b c ++=,证明:13ab ac bc ++≤.【B 级能力提升练】一、单选题1.(23-24高一下·辽宁葫芦岛·开学考试)已知0,0x y >>,且41x y +=,则2y xxy+的最小值为()A .5B .C .4D .2.(2023·河南信阳·模拟预测)若51x -<<-,则函数()22f x x ++=+有()A .最小值1B .最大值1C .最小值1-D .最大值1-所以函数()f x 有最大值1-.故选:D.3.(23-24高三下·浙江·阶段练习)已知实数x ,y 满足3x >,且2312xy x y +-=,则x y +的最小值为()A .1+B .8C .D .1+4.(2024·辽宁·一模)已知20m n >>,则2m mm n n+-的最小值为()A .3+B .3-C .2+D .25.(2024·全国·模拟预测)已知,则下列不等式中不成立...的是()A .01ab <<B .122a b ->C >D .114a b+>【答案】C【分析】对于AB ,利用对数函数的性质即可判断;对于CD ,利用对数的运算得到1a b +=,结合基本不等式即可判断.【详解】因为lg 2,lg5a b ==,所以lg 2lg 5lg101a b +=+==,6.(2024·辽宁大连·一模)若()()ln 0,01f x m n n x+=>>--奇函数,则41m n ++的最小值为().A .65B .95C .4D .57.(23-24高一下·贵州贵阳·阶段练习)故宫博物院收藏着一幅《梧桐双兔图》.该绢本设色画纵约176cm ,横约95cm ,挂在墙上最低点B 离地面194cm ,小兰身高160cm (头顶距眼睛的距离为10cm).为使观测视角θ最大,小兰离墙距离S 应为()A.B .94cm C.D .76cm8.(2024·全国·模拟预测)已知0x >,0y >且1x y +=,则222211x y x y +++的最小值为()A .15B .25C .35D .459.(23-24高二下·江苏苏州·阶段练习)为提高市民的健康水平,拟在半径为200米的半圆形区域内修建一个健身广场,该健身广场(如图所示的阴影部分)分休闲健身和儿童活动两个功能区,图中ABCD 区域是休闲健身区,以CD 为底边的等腰三角形区域PCD 是儿童活动区,P ,C ,D 三点在圆弧上,AB 中点恰好在圆心O ,则当健身广场的面积最大时,OB 的长度为()A .100米B .150米C.米D.由于2AD BC OC ==-都是上底为21R t -,下底为所以,健身广场的面积S 从而,健身广场的面积最大的时候,恰好就是()22111tt t t t -+=-+=()223323223t t t +-+-≤=二、多选题10.(2023·浙江绍兴·二模)已知0a >,0b >,a b ab +=,则()A .1a >且1b >B .4ab ≥C .49a b +≤D .11b ab+>11.(2024·全国·模拟预测)已知0a >,0b >且2a b+=,则下列说法正确的是()A .ab 有最小值4B .a b +有最小值92C .2ab a +有最小值D的最小值为12.(23-24高二下·江西宜春·期中)已知0,1a b a b >>+=.则下列结论正确的有()A .a 32B .22122a b ++的最小值为C .1422a b a b+的最小值为3D .sin 1a b +<三、填空题13.(23-24高一下·河北保定·开学考试)若正数,m n 满足2212516m n +=,则mn 的最大值为.14.(23-24高一上·江苏扬州·期末)若1x >,1y >,10xy =,则lg lg x y 的最大值为.15.(2024·全国·模拟预测)已知1x >,0y >,且2x y +=,则11y x +-的最小值是.17.(2024·上海普陀·二模)若实数a ,b 满足20a b -≥,则24ab+的最小值为.18.(23-24高一上·浙江·期末)已知22321(,R)x xy y x y -+=∈,则222x y +的最小值为.四、解答题19.(2024·全国·二模)已知实数0,0a b >>,满足a b +=(1)求证:2224a b +≥;(2)求()()2211ab ab++的最小值.【答案】(1)证明见解析(2)1220.(23-24高一上·湖北武汉·阶段练习)已知0a >,0b >,且2a b +=.(1)求证:11413a b +≥+;(2)求证:42aab b+≥.21.(23-24高一下·甘肃白银·期中)养鱼是现在非常热门的养殖项目,为了提高养殖效益,养鱼户们会在市场上购买优质的鱼苗,分种类、分区域进行集中养殖.如图,某养鱼户承包了一个边长为100米的菱形鱼塘(记为菱形ABCD )进行鱼类养殖,为了方便计算,将该鱼塘的所有区域的深度统一视为2米.某养鱼户计划购买草鱼苗、鲤鱼苗和鲫鱼苗这三种鱼苗进行分区域养殖,用不锈钢网将该鱼塘隔离成ABD ,DEFB ,CEF 三块区域,图中,BD EF 是不锈钢网露出水面的分界网边,E 在鱼塘岸边DC 上(点E 与D ,C 均不重合),F 在鱼塘岸边BC .上(点F 与B ,C 均不重合).其中△ECF 的面积与四边形DEFB 的面积相等,△DAB 为等边三角形.(1)若测得EC 的长为80米,求CF 的长.(2)已知不锈钢网每平方米的价格是20元,为了节约成本,试问点E ,F 应如何设置,才能使得购买不锈钢1.414=)22.(2023·贵州黔西·一模)设a,b,c均为正数,且1a b c++=,证明:(1)2221 3a b c++≥;(2)333a cb ac b abc++≥.23.(23-24高一上·山东·阶段练习)已知0a >,0b >.(1)若4a b -=,证明:471a b +≥+.(2)若8a b ab ++=,求a b +的最小值.(3)若229327a b ab ++=,求3a b +的最大值.【C 级拓广探索练】一、单选题1.(22-23高一上·江苏徐州·阶段练习)设正实数,,x y z 满足22-3+4-=0x xy y z ,则当xyz取得最大值时,212+-x y z 的最大值为()A .9B .1C .94D .32.(23-24高三上·浙江绍兴·期末)已知x 为正实数,y 为非负实数,且22x y +=,则1x y +++的最小值为()A .34B .94C .32D .923.(2024·全国·模拟预测)设{}max ,,x y z 为,,x y z 中最大的数.已知正实数,a b ,记max 8,2M a b⎧=⎨⎩,则M 的最小值为()A .1B C .2D .44.(22-23高一上·河南·阶段练习)已知22321x xy y -+=(),R x y ∈,则22x y +的最小值为()A 6B 6C .6D .6二、多选题5.(23-24高一上·福建泉州·期末)已知0,0,21x y x y >>+=,则()A .42x y +的最小值为B .22log log x y +的最大值为3-C .y x xy --的最小值为1-D .22221x y x y +++的最小值为16正确;三、填空题6.(2023·山西·模拟预测)已知0,0a b >>,且122a b +=,则161211a b +--的最小值是.7.(23-24高三上·湖北荆州·阶段练习)已知实数,x y 满足22221x xy y -+=,则22x y -的最大值为.四、解答题8.(2023·全国·模拟预测)已知(),,0,x y z ∈+∞,且1x y z ++=.(1)1z>-;(2)求222544x y z xy yz xz +++++的最大值.,三式相加,可得:9.(23-24高一上·山东青岛·期末)某药品可用于治疗某种疾病,经检测知每注射t ml药品,从注射时间起血药浓度y(单位:ug/ml)与药品在体内时间x(单位:小时)的关系如下:162,06,89,618.2t xxyx t x⎧⎛⎫-≤≤⎪⎪-⎪⎝⎭=⎨⎛⎫⎪-<≤⎪⎪⎝⎭⎩当血药浓度不低于2ug/ml时才能起到有效治疗的作用,每次注射药品不超过2ml.(1)若注射1ml药品,求药品的有效治疗时间;(2)若多次注射,则某一时刻体内血药浓度为每次注射后相应时刻血药浓度之和.已知病人第一次注射1ml 药品,12小时之后又注射a ml药品,要使随后的6小时内药品能够持续有效消疗,求a的最小值.。

2021年高考数学真题试题(新高考Ⅰ卷)(word版,含答案与解析)

2021年高考数学真题试题(新高考Ⅰ卷)(word版,含答案与解析)

2021年高考数学真题试卷(新高考Ⅰ卷)一、选择题:本题共8小题,每小题5分,共40分。

1.设集合A= {x|-2<x<4}. B = {2,3,4,5},则A∩B=()A. {2}B. {2,3}C. {3,4,}D. {2,3,4}【答案】B【考点】交集及其运算【解析】【解答】解:根据交集的定义易知A∩B是求集合A与集合B的公共元素,即{2,3},故答案为:B【分析】根据交集的定义直接求解即可.2.已知z=2-i,则( z(z⃗+i)=()A. 6-2iB. 4-2iC. 6+2iD. 4+2i【答案】C【考点】复数的基本概念,复数代数形式的混合运算【解析】【解答】解:z(z+i)=(2−i)(2+2i)=4+4i−2i−2i2=6+2i故答案为:C【分析】根据复数的运算,结合共轭复数的定义求解即可.3.已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2 √2C. 4D. 4 √2【答案】B【考点】旋转体(圆柱、圆锥、圆台)【解析】【解答】解:根据底面周长等于侧面展开图弧长,设母线为l,底面半径为r,则有2πr=180°360°×2πl,解得l=2r=2√2故答案为:B【分析】根据底面周长等于侧面展开图弧长,结合圆的周长公式与扇形的弧长公式求解即可.4.下列区间中,函数f(x)=7sin( x−π6)单调递增的区间是()A. (0, π2) B. ( π2, π) C. ( π, 3π2) D. ( 3π2, 2π)【答案】A【考点】正弦函数的单调性【解析】【解答】解:由−π2+2kπ≤x−π6≤π2+2kπ得−π3+2kπ≤x≤2π3+2kπ,k∈Z,当k=0时,[−π3,2π3]是函数的一个增区间,显然(0,π2)⊂[−π3,2π3],故答案为:A【分析】根据正弦函数的单调性求解即可.5.已知F 1,F 2是椭圆C :x 29+y 24=1 的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( ) A. 13 B. 12 C. 9 D. 6 【答案】 C【考点】基本不等式在最值问题中的应用,椭圆的定义【解析】【解答】解:由椭圆的定义可知a 2=9,b 2=4,|MF 1|+|MF 2|=2a=6, 则由基本不等式可得|MF 1||MF 2|≤|MF1||MF2|≤(|MF1|+|MF2|2)2=9 ,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故答案为:C【分析】根据椭圆的定义,结合基本不等式求解即可. 6.若tan θ =-2,则sin θ(1+sin2θ)sin θ+cos θ=( )A. −65 B. −25 C. 25 D. 65 【答案】 C【考点】二倍角的正弦公式,同角三角函数间的基本关系,同角三角函数基本关系的运用 【解析】【解答】解:原式=sinθ(sin 2θ+2sinθcosθ+cos 2θ)sinθ+cosθ=sinθ(sinθ+cosθ)2sinθ+cosθ=sinθ(sinθ+cosθ)=sin 2θ+sinθcosθsin 2θ+cos 2θ=tan 2θ+tanθtan 2θ+1=25故答案为:C【分析】根据同角三角函数的基本关系,结合二倍角公式求解即可. 7.若过点(a,b)可以作曲线y=e x 的两条切线,则( ) A. e b <a B. e a <b C. 0<a<e b D. 0<b<e a 【答案】 D【考点】极限及其运算,利用导数研究曲线上某点切线方程【解析】【解答】解:由题意易知,当x 趋近于-∞时,切线为x=0,当x 趋近于+∞时,切线为y=+∞,因此切线的交点必位于第一象限,且在曲线y=e x 的下方. 故答案为:D【分析】利用极限,结合图象求解即可.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A. 甲与丙相互独立 B. 甲与丁相互独立 C. 乙与丙相互独立 D. 丙与丁相互独立 【答案】 B【考点】相互独立事件,相互独立事件的概率乘法公式,古典概型及其概率计算公式 【解析】【解答】解:设甲乙丙丁事件发生的概率分别为P(A),P(B),P(C),P(D), 则P(A)=P(B)=16,P(C)=56×6=536,P(D)=66×6=16 ,对于A ,P(AC)=0;对于B ,P(AD)=16×6=136; 对于C ,P(BC)=16×6=136; 对于D ,P(CD)=0.若两事件X,Y 相互独立,则P(XY)=P(X)P(Y), 故B 正确. 故答案为:B【分析】根据古典概型,以及独立事件的概率求解即可二、选择题:本题共4小题。

千题百炼——高考数学100个热点问题(一):第20炼-一元不等式的证明-Word版含解析

千题百炼——高考数学100个热点问题(一):第20炼-一元不等式的证明-Word版含解析

第20炼 一元不等式的证明利用函数性质与最值证明一元不等式是导数综合题常涉及的一类问题,考察学生构造函数选择函数的能力,体现了函数最值的一个作用——每一个函数的最值带来一个恒成立的不等式。

此外所证明的不等式也有可能对后一问的解决提供帮助,处于承上启下的位置。

一、基础知识: 1、证明方法的理论基础(1)若要证()f x C <(C 为常数)恒成立,则只需证明:()max f x C <,进而将不等式的证明转化为求函数的最值(2)已知()(),f x g x 的公共定义域为D ,若()()min max f x g x >,则()(),x D f x g x ∀∈> 证明:对任意的1x D ∈,有()()()()11min max ,f x f x g x g x ≥≤∴由不等式的传递性可得:()()()()11min max f x f x g x g x ≥>>,即()(),x D f x g x ∀∈>2、证明一元不等式主要的方法有两个:第一个方法是将含x 的项或所有项均挪至不等号的一侧,将一侧的解析式构造为函数,通过分析函数的单调性得到最值,从而进行证明,其优点在于目的明确,构造方法简单,但对于移项后较复杂的解析式则很难分析出单调性第二个方法是利用不等式性质对所证不等式进行等价变形,转化成为()()f x g x >的形式,若能证明()()min max f x g x >,即可得:()()f x g x >,本方法的优点在于对x 的项进行分割变形,可将较复杂的解析式拆成两个简单的解析式。

但缺点是局限性较强,如果()min f x 与()max g x 不满足()()min max f x g x >,则无法证明()()f x g x >。

所以用此类方法解题的情况不多,但是在第一个方法失效的时候可以考虑尝试此法。

3、在构造函数时把握一个原则:以能够分析导函数的符号为准则。

2021高考数学新高考版一轮习题:专题2 第20练 函数中的易错题 (含解析)

2021高考数学新高考版一轮习题:专题2 第20练 函数中的易错题 (含解析)

1.若函数f (x )定义域为[0,1],则f (x +a )·f (x -a )⎝⎛⎭⎫0<a <12的定义域为 ( ) A .[0,1] B .[-a ,a ] C .[a,1-a ]D .[0,1-a ]2.已知函数y =2-x +x +4的最大值为M ,最小值为m ,则m ·M 等于( ) A .8 2 B .6 2 C .4 2 D .2 23.已知g (x )是R 上的奇函数,当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( ) A .(-∞,1)∪(2,+∞) B .(-∞,-2)∪(1,+∞) C .(1,2)D .(-2,1)4.(2020·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧1-e x ,x ≤0,x 2-2x ,x >0,若函数y =f (x )-m 有两个不同的零点,则实数m 的取值范围为( ) A .(-1,1) B .(-1,1] C .(-1,+∞)D .[-1,+∞)5.已知f (x )是定义在R 上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47), b =13(log 3)f ,c =f (0.2-0.6),则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .b <c <aD .a <b <c6.已知点A (1,0),点B 在曲线G :y =ln x 上,若线段AB 与曲线M :y =1x 相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为( )A .0B .1C .2D .47.(多选)已知函数f (x )=122log x x - ,且实数a ,b ,c (a >b >c >0)满足f (a )f (b )f (c )<0.若实数x 0是函数y =f (x )的一个零点,那么下列不等式中可能成立的是( ) A .x 0<a B .x 0>a C .x 0<bD .x 0<c8.(多选)定义在R 上的奇函数f (x )和偶函数g (x )满足:f (x )+g (x )=4x ,下列结论正确的有( ) A .f (x )=4x -4-x 2,且0<f (1)<g (2)B .∀x ∈R ,总有[g (x )]2-[f (x )]2=1C .∀x ∈R ,总有f (-x )g (-x )+f (x )g (x )=0D .∃x 0∈R ,使得f (2x 0)>2f (x 0)g (x 0)9.(2020·湖北荆州中学期末)已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( ) A.13 B.12 C.34D .1 10.已知定义在R 上的函数f (x )满足f (x +2)=f (x ),且当x ∈[-1,1]时,f (x )=x 2.令g (x )=f (x )-kx -k ,若在区间[-1,3]内,关于x 的方程g (x )=0有4个不相等的实根,则实数k 的取值范围是( ) A .(0,+∞) B.⎝⎛⎦⎤0,12 C.⎝⎛⎦⎤0,14 D.⎣⎡⎦⎤14,1311.已知函数f (x )=⎩⎪⎨⎪⎧(a -1)x +4-2a ,x <1,1+log 2x ,x ≥1,若f (x )的值域为R ,则实数a 的取值范围是( ) A .(1,2] B .(-∞,2] C .(0,2]D .[2,+∞)12.定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧1-2x ,x ∈[0,1),1-|x -3|,x ∈[1,+∞),则关于x 的函数f (x )=f (x )-a (0<a <1)的所有零点之和为( ) A .2a -1 B .1-2-a C .-log 2(1+a )D .log 2(1-a )13.若定义运算f (a *b )=⎩⎪⎨⎪⎧b ,a ≥b ,a ,a <b ,则函数f (3x *3-x )的值域是________.14.(2020·昆明质检)已知函数f (x )=x 2-2mx +m +2,g (x )=mx -m ,若存在实数x 0∈R ,使得f (x 0)<0且g (x 0)<0同时成立,则实数m 的取值范围是________.15.已知a >0,函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0,则f ⎝⎛⎭⎫-12=________,若关于x 的方程f (x )=ax 恰有2个互异的实数解,则a 的取值范围是________.16.定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a ,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是________.答案精析1.C 2.B 3.D 4.A 5.B 6.B 7.ABC 8.ABC 9.D 10.C 11.A12.C [当x ≥0时,f (x )=⎩⎪⎨⎪⎧1-2x,x ∈[0,1),1-|x -3|,x ∈[1,+∞),又f (x )是奇函数,由图象可知,f (x )=0⇒f (x )=a (0<a <1)有5个零点,其中有两个零点关于x =-3对称,还有两个零点关于x =3对称,所以这四个零点的和为零,第五个零点是直线y =a 与函数y =⎝⎛⎭⎫12x-1,x ∈(-1,0]交点的横坐标,即方程a =⎝⎛⎭⎫12x -1的解,x =-log 2(1+a ).] 13.(0,1] 14.(3,+∞)解析 若m =0,g (x )=0,不存在g (x 0)<0.若m >0,因为当x <1时, g (x )<0,所以f (x )<0在(-∞,1)有解,则⎩⎨⎧ f (1)<0,m >0或⎩⎪⎨⎪⎧m >0,Δ>0,f (1)≥0,m ≤1,也即是m >3或⎩⎪⎨⎪⎧m >0,m 2-m -2>0,3-m ≥0,m ≤1(无解),故m >3.若m <0,因为当x >1, g (x )<0,所以f (x )<0在(1,+∞)有解,所以⎩⎪⎨⎪⎧f (1)<0,m <0,此时不等式组无解.综上, m 的取值范围为(3,+∞). 15.14(4,8) 解析 f ⎝⎛⎭⎫-12=⎝⎛⎭⎫-122+2a ·⎝⎛⎭⎫-12+a =14. 作出函数f (x )的示意图,如图.l 1是过原点且与抛物线y =-x 2+2ax -2a 相切的直线,l 2是过原点且与抛物线y =x 2+2ax +a 相切的直线.由图可知,当直线y =ax 在l 1,l 2之间(不含直线l 1,l 2) 转动时,符合题意.由⎩⎪⎨⎪⎧y =ax ,y =-x 2+2ax -2a ,消去y ,整理得x 2-ax +2a =0. 由Δ=0,得a =8(a =0舍去).由⎩⎪⎨⎪⎧y =ax ,y =x 2+2ax +a ,消去y ,整理得x 2+ax +a =0. 由Δ=0,得a =4(a =0舍去). 综上,得4<a <8. 16.(0,2)解析 因为函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数, 设x 0为均值点,所以f (1)-f (-1)1-(-1)=m =f (x 0),即关于x 0的方程-x 20+mx 0+1=m 在(-1,1)内有实数根,解方程得x 0=1或x 0=m -1. 所以必有-1<m -1<1,即0<m <2, 所以实数m 的取值范围是(0,2).。

2023年新高考数学大一轮复习专题05 一元二次不等式与其他常见不等式解法(解析版)

2023年新高考数学大一轮复习专题05 一元二次不等式与其他常见不等式解法(解析版)

专题05 一元二次不等式与其他常见不等式解法【考点预测】 1、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上. (2)①若0∆>,解集为{}21|x x x x x ><或. ②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且. ③若0∆<,解集为R .(2) 当0a <时,二次函数图象开口向下. ①若0∆>,解集为{}12|x x x x << ②若0∆≤,解集为∅ 2、分式不等式 (1)()0()()0()f x f xg x g x >⇔> (2)()0()()0()f x f xg x g x <⇔< (3)()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ (4)()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩3、绝对值不等式(1)22()()[()][()]f x g x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解 【方法技巧与总结】1.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为)11(m n ,,即关于x 的不等式02>++a bx cx 的解集为)11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤++c x b x a 的解集为)1[]1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为)11(nm --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,. 3.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[]1(∞+---∞,,nm 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推. 4.已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5.已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6.已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7.已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:不含参数一元二次不等式的解法 题型二:含参数一元二次不等式的解法 题型三:一元二次不等式与韦达定理及判别式 题型四:其他不等式解法 题型五:二次函数根的分布问题【典例例题】题型一:不含参数一元二次不等式的解法例1.(2022·新疆乌鲁木齐·二模(理))不等式(2)(1)0x x +->的解集为( ) A .{2}xx <-∣ B .{1}xx >∣ C .{21}x x -<<∣ D .{2∣<-xx 或1}x > 【答案】D 【解析】 【分析】结合一元二次不等式的解法求得正确答案即可. 【详解】由(2)(1)0x x +->解得2x <-,或1x >,所以不等式(2)(1)0x x +->的解集为{2∣<-xx 或1}x >, 故选:D.例2.(2022·全国·高三专题练习(文))已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3 B .()3,1-- C .()(),31,-∞-⋃+∞ D .()3,1-【答案】D 【解析】 【分析】根据指数型函数的定点求解,m n ,代入后再求解一元二次不等式. 【详解】当2x =时,()220255154f aa -=-=-=-=-,故2,4m n ==-,所以不等式为2230x x +-<,解得31x -<<,所以不等式的解集为()3,1-. 故选:D例3.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是( ) A .(﹣2,1) B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C 【解析】 【分析】根据()f x 解析式,可得()f x 的单调性,根据条件,可得x +2<x 2+2x ,根据一元二次不等式的解法,即可得答案. 【详解】函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,可得x ≥0,()f x 递增; 当x <0时,()f x 递增;且x =0时函数连续, 所以()f x 在R 上递增,不等式()2f x +<()22f x x +,可化为x +2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2, 则原不等式的解集为(﹣∞,﹣2)∪(1,+∞). 故选:C例4.(2022·全国·高三专题练习)关于x 的不等式()2210m m x m x -+++>的解集为R ,则实数m 的范围是( )A .m <B .m >C .0m >D .m >m < 【答案】B 【解析】 【分析】根据该不等式是否为二次不等式,分情况讨论. 【详解】当0m =时,该不等式为210x -+>,解集为12x <,不成立; 当0m ≠时,由不等式的解集为R ,得()()2Δ2410m m m m >⎧⎪⎨=+-+<⎪⎩,解得m >故选:B.例5.(2022·全国·高三专题练习)若函数()23x f x x =+,则不等式()()124f x f x +≥-的解集为( )A .[)3,+∞B .(],2-∞C .[]2,3D .[]1,5【答案】D 【解析】 【分析】根据奇偶性定义可知()f x 为偶函数,并根据指数函数和二次函数单调性确定()f x 的单调性,从而将所求不等式转化为124x x +≥-,解不等式可求得结果.()f x 定义域为R ,()()()2233x x f x x x f x --=+-=+=,()f x ∴为定义在R 上的偶函数,图象关于y 轴对称;当0x ≥时,()23x f x x =+,又3x y =,2yx 在[)0,∞+上均为增函数,()f x ∴在[)0,∞+上为增函数,则()f x 在(],0-∞上为减函数;由()()124f x f x +≥-可得:124x x +≥-,即()()22124x x +≥-,解得:15x ≤≤,即不等式()()124f x f x +≥-的解集为[]1,5. 故选:D.【方法技巧与总结】解一元二次不等式不等式的思路是:先求出其相应方程根,将根标在x 轴上,结合图象,写出其解集题型二:含参数一元二次不等式的解法例6.(2022·浙江·高三专题练习)不等式()()22200ax a x a -++≥<的解集为( )A .2,1a ⎡⎤⎢⎥⎣⎦B .11,a ⎡⎤⎢⎥⎣⎦C .2,[1,)a ⎛⎤-∞⋃+∞ ⎥⎝⎦D .2(,1],a ⎫⎡-∞⋃+∞⎪⎢⎣⎭【答案】A 【解析】 【分析】根据一元二次不等式的解法即可求解. 【详解】解:原不等式可以转化为:()()120x ax --≥,当0a <时,可知2()(1)0x x a--≤,对应的方程的两根为1,2a, 根据一元二次不等式的解集的特点,可知不等式的解集为:2[,1]a. 故选:A.例7.(2022·全国·高三专题练习)设1a <-,则关于x 的不等式1()0a x a x a ⎛⎫--< ⎪⎝⎭的解集为( )A .{|x x a <或1x a ⎫>⎬⎭B .{x |x >a }C .{x x a 或1x a ⎫<⎬⎭D .1|x x a ⎧⎫<⎨⎬⎩⎭【解析】 【分析】当1a <-时,根据开口方向及根的大小关系确定不等式的解集. 【详解】因为1a <-,所以1()0a x a x a ⎛⎫--< ⎪⎝⎭等价于1()0x a x a ⎛⎫--> ⎪⎝⎭,又因为当1a <-时,1a a >,所以不等式1()0x a x a ⎛⎫--> ⎪⎝⎭的解集为:{|x x a <或1x a ⎫>⎬⎭. 故选:A . 【点睛】本题考查含参一元二次不等式的解法,较简单,解答时,注意根的大小关系比较.例8.(2022·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()()f x y f x f y -=-,且当0x <时,()0f x >,则关于x 的不等式()()()()2222f mx f m f m x f x +>+(其中0m < )A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m > C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<【答案】A 【解析】 【分析】先判断函数()f x 单调递减,再利用已知条件和函数的单调性得()()20mx x m --<,解不等式即得解. 【详解】任取12x x <,由已知得()120f x x ->,即()()120f x f x ->,所以函数()f x 单调递减.由()()()()2222f mx f m f m x f x +>+可得()()()()2222f mx f x f m x f m ->-, 即()22f mx x f ->()22m x m -,所以2222mx x m x m -<-,即()22220mx m x m -++<,即()()20mx x m --<,又因为0m << 所以2m m>,此时原不等式解集为2x m x m ⎧⎫<<⎨⎬⎩⎭.故选:A 【点睛】方法点睛:解抽象函数不等式一般先要判断函数的单调性,再利用单调性化抽象函数不等式为具体的函数不等式解答.例9.(2022·全国·高三专题练习)在关于x 的不等式2(1)0x a x a -++<的解集中至多包含2个整数,则a 的取值范围是 A .(3,5)- B .(2,4)-C .[3,5]-D .[2,4]-【答案】D 【解析】 【详解】因为关于x 的不等式2(1)0x a x a -++<可化为(1)()0x x a --<, 当1a >时,不等式的解集为1x a <<, 当1a <时,不等式的解集为1<<a x ,要使得解集中至多包含2个整数,则4a ≤且2a ≥-,所以实数a 的取值范围是[2,4]a ∈-,故选D.点睛:本题主要考查了不等式解集中整数解的存在性问题,其中解答中涉及到一元二次不等式的求解,元素与集合的关系等知识点的综合应用,试题比较基础,属于基础题,同时着重考查了分类讨论思想的应用,解答中正确求解不等式的解集是解答的关键.例10.(2022·浙江·高三专题练习)设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围. 【答案】()(),22,∞∞--⋃+ 【解析】 【分析】由题意0a ≠,求出方程2220ax x a --=的两根,讨论a 的正负,确定二次不等式的解集A 的形式,然后结合数轴列出不等式求解即可得答案. 【详解】解:由题意0a ≠,令2220ax x a --=,解得两根为1211x x aa ==由此可知120,0x x <>, 当0a >时,解集{}{}12||A x x x x x x =<>,因为120,1x x <>,所以A B ⋂≠∅的充要条件是22x<,即12a <,解得2a >;当0a <时,解集{}12|A x x x x =<<,因为120,2x x <<,所以A B ⋂≠∅的充要条件是21>x ,即11a,解得2a <-;综上,实数a 的取值范围为()(),22,∞∞--⋃+.例11.(2022·全国·高三专题练习)已知关于x 的不等式(kx -k 2-4)(x -4)>0,其中k ∈R. (1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由. 【答案】(1)答案见解析(2)能;2k =-,B ={-3,-2,-1,0,1,2,3} 【解析】 【分析】(1)对k 进行分类讨论,结合一元二次不等式的解法求得不等式的解集A . (2)结合(1)的结论进行分类讨论,结合基本不等式求得和正确答案. (1)当k =0时,A ={x |x <4};当k >0且k ≠2时,A ={x |x <4或4x k k>+}; 当k =2时,A ={x |x ≠4};当k <0时,A ={x |4k k+<x <4}. (2)由(1)知:当k ≥0时,集合B 中的元素的个数有无限个;当k <0时,集合B 中的元素的个数有限,此时集合B 为有限集.因为4k k +=-[(-k )+()4k -]≤-4,当且仅当k =-2时取等号, 所以当k =-2时,集合B 中的元素个数最少,此时A ={x |-4<x <4},故集合B ={-3,-2,-1,0,1,2,3}.例12.(2022·全国·高三专题练习)已知关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >,若该不等式在(,)a b 中有且只有一个整数解,求实数m 的取值范围 【答案】12ln2(,]43-【解析】 【分析】将不等式转化为22ln 2(1)x xm x ->+,构造函数22ln ()=2(1)x x f x x -+,利用导数判断单调性,结合题意即可求解.【详解】关于x 的不等式21ln 02x mx x m ---<化为:22ln 2(1)x xm x ->+,令22ln ()=2(1)x xf x x -+,0x >,则3222222ln ()2(1)x x x x xf x x x +--+'=+.令32()2222ln u x x x x x x =+--+,2()342ln u x x x x '=++在(0,)+∞上单调递增,因此存在0(0,1)x ∈,使得20000()342ln 0u x x x x '=++=,20002ln 34x x x =--, 3232232200000000000000000()2222ln 222(34)22222(1)(1)0u x x x x x x x x x x x x x x x x x =+--+=+--+--=----=-++<,u (1)10=-<,u (2)104ln20=+>.因此存在1(1,2)x ∈,使得1()0u x =,因此函数()f x 在1(0,)x 内单调递减,在1(x ,)∞+单调递增.f (1)14=,f (2)2ln23-=. 关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >, 该不等式在(,)a b 中有且只有一个整数解, ∴实数m 的取值范围是12ln2(,]43-.【方法技巧与总结】 1.数形结合处理. 2.含参时注意分类讨论.题型三:一元二次不等式与韦达定理及判别式例13.(2022·湖南岳阳·二模)已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,其中0m <,则44b a b +的最小值为( ) A .2- B .1 C .2 D .8【答案】C 【解析】 【分析】由一元二次不等式的解与方程根的关系求出系数1a =,确定2b ≥,然后结合基本不等式得最小值. 【详解】2240ax bx ++<的解集为4,m m ⎛⎫ ⎪⎝⎭,则2240ax bx ++=的两根为m ,4m ,∴44m m a ⋅=,∴1a =,42m b m +=-,则424b m m=-+≥-,即2b ≥,44244b b a b b+=+≥,当且仅当4b =时取“=”, 故选:C.例14.(2022·江苏南京·模拟预测)已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值是( ) AB. CD. 【答案】D 【解析】 【分析】一元二次不等式解集转化为一元二次方程的解,根据韦达定理求出124x x a +=,2123x x a =,再用基本不等式求出最值 【详解】22430(0)x ax a a -+<<的解集为()12x x ,,则12x x ,是方程22430-+=x ax a 的两个根,故124x x a +=,2123x x a =,故1212143a x x a x x a++=+ 因为0a <,所以有基本不等式得:114433a a a a ⎡⎤⎛⎫+=--+-≤- ⎪⎢⎥⎝⎭⎣⎦当且仅当143a a -=-即a =1212a x x x x ++的最大值为故选:D(多选题)例15.(2022·全国·高三专题练习)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( ) A .0a >B .不等式0bx c +>的解集是{}|6x x <-C .0a b c ++>D .不等式20cx bx a -+<的解集为11(,)(,)32-∞-⋃+∞【答案】ABD 【解析】 【分析】根据不等式20ax bx c ++>的解集判断出0a >,结合根与系数关系、一元二次不等式的解法判断BCD 选项的正确性. 【详解】关于x 的不等式20ax bx c ++>的解集为()(),23,,0,A a ∞∞--⋃+∴>选项正确; 且-2和3是关于x 的方程20ax bx c ++=的两根,由韦达定理得2323b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则,6b a c a =-=-,则60a b c a ++=-<,C 选项错误; 不等式0bx c +>即为60ax a -->,解得6,B x <-选项正确;不等式20cx bx a -+<即为260ax ax a -++<,即2610x x -->,解得13x <-或1,D 2x >选项正确. 故选:ABD .例16.(2022·全国·高三专题练习)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式303x ax -<-的解集为___________. 【答案】{}23x x << 【解析】 【分析】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭可得参数a 的值,则不等式303x ax -<-也具体化了,按分式不等式解之即可. 【详解】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,可知方程251=0ax x ++有两根121123x x =-=-,,故6a =,则不等式303x ax -<-即3603x x -<-等价于3(2)(3)0x x --<, 不等式3(2)(3)0x x --<的解集为{}23x x <<, 则不等式303x ax -<-的解集为{}23x x <<, 故答案为:{}23x x <<.例17.(2022·全国·高三专题练习)已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --< 的解集是________.【答案】{|23}x x << 【解析】 【分析】根据给定的解集求出a ,b 的值,再代入解不等式即可作答. 【详解】依题意,12-,13-是方程210ax bx --=的两个根,且0a <,于是得11()()23111()()23b aa ⎧-+-=⎪⎪⎨⎪-⨯-=-⎪⎩,解得:6,5ab =-=,因此,不等式20x bx a --<为:2560x x -+<,解得23x <<, 所以不等式20x bx a --< 的解集是{|23}x x <<. 故答案为:{|23}x x <<【方法技巧与总结】1.一定要牢记二次函数的基本性质.2.含参的注意利用根与系数的关系找关系进行代换.题型四:其他不等式解法例18.(2022·上海市青浦高级中学高三阶段练习)不等式是12x>的解集为______. 【答案】10,2⎛⎫⎪⎝⎭【解析】 【分析】 由12x>可得120x ->,结合分式不等式的解法即可求解.【详解】 由12x >可得120x ->,整理可得:120xx ->,则()210x x -<,解可得:102x <<. 所以不等式是12x>的解集为: 10,2⎛⎫ ⎪⎝⎭. 故答案为:10,2⎛⎫⎪⎝⎭.例19.(2022·全国·高三专题练习)不等式111x >+的解集为___________. 【答案】()1,0- 【解析】 【分析】根据分式不等式的解法进行求解. 【详解】1111000101111x x x x x x x ->⇒->⇒>⇒<⇒-<<++++, 故答案为:()1,0-.例20.(2022·全国·高三专题练习)写出一个解集为()0,2的分式不等式___________. 【答案】02xx <- 【解析】 【分析】由题意根据分式不等式的解法,得出结论. 【详解】一个解集为()0,2的分式不等式可以是02xx <-, 故答案为:02xx <-.(答案不唯一) 例21.(2022·上海·高三专题练习)关于x230的解集为_________. 【答案】[4,5) 【解析】 【分析】通过2330x x -+>0≥恒成立,将不等式最终转化为405010x x x -≥⎧⎪->⎨⎪+≠⎩,解出即可.【详解】解:对于233x x -+,有23340∆=-⨯<,则2330x x -+>恒成立,0≥恒成立,2323(34)00150x x x x ⎧--≥⎪≥⇔+⎨⎪->⎩又2333(34)(4)(1)11x x x x x x ---+=++,23(34)0150x x x x ⎧--≥⎪∴+⎨⎪->⎩, 2333(34)(4)(1)x x x x --=-+405010x x x -≥⎧⎪∴->⎨⎪+≠⎩解得不等式的解集为[4,5). 故答案为:[4,5). 【点睛】本题考查分式不等式的求解,发现部分因式恒大于零,以及分母不为零是解题的关键,是中档题. 例22.(2022·四川德阳·三模(文))对于问题:“已知关于x 的不等式20ax bx c ++>的解集为()1,2-,解关于x 的不等式20ax bx c -+>”,给出如下一种解法: 解析:由20ax bx c ++>的解集()1,2-,得 ()()20a x b x c -+-+>的解集为()2,1-,即关于x 的不等式20ax bx c -+>的解集为()2,1-. 参考上述解法,若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭关于x 的不等式1011kx bx ax cx ++<++的解集为____. 【答案】()()3,11,2--.【解析】 【分析】 关于x 的不等式1011kx bx ax cx ++<++可看成前者不等式中的x 用1x 代入可得不等式1011kx bx ax cx ++<++的解集. 【详解】 若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭则关于x 的不等式1011kx bx ax cx ++<++可看成前者不等式中的x 用1x代入可得, 则1111,,132x ⎛⎫⎛⎫∈--⋃ ⎪ ⎪⎝⎭⎝⎭,则()()3,11,2x ∈--⋃. 故解集为:()()3,11,2--.【点睛】本题考查不等式的解法,考查方法的类比,正确理解题意是关键.【方法技巧与总结】1.分式不等式化为二次或高次不等式处理. 2.根式不等式绝对值不等式平方处理.题型五:二次函数根的分布问题例23.(2022·浙江·高三专题练习)若关于x 的方程2210ax ax -+=有两个不同的正根,则实数a 的取值范围是( ) A .()0,1 B .()0,∞+C .()1,+∞D .(),0-∞【答案】C 【解析】 【分析】由0a ≠,判别式0∆>及根与系数关系列出不等式组,即可求出实数a 的取值范围. 【详解】因为关于x 的方程2210ax ax -+=有两个不同的正根,所以2044010a a a a ⎧⎪≠⎪∆=->⎨⎪⎪>⎩,解得1a >,故实数a 的取值范围是()1,+∞.故选:C例24.(2022·全国·高三专题练习)已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( ) A .(,1]-∞- B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫-- ⎪⎝⎭【答案】B 【解析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解. 【详解】已知函数321()13f x x ax x =+++,则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.例25.(2022·全国·高三专题练习)若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【答案】A 【解析】化简函数f (x ),根据f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,f ′(x )≤0恒成立,由此解不等式求出a 的取值范围.【详解】由函数()()()1cos 23sin cos 212f x x a x x a x =+++-,且f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,∴在区间0,2π⎡⎤⎢⎥⎣⎦上,f ′(x )=−sin 2x +3a (cosx −sinx )+2a −1≤0恒成立,∵设4t cosx sinx x π=⎛⎫ ⎪⎝=-⎭-,∴当x ∈0,2π⎡⎤⎢⎥⎣⎦时,444x πππ-⎥∈-⎡⎤⎢⎣⎦,,t ∈[−1,1],即−1≤cosx −sinx ≤1,令t ∈[−1,1],sin 2x =1−t 2∈[0,1],原式等价于t 2+3at +2a −2≤0,当t ∈[−1,1]时恒成立, 令g (t )=t 2+3at +2a −2,只需满足312(1)510a g a ⎧-≤-⎪⎨⎪=-≤⎩或312(1)10ag a ⎧-≥⎪⎨⎪-=--≤⎩或3112(1)510(1)10a g a g a ⎧-<-<⎪⎪=-≤⎨⎪-=--≤⎪⎩,解得∅或213a -≤≤-或2135a -<≤,综上,可得实数a 的取值范围是11,5⎡⎤-⎢⎥⎣⎦,故选:A . 【点睛】本题考查三角函数的公式及导数的应用,解题的关键是利用换元将不等式恒成立问题转化为一元二次不等式恒成立问题,属于较难题.例26.(2022·全国·高三专题练习)已知曲线322()13f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值( ) A .196B .3C .103 D .92【答案】AC 【解析】 【分析】本题先求导函数并根据题意建立关于m 的方程,再根据根的分布求a 的取值范围,最后判断得到答案即可. 【详解】 解:∵ 322()13f x x x ax =-+-, ∴ 2()22f x x x a '=-+,可令切点的横坐标为m ,且0m >,可得切线斜率2223k m m a =-+=即22230m m a -+-=,由题意,可得关于m 的方程22230m m a -+-=有两个不等的正根, 且可知1210m m +=>,则1200m m ∆>⎧⎨⋅>⎩,即2242(3)0302a a ⎧-⨯⨯->⎪⎨->⎪⎩, 解得:732a <<, 所以a 的取值可能为196,103.故选:AC. 【点睛】本题考查求导函数,导数的几何意义,根的分布,是中档题.例27.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____【答案】2m <-或5m ≥+【解析】根据一元二次方程根的分布建立不等式组,解之可得答案. 【详解】由题意得应满足0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩解得:2m <-或5m ≥+故答案为:2m <-或5m ≥+.例28.(2022·全国·高三专题练习)设2()32f x ax bx c =++,若0,(0)0,(1)0a b c f f ++=>>,求证: (Ⅰ) 0a >且21ba-<<-; (Ⅱ)方程()0f x =在(0,1)内有两个实根. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】 【分析】(Ⅰ)先由条件求得,a c 的符号,结合条件可得; (Ⅱ)根据(0),(1)()3bf f f a-的符号可得. 【详解】(Ⅰ)因为(0)0,(1)0f f >>,所以0,320c a b c >++>. 由条件0a b c ++=,消去b ,得0a c ;由条件0a b c ++=,消去c ,得0a b +<,20a b +>. 故21ba-<<-. (Ⅱ)函数2()32f x ax bx c =++的顶点坐标为23(,)33b ac b a a--, 在21b a -<<-的两边乘以13-,得12333b a <-<.又因为(0)0,(1)0,f f >>而22()0,33b a c acf a a+--=-<又因为2()32f x ax bx c =++在(0,)3b a -上单调递减,在(,1)3ba-上单调递增, 所以方程()0f x =在区间(0,)3b a -与(,1)3ba-内分别各有一实根. 【方法技巧与总结】解决一元二次方程的根的分布时,常常需考虑:判别式,对称轴,特殊点的函数值的正负,所对应的二次函数图象的开口方向.【过关测试】 一、单选题1.(2022·河南·南阳中学高三阶段练习(文))已知集合{}2280A x x x =--≤,203x B xx ⎧⎫-=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}22x x -≤≤ B .{}42,3x x x -≤≤≠- C .{}34x x ≤≤ D .{}34x x -<≤【答案】D 【解析】 【分析】由一元二次不等式的解法和简单分式不等式的解法求出集合,A B ,然后根据并集的定义即可求解. 【详解】解:因为集合{}{}228024A x x x x x =--≤=-≤≤,()(){}2302032330x x x B x x x x x x ⎧⎫⎧-+≤⎧⎫-⎪⎪=≤==-<≤⎨⎬⎨⎨⎬++≠⎩⎭⎩⎪⎪⎩⎭,所以{}34A B x x ⋃=-<≤, 故选:D.2.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】2,20x x x a ∃∈-+<R ,列出不等式,求出1a <,从而判断出答案.【详解】2,20x x x a ∃∈-+<R ,则要满足440a ∆=->,解得:1a <,因为11a <⇒1a <,但111a a <⇒<故“11a <”是“2,20x x x a ∃∈-+<R ”的必要不充分条件. 故选:B3.(2022·陕西·模拟预测(理))已知集合234|0A x x x ,{}2|B x a x a =<<,若A B =∅,则实数a 的取值范围是( ) A .(],1-∞- B .[)4,+∞ C .()(),12,4-∞-⋃ D .[][)1,24,-⋃+∞【答案】D 【解析】 【分析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可. 【详解】解:由题知{}{}2|3401,4A x x x =--==-,因为A B =∅, 所以,当{}2|B x a x a=<<=∅时,2a a≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞,综上,实数a 的取值范围是[][)1,24,-⋃+∞. 故选:D4.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x π=---,则关于t 的不等式()()20f t f t +<的解集为( )A .()2,1- B.(-C .()0,1D.(【答案】C 【解析】 【分析】根据函数解析式判断函数关于点(1,0)成中心对称,再由基本初等函数判断函数单调性,转化原不等式后求解即可. 【详解】()()ππln ln 2cos ln 2ln cos(π)0)2()(22f x f x x x x x x x ----+----=+=,()f x ∴图象关于点(1,0)成中心对称,又()()ln ln 2cos2f x x x x π=---的定义域为(0,2),由πln ,ln(2),cos 2y x y x y x ==--=-在(0,2)上单调递增知, ()()ln ln 2cos2f x x x x π=---在(0,2)上递增,()()20f t f t +<,()20(2)f f t t ∴+-<-,即()2(2)f t f t <-,22t t ∴<-,解得21t -<<,又20202t t <<⎧⎨<<⎩,解得0t < 所以01t <<. 故选:C5.(2022·山西·二模(理))已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是( ) A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】由题知{}1,0,1A =-,进而根据题意求解即可. 【详解】解:因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<, 所以,实数a 的取值范围是31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .6.(2022·重庆·高三阶段练习)若关于x 的不等式sin |sin |2x x k -≤对任意5,66x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则实数k 的取值范围为( ) A .[1,3]- B .75,22⎡⎤-⎢⎥⎣⎦C.[1,- D.[1,【答案】A【分析】令1sin ,[,1]2t x t =∈,则||2t t k -≤.对k 进行讨论,即可求出答案.【详解】令1sin ,[,1]2t x t =∈,则||2t t k -≤.(1)当12k <时,则2()220t t k t kt -≤⇒--≤, 令2()2g t t kt =--,max ()(1)101g t g k k ==--≤⇒≥-.故112k -≤<. (2)当1k >时,则2()220t k t t kt -≤⇒-+≥, 令2()2g t t kt =-+ ①当12k<时,212k k <⇒<<,则22min ()()201242k k k g t g k ==-+≥⇒<≤②当12k≥时,2k ≥, 则min ()(1)120323g x g k k k ==-+≥⇒≤⇒≤≤ 故13k << (3)当112k ≤≤时,则||2t t k -≤在1[,1]2t ∈上恒成立, 故112k ≤≤. 综上所述:[1,3]k ∈- 故选:A.7.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b+=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞【答案】A 【解析】首先判断0,0a b >>,再化简()214224a b a b a b a b b a ⎛⎫+=++=++ ⎪⎝⎭,利用基本不等式求解.【详解】解:设方程2320x x ab --=的两个异号的实根分别为1x ,2x ,则1203abx x =-<,0ab ∴>. 又211a b+=,0a ∴>,0b >,则()21422448a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭(当且仅当4a =,2b =时取“=”),由不等式222a b m m +>+恒成立,得228m m +<,解得42m -<<. ∴实数m 的取值范围是()4,2-.故选:A .8.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为()A .(-∞,2)(3⋃,)∞+B .(-∞,1)(2⋃,)∞+C .(-∞,1)(3⋃,)∞+D .(1,3)【答案】C 【解析】 【分析】把不等式看作是关于a 的一元一次不等式,然后构造函数()2(2)44f a x a x x =-+-+,由不等式在[1-,1]上恒成立,得到(1)0(1)0f f ->⎧⎨>⎩,求解关于a 的不等式组得x 得取值范围.【详解】解:令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.x 的取值范围为()(),13,-∞⋃+∞.故选:C . 二、多选题9.(2022·全国·高三专题练习)若不等式2sin sin 20x a x -+≥对任意的0,2x π⎛⎤∈ ⎥⎝⎦恒成立,则实数a 可能是A .1B .2C .3D .4【答案】ABC 【解析】 【分析】利用换元法令sin t x =,不等式可整理为220t at -+≥在(]0,1t ∈上恒成立,即2a t t ≤+,即min 2a t t ⎛⎫≤+ ⎪⎝⎭,求函数的最小值即可得解. 【详解】设sin t x =,0,2x π⎛⎤∈ ⎥⎝⎦,(]0,1t ∴∈则不等式2sin sin 20x a x -+≥对任意0,2x π⎛⎤∈ ⎥⎝⎦恒成立,即转化为不等式220t at -+≥在(]0,1t ∈上恒成立, 即转化为222t a t t t+≤=+在(]0,1t ∈上恒成立, 由对勾函数知2y t t=+在(]0,1t ∈上单减,min 2131y =+=,3a ∴≤故选:ABC 【点睛】关键点点睛:本题主要考查不等式恒成立问题,利用换元法结合对勾函数的单调性求出函数的最值是解题的关键,考查学生的转化与化归能力,属于一般题.10.(2022·江苏·高三专题练习)已知不等式20ax bx c ++>的解集为{}x m x n <<,其中0m >,则以下选项正确的有( ) A .0a <B .0c >C .20cx bx a ++>的解集为11x x nm ⎧⎫<<⎨⎬⎩⎭D .20cx bx a ++>的解集为{1x x n <或}1x m>【答案】AC 【解析】由一元二次不等式的解法,再结合根与系数的关系逐个分析判断可得答案 【详解】解:因为不等式20ax bx c ++>的解集为{}x m x n <<,其中0m >, 所以0a <,,m n 是方程20ax bx c ++=的两个根,所以A 正确;所以b m n a c mn a ⎧+=-⎪⎪⎨⎪=⎪⎩,解得()b m n a c mna =-+⎧⎨=⎩,因为0m >,m n <,所以0n >,又由于0a <,所以0c mna =<,所以B 错误; 所以20cx bx a ++>可化为2()0mnax m n ax a -++>, 即2()10mnx m n x -++<,即(1)(1)0mx nx --<, 因为0n m >>,所以11n m<, 所以不等式20cx bx a ++>的解集为11x x nm ⎧⎫<<⎨⎬⎩⎭,所以C 正确,D 错误, 故选:AC 【点睛】关键点点睛:此题考查一元二次不等式的解法的应用,解题的关键由一元二次不等式的解法可知0a <,且,m n 是方程20ax bx c ++=的两个根,再利用根与系数的关系得b m n a c mn a ⎧+=-⎪⎪⎨⎪=⎪⎩,再求得()b m n a c mna =-+⎧⎨=⎩,从而可求解不等式20cx bx a ++>,考查转化思想,属于中档题11.(2022·全国·高三专题练习)已知函数()222f x x mx m =--,则下列命题正确的有( )A .当0m ≠时,()0f x <的解集为2mx x m ⎧⎫-<<⎨⎬⎩⎭B .当1m =时,[)12,1,x x ∀∈+∞时,()()()12120x x f x f x -->⎡⎤⎣⎦C .121,,4x x m ⎛⎤∀∈-∞ ⎥⎝⎦且12x x ≠时,()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭ D .当0m <时,若120x x <<,则()()2112>x f x x f x 【答案】BC 【解析】对于A ,分0m >和0m <时求解不等式; 对于B ,根据函数的单调性可判断;对于C ,根据函数的单调性,任取两点,根据数形结合的方式可判断; 对于D ,构造函数()()(0)f x g x x x=>,看作()y f x =在y 轴右侧图象上的点与原点所在直线的斜率, 数形结合可判断单调性,即可得出结果.对于A ,由2220x mx m --<得()(2)0x m x m -+<,当0m >时,原不等式的解集为|2m x x m ⎧⎫-<<⎨⎬⎩⎭;当0m <时,原不等式的解集为|2m x m x ⎧⎫<<-⎨⎬⎩⎭,故A 错误;对于B ,1m =时,2219()212()48f x x x x =--=--在[)1+∞,上是增函数,则1212()()0f x f x x x ->-,即()[]1212()()0x x f x f x -->,故B 正确;对于C. ()f x 在1,4⎛⎤-∞ ⎥⎝⎦m 上单调递减,当121,4x x m ⎛⎤∈-∞ ⎥⎝⎦,时,设11(,())A x f x 、()22,()B x f x ,则AB 的中点C1212()(),22x x f x f x ++⎛⎫⎪⎝⎭,又设1212,22x x x D f x ⎛⎫⎛++⎫ ⎪ ⎪⎝⎭⎝⎭, 数形结合可知,点D 位于点C 的下方,即1212()()22x x f x f x f ++⎛⎫< ⎪⎝⎭,故C 正确;对于D ,设()()(0)f x g x x x=>,则()g x 表示()y f x =在y 轴右侧图象上的点与原点所在直线的斜率, 数形结合可知,()g x 是增函数,当120x x <<时,12()()<g x g x ,则1212()()f x f x x x <,即2112()()x f x x f x <,故D 错误.故选:BC.关键点睛:本题考查二次函数性质的综合应用,对于CD 选项的判断,关键是根据函数的单调性,利用数形结合的方法进行判断.12.(2022·重庆巴蜀中学高三阶段练习)已知两个变量x ,y 的关系式(,)(1)f x y x y =-,则以下说法正确的是( )A .(1,3)(3,1)0f f ==B .对任意实数a ,都有1(,)4f a a ≤成立 C .若对任意实数x ,不等式(,)4f x a x a -≤-+恒成立,则实数a 的取值范围是[5,3]- D .若对任意正实数a ,不等式(,)4f x a x a -≤-+恒成立,则实数x 的取值范围是(,0)-∞ 【答案】BC 【解析】 【分析】(1,3)f 和(3,1)f 的值直接代入即可求得,1(,)4f a a ≤转化为求二次函数最大值的问题,若对任意实数x ,不等式(,)4f x a x a -≤-+恒成立转化为关于x 的二次函数与x 轴至多有一个交点的问题,若对任意正实数a ,不等式(,)4f x a x a -≤-+恒成立转化为关于a 的一次函数在0a >内恒大于等于零恒成立的问题.【详解】对于选项A ,()(1,3)1132f =⨯-=-,()(3,1)3110f =⨯-=,即(1,3)(3,1)f f ≠,则A 选项错误;对于选项B ,()22211111(,)144244f a a a a a a a a a ⎛⎫⎛⎫=-=-=--++=--+≤ ⎪ ⎪⎝⎭⎝⎭,则B 选项正确;对于选项C , ()()()2(,)114f x a x x a x x a x a a -=--=-++-≤-+ 恒成立,即()2140x a x -++≥ 恒成立,则()21160a ∆=+-≤,解得53a -≤≤,即实数a 的取值范围是[5,3]-,则C选项正确;对于选项D ,()2140x a x -++≥ 恒成立,令()24 0y ax x x a =-+-+>,当0x >时,该函数看成关于a 的一次函数,函数单调递减,不可能恒大于0,当0x =时,40y =≥成立,当0x <时,该函数看成关于a 的一次函数,函数单调递增,当0a =时,24y x x =-+211544x x =-++2115024x ⎛⎫=-+> ⎪⎝⎭,则实数x 的取值范围是(],0-∞,则D 选项错误;故选:BC . 三、填空题13.(2022·全国·高三专题练习)不等式210ax x c a++>的解集为{|21}x x -<<,则函数y【答案】[0,1] 【解析】根据不等式的解集可知一元二次不等式所对应的一元二次方程的根,利用韦达定理可求出a ,c 的值,再根据复合函数求单调区间的方法,得出单调递增区间. 【详解】由题知-2和1是210ax x c a++=的两根, 由根与系数的关系知-2+1=21a -,−2×1=c a , 由不等式的解集为{|21}x x -<<,可知0a <, 12a c ∴=-=,,则y =因为函数y []0,2x ∈,令()22g x x x =-+则该函数的增区间为(],1-∞所以y =[]0,1 故答案为:[]0,1.14.(2022·浙江·高三专题练习)若不等式2(3)16x b -<的解集中的整数有且仅有1,2,3,则实数b 的取值范围是___________. 【答案】()5,7 【解析】 【分析】首先解一元二次不等式,求出不等式的解集,再根据解集中整数的情况,得到不等式组,解得即可; 【详解】解:因为2(3)16x b -<,所以()()34340x b x b -+--<,解得4433b b x -+<<,所以原不等式的解集为44|33b b x x -+⎧⎫<<⎨⎬⎩⎭,又解集中的整数有且仅有1,2,3, 所以40134343b b -⎧<⎪⎪⎨+⎪<⎪⎩解得:57b <<,即()5,7b ∈,故答案为:()5,7.15.(2022·全国·高三专题练习)若关于x 的不等式()2220x a x a -++->恰有1个正整数解,则a 的取值范【答案】()(],13,4-∞【解析】 【分析】先解带有参数的一元二次不等式,再对a 进行分类讨论,使得恰有1个正整数解,最后求出a 的取值范围 【详解】不等式()2220x a x a -++->等价于()2220x a x a -++<.令()2220x a x a -++=,解得2x =或x a =. 当2a >时,不等式()2220x a x a -++<的解集为()2,a ,要想恰有1个正整数解,则34a <; 当2a =时,不等式()2220x a x a -++<无解,所以2a =不符合题意; 当2a <时,不等式()2220x a x a -++<的解集为(),2a ,则1a <.综上,a 的取值范围是()(],13,4-∞.故答案为:()(],13,4-∞16.(2022·全国·高三专题练习)设a ,b ,c R ∈,对任意满足1x 的实数x ,都有21ax bx c ++,则a b c++的最大可能值为__. 【答案】3 【解析】 【分析】可先通过赋值0x =,判断1c ≤,再令1,0c b =-=,结合二次函数最值,可得所求最大值. 【详解】任意满足1x 的实数x ,都有21ax bx c ++,若0x =,则1c ,可取1c =-,0b =,可得211ax -,即22ax ≤恒成立,由于201x ,可得a 最大取2, 可得3a b c ++,即有a b c ++的最大可能值为3. 故答案为:3. 四、解答题17.(2022·北京·高三学业考试)已知函数2()1f x x mx =++(m 是常数)的图象过点(1,2). (1)求()f x 的解析式;(2)求不等式()21f x x <+的解集. 【答案】(1)2()1f x x =+;。

2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析

 2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题目时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B ∩中元素的个数为()A.2B.3C.4D.6【答案】C 【解析】【分析】采用列举法列举出A B ∩中元素的即可.【详解】由题意,A B ∩中的元素满足8y xx y ,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4),故A B ∩中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.复数113i的虚部是()A.310B.110C.110D.310【答案】D 【解析】【分析】利用复数的除法运算求出z 即可.【详解】因为1131313(13)(13)1010i z i i i i ,所以复数113z i 的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ,则下面四种情形中,对应样本的标准差最大的一组是()A.14230.1,0.4p p p pB.14230.4,0.1p p p pC.14230.2,0.3p p p pD.14230.3,0.2p p p p 【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为 140.1230.4 2.5A x ,方差为 222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s ;对于B 选项,该组数据的平均数为 140.4230.1 2.5B x ,方差为 222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s ;对于C 选项,该组数据的平均数为 140.2230.3 2.5C x ,方差为 222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s ;对于D 选项,该组数据的平均数为 140.3230.2 2.5D x ,方差为 222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s .因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】【分析】将t t 代入函数0.23531t KI t e结合 0.95I tK求得t即可得解.【详解】0.23531t KI t e∵,所以0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t,解得353660.23t .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B 【解析】【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4COx COx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x 与抛物线22(0)y px p 交于,C D 两点,且OD OE ,根据抛物线的对称性可以确定4DOx COx,所以(2,2)C ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a ,||6b ,6a b ,则cos ,= a a b ()A.3135B.1935C.1735 D.1935【答案】D 【解析】【分析】计算出a ab 、a b 的值,利用平面向量数量积可计算出cos ,a a b的值.【详解】5a ∵,6b ,6a b,225619a a b a a b .7a b,因此,1919cos ,5735a a b a a b a a b.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12 D.23【答案】A 【解析】【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC,即可求得答案.【详解】∵在ABC 中,2cos 3C,4AC ,3BC 根据余弦定理:2222cos AB AC BC AC BC C2224322433AB可得29AB ,即3AB 由∵22299161cos 22339AB BC AC B AB BC故1cos 9B .故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A.B. C.6+2 D.【答案】C 【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S△△△根据勾股定理可得:AB AD DB ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD△该几何体的表面积是:632 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tan θ–tan(θ+π4)=7,则tan θ=()A.–2 B.–1C.1D.2【答案】D 【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan 74∵,tan 12tan 71tan,令tan ,1t t ,则1271tt t,整理得2440t t ,解得2t ,即tan 2 .故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l 与曲线y =和x 2+y 2=15都相切,则l 的方程为()A.y =2x +1B.y =2x +12C.y =12x +1 D.y =12x +12【答案】D 【解析】【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y上的切点为 0x ,则00x ,函数y的导数为y,则直线l的斜率k,设直线l的方程为 0y x x,即00x x ,由于直线l 与圆2215x y,两边平方并整理得2005410x x ,解得01x ,015x(舍),则直线l 的方程为210x y ,即1122y x .故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A.1B.2C.4D.8【答案】A 【解析】【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】ca∵,c ,根据双曲线的定义可得122PF PF a ,12121||42PF F PF F S P△,即12||8PF PF ,12F P F P ∵, 22212||2PF PF c ,22121224PF PF PF PF c ,即22540a a ,解得1a ,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b【答案】A 【解析】【分析】由题意可得a 、b 、 0,1c ,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b ,得85b ,结合5458 可得出45b,由13log 8c ,得138c ,结合45138 ,可得出45c,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、0,1c ,222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b,a b ;由8log 5b ,得85b ,由5458 ,得5488b ,54b ,可得45b;由13log 8c ,得138c ,由45138 ,得451313c ,54c ,可得45c .综上所述,a b c .故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题目:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x,,则z =3x +2y 的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy ,易知截距2z 越大,则z 越大,平移直线32x y ,当322x zy 经过A 点时截距最大,此时z 最大,由21y x x,得12x y ,(1,2)A ,所以max 31227z 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x的展开式中常数项是__________(用数字作答).【答案】240【解析】【分析】写出622x x二项式展开通项,即可求得常数项.【详解】∵622x x其二项式展开通项:62612rrrr C xx T1226(2)r r r r x C x 1236(2)r r rC x 当1230r ,解得4r 622x x的展开式中常数项是:664422161516240C C .故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握na b 的展开通项公式1C r n r r r n T ab ,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM,故122S△A BC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r解得:2r =,其体积:3433V r .故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1sin sin x x有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x 可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f,152622f,则66f f,所以,函数 f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数 f x 的定义域为,x x k k Z ,定义域关于原点对称, 111sin sin sin sin sin sin f x x x x f x x x x,所以,函数 f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x∵,11sin cos 22cos sin 2f x x x x x,则22f x f x,所以,函数 f x 的图象关于直线2x对称,命题③正确;对于命题④,当0x 时,sin 0x ,则 1sin 02sin f x x x,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a ,37a ,21n a n ,证明见解析;(2)1(21)22n n S n .【解析】【分析】(1)利用递推公式得出23,a a ,猜想得出 n a 的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a ,32381587a a ,由数列 n a 的前三项可猜想数列 n a 是以3为首项,2为公差的等差数列,即21n a n ,证明如下:当1n 时,13a 成立;假设n k 时,21k a k 成立.那么1n k 时,1343(21)4232(1)1k k a a k k k k k 也成立.则对任意的*n N ,都有21n a n 成立;(2)由(1)可知,2(21)2nnn a n 231325272(21)2(21)2n n n S n n ,①23412325272(21)2(21)2n n n S n n ,②由① ②得:23162222(21)2nn n S n 21121262(21)212n n n1(12)22n n ,即1(21)22n n S n .【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43 100,等级为2的概率为510120.27100,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100(3)22 列联表如下:人次400人次400空气质量不好3337空气质量好228221003383722 5.820 3.84155457030K ,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点,E F 分别在棱11,DD BB 上,且12DE ED ,12BF FB .(1)证明:点1C 在平面AEF 内;(2)若2AB ,1AD ,13AA ,求二面角1A EF A 的正弦值.【答案】(1)证明见解析;(2)427.【解析】【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz ,利用空间向量法可计算出二面角1A EF A 的余弦值,进而可求得二面角1A EF A 的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D 中,//AD BC 且AD BC ,11//BB CC 且11BB CC ,112C G CG ∵,12BF FB ,112233CG CC BB BF 且CG BF ,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG 且1C E DG ,1//C E AF 且1C E AF ,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz ,则 2,1,3A 、 12,1,0A 、 2,0,2E 、 0,1,1F ,0,1,1AE , 2,0,2AF , 10,1,2A E , 12,0,1A F,设平面AEF 的法向量为 111,,m x y z,由0m AE m AF,得11110220y z x z 取11z ,得111x y ,则 1,1,1m ,设平面1A EF 的法向量为 222,,n x y z,由110n A E n A F,得22222020y z x z ,取22z ,得21x ,24y ,则 1,4,2n,cos ,7m n m n m n,设二面角1A EF A 的平面角为,则cos 7,sin 7.因此,二面角1A EF A的正弦值为7.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m 的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52.【解析】【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)∵222:1(05)25x y C m m 5a ,b m ,根据离心率154c e a ,解得54m或54m (舍), C 的方程为:22214255x y ,即221612525x y ;(2)∵点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N 根据题意画出图形,如图∵||||BP BQ ,BP BQ ,90PMB QNB ,又∵90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”,可得:PMB BNQ △△,∵221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时,故532MB ,∵PMB BNQ △△,||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图∵(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d,根据两点间距离公式可得:AQ,APQ面积为:15252;②当P 点(3,1) 时,故5+38MB ,∵PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8),画出图象,如图∵(5,0)A ,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y ,根据点到直线距离公式可得P 到直线AQ 的距离为:d ,根据两点间距离公式可得:AQAPQ面积为:1522 ,综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c ,曲线()y f x 在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b ;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1(02f ,解方程即可;(2)由(1)可得'2311()32()(422f x x x x ,易知()f x 在11(,22 上单调递减,在1(,)2 ,1(,)2 上单调递增,且111111(1),(),(,(1)424244f c f c f c f c ,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b ,由题意,'1()02f ,即21302b 则34b;(2)由(1)可得33()4f x x x c ,'2311()33()422f x x x x ,令'()0f x ,得12x 或21x ;令'()0f x ,得1122x ,所以()f x 在11(,22 上单调递减,在1(,2 ,1(,)2 上单调递增,且111111(1),(,(),(1)424244f c f c f c f c ,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f 或(1)0f ,即14c 或14c .当14c 时,111111(1)0,()0,()0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(4,1)c 上存在唯一一个零点0x ,即()f x 在(,1) 上存在唯一一个零点,在(1,) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c 时,111111(1)0,(0,(0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(1,4)c 上存在唯一一个零点0x ,即()f x (1,) 上存在唯一一个零点,在(,1) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)BAB;(2)由(1)可知12030(4)AB k ,则直线AB 的方程为3(4)y x ,即3120x y .由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bc bc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ∵,22212ab bc ca a b c .,,a b c ∵均不为0,则2220a b c , 222120ab bc ca a b c;(2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc ∵, 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c 时,取等号,a ,即max{,,}abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.祝福语祝你马到成功,万事顺意!。

专题14 利用导数证明一元不等式--《2023年高考数学命题热点聚焦与扩展》【解析版】

专题14  利用导数证明一元不等式--《2023年高考数学命题热点聚焦与扩展》【解析版】

【热点聚焦】从高考命题看,通过研究函数性质与最值证明一元不等式,是导数综合题常涉及的一类问题. 导数是研究函数的工具,利用导数我们可以方便地求出函数的单调性、极值、最值等,在证明与函数有关的不等式时,我们可以把不等式问题转化为函数的最值问题,也常构造函数,把不等式的证明问题转化为利用导数研究函数的单调性或最值问题【重点知识回眸】(一)证明方法的理论基础(1)若要证()f x C <(C 为常数)恒成立,则只需证明:()max f x C <,进而将不等式的证明转化为求函数的最值(2)已知()(),f x g x 的公共定义域为D ,若()()min max f x g x >,则()(),x D f x g x ∀∈> 证明:对任意的1x D ∈,有()()()()11min max ,f x f x g x g x ≥≤∴由不等式的传递性可得:()()()()11min max f x f x g x g x ≥>>,即()(),x D f x g x ∀∈>(二)证明一元不等式主要的方法1.方法一:将含x 的项或所有项均移至不等号的一侧,将一侧的解析式构造为函数,通过分析函数的单调性得到最值,从而进行证明. 例如:,可通过导数求出,由此可得到对于任意的,均有,即不等式.其优点在于目的明确,构造方法简单,但对于移项后较复杂的解析式则很难分析出单调性2.方法二:利用不等式性质对所证不等式进行等价变形,转化成为()()f x g x >的形式,若能证明()()min max f x g x >,即可得:()()f x g x >,本方法的优点在于对x 的项进行分割变形,可将较复杂的解析式拆成两个简单的解析式.但缺点是局限性较强,如果()min f x 与()max g x 不满足()()min max f x g x >,则无法证明()()f x g x >.(三)常见构造函数方法(1)直接转化为函数的最值问题:把证明f (x )<g (a )转化为f (x )max <g (a ).(2)移项作差构造函数法:把不等式f (x )>g (x )转化为f (x )-g (x )>0,进而构造函数h (x )=f (x )-g (x ).(3)构造双函数法:若直接构造函数求导,难以判断符号,导函数零点不易求得,即函数单调性与极值点都不易获得,可转化不等式为f (x )>g (x )利用其最值求解.()ln 1f x x x =-+()()min 10f x f ==0x >()()min 0f x f x ≥=ln 1x x ≤-(4)换元法,构造函数证明双变量函数不等式:对于f (x 1,x 2)≥A 的不等式,可将函数式变为与x 1x 2或x 1·x 2有关的式子,然后令t =x 1x 2或t =x 1x 2,构造函数g (t )求解. (5)适当放缩构造函数法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x ≤x -1,e x ≥1+x ,当且仅当x =0时取等号,ln x <x <e x (x >0),1xx +≤ln(x +1)≤x (x >-1). e x ≥e x ,当且仅当x =1时取等号;当x ≥0时,e x ≥1+x +12x 2,当且仅当x =0时取等号;当x ≥0时,e x ≥2e x 2+1, 当且仅当x =0时取等号; 1x x -≤ln x ≤x -1≤x 2-x ,当且仅当x =1时取等号;当x ≥1时,2(1)1x x -+≤ln x x,当且仅当x =1时取等号.(6)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数等.把不等式左、右两边转化为结构相同的式子,然后根据“相同结构”,构造函数.(7)赋值放缩法:函数中对与正整数有关的不等式,可对已知的函数不等式进行赋值放缩,然后通过多次求和达到证明的目的.【典型考题解析】热点一 直接将不等式转化为函数的最值问题【典例1】(2017·全国·高考真题(文))已知函数2()ln (21)f x x ax a x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a≤--. 【答案】(1)见解析;(2)见解析. 【分析】(1)先求函数导数(21)(1)'()(0)ax x f x x x++=>,再根据导函数符号的变化情况讨论单调性:当0a ≥时,'()0f x >,则()f x 在(0,)+∞单调递增;当0a <时,()f x 在1(0,)2a-单调递增,在1(,)2a-+∞单调递减. (2)证明3()24f x a≤--,即证max 3()24f x a ≤--,而max 1()()2f x f a =-,所以需证11ln()1022a a-++≤,设g (x )=ln x -x +1 ,利用导数易得max ()(1)0g x g ==,即得证. 【详解】(1)()f x 的定义域为(0,+∞),()()‘1211)22(1x ax f x ax a x x++=+++=. 若a ≥0,则当x ∈(0,+∞)时,’)(0f x >,故f (x )在(0,+∞)单调递增.若a <0,则当10,2x a ⎛⎫∈- ⎪⎝⎭时,()0f x '>时;当x ∈1()2a ∞-+,时,’)(0f x <. 故f (x )在’)(0f x >单调递增,在1()2a∞-+,单调递减. (2)由(1)知,当a <0时,f (x )在12x a =-取得最大值,最大值为111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设g (x )=ln x -x +1,则’1(1)g x x=-. 当x ∈(0,1)时,';当x ∈(1,+∞)时,'.所以g (x )在(0,1)单调递增,在(1,+∞)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,11ln()1022a a -++≤,即3()24f x a ≤--.【典例2】(2018年新课标I 卷文)已知函数()e 1x f x a lnx =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥.【答案】(1) a =212e ;f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析. 【详解】分析:(1)先确定函数的定义域,对函数求导,利用f ′(2)=0,求得a =212e ,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;(2)结合指数函数的值域,可以确定当a ≥1e 时,f (x )≥e ln 1exx --,之后构造新函数g (x )=e ln 1exx --,利用导数研究函数的单调性,从而求得g (x )≥g (1)=0,利用不等式的传递性,证得结果.详解:(1)f (x )的定义域为()0+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则()e 1'e x g x x=-.当0<x <1时,g′(x )<0;当x >1时,g′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1a e≥时,()0f x ≥.(1)若证f (x )>g (a )或f (x )<g (a ),只需证f (x )min >g (a )或f (x )max <g (a ). (2)若证f (a )>M 或f (a )<M (a ,M 是常数),只需证f (x )min >M 或f (x )max <M . 热点二 移项作差构造函数证明不等式【典例3】(辽宁·高考真题(文))设函数f (x )=x+a 2x +blnx ,曲线y=f (x )过P (1,0),且在P 点处的切斜线率为2. (I )求a ,b 的值; (II )证明:f(x)≤2x -2.【答案】(I )a =-1,b =3. (II )见解析【详解】试题分析: (1)f ′(x)=1+2ax +b x .由已知条件得(1)0{(1)2f f '==即10{122a ab +=++= 解得a =-1,b =3. (2)f(x)的定义域为(0,+∞), 由(1)知f(x)=x -x 2+3lnx.设g(x)=f(x)-(2x -2)=2-x -x 2+3lnx ,则 g′(x)=-1-2x +3x=-.当0<x<1时,g′(x)>0;当x>1时,g′(x)<0. 所以g(x)在(0,1)单调递增,在(1,+∞)单调递减. 而g(1)=0,故当x>0时,g(x)≤0,即f(x)≤2x -2.【典例4】(2022·青海·模拟预测(理))已知函数().(1)求()f x 的最小值;(2)若0x >,证明:()()2e 3f x x x ≥+-.【答案】(1)0; (2)证明见解析.【分析】(1)利用导数求出函数的单调区间即得解;(2)即证2e 1e 2x x x--≥-,设()()2e 10x x h x x x --=>,求出函数()h x 的最小值即得证.(1)解:由题意可得()e 1xf x '=-.由()0f x '>,得0x >;由()0f x '<,得0x <. 则()f x 在(),0∞-上单调递减,在()0,∞+上单调递增, 故()()min 00f x f ==. (2)证明:要证()()2e 3f x x x >+-,即证()2e 1e 3x x x x -->+-,即证2e 1e 2x x x--≥-.设()()2e 10x x h x x x --=>,则()()()21e 1x x x h x x---'=. 由(1)可知当0x >时,e 10x x -->.由()0h x '>,得1x >,由()0h x '<,得01x <<, 则()()1e 2h x h ≥=-,当且仅当1x =时,等号成立.即()()2e 3f x x x ≥+-.若证明f (x )>g (x ),x ∈(a ,b ),可以构造函数h (x )=f (x )-g (x ).如果能证明h (x )min >0,x ∈(a ,b ),即可证明f (x )>g (x ),x ∈(a ,b ).使用此法证明不等式的前提是h (x )=f (x )-g (x )易于用导数求最值.热点三 构造双函数证明不等式 【典例5】已知函数f (x )=e x 2-x ln x . 证明:当x >0时,f (x )<x e x +1e. 【答案】见解析 【解析】要证f (x )<x e x +1e ,只需证e x -ln x <e x +1ex ,即e x -e x <ln x +1ex. 令h (x )=ln x +1ex (x >0),则h ′(x )=21ex ex -,易知h (x )在(0,1e )上单调递减,在(1e ,+∞)上单调递增,则h (x )min =h (1e )=0,所以ln x +1ex≥0. 令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0. 因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1ex,故原不等式成立. 【典例6】(2023·全国·高三专题练习)已知函数()e 1xf x x =--.(1)求()f x 的最小值;(2)证明:()22e ln 3f x x x x >+-.【答案】(1)0 (2)证明见解析【分析】(1)用导数法直接求解即可;(2)要证()22ln 3f x e x x x >+-,即证221ln 3x e x e x x x -->+-,即证221ln 2x e x e x x x-->-.构造函数()2ln 2e x g x x =-与()()210x e x h x x x--=>,这问题可转化为()()min max h x g x >,利用导数法即可求解【详解】(1)由题意可得()1xf x e '=-.由()0f x '>,得0x >;由()0f x '<,得0x <.()f x 在(),0∞-上单调递减,在()0,∞+上单调递增,故()()min 00f x f ==. (2)证明:要证()22ln 3f x e x x x >+-,即证221ln 3x e x e x x x -->+-,即证221ln 2x e x e x x x-->-.设()2ln 2e xg x x =-,则()()221ln e x g x x-'=, 由()0g x '>,得0x e <<,由()0g x '<,得x e >, 则()()2g x g e e ≤=-,当且仅当x e =时,等号成立.设()()210x e x h x x x --=>,则()()()211xx e x h x x ---'=. 由(1)可知当0x >时,10x e x -->.由()0h x '>,得1x >,由()0h x '<,得01x <<, 则()()12h x h e ≥=-,当且仅当1x =时,等号成立.因为2ln 22e xe x-≤-与212x e x e x --≥-等号成立的条件不同,所以221ln 2x e x e x x x -->-,即()22ln 3f x e x x x >+-.(1)若证f (x )<g (x ),只需证f (x )max <g (x )min ; (2)若证f (x )>g (x ),只需证f (x )min >g (x )max . 热点四 适当放缩构造函数证明不等式【典例7】(2022·全国·模拟预测(文))已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【答案】(1)23π (2)证明见解析【分析】(1)利用导数的符号求出函数的单调区间,通过单调区间可求得结果. (2)将问题转化为证明e 1()33x x f x -<<,再分别证明1x e x ->及()3x f x <成立即可.(1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++'==++, 要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增, 令()0f x '>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k ππππ∈-++,(k Z ∈), 当0k =时满足题意,此时,在区间2(0,)3π上是单调递增的,故a 的最在值为23π.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x x f x -<<. 先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x '=-,,()0x ∈+∞时,()0F x '>,所以()F x 在(0,)+∞上递增,∴()e 1x F x x =--(0)0F >=,故1xe x ->,即e 133x x -<. 再证:()3x f x <,(0x >) 令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x '--+=-=++, 故对于0x ∀>,都有()0'<G x ,因而()G x 在(0,)∞+上递减, 对于0x ∀>,都有()(0)0G x G <=, 因此对于0x ∀>,都有()3xf x <. 所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.【点睛】关键点点睛:本题第二问的关键利用不等式1x e x ->放缩,从而使得问题得以顺利解决. 通过适当放缩可将较复杂的函数变为简单的函数,一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x ≤x -1,e x ≥x +1,ln x <x <e x (x >0),1xx +≤ln(x +1)≤x (x >-1)等. 热点五 利用二阶导数(两次求导)证明不等式【典例8】(2018·全国·高考真题(文))已知函数()21xax x f x e+-=. (1)求曲线()y f x =在点()0,1-处的切线方程; (2)证明:当1a ≥时,()0f x e +≥.【答案】(1)切线方程是210x y --=(2)证明见解析 【分析】(1)求导,由导数的几何意义求出切线方程.(2)当a 1≥时,()12f x e 1x x e x x e +-+≥++-(),令12gx 1x e x x +=++-,只需证明gx 0≥即可.【详解】(1)()()2212xax a x f x e-++'-=,()02f '=.因此曲线()y f x =在点()0,1-处的切线方程是210x y --=.(2)当1a ≥时,()()211x xf x e x x e e +-+≥+-+.令()211x g x x x e +=+-+,则()121x g x x e +=++',()120x g x e +''=+>当1x <-时,()()10g x g '-'<=,()g x 单调递减;当1x >-时,()()10g x g '-'>=,()g x 单调递增;所以()g x ()1=0g ≥-.因此()0f x e +≥.【典例9】(2023·全国·高三专题练习)已知函数()()ln 0f x ax x a =≠. (1)讨论函数()f x 的单调性;(2)当1a =时,证明:()e sin 1xf x x <+-.【答案】(1)答案见解析 (2)证明见解析【分析】(1)求导可得()()ln 1f x x '=+,再分0a >和0a <两种情况讨论即可;(2)当01x <≤根据函数的正负证明,当1x >时,转证ln sin 1e 0x x x x --+<,构造函数求导分析单调性与最值即可 (1)依题意知()0,x ∈+∞,()()ln ln 1f x a x a a x '=+=+, 令()0f x '=得1ex =,当0a >时,在10,e ⎛⎫⎪⎝⎭上()0f x '<,()f x 单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增;当0a <时,在10,e ⎛⎫⎪⎝⎭上()0f x '>,()f x 单调递增,在1,e ⎛⎫+∞ ⎪⎝⎭单调递减.(2)依题意,要证ln e sin 1x x x x <+-,①当01x <≤时,ln 0x x ≤,1sin 0e x x -+>,故原不等式成立, ②当1x >时,要证:ln e sin 1x x x x <+-,即证:ln sin 1e 0x x x x --+<,令()()e ln sin 11x h x x x x x =--+>,则()e ln cos 1xh x x x '=--+,()e 1sin 0xh x x x''=-+<, ∴()h x '在()1,+∞单调递减,∴()()11e cos10h x h ''<=--<,∴()h x 在()1,+∞单调递减,∴()()11e sin10h x h <=--<,即ln sin 1e 0x x x x --+<,故原不等式成立.2()(42)4ln ()=-++∈g x mx m x x a R .(1)当1m =时,求()g x 在点(1,(1))g 处的切线方程;(2)当0m =时,证明:()24e 8x g x x +<-(其中e 为自然对数的底数). 【答案】(1)5y =-(2)证明见解析【分析】(1)求出函数的导函数,即可求切线的斜率,从而求出切线方程;(2)依题意只需证明e ln 2x x >+,令()e ln 2x h x x =--,(0)x >,利用导数说明函数的单调性,即可得到函数的最小值,再利用基本不等式计算可得; (1)解:当1m =时,2()64ln g x x x x =-+, 所以4()26g x x x=-+',(1)0g '=,(1)5g =- 故()g x 在点(1,(1))g 处的切线方程是5y =-; (2)解:当0m =时,要证明()24e 8x g x x +<-, 只需证明e ln 2x x >+,令()e ln 2x h x x =--,(0)x >,则1()e x h x x '=-,令()1()e xu x h x x ='=-()21e 0x u x x'=+>,故()h x '在(0,)+∞上单调递增, 又(1)e 10h '=->,1e 202h ⎛⎫'=-< ⎪⎝⎭,故存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()00h x '=,即001e 0x x -=,当()00,x x ∈时,()0h x '<,即()h x 单调递减,当()0,x x ∈+∞时,()0h x '>,即()h x 单调递增, 故0x x =时,()h x 取得唯一的极小值,也是最小值,即()0000min 0011e ln 22220xh x x x x x x =--=+->⋅-=. 所以e ln 2x x >+,即()24e 8x g x x +<-. 两种做法,一是对函数直接两次求导,求导函数的最值;二是令导函数为一“新函数”,通过对其求导,进一步研究函数的最值. 热点六 构造“形似”函数证明不等式【典例11】(2022·河南·高三开学考试(理))设0.01a =,ln1.01b =,3log 0.01c =,则( )A .a c b <<B .c a b <<C .b c a <<D .c b a <<【答案】D【分析】构造()()()ln 10f x x x x =+-≥,并利用导数、对数的性质研究大小关系即可. 【详解】设函数()()()ln 10f x x x x =+-≥,则()01xf x x '=-≤+,所以()f x 为减函数,则()()0.0100f f <=,即ln1.010.01<,又0c b <<, 所以c b a <<. 故选:D【典例12】(2021·黑龙江·大庆实验中学高三开学考试(理))若08a <<且88a a =,032b <<且3232b b =,03c <<且33c c =,则( ) A .a b c << B .c b a << C .b a c << D .a c b <<【答案】A【分析】构造函数()ln xf x x=,求导,根据函数的单调性比大小即可. 【详解】由88a a =,两边同时以e 为底取对数得ln ln 88a a =, 同理可得ln ln 3232b b =,ln ln 33c c =, 设()ln xf x x=,0x >,则()()8f a f =,()()32f b f =,()()3f c f =, ()21ln xf x x-'=,令()0f x '=,解得e x =, 当()0,e x ∈时,()0f x '>,函数()f x 单调递增, 当()e,x ∈+∞时,()0f x '<,函数()f x 单调递减, 则(),,0,e a b c ∈,且()()()3832f f f >>, 所以()()()f c f a f b >>, 故c a b >>, 故选:A. 根据条件构造“形似”函数,再判断此函数的单调性,最后根据函数的单调性证明不等式. 热点七 “放缩”“赋值”证明与数列有关的不等式【典例13】(2022·全国·高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N 2221ln(1)1122n n n+>++++.【答案】(1)()f x 的减区间为(),0-∞,增区间为()0,+∞. (2)12a ≤(3)见解析【分析】(1)求出()f x ',讨论其符号后可得()f x 的单调性.(2)设()e e 1ax x h x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围. (3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()21ln 1ln n n n n+-<+对任意的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x '<,当0x >时,()0f x '>,故()f x 的减区间为(),0∞-,增区间为()0,∞+.(2)设()e e 1ax x h x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x '>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,∞+上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,∞+上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x ax h x ax '=-+<-+=, 所以()h x 在()0,∞+上为减函数,所以()()01h x h <=-.综上,12a ≤. (3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有112ln 1n n nn n n ++<-+,整理得到:()21ln 1ln n n n n +-<+,故()222111ln 2ln1ln 3ln 2ln 1ln 1122n n n n+++>-+-+++-+++()ln 1n =+,故不等式成立.【典例14】(2022·广东·高三开学考试)已知函数()ln 1f x x x =++,0x >.(1)当4k =时,比较()f x 与2的大小; (2)求证:2222ln(1)35721n n ++++<++,*n ∈N . 【答案】(1)答案见解析 (2)证明见解析【分析】(1)当4k =时,求得()f x 导函数()f x ',再根据()12f =,分不同范围讨论即可. (2)由(1)中结论可知,当1x >时,4ln 21x x +>+,然后换元,即可得21ln 21n n n +<+, 结合对数运算从而可证得结论. (1)当4k =时,4()ln 1f x x x =++,,()0x ∈+∞, 所以2222214(1)4(1)()0(1)(1)(1)x x x f x x x x x x x +--'=-==≥+++,所以()f x 在(0,)+∞上单调递增,又因为4(1)ln1211f =+=+,所以当01x <<时,()2f x ,当1x =时,()2f x =,当1x >时,()2f x > (2)由(1)知,当1x >时,4ln 21x x +>+,即2(1)ln 1x x x ->+,令11x n =+,*n ∈N ,则有12ln 121n n ⎛⎫+> ⎪+⎝⎭,即21ln 21n n n +<+, 所以222223412341ln ln ln lnln ln(1)35721123123n n n n n n ++⎛⎫++++<++++=⨯⨯⨯⨯=+ ⎪+⎝⎭,即2222ln(1)35721n n ++++<++,*n ∈N . 证明与数列有关的不等式的策略(1)证明此类问题时常根据已知的函数不等式,用关于正整数n 的不等式替代函数不等式中的自变量.通过多次求和达到证明的目的.此类问题一般至少有两问,已知的不等式常由第一问根据待证式的特征而得到.(2)已知函数式为指数不等式(或对数不等式),而待证不等式为与对数有关的不等式(或与指数有关的不等式),还要注意指、对数式的互化,如e x >x +1可化为ln(x +1)<x 等.【精选精练】一、单选题1.(2022·广东·高三开学考试)设2ea =2b =24ln 4e c -=,则( ) A .a b c <<B .c b a <<C .a c b <<D .b c a <<【答案】A【分析】构造函数ln ()xf x x=,求导得其单调性,再利用()f x 单调性,即可判断出,,a b c 的大小关系. 【详解】设ln ()xf x x=,,()0x ∈+∞, 因为21ln ()xf x x -'=,令()0f x '>,得0e x <<; 令()0f x '<,得e x >.所以()f x 在(0,e)上单调递增,在(e,)+∞上单调递减, 而1(e)2ea f ==,12ln 2ln 4ln 2(2)(4)24b f f =====, 22222e ln 4ln 42ln 2e 2e e e 222c f ⎛⎫--==== ⎪⎝⎭, 因为0e 2e <<<<2e 42<,所以a b c <<. 故选:A .2.(2022·福建省福安市第一中学高三阶段练习)设2,,ln 2e ea b c ===,则,,a b c 的大小关系为( ) A .a b c << B .b a c <<C .a c b <<D .c a b <<【答案】D【分析】设ln ()(0)xf x x x =>,利用导数求得()f x 的单调性和最值,化简可得2e 2a f ⎛⎫= ⎪⎝⎭,(e)b f =,(2)c f =,根据函数解析式,可得ln 4(4)(2)4f f ==且2e e 42<<,根据函数的单调性,分析比较,即可得答案. 【详解】设ln ()(0)xf x x x=>, 则221ln 1ln ()x xx x f x x x ⋅--'==, 当(0,e)x ∈时,()0f x '>,则()f x 为单调递增函数, 当(e,)x ∈+∞时,()0f x '<,则()f x 为单调递减函数,所以max 1()(e)ef x f ==,又222222e ln 4ln42(ln e e 2e e e 22ln 2)a f ⎛⎫-==-== ⎪⎝⎭,1(e)e b f ==,1ln 2ln 2(2)2c f ===, 又2ln 4ln 2ln 2(4)(2)442f f ====,2e e 42<<,且()f x 在(e,)+∞上单调递减,所以2e (2)(4)2f f f ⎛⎫=< ⎪⎝⎭,所以b a c >>. 故选:D 3.(2021·山东·高三开学考试)已知定义在π02⎡⎫⎪⎢⎣⎭,上的函数()f x 的导函数为()'f x ,且(0)0f =,()cos ()sin 0f x x f x x '+<,则下列判断中正确的是( ) A .π6f ⎛⎫ ⎪⎝⎭6π4f ⎛⎫⎪⎝⎭B .πln 3f ⎛⎫⎪⎝⎭>0C .π6f ⎛⎫ ⎪⎝⎭π33⎛⎫ ⎪⎝⎭D .π4f ⎛⎫ ⎪⎝⎭π23⎛⎫ ⎪⎝⎭【答案】CD【分析】根据题干中的条件,构造出新函数:()()π,0,cos 2f x g x x x ⎡⎫=∈⎪⎢⎣⎭,利用新函数的单调性逐一检查每个选项是否正确. 【详解】令()()π,0,cos 2f x g x x x ⎡⎫=∈⎪⎢⎣⎭,则()()()2cos sin cos f x x f x x g x x +''=, 因为()()cos sin 0f x x f x x '+<,所以()()()2cos sin 0cos f x x f x xg x x+='<'在π0,2⎡⎫⎪⎢⎣⎭上恒成立,因此函数()()cos f x g x x =在π0,2⎡⎫⎪⎢⎣⎭上单调递减,故ππ64g g ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即ππ64ππcos cos 64f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,即π6π624f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故A 错; 又()00=f ,所以()()000cos0f g ==,所以()()0cos f x g x x=≤在π0,2⎡⎫⎪⎢⎣⎭上恒成立,因为ππ0ln1lnln e 132=<<=<,所以πln 03f ⎛⎫< ⎪⎝⎭,故B 错;又ππ63g g ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以ππ63ππcos cos63f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,即ππ363f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 正确; 又ππ43g g ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以ππ43ππcos cos43f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,即ππ243f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故D 正确. 故选:CD 4.(2023·全国·高三专题练习)已知a ,b 是实数,且e a b <<,其中e 是自然对数的底数,则b a 与a b 的大小关系是__. 【答案】b a a b >##a b b a < 【分析】构造函数()ln xf x x=,0x >,利用导数判断单调性,即得. 【详解】构造函数()ln x f x x =,0x >,则()21ln xf x x -'=, 当e x >时,()0f x '<,()f x 单调递减, ∵e a b <<, ∴ln ln a ba b>,即b ln a >a ln b , 即ln ln b a a b >, 所以b a a b >. 故答案为:b a a b >. 5.(2023·全国·高三专题练习)设函数()e 1xf x a x =--,a R ∈.(1)当1a =时,求()f x 在点()()0,0f 处的切线方程; (2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围;(3)求证:当()0,x ∈+∞时,2e 1e xx x->. 【答案】(1)0y = (2)1a ≥ (3)证明见解析【分析】(1)利用导数的几何意义求解即可. (2)首先将问题转化为1e x a x +≥恒成立,设()1e xx g x +=,再利用导数求出其最大值即可得到答案.(3)首先将问题转化为()0,x ∈+∞,2e e 10xx x -->,设()2=e e 1xx h x x --,利用导数求出()()00h x h >=,即可得到答案.(1)()e 1x f x x =--,()00e 010f =--=,即切线()0,0. ()e 1x f x '=-,()00e 10k f '==-=,则切线方程为:0y =.(2)x ∈R ,0e 1x a x --≥恒成立等价于x ∈R ,1e xa x +≥恒成立. 设()1e x x g x +=,()ex xg x -'=, (),0∈-∞x ,()0g x '>,()g x 为增函数, ()0,x ∈+∞,()0g x '<,()g x 为减函数,所以()()max 01g x g ==,即1a ≥. (3)()0,x ∈+∞,2e 1e xx x->等价于()0,x ∈+∞,2e e 10x x x -->.设()2=e e 1xx h x x --,()0,x ∈+∞,()221=e e 12x x h x x ⎛⎫'-- ⎪⎝⎭,设()21=e 12xk x x --,()0,x ∈+∞,()21=e 102xk x ⎛⎫'-> ⎪⎝⎭,所以()k x 在()0,+∞为增函数,即()()00k x k >=,所以()221=e e 102xx h x x ⎛⎫'--> ⎪⎝⎭,即()h x 在()0,+∞为增函数,即()()00h x h >=,即证:2e 1e xx x->. 6.(2022·全国·长垣市第一中学高三开学考试(理))已知函数(). (1)若函数()f x 在(),a +∞上单调递增,求实数a 的取值范围;(2)证明:()21e x f x x -≥.【答案】(1)1,e ∞⎡⎫+⎪⎢⎣⎭(2)证明见解析【分析】(1)利用导数求得()f x 的单调区间,从而求得a 的取值范围.(2)将()21xf x x e -≥转化为11ln e x x x x-+≥,对不等式的两边分别构造函数,然后结合导数来证得不等式成立.(1)()f x 的定义域为()()0,,ln 1f x x ∞='++.令()0f x '=,可得1e x =.当10ex <<时,()()0,f x f x '<单调递减;当1e x >时,()()0,f x f x '>单调递增,所以()f x 的单调递增区间为1,e ∞⎡⎫+⎪⎢⎣⎭.因为函数()f x 在(),a +∞上单调递增,所以()1,,e a ∞∞⎡⎫+⊆+⎪⎢⎣⎭.所以1e a ≥.故实数a 的取值范围为1,e ∞⎡⎫+⎪⎢⎣⎭.(2)因为0x >,所以要证21ln 1e x x x x -+≥,只需证明11ln e x x x x-+≥成立.令()1ln g x x x =+,则()22111x g x x x x-'=-=.令()0g x '=,得1x =,当01x <<时,()()0,g x g x '<单调递减;当1x >时,()()0,g x g x '>单调递增,所以()min ()11g x g ==.令()1e xh x x -=,则()()11e x h x x -=-',令()0h x '=,得1x =,当01x <<时,()()0,h x h x '>单调递增;当1x >时,()()0,h x h x '<单调递减,所以()max ()11h x h ==.因此()()g x h x ≥,即()21e xf x x -≥,当且仅当1x =时等号成立.(1)讨论函数()f x 的单调性;(2)证明:当1a ≤ 时,e ()0x f x -> . 【答案】(1)答案见解析 (2)证明见解析【分析】(1)求出函数的导数,分类讨论导数的正负,即可求得答案;(2)当1a ≤时,要证e ()0x f x ->,即证e ()x f x >,只需证明e ln 2x x >+ ;构造函数()e ln x h x x =﹣,利用其导数,只需证明min ()()h x h x ≥,即证明min ()2h x >即可.(1)函数()ln (1)1()f x x a x a a =+-++∈R ,定义域:0,+∞(),11(1)()1a xf x a x x+-'==+- ,①当1a ≥ 时,()0()f x f x '>, 单调递增,②当1a <时,由()0f x '=,得x 11a=-,当x ∈(0,11a -)时,()0()f x f x '>,单调递增;当x ∈(11a -,+∞)时,()0()f x f x '<,单调递减;综上讨论得:①当1a ≥时,()f x 在0,+∞()单调递增;②当1a <时, 当x ∈(0,11a-)时,()f x 单调递增;当x ∈(11a-,+∞)时,()f x 单调递减;(2)证明:当1a ≤时,要证e ()0x f x ->,即证e ()x f x >,只需证e ln 2x x >+ ; 令()e ln x h x x =﹣ ,则1()e x h x x '=- ,令()e 1x m x x =- ,则2e 0()1xx m x '+=>,∴()h x '在0,+∞()单调递增,而1()e 20,(1)e 102h h ''=-<=->故方程1e 0xx -=有唯一解0x ,即000011e 0,e x x x x -=∴=,则0000e ,ln x x x x -=∴-=,且0(0,)x x ∈ 时,()0h x '<,()h x 在0(0,)x 单调递减;0(,)x x ∈+∞时,()0h x '>,()h x 在0(,)x +∞单调递增;∴000001()()e ln 2x x h x x h x x ≥=-=+>,∴e ln 2x x >+,故当1a ≤ 时,e ()0x f x ->. 8.(2022·吉林·东北师大附中模拟预测(文))已知函数ln 1xf x x ,()1,x ∈+∞, (1)判断函数()f x 的单调性; (2)证明:()211f x x <<+. 【答案】(1)在(1,)∞+上单调递减 (2)证明见解析【分析】(1)求出函数的导数,判断导数的正负,从而判断原函数的单调性; (2)将不等式()2()1,11,f x x x <<∈++∞等价转化为2(1)ln 11x x x x -<<-+,然后构造函数,利用导数判断函数的单调性,从而证明不等式. (1)因为ln ()1xf x x =-,()1,x ∈+∞,所以21ln ()1x xxf x x --'=-(), 设1()ln x g x x x -=-,则22111()xg x x x x-=-=', 因为(1)x ∈+∞,,故()0g x '<,()g x 在区间(1)+∞,上单调递减, 故()(1)0g x g <=,即()0f x '<, 所以函数()f x 在区间(1)+∞,上单调递减. (2) 证明:()22(1)()11,ln 111,x f x x x x x x -<<⇔<++∞<∈-+; 设()()ln 1,1,p x x x x =-+∈+∞,1()10p x x'=-<,()p x 在区间(1)+∞,上单调递减,(1)x ∈+∞,,()(1)0p x p <=,即ln 1x x <-,即()1f x <;设2(1)()ln 1x q x x x -=-+,()1,x ∈+∞,22214(1)()0(1)(1)x q x x x x x -'=-=≥++,则()q x 在(1)+∞,上单调递增,(1)x ∈+∞,,()(1)0q x q >=,即2(1)ln 1x x x ->+,所以ln 2()11x f x x x =>-+. 综上,2()11f x x <<+. 【点睛】本题考查了利用导数判断函数的单调性以及证明函数不等式的问题,解答时要明确导数与函数的单调性之间的关系,解答的关键是对不等式进行合理变形,从而构造函数,利用导数判断单调性,从而证明不等式.9.(2023·全国·高三专题练习)已知函数()f x a =-.(1)若函数f (x )的图象与直线y =x -1相切,求a 的值; (2)若a ≤2,证明f (x )>ln x . 【答案】(1)a =2 (2)证明见解析【分析】(1)求导函数,令f ′(x )=1,得x =0,继而有f (0)=-1,代入可求得答案; (2)由已知得f (x )=e x -a ≥e x -2,令φ(x )=e x -x -1,运用导函数分析所令函数的单调性得φ(x )≥0,可证得e x -2≥x -1,当且仅当x =0时等号成立,令h (x )=ln x -x +1,运用导函数分析所令函数的单调性得()()10h x h ≤=,证得ln 1≤-x x ,当且仅当x =1时等号成立,从而有e x -2≥x -1≥ln x ,两等号不能同时成立,由此可得证. (1)解:f (x )=e x -a ,∴f ′(x )=e x ,令f ′(x )=1,得x =0,而当x =0时,y =-1,即f (0)=-1,所以()00e 1f a =-=-,解得a =2.(2)证明 ∵a ≤2,∴f (x )=e x -a ≥e x -2,令φ(x )=e x -x -1,则φ′(x )=e x -1,令φ′(x )=0⇒x =0, ∴当x ∈(0,+∞)时,φ′(x )>0;当x ∈(-∞,0)时,φ′(x )<0, ∴φ(x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴φ(x )min =φ(0)=0,即φ(x )≥0,即e x ≥x +1, ∴e x -2≥x -1,当且仅当x =0时等号成立,令h (x )=ln x -x +1,则()111xh x x x-'==-,令h ′(x )=0⇒x =1,∴当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0, ∴h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴h(x )max =h (1)=0,即()()10h x h ≤=,即ln 1≤-x x , ∴ln 1≤-x x ,当且仅当x =1时等号成立,∴e x -2≥x -1≥ln x ,两等号不能同时成立, ∴e x -2>ln x ,即证f (x )>ln x .10.(2022·新疆·三模(理))已知函数()sin cos f x x ax x =-,a ∈R (1)若()f x 在0x =处的切线为y x =,求实数a 的值; (2)当13a ≥,[0,)x ∈+∞时,求证:()2.f x ax ≤【答案】(1)0a = (2)证明见解析【分析】(1)由导数的几何意义有()01f '=,求解即可; (2)将()2f x ax ≤变形成sin 02cos x ax x-≤+,故只需证sin ()02cos xg x ax x =-≤+,用导数法证明max ()0g x ≤即可 (1)∵()cos cos sin f x x a x ax x '=-+,∴(0)11f a '=-=,∴0a = (2)要证()2f x ax ≤,即证sin cos 2x ax x ax -≤,只需证sin (2cos )x ax x ≤+,因为2cos 0x +>,也就是要证sin 02cos xax x-≤+,令sin ()2cos xg x ax x=-+,22cos (2cos )sin (sin )2cos 1()(2cos )(2cos )x x x x x g x a a x x +--+'=-=-++∵13a ≥,∴2222cos 11(cos 1)()0(2cos )33(2cos )x x g x x x +--'≤-=≤++ ∴()g x 在[0,)+∞为减函数,∴()(0)0g x g ≤=, ∴sin cos 2x ax x ax -≤,得证(1)若()f x 有两个极值点,求实数a 的取值范围; (2)当0a =时,证明:2()f x x x>-. 【答案】(1)10,2⎛⎫ ⎪⎝⎭(2)证明见解析【分析】(1)根据函数有两个极值点转化为导函数等于0有两不相等的根,分离参数后,转化为分析ln 1()(0)x g x x x+=>大致图象,根据数形结合求解即可;(2)不等式可转化为2ln 20x x x x+-+>,构造函数,求导后得到函数极小值,转化为求极小值大于0即可.(1)()f x 的定义域为(0,)+∞,()ln 21f x x ax '=-+,由题意()0f x '=在(0,)+∞上有两解,即ln 210x ax -+=,即ln 12x a x +=有两解.令ln 1()(0)x g x x x+=>,即()g x 的图象与直线2y a =有两个交点.2ln ()0xg x x'-==,得1x =,当(0,1)x ∈时,()0g x '>,()g x 递增;当(1,)x ∈+∞时,()0g x '<,()g x 递减,max ()(1)1g x g ∴==,10g e ⎛⎫= ⎪⎝⎭,0x →时,()g x →-∞;x →+∞时,()0g x →,021a ∴<<,102a ∴<<,∴a 的取值范围是10,2⎛⎫ ⎪⎝⎭. (2)当0a =时,()ln 2f x x x =+,即证2ln 2x x x x+>-,即证2ln 20x x x x+-+>,令2()ln 2(0)h x x x x x x =+-+>,22()ln h x x x ='-,令22()ln m x x x =-,则314()m x x x '=+,当0x >时,()0m x '>,()h x '∴在(0,)+∞递增.(1)20h =-<',22(e)10e h '=->,∴存在唯一的0(1,e)x ∈,使得00202()ln 0h x x x '=-=,当00(0,)x x ∈时,()0h x '<,()h x 递减;当0(,)x x ∈+∞时,()0h x '>,()h x 递增,min 0()()h x h x ∴=.又0(1,e)x ∈,0()0h x '=,0202ln 0x x ∴-=,000000000022244()ln 2222e 0e h x x x x x x x x x x ∴=+-+=+-+=-+>-+>,()0h x ∴>,2()f x x x∴>-. 12.(2023·全国·高三专题练习)已知函数()f x ax =-(e 为自然对数的底数,为常数)的图像在(0,1)处的切线斜率为1-. (1)求a 的值及函数()f x 的极值; (2)证明:当0x >时,2e x x <.【答案】(1)2a =,()f x 极小值22ln 2-,()f x 无极大值 (2)证明见解析【分析】(1)对函数()f x 求导得到()f x ',由导数的几何意义得到()01f '=-,解得a ,再利用导数研究其单调性和极值,即可得出;(2)令()2e x g x x =-,对其求导,结合(1)可得:()0g x '>,得到()g x 的单调性,即可证明. (1)由()e x f x ax =-,得()e xf x a '=-.由题意得,()00e 1f a '=-=-,即2a =,所以()e 2x f x x =-,()e 2xf x '=-.令()0f x '=,得ln 2x =,当ln 2x <时,()0f x '<,则()f x 在(),ln 2-∞上单调递减; 当ln 2x >时,()0f x '>,则()f x 在()ln 2,+∞上单调递增.所以当ln 2x =时,()f x 取得极小值,且极小值为()ln2ln 2e 2ln 222ln 2f =-=-,()f x 无极大值.(2)证明:令()2e x g x x =-,则()e 2xg x x '=-.由(1)知,()()()()ln 222ln 221ln 20g x f x f '=≥=-=->, 故()g x 在R 上单调递增.所以当0x >时,()()010g x g >=>, 即2e x x <.【点睛】本题考查不等式的恒成立问题,常用到以下两个结论: (1)()()f x g x ≥恒成立()()()0F x f x g x ⇔=-≥恒成立()min 0F x ⇔≥; (2)()()f x g x ≤恒成立()()()0F x f x g x ⇔=-≤恒成立()max 0F x ⇔≤. 13.(2023·全国·高三专题练习)已知()sin 2f x k x x =+. (1)当2k =时,判断函数()f x 零点的个数; (2)求证:()sin 2ln 1,(0,)2x x x x π-+>+∈.【答案】(1)1; (2)证明见解析.【分析】(1)把2k =代入,求导得函数()f x 的单调性,再由(0)0f =作答. (2)构造函数()2sin ln(1)g x x x x =--+,利用导数借助单调性证明作答. (1)当2k =时,()2sin 2f x x x =+,()2cos 20f x x '=+≥,当且仅当(21)π,Z x k k =-∈时取“=”, 所以()f x 在R 上单调递增,而(0)0f =,即0是()f x 的唯一零点, 所以函数()f x 零点的个数是1. (2)(0,)2x π∈,令()2sin ln(1)g x x x x =--+,则()12cos 1g x x x =-'-+,因1cos 1,11x x <<+,则()0g x '>,因此,函数()g x 在(0,)2π上单调递增,(0,)2x π∀∈,()(0)0g x g >=,所以当(0,)2x π∈时,()sin 2ln 1x x x -+>+成立..(全国高三专题练习(文))已知函数()e e f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N 2221ln(1)1122n n n+>++++.【答案】(1)()f x 的减区间为(),0-∞,增区间为()0,+∞. (2)12a ≤(3)见解析【分析】(1)求出()f x ',讨论其符号后可得()f x 的单调性.(2)设()e e 1ax x h x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围. (3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()21ln 1ln n n n n+-<+对任意的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x '<,当0x >时,()0f x '>,故()f x 的减区间为(),0∞-,增区间为()0,∞+.(2)设()e e 1ax x h x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x '>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,∞+上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,∞+上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x ax h x ax '=-+<-+=, 所以()h x 在()0,∞+上为减函数,所以()()01h x h <=-.综上,12a ≤.。

高考数学复习知识点讲解教案第20讲 双变量不等式的证明

高考数学复习知识点讲解教案第20讲 双变量不等式的证明
[思路点拨] 思路一:根据题意得ln 1 − ln 2 +
=
1
2
0 < < 1 ,得1 + 2 =
1


ln
1
1

1
2
= 0,进而令
1

,构造函数ℎ = − − 2ln 0 < < 1 ,
利用导数判断函数ℎ 的单调性,进而证明.
1

思路二:由题知方程ln + = − 1有两个不同的实数根1 ,2 ,构造函数 =
1
ln
4
1
ln
1 2
1
0,
8
上单调递减,
+ 2 + 1 = 3 − 2ln 2,则 1 + 2 > 3 − 2ln 2成立.
−2
探究点三 极值点偏移和零点偏移
例3 已知函数 = ln + + 1,若关于的方程 = 有两个不同的实数
1

根1 ,2 1 < 2 ,求证:1 + 2 > 2.
ln +
即可.
1


1

> 0, = ln + − ln 2 − −
1
,
2−
∈ 0,1 ,进而利用导数求证
1

证明:方法一: = ln + + 1, > 0.
因为1 ,2 为方程 = 的两个不同的实数根,
所以ln 1 +
1
1
+ 1 = ①,ln 2 +
− ∈ .
若 = 1,判断函数 的单调性;

高考数学一轮复习 第6章 不等式 第1讲 不等关系与不等式的性质及一元二次不等式讲义 理(含解析)-

高考数学一轮复习 第6章 不等式 第1讲 不等关系与不等式的性质及一元二次不等式讲义 理(含解析)-

第六章不等式第1讲不等关系与不等式的性质及一元二次不等式[考纲解读] 1.不等式性质是进行变形、证明、解不等式的依据,掌握不等式关系与性质及比较大小的常用方法:作差法与作商法.(重点)2.能从实际情景中抽象出一元二次不等式模型,通过函数图象了解一元二次不等式与相应的二次函数,一元二次方程之间的联系,能解一元二次不等式.(重点、难点)[考向预测] 从近三年高考情况来看,本讲是高考中的一个热点内容,但一般不会单独命题.预测2020年将会考查:利用不等式的性质判断结论的成立性,求参数的取值X围;一元二次不等式的解法,对含参数的二次不等式的分类讨论等.命题时常将不等式与函数的单调性相结合.试题一般以客观题的形式呈现,属中、低档题型.1.两个实数比较大小的依据2.不等式的基本性质3.必记结论 (1)a >b ,ab >0⇒1a <1b.(2)a <0<b ⇒1a <1b.(3)a >b >0,0<c <d ⇒a c >b d. (4)0<a <x <b 或a <x <b <0⇒1b <1x <1a.(5)若a >b >0,m >0,则b a <b +ma +m; b a >b -m a -m (b -m >0);a b >a +m b +m ; a b <a -m b -m(b -m >0). 4.一元二次函数的三种形式(1)一般式:□01y =ax 2+bx +c (a ≠0). (2)顶点式:□02y =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a ≠0). (3)两根式:□03y =a (x -x 1)(x -x 2)(a ≠0). 5.三个二次之间的关系1.概念辨析(1)a>b⇔ac2>bc2.( )(2)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx+c=0的两个根是x1和x2.( )(3)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( )(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.()答案(1)×(2)√(3)×(4)×2.小题热身(1)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N等于( )A .(0,4]B .[0,4)C .[-1,0)D .(-1,0] 答案 B解析 因为M ={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N =[0,4). (2)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>0 答案 A解析 因为c <b <a ,且ac <0,所以a >0,c <0.b 的符号不确定,b -a <0,a -c >0,据此判断A 成立,B ,C ,D 不一定成立.(3)设M =2a (a -2),N =(a +1)(a -3),则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 答案 A解析 M -N =2a (a -2)-(a +1)(a -3)=a 2-2a +3=(a -1)2+2>0,故M >N . (4)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值X 围是________.答案 [-4,0]解析 当a =0时,f (x )=-1≤0成立, 当a ≠0时,若对∀x ∈R ,f (x )≤0,须有⎩⎪⎨⎪⎧a 2-4×a ×-1≤0,a <0,解得-4≤a <0.综上知,实数a 的取值X 围是[-4,0].题型 一 不等式性质的应用1.若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c答案 D 解析 解法一:⎭⎪⎬⎪⎫c <d <0⇒cd >0 c <d <0⇒⎭⎪⎬⎪⎫c cd <d cd <0⇒1d <1c <0⇒-1d >-1c >0 a >b >0⇒-a d >-b c ⇒a d <b c .故选D. 解法二:依题意取a =2,b =1,c =-2,d =-1, 代入验证得A ,B ,C 均错误,只有D 正确.故选D.2.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,则S 3a 3与S 5a 5的大小关系为________.答案S 3a 3<S 5a 5解析 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5. 当q >0且q ≠1时,S 3a 3-S 5a 5=a 11-q 3a 1q 21-q -a 11-q 5a 1q 41-q =q 21-q 3-1-q 5q 41-q =-q -1q 4<0,所以S 3a 3<S 5a 5.综上可知S 3a 3<S 5a 5.3.已知二次函数y =f (x )的图象过原点,且1≤f (-1)≤2,3≤f (1)≤4,求f (-2)的取值X 围.解 由题意知f (x )=ax 2+bx ,则f (-2)=4a -2b , 由f (-1)=a -b ,f (1)=a +b ,设存在实数x ,y ,使得4a -2b =x (a +b )+y (a -b ), 即4a -2b =(x +y )a +(x -y )b ,所以⎩⎪⎨⎪⎧x +y =4,x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =3,所以f (-2)=4a -2b =(a +b )+3(a -b ). 又3≤a +b ≤4,3≤3(a -b )≤6,所以6≤(a +b )+3(a -b )≤10, 即f (-2)的取值X 围是[6,10].1.判断不等式是否成立的方法(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.(2)在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断.2.比较两个数(式)大小的两种方法3.求代数式的取值X 围利用不等式性质求某些代数式的取值X 围时,一般是利用整体思想,通过“一次性”不等关系的运算求得整体X 围,是避免错误的有效途径.如举例说明3.1.若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式是( )A .①④B .②③C .①③D .②④ 答案 C解析 因为1a <1b <0,所以b <a <0,|b |>|a |,所以|a |+b <0,ln a 2<ln b 2,由a >b ,-1a>-1b 可推出a -1a >b -1b ,显然有1a +b <0<1ab,综上知,①③正确,②④错误. 2.若a >0,且a ≠7,则( ) A .77a a<7a a 7B .77a a =7a a 7C .77a a >7a a 7D .77a a与7a a 7的大小不确定 答案 C解析 显然77a a>0,7a a 7>0,因为77a a7a a 7=⎝ ⎛⎭⎪⎫7a 7·⎝ ⎛⎭⎪⎫a 7a =⎝ ⎛⎭⎪⎫7a 7·⎝ ⎛⎭⎪⎫7a -a =⎝ ⎛⎭⎪⎫7a 7-a.当a >7时,0<7a <1,7-a <0,⎝ ⎛⎭⎪⎫7a 7-a>1,当0<a <7时,7a>1,7-a >0,⎝ ⎛⎭⎪⎫7a 7-a>1. 综上知77a a>7a a 7.3.若1<α<3,-4<β<2,则α-|β|的取值X 围是________. 答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4,∴-4<-|β|≤0. ∴-3<α-|β|<3.题型 二 不等式的解法1.函数f (x )=1ln -x 2+4x -3的定义域是( )A .(-∞,1)∪(3,+∞) B.(1,3) C .(-∞,2)∪(2,+∞) D.(1,2)∪(2,3) 答案 D解析 由题意得⎩⎪⎨⎪⎧-x 2+4x -3>0,ln -x 2+4x -3≠0,即⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-4x +4≠0.解得1<x <3且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,3). 2.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 本题采用分类讨论思想. 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a =-1,即a =-2时,解得x =-1满足题意; 当2a<-1,即0>a >-2,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫x ≥2a或x ≤-1;当-2<a <0时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫2a≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫-1≤x ≤2a .条件探究 把举例说明2中的不等式改为“ax 2-(a +1)x +1<0,a ∈R ”,如何解答? 解 若a =0,原不等式等价于-x +1<0,解得x >1.若a <0,则原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x <1a或x >1.若a >0,原不等式等价于⎝⎛⎭⎪⎫x -1a (x -1)<0.①当a =1时,1a=1,⎝ ⎛⎭⎪⎫x -1a (x -1)<0无解;②当a >1时,1a <1,解⎝⎛⎭⎪⎫x -1a (x -1)<0得1a<x <1;③当0<a <1时,1a>1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0得1<x <1a.综上所述,当a <0时,解集为{x ⎪⎪⎪⎭⎬⎫x <1a或x >1;当a =0时,解集为{x |x >1};当0<a <1时,解集为{x ⎪⎪⎪⎭⎬⎫1<x <1a ;当a =1时,解集为∅;当a >1时,解集为{x ⎪⎪⎪⎭⎬⎫1a<x <1.1.解一元二次不等式的四个步骤2.分式不等式的解法求解分式不等式的关键是对原不等式进行恒等变形,转化为整式不等式(组)求解. (1)f xg x>0(<0)⇔f (x )·g (x )>0(<0);如巩固迁移2.(2)f xg x ≥0(≤0)⇔⎩⎪⎨⎪⎧f x ·g x ≥0≤0,g x ≠0.1.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A.52 B.72 C.154 D.152 答案 A解析 由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2.故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52,故选A.2.不等式2x +1x -5≥-1的解集为________.答案 {x ⎪⎪⎪⎭⎬⎫x ≤43或x >5解析 将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧3x -4x -5≥0,x -5≠0,解得x ≤43或x >5.∴原不等式的解集为{x ⎪⎪⎪⎭⎬⎫x ≤43或x >5.题型 三 二次不等式中的任意性与存在性角度1 任意性与存在性1.(1)若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),某某数a 的取值X 围; (2)若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,某某数a 的取值X 围. 解 (1)设f (x )=x 2-ax -a ,则关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞)⇔f (x )>0在(-∞,+∞)上恒成立⇔f (x )min >0,即f (x )min =-4a +a24>0,解得-4<a <0(或用Δ<0).(2)设f (x )=x 2-ax -a ,则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )≤-3在(-∞,+∞)上能成立⇔f (x )min ≤-3,即f (x )min =-4a +a24≤-3,解得a ≤-6或a ≥2.角度2 给定区间上的任意性问题2.(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值X 围是________.(2)设函数f (x )=mx 2-mxx ∈[1,3],f (x )<-m +5恒成立,求m 的取值X 围. 答案 (1)⎝ ⎛⎭⎪⎫-22,0 (2)见解析解析 (1)要满足f (x )=x 2+mx -1<0对于任意x ∈[m ,m +1]恒成立,只需⎩⎪⎨⎪⎧ f m <0,f m +1<0,即⎩⎪⎨⎪⎧ 2m 2-1<0,m +12+m m +1-1<0,解得-22<m <0.(2)要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:解法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3),即7m -6<0,所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1),即m -6<0,所以m <6,所以m <0.综上所述,m 的取值X 围是{m ⎪⎪⎪⎭⎬⎫m <67.解法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值X 围是{m ⎪⎪⎪⎭⎬⎫m <67.角度3 给定参数X 围的恒成立问题3.已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值X 围为()A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3)答案 C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则由f (a )>0对于任意的a ∈[-1,1]恒成立,所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧ x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.故选C.形如f (x )≥0(f (x )≤0)恒成立问题的求解思路(1)x ∈R 的不等式确定参数的X 围时,结合二次函数的图象,利用判别式来求解. (2)x ∈[a ,b ]的不等式确定参数X 围时,①根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求参数的X 围;②数形结合,利用二次函数在端点a ,b 处的取值特点确定不等式求X 围.如举例说明2.(3)已知参数m ∈[a ,b ]的不等式确定x 的X 围,要注意变换主元,一般地,知道谁的X围,就选谁当主元,求谁的X 围,谁就是参数.如举例说明3.1.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值X 围是________.答案 ⎝ ⎛⎭⎪⎫-235,+∞ 解析 由Δ=a 2+8>0,知方程x 2+ax -2=0恒有两个不等实数根,又知两根之积为负,所以方程x 2+ax -2=0必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值X 围为⎝ ⎛⎭⎪⎫-235,+∞. 2.函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,某某数a 的取值X 围;(2)当x ∈[-2,2]时,f (x )≥a 恒成立,某某数a 的取值X 围; (3)当a ∈[4,6]时,f (x )≥0恒成立,某某数x 的取值X 围.解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立,需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,∴实数a 的取值X 围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示): ①如图1,当g (x )的图象恒在x 轴上方且满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2.②如图2,g (x )的图象与x 轴有交点,但当x ∈[-2,+∞)时,g (x )≥0, 即⎩⎪⎨⎪⎧ Δ≥0,x =-a 2≤-2,g -2≥0,即⎩⎪⎨⎪⎧ a 2-43-a ≥0,-a 2≤-2,4-2a +3-a ≥0, 可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≥4,a ≤73,解得a ∈∅. ③如图3,g (x )的图象与x 轴有交点,但当x ∈(-∞,2]时,g (x )≥0. 即⎩⎪⎨⎪⎧ Δ≥0,x =-a 2≥2,g 2≥0,即⎩⎪⎨⎪⎧a 2-43-a ≥0,-a 2≥2,7+a ≥0, 可得⎩⎪⎨⎪⎧ a ≥2或a ≤-6,a ≤-4,a ≥-7.∴-7≤a ≤-6.综上,实数a 的取值X 围是[-7,2].(3)令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h 4≥0,h 6≥0,即⎩⎪⎨⎪⎧ x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值X 围是(-∞,-3-6]∪[-3+6,+∞).。

高考数学复习、高中数学 不等式的性质与一元二次不等式附答案解析

高考数学复习、高中数学  不等式的性质与一元二次不等式附答案解析

第七章 不等式第1节 不等式的性质与一元二次不等式课标要求 1.梳理等式的性质,理解不等式的概念,掌握不等式的性质.2.经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义;能够借助一元二次函数求解一元二次不等式;并能用集合表示一元二次不等式的解集.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.【知识衍化体验】知识梳理1. 实数的大小顺序与运算性质的关系(1);0>-⇔>b a b a (2);0=-⇔=b a b a (3).0<-⇔<b a b a 2. 不等式的性质(1)对称性:;a b b a ___⇔>(2)传递性:;c a c b b a ___,⇒>>(3)可加性:;;c b c a b a +>+⇔>d b c a d c b a ++⇒>>___,(4)可乘性:;;bc ac c b a ___0,⇒>>bd ac d c b a ___0,0⇒>>>>(5)可乘方:; )1,(___0≥∈⇒>>n N n b a b a nn (6)可开方:)2,(___0≥∈⇒>>n N n b a b a n n 3. 三个“二次”间的关系ac b 42-=∆ 0>∆ 0=∆0<∆二次函数)0(2>++=a c bx ax y 的图像一元二次方程)002>=++a c bx ax (的根 a ac b b x 2422,1-±-= a b x 22,1-=无实根)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 的解集[微点提醒] 1. 有关分数的性质:(1)若,则;(2)若0,0>>>m b a ma mb a b ++<. b a b a ab 11,0<⇔>>且2. 对于不等式,求解时不要忘记的情形.02>++c bx ax 0=a 3. 当时,不等式的解集时R 还是,要注意区别.0<∆)0(02≠>++a c bx ax φ基础自测疑误辨析1. 判断下列结论正误(在括号内打“√”或“×”)(1)若,则. ( ) 1>ba b a >(2). ( ) ba b a ab 11,0<⇔>>(3)若方程没有实数根,则不等式的解集为R.)0(02≠=++a c bx ax 02>++c bx ax ( )(4)若二次函数的图像开口向下,则不等式的解集一定c bx ax y ++=202<++c bx ax 不是空集. ( )教材衍化2. (必修5 P74 练习3改编)若都是实数,则“”是“”的b a ,0>-b a 22b a >( )A. 充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. (必修5P103A2改编)已知集合,,则}0121|{≤-=x x A }06|{2<--=x x x B ( )=B A)3,2.(-A )2,2.(-B ]2,2.(-C ]2,2.[-D 考题体验4. (2016年全国卷I 理科第8题)若,则 ( )10,1<<>>c b a c c b a A <.c c ba ab B <.c b c a C a b log log .<cc D b a log log .<5.(2019秋•海淀区校级期中)已知不等式的解集是[1,2],则b c +的值02≤++c bx x 为( )A .1-B .1C .2-D .26.(2019秋•徐州期中)若关于x 的不等式240x x a -->在14x <<内有解,则实数a 的取值范围( )A .3a <-B .0a <C .4a <-D .4a -…【考点聚焦突破】考点1 不等式性质的应用角度1 比较大小[例1-1](1) (2019秋•镇海区校级期中)若a ,b ,c R ∈且a b >,则下列不等式中一定成立的是( )A .ac bc >B .2()0a b c ->C .11a b< D .22a b -<- (2)已知实数满足,,则的大小关系是c b a ,,2346a a c b +-=+244a a b c +-=-c b a ,,( )A. B. C. D.a b c >≥b c a ≥>a b c >>b c a >>(3)(2019•西湖区校级模拟)设1x y >>,01a <<,则下列关系正确的是( ) A .a a x y --> B .x y a a > C .log log x y a a > D .log log a a x y >[训练1](1)(必修 5 P74例1改编)若,则一定有 0,0<<>>d c b a ( ) c b d a A >.c b d a B <.d b c a C >.db c a D <.(2)已知,比较与的大小. 0>>b a b a b a ab b a(3)已知01a b <<<.()I 试猜想a lnb +与b lna +的大小关系; ()II 证明()I 中你的结论.角度2 求取值范围[例1-2](2017春•黄陵县校级月考)设23a <<,43b -<<-,求a b +,a b -,a b ,ab ,2b a的取值范围.[规律方法]1. 比较两数大小常用的方法有:利用不等式性质进行比较,作差(作商)法比较,寻找中间值或构造函数利用单调性比较大小等.2. 在求式子的范围时,同向不等式才能相加,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.考点2 一元二次不等式的解法角度1 解一元二次不等式【例2-1】(1)不等式的解集是___________________. xx 1≤(2)(2019河南中原名校联考)已知是定义在R 上的奇函数.当时,)(x f 0>x ,则不等式的解集用区间表示为_______________.x x x f 2)(2-=x x f >)(角度2 解含参不等式【例2-2】解关于x 的不等式.)(222R a ax x ax ∈-≥-[规律方法]1. 解一元二次不等式的一般步骤:(1)化:把不等式变形为二次项系数大于零的标准形式;(2)判:计算对应方程的判别式,判断对应方程有无实根;(3)求:求出对应的一元二次方程的根;(4)写:利用“大于取两边,小于取中间”写出不等式的解集.(若方程无实根,则解集为R 或). φ含有参数的不等式求解,首先要对二次项系数讨论,然后讨论Δ,再比较(相应方程)根的大小,注意分类讨论思想的应用.[训练2] 解关于x 的不等式. )(043R a ax a x ∈≥+-考点3 一元二次不等式恒成立问题与有解问题角度1 恒成立问题[例3-1](1)对于任意实数x ,不等式恒成立,则实数a 的04)2(2)2(2<----x a x a 取值范围是_____________;(2)若不等式对任意恒成立,则实数a 的取值范围04)2(2)2(2<----x a x a ]3,1[∈x 是______________;(3)若不等式对任意恒成立,则实数x 的取值范围04)2(2)2(2<----x a x a ]3,1[∈a 是______________.角度2 有解问题[例3-2](2018秋•宝安区期末)在R 上定义运算a ※(1)b a b =+,若存在[1x ∈,2]使不等式()m x -※()4m x +<,成立,则实数m 的取值范围为( )A .(3,2)-B .(1,2)-C .(2,2)-D .(1,2)[规律方法] 1. 对于一元二次不等式的恒成立问题,恒大于零就是相应的二次函数图像在给定区间上全部在x 轴上方,恒小于零就是相应的二次函数图像在给定区间上全部在x 轴下方.恒成立问题常转化为求二次函数的最值或用分离参数法求最值.有解问题类似处理。

高考数学一本策略复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案文

高考数学一本策略复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案文

第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合交集运算·T1本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合交集运算·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算·T1Ⅱ卷集合的并集运算·T1Ⅲ卷求集合交集中元素个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的交集运算、一元二次不等式的解法·T1Ⅲ卷集合的补集运算·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解.(2)若已知的集合是点集,用数形结合法求解.(3)若已知的集合是抽象集合,用Venn图求解.(1)(2018·南宁模拟)设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B=( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B 【类题通法】破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn 图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4解析:将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A. 答案:A2.(2018·德州模拟)设全集U =R ,集合A ={x ∈Z |y =4x -x 2},B ={y |y =2x,x >1},则A ∩(∁U B )=( )A .{2}B .{1,2}C .{-1,0,1,2}D .{0,1,2}解析:由题意知,A ={x ∈Z |4x -x 2≥0}={x ∈Z |0≤x ≤4}={0,1,2,3,4},B ={y |y >2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3)D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x+x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数 【类题通法】判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a =-2时,直线l 1:2x +y -3=0,l 2:2x +y +4=0,所以直线l 1∥l 2;若l 1∥l 2,则-a (a +1)+2=0,解得a =-2或a =1.所以“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m ,n 为两个非零向量,则“m 与n 共线”是“m·n =|m·n |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n =|m·n|,则m·n =|m|·|n|·cos〈m ,n 〉=|m |·|n |·|cos 〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m·n =|m·n|”的既不充分也不必要条件,故选D.答案:D 【类题通法】1.(2018·胶州模拟)设x ,y 是两个实数,命题“x ,y 中至少有一个数大于1”成立的充分不必要条件是( )A .x +y =2B .x +y >2C .x 2+y 2>2D .xy >1解析:当⎩⎪⎨⎪⎧x ≤1y ≤1时,有x +y ≤2,但反之不成立,例如当x =3,y =-10时,满足x+y ≤2,但不满足⎩⎪⎨⎪⎧x ≤1y ≤1,所以⎩⎪⎨⎪⎧x ≤1y ≤1是x +y ≤2的充分不必要条件.所以“x +y >2”是“x ,y 中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q, 则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.答案:A授课提示:对应学生用书第107页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2}解析:A ∩B ={0,2}∩{-2,-1,0,1,2}={0,2}. 故选A. 答案:A2.(2017·高考山东卷)设函数y =4-x 2的定义域为A ,函数 y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 答案:D3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1≤x <32 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪32<x ≤3 解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32. 答案:B4.(2018·高考全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}解析:∵A ={x |x -1≥0}={x |x ≥1},∴A ∩B ={1,2}.故选C. 答案:C5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.答案:D6.(2018·郑州四校联考)命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b ,则a +c ≤b +c ”,故选A.答案:A7.(2018·石家庄模拟)“x >1”是“x 2+2x >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:由x 2+2x >0,得x >0或x <-2,所以“x >1”是“x 2+2x >0”的充分不必要条件. 答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧x ,y ⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x+1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________. 解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2. 答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。

高考数学证明法高二

高考数学证明法高二

高考数学证明法高二第一篇:高考数学证明法高二數學证明法(高二)明确复习目标1.理解不等式的性质和证明;2.掌握分析法、综合法、比较法证明简单的不等式。

建构知识网络1.比较法证明不等式是最基本的方法也是最常用的方法。

比较法的两种形式:(1)比差法:步骤是:①作差;②分解因式或配方;③判断差式符号;(2)比商法:要证a>b且b>0,只须证 a 1。

b说明:①作差比较法证明不等式时,通常是进行通分、因式分解或配方,利用各因式的符号或非负数的性质进行判断;②证幂、乘积的不等式时常用比商法,证对数不等式时常用比差法。

运用比商法时必须确定两式的符号;2.综合法:利用某些已经证明过的不等式(如均值不等式,常用不等式,函数单调性)作为基础,再运用不等式的性质推导出所要证的不等式的方法。

3.分析法:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明这个不等式的问题转化为这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。

这种证明方法叫做分析法。

要注意书写的格式, 综合法是分析法的逆过程4.对较复杂的不等式先用分析法探求证明途径,再用综合法,或比较法加以证明。

5.要掌握证明不等式的常用方法,此外还要记住一些常用不等式的形式特点,运用条件,等号、不等号成立的条件等。

经典例题做一做【例1】(1)已知a,b∈R,求证:a2+b2+1>ab+aa22b22(2)设a>0,b>0,求证()+()≥a2+b2.ba【例2】已知a+b+c=0,求证:ab+bc+ca≤0.1111【例3】已知∆ABC的三边长为a,b,c,且m为正数.求证:abc+>.a+mb+mc+m【例4】设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两根x1、x2满足1<x1<x2<1.a(1)当x∈(0,x1)时,证明x<f(x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,求证x0<x1.2【研讨.欣赏】已知a>1,m>0,求证:loga(a+m)>loga+m (a+2m).提炼总结以为师1.比较法是一种最重要的、常用的基本方法,其应用非常广泛,一定要熟练掌握.步骤是:作差→变形(分解因式或配方)→判断符号.对于积或幂的式子可以作商比较,作商比较必须弄清两式的符号.2.对较复杂的不等式需要用分析法,分析使不等式成立的充分条件,再证这个条件(不等式)成立.3.综合法是最简捷明快的方法,常需用分析法打前站,用分析法找路,综合法写出.有时也需要几种方法综合运用.4.要熟练掌握均值不等式、四种平均值之间的关系,记住一些常用的不等式,记住它们的形式特点、证明方法和内在联系。

2016年高考全国Ⅰ文科数学试题及答案(word解析版)

2016年高考全国Ⅰ文科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年全国Ⅰ,文1,5分】设集合{}1,3,5,7A =,{}25B x x =≤≤,则A B = ( )(A ){}1,3 (B ){}3,5 (C ){}5,7 (D ){}1,7【答案】B【解析】集合A 和集合B 公共元素有3,5,所以{}3,5A B = ,所以A B 中有2个元素,故选B .【点评】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.(2)【2016年全国Ⅰ,文2,5分】设()()12i i a ++的实部与虚部相等,其中a 为实数,则a =( )(A )3- (B )2- (C )2 (D )3【答案】A【解析】()()()12i i 212i a a a ++=-++,由已知,得212a a -=+,解得3a =-,故选A .【点评】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)【2016年全国Ⅰ,文3,5分】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )(A )13(B )12 (C )23 (D )56 【答案】A【解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为23,故选A . 【点评】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.(4)【2016年全国Ⅰ,文4,5分】ABC ∆的内角A B C 、、的对边分别为a b c 、、.已知a =2c =,2cos 3A =,则b =( )(A (B (C )2 (D )3【答案】D 【解析】由余弦定理得2254223b b =+-⨯⨯⨯,解得3b =(13b =-舍去),故选D . 【点评】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b .运算失误是基础题失分的主要原因,请考生切记!(5)【2016年全国Ⅰ,文5,5分】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13(B )12 (C )23 (D )34 【答案】B【解析】如图,由题意得在椭圆中,OF c =,OB b =,11242OD b b =⨯=,在Rt OFB ∆中,OF OB BF OD ⨯=⨯,且222a b c =+,代入解得22a 4c =,所以椭圆得离心率得1e 2=,故选B . 【点评】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .(6)【2016年全国Ⅰ,文6,5分】若将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图像向右平移14个周期后,所得图像对应的函 数为( )(A )2sin 24y x π⎛⎫=+ ⎪⎝⎭ (B )2sin 23y x π⎛⎫=+ ⎪⎝⎭ (C )2sin 24y x π⎛⎫=- ⎪⎝⎭ (D )2sin 23y x π⎛⎫=- ⎪⎝⎭ 【答案】D 【解析】函数=2sin(2+)6y x π的周期为π,将函数=2sin(2+)6y x π的图像向右平移14个周期即4π个单位,所得函数为=2sin 2()+2sin 2463y x x πππ⎡⎤⎛⎫-=- ⎪⎢⎥⎣⎦⎝⎭,故选D . 【点评】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数.(7)【2016年全国Ⅰ,文7,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条 相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π(B )18π (C )20π (D )28π【答案】A 【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=,解得2r =, 2271431784S r r πππ∴=⋅+⋅=,故选A . 【点评】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.(8)【2016年全国Ⅰ,文8,5分】若0a b >>,01c <<,则( ) (A )log log a b c c < (B )log log c c a b < (C )c c a b < (D )a b c c >【答案】B【解析】由01c <<可知log c y x =是减函数,又0a b >>,所以log log c c a b <.故选B .本题也可以用特殊值代入验证,故选B .【点评】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数单调性进行比较,若底数不同,可考虑利用中间量进行比较.(9)【2016年全国Ⅰ,文9,5分】函数22xy x e =-在[]2,2-的图像大致为( ) (A )(B )(C )(D )【答案】D【解析】解法一(排除法):2()2x f x x e =- 为偶函数,且2(2)887.40.6f e =-≈-=,故选D . 解法二:2()2xf x x e =- 为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如 图),故存在实数0(0,1)x ∈,使得'0()0f x =,且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时,'0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.(10)【2016年全国Ⅰ,文10,5分】执行右面的程序框图,如果输入的0,1,1x y n ===,则输出,x y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x =【答案】C【解析】第一次循环:0,1,2x y n ===,第二次循环:1,2,32x y n ===,第三次循环: 3,6,32x y n ===,此时满足条件2236x y +≥,循环结束,3,62x y ==,满足 4y x =,故选C .【点评】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.(11)【2016年全国Ⅰ,文11,5分】平面α过正方体1111ABCD A B C D -的顶点A ,11//CB D α平面,ABCD m α= 平面,11ABB A n α= 平面,则m ,n 所成角的正弦值为( )(A (B (C (D )13 【答案】A【解析】如图,设平面11CB D 平面ABCD m '=,平面11CB D 11ABB A n '=,因为α∥平面11CB D ,所以m m '∥,n n '∥,则,m n 所成的角.延长AD ,过1D 作11D E B C ∥,连接CE ,11B D ,则CE 为m ',同理11B F 为n ',而BD CE ∥,111B F A B ∥,则,m n ''所成的角即为1A B ,BD所成的角即为60︒,故,m n 故选A . 【点评】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.(12)【2016年全国Ⅰ,文12,5分】若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦ (C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦ 【答案】C【解析】()21cos2cos 03f x x a x '=-+≥对x ∈R 恒成立,故()2212cos 1cos 03x a x --+≥,245cos cos 033a x x -+≥恒成立,即245033at t -+≥对[]1,1t ∈-恒成立,构造()24533f t at t =-+,开口向下的二次函数()f t 的最小值的可能值为端点值,故只需保证()()11031103f t f t ⎧-=-≥⎪⎪⎨⎪-=+≥⎪⎩,解得1133t -≤≤,故选C . 【点评】本题把导数与三角函数结合在一起进行考查,有所创新,求解关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,要注意弦函数的有界性. 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,文13,5分】设向量(),1x x =+a ,()1,2=b ,且⊥a b ,则x = .【答案】23-【解析】由题意,20,2(1)0,3x x x ⋅=++=∴=-a b . 【点评】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .(14)【2016年全国Ⅰ,文14,5分】已知θ是第四象限角,且3sin 45πθ⎛⎫+= ⎪⎝⎭,则tan 4πθ⎛⎫-= ⎪⎝⎭ . 【答案】43- 【解析】由题意sin sin 442θθπ⎡ππ⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 45θπ⎛⎫=-= ⎪⎝⎭,因为2222k k θ3ππ+<<π+π()k ∈Z ,所以722444k k θ5ππππ+<-<π+()k ∈Z ,从而4sin 45θπ⎛⎫-=- ⎪⎝⎭,因此4tan 43θπ⎛⎫-=- ⎪⎝⎭.故填43-. 【点评】三角函数求值,若涉及到开方运算,要注意根式前正负号的取舍,同时要注意角的灵活变换.(15)【2016年全国Ⅰ,文15,5分】设直线2y x a =+与圆22220C x y ay +--=:相交于A ,B 两点,若AB =,则圆C 的面积为 .【答案】4π【解析】有题意直线即为20x y a -+=,圆的标准方程为()2222x y a a +-=+,所以圆心到直线的距离d =,所以AB ==2224a r +==,所以244S r ππ==. 【点评】注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆的半径r 、弦长l 、圆心到弦的距离d 之间的关系:2222l r d ⎛⎫=+ ⎪⎝⎭在求圆的方程时常常用到. (16)【2016年全国Ⅰ,文16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000【解析】设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元, 那么 1.50.5150,0.390,53600,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩①目标函数2100900z x y =+.①等价于3300,103900,53600,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩ ②作出二元一次不等式组②表示的平面区域(如图),即可行域将2100900z x y =+变形得73900z y x =-+,平行直线73y x =-,当直线73900z y x =-+经过点M 时,z取得最大值.解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标()60,100.所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=.故生产产品A 、产品B 的利润之和的最大值为216000元.【点评】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2016年全国Ⅰ,文17,12分】已知{}n a 是公差为3的等差数列,数列{}n b满足11b =,213b =,11n n n n a b b nb +++=.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.解:(1)由已知1221a b b b +=,11b =,213b =,得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31n a n =-.(2)由(1)和11n n n n a b b nb +++= ,得13n n b b +=,因此{}n b 是首项为1,公比为13的等比数列.记{}n b 的前n 项和为n S ,则111()313122313nn n S --==-⨯-. 【点评】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(18)【2016年全国Ⅰ,文18,12分】如图,在已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (1)证明G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. 解:(1)因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正 投影为E ,所以.AB DE ⊥所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得, PA PB =,从而G 是AB 的中点. (2)在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,PB PC ⊥,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故2.3CD CG =由题设可得PC ⊥平面PAB ,DE ⊥平面PAB , 所以//DE PC ,因此21,.33PE PG DE PC ==由已知,正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE == 在等腰直角三角形EFP 中,可得 2.EF PF ==所以四面体PDEF 的体积114222323V =⨯⨯⨯⨯=. 【点评】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.(19)【2016年全国Ⅰ,文19,12分】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(1)若19n =,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求的n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买PA B D C GE19个还是20个易损零件?解:(1)当19x ≤时,3800y =;当19x >时,()3800500195005700y x x =+-=-,所以y 与x 的函数解析式为()3800,195005700,19x y x x x ≤⎧=∈⎨->⎩Ν. (2)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为1(400090450010)4050100⨯+⨯=.比较两个平均数可知,购买1台机器的同时应购买19个易损零件. 【点评】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.(20)【2016年全国Ⅰ,文20,12分】在直角坐标系xOy 中,直线():0l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OH ON; (2)除H 以外,直线M H 与C 是否有其它公共点?说明理由.解:(1)由已知得()0,M t ,2,2t P t p ⎛⎫ ⎪⎝⎭.又N 为M 关于点P 的对称点,故2,t N t p ⎛⎫ ⎪⎝⎭,ON 的方程为2y px =,整理得2220px t x -=,解得10x =,222t x p =,因此22,2t H t p ⎛⎫ ⎪⎝⎭.所以N 为OH 的中点,即2OH ON =. (2)直线M H 与C 除H 以外没有其它公共点.理由如下:直线M H 的方程为2p y t x t-=,即2()t x y t p =-. 代入22y px =得22440y ty t -+=,解得122y y t ==,即直线M H 与C 只有一个公共点,所以除H 以外 直线M H 与C 没有其它公共点.【点评】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.(21)【2016年全国Ⅰ,文21,12分】已知函数()()()22e 1x f x x a x =-+-.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.解:(1)()()()()()'12112x x f x x e a x x e a =-+-=-+.(i) 设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >.所以在(),1-∞单调递减,在()1,+∞单调递增.(ii) 设0a <,由()'0f x =得1x =或()ln 2x a =-. ①若2e a =-,则()()()'1xf x x e e =--,所以()f x 在(),-∞+∞单调递增. ②若2e a >-,则()ln 21a -<,故当()()(),ln 21,x a ∈-∞-+∞ 时,()'0f x >;当()()ln 2,1x a ∈-时, ()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减. ③若2e a <-,则()ln 21a ->,故当()()(),1ln 2,x a ∈-∞-+∞ 时,()'0f x >,当()()1,ln 2x a ∈-时, ()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.(2)(i) 设0a >,则由(1)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增.又()1f e =-,()2f a =,取b 满足0b <且ln 22b a <,则()()()23321022a f b b a b a b b ⎛⎫>-+-=-> ⎪⎝⎭,所以()f x 有两个零点. (ii)设0a =,则()()2x f x x e =-,所以()f x 有一个零点.(iii)设0a <,若2e a ≥-,则由(1)知,()f x 在()1,+∞单调递增.又当1x ≤时,()0f x <,故()f x 不 存在两个零点;若2e a <-,则由(1)知,()f x 在()()1,ln 2a -单调递增,在()()ln 2,a -+∞单调递增.又 当1x ≤时,()0f x <,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.【点评】本题第一问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第二问是求参数取值范围,由于这类问题常涉及到导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2016年全国Ⅰ,文22,10分】(选修4-1:几何证明选讲)如图,OAB ∆是等腰三角形,120AOB ∠=︒.以O 为圆心,12OA 为半径作圆. (1)证明:直线AB 与O 相切;(2)点C ,D 在⊙O 上,且A B C D ,,,四点共圆,证明://AB CD .解:(1)设E 是AB 的中点,连接OE ,因为OA OB =,120AOB ∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半 径,所以直线AB 与O e 相切. (2)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥.同理可证,'OO CD ⊥.所以//AB CD .【点评】近几年几何证明题多以圆为载体命制,在证明时要抓好“长度关系”与“角度关系的转化”,熟悉相关定理与性质.该部分内容命题点有:平行线分线段成比例定理;三角形的相似与性质;四点共圆;圆内接四边形的性质与判定;切割线定理.(23)【2016年全国Ⅰ,文23,10分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (1)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(2)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .解:(1)cos 1sin x a t y a t =⎧⎨=+⎩(t 均为参数),∴()2221x y a +-= ① ∴1C 为以()01,为圆心,a 为半径的圆.方程为 222210x y y a +-+-=∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程.(2)24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,,224x y x ∴+=,即()2224x y -+= ② 3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①-②得:24210x y a -+-=,即为3C ,∴210a -=,∴1a =.【点评】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(24)【2016年全国Ⅰ,文24】(本小题满分10分)(选修4-5:不等式选讲)已知函数()123f x x x =+--.(1)在答题卡题图中画出()y f x =的图像;O D C B A E O'D C O BA(2)求不等式()1f x >的解集.解:(1)4,13()12332,1234,2x x f x x x x x x x ⎧⎪-<-⎪⎪=+--=--≤<⎨⎪⎪-+≥⎪⎩,如图所示: (2)①当1x <-时,()41f x x =->,解得3x <或5x >,1x ∴<-; ②当312x -≤<时,()321f x x =->,解得13x <或1x >, 113x ∴-≤<或312x <<; ③当32x ≥时,()41f x x =-+>,解得3x <或5x >,332x ∴≤<或5x >. 综上可知,不等式()1f x >的解集为()()1,1,35,3⎛⎫-∞+∞ ⎪⎝⎭ . 【点评】不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式.。

2023年高考数学(理科)一轮复习——不等式选讲 第二课时 不等式的证明

2023年高考数学(理科)一轮复习——不等式选讲 第二课时 不等式的证明
索引
(2)用 max{a,b,c}表示 a,b,c 中的最大值,证明:max{a,b,c}≥3 4. 证明 不妨设max{a,b,c}=a. 因为abc=1,a=-(b+c), 所以a>0,b<0,c<0. 由 bc≤(b+4 c)2,可得 abc≤a43, 当且仅当 b=c=-2a时取等号, 故 a≥3 4,所以 max{a,b,c}≥3 4.
索引
感悟提升
1.比较法证明不等式的方法与步骤 (1)作差比较法:作差、变形、判号、下结论. (2)作商比较法:作商、变形、 判断、下结论. 2.利用放缩法证明不等式时要目标明确,通过添、拆项后,适当放缩.
索引
训练1 (1)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为 __M_≥__N___. 解析 M-N=2a3-b3-(2ab2-a2b) =2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b) =(a-b)(a+b)(2a+b). 因为a≥b>0, 所以a-b≥0,a+b>0,2a+b>0, 从而(a-b)(a+b)(2a+b)≥0, 故2a3-b3≥2ab2-a2b,即M≥N.
A.1
B.2
C.3
D.4
解析 logx10+lg x=lg1x+lg x≥2(x>1),①正确; ab≤0 时,|a-b|=|a|+|b|,②不正确; 因为 ab≠0,ab与ba同号, 所以ba+ab=ba+ab≥2,③正确; 由|x-1|+|x-2|的几何意义知, |x-1|+|x-2|≥1恒成立,④也正确, 综上①③④正确.
索引
(2) bac+ abc+ acb≥ 3( a+ b+ c).
证明
bac+ abc+ acb=a+abb+c c.

2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32二、填空题:本题共4小题,每小题5分,共20分。

高中数学检测:不等式的性质及一元二次不等式含解析

高中数学检测:不等式的性质及一元二次不等式含解析

限时规范训练(限时练·夯基练·提能练)A 级 基础夯实练1.(运城模拟)若a >b >0,c <d <0,则一定有( ) A .ac >bd B .ac <bd C .ad <bcD .ad >bc解析:选B.根据c <d <0,有-c >-d >0,由于a >b >0,两式相乘有-ac >-bd ,ac <bd .2.(安徽淮北一中模拟)若(x -1)(x -2)<2,则(x +1)(x -3)的取值范围是( ) A .(0,3) B .[-4,-3) C .[-4,0)D .(-3,4]解析:选C.由(x -1)(x -2)<2解得0<x <3,令f (x )=(x +1)·(x -3)=x 2-2x -3(0<x <3),则f (x )图象的对称轴是直线x =1,故f (x )在(0,1)上单调递减,在(1,3)上单调递增,f (x )在x =1处取得最小值-4,在x =3处取得最大值0,故(x +1)(x -3)的取值范围为[-4,0).3.(福建连城检测)已知a 1>a 2>a 3>0,则使得(1-a i x )2<1(i =1,2,3)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1a 1 B .⎝⎛⎭⎪⎫0,2a 1C.⎝⎛⎭⎪⎫0,1a 3D .⎝⎛⎭⎪⎫0,2a 3解析:选 B.由(1-a i x )2<1,得a 2i x 2-2a i x <0,得a 2i x ⎝⎛⎭⎪⎫x -2a i <0,其解集为⎝⎛⎭⎪⎫0,2a i ,又2a 1<2a 2<2a 3,所以使得(1-a i x )2<1(i =1,2,3)成立的x 的取值范围是⎝⎛⎭⎪⎫0,2a 1,故选B.4.(桂林二模)若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.对于0<ab <1,如果a >0,则b >0,a <1b 成立,如果a <0,则b <0,b >1a 成立,因此“0<ab <1”是“a <1b 或b >1a ”的充分条件;反之,若a =-1,b=2,结论“a <1b 或b >1a ”成立,但条件0<ab <1不成立,因此“0<ab <1”不是“a <1b 或b >1a ”的必要条件,即“0<ab <1”是“a <1b 或b >1a ”的充分不必要条件.5.(聊城三模)已知a ∈Z,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( )A .13B .18C .21D .26解析:选C.设f (x )=x 2-6x +a ,其图象是开口向上,对称轴是x =3的抛物线,如图所示.关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧f (2)≤0f (1)>0,即⎩⎪⎨⎪⎧f (2)=4-12+a ≤0f (1)=1-6+a >0,解得5<a ≤8,又a ∈Z ,所以a =6,7,8,所有符合条件的a 的值之和是6+7+8=21.选C.6.(深圳中学模拟)已知a >b >0,c <0,下列不等关系中正确的是( ) A .ac >bcB .a c >b cC .log a (a -c )>log b (b -c )D .a a -c >bb -c解析:选D.因为c <0,a >b ,所以ac <bc ,故A 错误;当c <0时,幂函数y =x c 在(0,+∞)上是减函数,所以a c <b c ,故B 错误;若a =4,b =2,c =-4,则log a (a -c )=log 48<2<log b (b -c )=log 26,故C 错误;a a -c -b b -c =ab -ac -ab +bc (a -c )(b -c )=(b -a )c (a -c )(b -c )>0,所以a a -c >bb -c成立,故D 正确.选D.7.(成都二诊)若关于x 的不等式x 2+2ax +1≥0在[0,+∞)上恒成立,则实数a 的取值范围为( )A .(0,+∞)B .[-1,+∞)C .[-1,1]D .[0,+∞)解析:选B.解法一:当x =0时,不等式1≥0恒成立,当x >0时,x 2+2ax +1≥0⇒2ax ≥-(x 2+1)⇒2a ≥-⎝⎛⎭⎪⎫x +1x ,又-⎝ ⎛⎭⎪⎫x +1x ≤-2,当且仅当x =1时,取等号,所以2a ≥-2⇒a ≥-1,所以实数a 的取值范围为[-1,+∞).解法二:设f (x )=x 2+2ax +1,函数图象的对称轴为直线x =-a ,当-a ≤0,即a ≥0时,f (0)=1>0,所以当x ∈[0,+∞)时,f (x )≥0恒成立;当-a >0,即a <0时,要使f (x )≥0在[0,+∞)上恒成立,需f (-a )=a 2-2a 2+1=-a 2+1≥0,得-1≤a <0.综上,实数a 的取值范围为[-1,+∞).8.(潍坊模拟)在R 上定义运算⊙:x ⊙y =x (2-y ),若不等式(x +m )⊙x <1对一切实数x 恒成立,则实数m 的取值范围是________.解析:由题意得不等式(x +m )(2-x )<1,即x 2+(m -2)x +(1-2m )>0对任意x ∈R 恒成立, 因此Δ=(m -2)2-4(1-2m )<0, 即m 2+4m <0,解得-4<m <0.答案:(-4,0)9.(扬州模拟)某商家一月份至五月份累计销售额达3 860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7 000万元,则x 的最小值为________.解析:由已知条件可得,七月份销售额为500×(1+x %),八月份销售额为500×(1+x %)2,一月份至十月份的销售总额为 3 860+500+2[500(1+x %)+500(1+x %)2],可列出不等式为4 360+1 000[(1+x %)+(1+x %)2]≥7 000.令1+x %=t ,则t 2+t -6625≥0,即⎝ ⎛⎭⎪⎫t +115⎝ ⎛⎭⎪⎫t -65≥0.又∵t +115≥0,∴t ≥65,∴1+x %≥65,∴x %≥0.2,∴x ≥20.故x 的最小值是20. 答案:2010.已知函数f (x )=ax 2+bx -a +2.(1)若关于x 的不等式f (x )>0的解集是(-1,3),求实数 a ,b 的值; (2)若b =2,a ≥0,解关于x 的不等式f (x )>0. 解:(1)∵不等式f (x )>0的解集是(-1,3), ∴-1,3是方程ax 2+bx -a +2=0的两根,∴可得⎩⎪⎨⎪⎧a -b -a +2=0,9a +3b -a +2=0,解得⎩⎪⎨⎪⎧a =-1,b =2.(2)当b =2时,f (x )=ax 2+2x -a +2=(x +1)(ax -a +2), ①当a =0时,f (x )>0,即2x +2>0,∴x >-1②a >0,∴(x +1)(ax -a +2)>0⇔(x +1)⎝⎛⎭⎪⎫x -a -2a >0, (ⅰ)当-1=a -2a,即a =1时,解集为{x |x ∈R 且x ≠-1};(ⅱ)当-1>a -2a ,即0<a <1时,解集为{x |x <a -2a 或x >-1};(ⅲ)当-1<a -2a,即a >1时,解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >a -2a . B 级 能力提升练11.(北京卷)设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D.若点(2,1)∈A ,则不等式x -y ≥1显然成立.且满足⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32.即点(2,1)∈A ⇒a >32,其等价命题为a ≤32⇒点(2,1)∉A 成立.12.(2017·山东卷)若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B.b2a <log 2(a +b )<a +1bC .a +1b <log 2(a +b )<b2aD .log 2(a +b )<a +1b <b2a解析:选B.(特值法),∵a >b >0,ab =1,∴令a =3, b =13,则a +1b =6,log 2(a +b )=log 2103<2,b 2a =1323=124,即a +1b >log 2(a +b )>b2a ,故选B.13.(南昌模拟)若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是________.解析:解法一:∵x 2+ax -2>0在x ∈[1,5]上有解,令f (x )=x 2+ax -2, ∴f (0)=-2<0,f (x )的图象开口向上,∴只需f (5)>0,即25+5a -2>0,解得a >-235.解法二:由x 2+ax -2>0在x ∈[1,5]上有解, 可得a >2-x 2x =2x -x 在x ∈[1,5]上有解.又f (x )=2x-x 在x ∈[1,5]上是减函数,∴⎝ ⎛⎭⎪⎫2x -x min =-235,只需a >-235.答案:⎝ ⎛⎭⎪⎫-235,+∞ 14.(银川质检)已知函数f (x )=ax 2+2ax +1的定义域为R. (1)求a 的取值范围; (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)因为函数f (x )=ax 2+2ax +1的定义域为R ,所以ax 2+2ax +1≥0恒成立,当a =0时,1≥0恒成立.当a ≠0时,则有⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a ≤0, 解得0<a ≤1,综上可知,a 的取值范围是[0,1]. (2)因为f (x )=ax 2+2ax +1=a (x +1)2+1-a ,a >0,所以当x =-1时,f (x )min =1-a ,由题意得,1-a =22,所以a =12,所以不等式x 2-x -a 2-a <0可化为x 2-x -34<0.解得-12<x <32,所以不等式的解集为⎝ ⎛⎭⎪⎫-12,32.15.(汕头模拟)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .C 级 素养加强练16.已知函数f (x )=⎩⎪⎨⎪⎧ln (x +1),x >0,-x 2+3x ,x ≤0,若不等式|f (x )|-mx +2≥0恒成立,则实数m 的取值范围为________.解析:由f (x )=⎩⎪⎨⎪⎧ln (x +1),x >0,-x 2+3x ,x ≤0知|f (x )|=⎩⎪⎨⎪⎧ln (x +1),x >0,x 2-3x ,x ≤0,不等式|f (x )|-mx +2≥0恒成立,即|f (x )|≥mx -2恒成立.令g (x )=|f (x )|,h (x )=mx -2,则原不等式恒成立等价于y =h (x )的图象不在y =g (x )图象的上方.h (x )=mx -2是过定点(0,-2)的直线系.如图,l1与x轴平行,l2与曲线y=x2-3x(x≤0)相切,易知直线l1的斜率k1=0,设直线l2的斜率为k2,联立方程,得错误!⇒x2-3x-k2x+2=0,即x2-(3+k2)x+2=0,则Δ=(3+k2)2-4×2=0,故k2=-22-3,(22-3舍去),结合图象易知m的取值范围为[-3-22,0].答案:[-3-22,0]。

2020版高考数学(文)一轮复习通用版课件不等式的证明

2020版高考数学(文)一轮复习通用版课件不等式的证明
第二 节
不等式的证明
一、基础知识批注——理解深一点
返回
1.基本不等式
(1)定理 1:如果 a,b∈R ,那么 a2+b2≥ 2ab ,当且仅当 a
=b 时,等号成立. (2)定理 2:如果 a,b>0,那么a+2 b≥ ab,当且仅当 a=b 时,
等号成立,即两个正数的算术平均不小于(即大于或等于) 它们的几何平均. (3)定理 3:如果 a,b,c∈R +,那么a+3b+c≥ 3 abc ,当且
所以 x-y>0,即 x>y.
答案:A
3.已知 a,b∈R +,且 a+b=2,则1a+1b的最小值为 (
A.1
B.2
C.4
D.8
解析:∵a,b∈R +,且 a+b=2,
返回
)
∴(a+b)1a+1b =2+ba+ab≥2+2 ba·ab=4, ∴1a+1b≥a+4 b=2,即1a+1b的最小值为 2(当且仅当 a=b=1 时, 等号成立). 答案:B
(√ )
(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一
步一步地寻求结论成立的必要条件,最后达到题设的已知条件
或已被证明的事实.
(×)
返回
(二)选一选
1.设 t=a+2b,s=a+b2+1,则 s 与 t 的大小关系是 ( )
A.s≥t
B.s>t
C.s≤t
D.s<t
解析:∵s-t=b2-2b+1=(b-1)2≥0,∴s≥t.
[题组训练]
返回
1.设 a,b,c,d 均为正数,若 a+b=c+d,且 ab>cd,求证:
a+ b> c+ d.
证明:因为( a+ b)2=a+b+2 ab,( c+ d)2=c+d+

高考数学 题型通关21讲第19讲 不等式的证明(解析版)

高考数学 题型通关21讲第19讲 不等式的证明(解析版)

第19讲 不等式的证明高考预测一:一元不等式的证明 1.证明: (1)(1)1xln x x x ++; (2)1x e x +.【解析】证明:(1)令()(1)(1)f x x ln x x =++-, 则()(1)11(1)f x ln x ln x '=++-=+,10x -<<,()0f x '<,()f x ∴在10x -<<时单调递减, (1)(1)0x ln x x ∴++-<成立, ∴(1)1xln x x ++; 0x =,等号成立; 0x >,(1)10ln x ln ∴+>=,即()0f x '>,()f x ∴在0x >时单调递增, ()(0)0f x f ∴>=(1)(1)0x ln x x ∴++->成立, ∴(1)1xln x x ++. 令()(1)g x x ln x =-+,则它的导数为1()11g x x '=-+. 当01x >>-时,()0g x '<,故函数()g x 在(1,0)-上是减函数.当0x 时,()0g x ',当且仅当0x =时,()0g x '=,故函数()g x 在[0,)+∞上是增函数. 故当0x =时,函数()g x 取得最小值为0, 故有()(1)0g x x ln x =-+,(1)ln x x ∴+. ∴(1)1xln x x x ++; (2)设()1x f x e x =--,则()1x f x e '=-, ∴当0x =时,()0f x '=,()0f x =.当0x >时,()0f x '>, ()f x ∴在(0,)+∞上是增函数, ()(0)0f x f ∴>=.当0x <时,()0f x '<, ()f x ∴在(,0)-∞上是减函数, ()(0)0f x f ∴>=. ∴对x R ∈都有()0f x ,1x e x ∴+.2.设函数()(1)(1)f x x ln x ax =++-在0x =处取得极值. (1)求a 的值及函数()f x 的单调区间;(2)证明对任意的正整数n ,不等式(1)(1)nlnn n ln n -+. 【解析】(1)解:()(1)(1)f x x ln x ax =++-,()(1)1f x ln x a '∴=++-, ()f x 在0x =处取得极值, (0)0f '∴=,1a ∴=,故()(1)f x ln x '=+,当11x +>,即0x >时,()0f x '>, 当011x <+<,即10x -<<时,()0f x '<, ()f x ∴的增区间为(0,)+∞,减区间为(1,0)-.(2)证明:当1n =时,左边0=,右边0=,00成立; 当2n =时,左边224ln ln ==,右边3ln =,43ln ln 成立; 当3n 时,原不等式等价于(1)1lnn ln n n n+-,令()1lnxg x x =-,(3)x , 则21()(1)x lnx x g x x --=-, 当3x 时,11x x-<,1lnx >, ∴10x lnx x--<,从而()0g x <,()g x ∴递减, 所以,当13n n ->时, 有(1)()g n g n -<, 即(1)1ln n lnnn n +<-, 综上所述:对任意的正整数n ,不等式(1)(1)nlnn n ln n -+都成立. 3.设函数2()(1)f x x bln x =++,其中0b ≠ (1)若12b =-,求()f x 在[1,3]的极小值;(2)如果()f x 在定义域内既有极大值又有极小值,求实数b 的取值范围; (3)证明不等式:32(1)(0)x x ln x x -+【解析】解:(1)由题意知,()f x 的定义域为(1,)+∞12b =-时,由22212()01x x f x x +-'==+,得2(3x x ==舍去), 当[1x ∈,2)时()0f x '<,当(2x ∈,3]时,()0f x '>,所以当[1x ∈,2)时,()f x 单调递减;当(2x ∈,3]时,()f x 单调递增, 所以()f x f =极小值(2)3412ln =-(2)由题意222()01x x bf x x ++'==+在(1,)-+∞有两个不等实根, 即2220x x b ++=在(1,)-+∞有两个不等实根,设2()22g x x x b =++,则480(1)0b g =->⎧⎨->⎩,解之得102b <<(3)当1b =-时,2()(1)f x x ln x =-+.令332()()(1)h x x f x x x ln x =-=-++,则323(1)()1x x h x x +-'=+在[0,)+∞上恒正()h x ∴在[0,)+∞上单调递增,当(0,)x ∈+∞时,恒有()(0)0h x h >= 即当(0,)x ∈+∞时,有32(1)0x x ln x -++>, 即32(1)x x ln x -+. 4.当02x π<<时,求证:31sin 6x x x -<.【解析】证明:令31()sin 6f x x x =--x ,则21()1cos 2f x x '=--x ,()sin f x x ''=-+x ,()1cos f x '''=-+x .当02x π<<时,0cos <1x <,即()0f x '''<.所以()f x ''在(0,)2π上单调递减.所以()(0)0f x f ''<''=,x 属(0,)2π∈.所以()f x '在(0,)2π上单调递减.所以()(0)0f x f <=,(0,)2x π∈.即31sin 6x x x -<,(0,)2x π∈. 高考预测二:函数不等式证明中的变形原理 5.已知函数2()(2)f x lnx ax a x =-+-. ()I 讨论函数()f x 的单调性;()II 若()f x 在点(1,f (1))处的切线斜率为2-. ()i 求()f x 的解析式; ()ii 求证:当()101,11f x lnxx x x x x x >≠++>+-且时. 【解析】解:由题意可得,()f x 定义域为(0,)+∞()I 对函数求导可得,212(2)1(21)(1)()22ax a x x ax f x ax a x x x-+-+--+'=-+-== ①0a 时,10ax +>,0x >由()0f x '>可得,1(0,)2x ∈,由()0f x '<可得1(,)2x ∈+∞()f x ∴在1(0,)2单调递增,在1(2,)+∞单调递减②0a <时,令()0f x '=可得112x =或21x a =()i 当20a -<<时112a -> 由()0f x '<可得11(,)2x a ∈-,由()0f x '>可得11(0,)(,)2x a∈-+∞ 故()f x 在11(,)2a -单调递减,在1(0,)2,1(,)a-+∞单调递增()ii 当2a <-时,同理可得()f x 在11(,)2a -单调递减,在1(0,)a -,1(,)2+∞单调递增()iii 当2a =-时,2(21)()0x f x x-'=()f x ∴在(0,)+∞增..⋯(6分) ()()II i 解:由()I 知)知()(1)2f x a '=-+=-1a ∴=2()f x lnx x x ∴=--⋯.(8分)()ii 证明:2()111111111f x lnx lnx x x lnx lnx lnx x x x x x x x x x x x --++-=++-=-++-+-+- 2222121111(2)(2)111lnx x lnx x lnx x x x x x x-=-=-=----- 令2222211221(1)()2(0,1)()1x x x g x x lnx x x g x x x x x x-+-'=-->≠=+-== 故当(0,1)x ∈时,()0g x '>,()g x 在(0,1)单调递增, ()g x g ∴<(1)0=,又2101x <- ∴21()01g x x >- 当(1,)x ∈+∞时,()0g x '>,()g x 在(1,)+∞单调递增,()g x g >(1)0= 又2101x >-, ∴21()01g x x >- 综上所述,0x >且0x ≠时,()111f x lnxx x x x ++>⋯+-(14分) 6.已知函数()(1)1f x x lnx x =+-+ ()I 求曲线在(1,f (1))处的切线方程;(Ⅱ)若2()1xf x x ax '++,求a 的取值范围; (Ⅲ)证明:(1)()0x f x -. 【解析】解:11()()1x I f x lnx lnx x x+'=+-=+ 所以f '(1)1=,所以切线方程1y x =- (Ⅱ)22()111xf x x ax xlnx x ax '++⇔+++, 即:2xlnx x ax +,0x >,则有lnx x a +,即要使a lnx x -成立. 令()g x lnx x =-,那么1()101g X x x'=-=⇒=, 可知当01x <<时单调增,当1x >时单调减. 故()g x lnx x =-在1x =处取最大值为1max g =-, 那么要使得a lnx x -成立,则有1a -.(Ⅲ)由(Ⅱ)可得:1lnx x --,即10lnx x -+ 当01x <<时,()10f x xlnx lnx x =+-+<, 当1x 时,()1f x xlnx lnx x =+-+ (1)lnx xlnx x =+-+1(1)lnx x lnx x=++- 11(1)lnx x ln x x=--+0.()1(1)0f x xlnx lnx x lnx xlnx x ∴=+-+=+-+综上所述,(1)()0x f x - 7.已知函数()1alnx bf x x x=++,曲线()y f x =在点(1,f (1))处的切线方程为230x y +-=. (1)求a ,b 的值; (2)如果当1x >时,()1lnx kf x x x>+-,求k 的取值范围. 【解析】解:切线方程为230x y +-=即11(1)2y x -=--,(1)221()()(1)x a lnx b x f x x x +-'=-+由于直线230x y +-=的斜率为12-,且过点(1,1), 故(1)11(1)2f f =⎧⎪⎨'=-⎪⎩,即1122b ab =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (2)由(1)知1()1lnx f x x x=++,所以 221(1)(1)()()(2)11lnx k k x f x lnx x x x x ---+=+--. 考虑函数2(1)(1)()2(0)k x h x lnx x x--=+>,则22(1)(1)2()k x xh x x -++'=, ()i 设0k ,由222(1)(1)()k x x h x x +--'=知, 当(1,)x ∈+∞时,()0h x '<,可得21()01h x x>-, 从而当1x >时,()1lnx kf x x x>+-, ()ii 设01k <<.由于当(1x ∈,11k-)时,2(1)(1)20k x x -++>,故()0h x '>, 而h (1)0=,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x <-,与题设矛盾. ()iii 设1k .此时()0h x '>,而h (1)0=,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x <-,与题设矛盾. 综合得,k 的取值范围为(-∞,0]. 8.已知函数1()xlnx f x e +=,( 2.71828e =⋯是自然对数的底数). (1)求()f x 的单调区间;(2)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意0x >,2()1g x e -<+. 【解析】解:(1)求导数得1()(1)xf x x xlnx xe '=--,(0,)x ∈+∞, 令()1h x x xlnx =--,(0,)x ∈+∞,当(0,1)x ∈时,()0h x >;当(1,)x ∈+∞时,()0h x <. 又0x e >,所以(0,1)x ∈时,()0f x '>; (1,)x ∈+∞时,()0f x '<.因此()f x 的单调递增区间为(0,1),单调递减区间为(1,)+∞. 证明:(2)因为()()g x xf x ='. 所以1()(1)x g x x xlnx e=--,(0,)x ∈+∞. 由()1h x x xlnx =--,求导得2()2()h x lnx lnx lne -'=--=--,所以当2(0,)x e -∈时,()0h x '>,函数()h x 单调递增;当2(x e -∈,)+∞时,()0h x '<,函数()h x 单调递减. 所以当(0,)x ∈+∞时,22()()1h x h e e --=+. 又当(0,)x ∈+∞时,101x e<<, 所以当(0,)x ∈+∞时,21()1x h x e e-<+,即2()1g x e -<+. 综上所述,对任意0x >,2()1g x e -<+9.已知函数()(1)(2)x f x x e a lnx x =+-+,1()()12x g x e m x =+++.(a ,m R ∈且为常数,e 为自然对数的底数). (1)讨论函数()f x 的极值点的个数; (2)当12a =时,()()f x g x 对任意的(0,)x ∈+∞恒成立,求实数m 的取值范围. 【解析】解:(1)函数()f x 的你定义域为(0,)+∞,22()(2)(1)()x xx f x x e a xe a x x+'=+-+=-,()0x x x xe a e xe -'=+>,x y xe a ∴=-在区间(0,)+∞上单调递增,且0x xe >,①当0a 时,0x xe a ->在区间(0,)+∞上恒成立,即()0f x '>, ∴函数()f x 在(0,)+∞上单调递增,此时无极值点;②当0a >时,方程0x xe a -=有唯一解,设为11(0)x x >,当10x x <<时,()0f x '<,函数()f x 单调递减,当1x x >时,()0f x '>,函数()f x 单调递增, 1x ∴是函数()f x 的极小值点,即函数只有一个极值点;综上,当0a 时,()f x 无极值点,当0a >时,()f x 有一个极值点; (2)当12a =时,()()f x g x 对任意的(0,)x ∈+∞恒成立,即1x xe lnx x mx ---对(0,)x ∈+∞恒成立, 即11xlnx e m x+--对(0,)x ∈+∞恒成立,记2221()1,()x x xlnx lnx x e lnx m x e m x e x x x ++'=--=+=, 记221(),()20x x x h x x e lnx h x x e xe x'=+=++>,故()h x 在(0,)+∞上单调递增, 又112211()()110,(1)0ee h e e h e e e-=-=-<=>,∴存在01(,1)x e∈,使得0()0h x =,且0(0,)x x ∈,()0h x <,0(x x ∈,)+∞,()0h x >,()m x ∴在0(0,)x 上单调递减,在0(x ,)+∞上单调递增, ∴00001()()1x min lnx m x m x e x +==--, 又0()0h x =, ∴0200x x e lnx =-,∴001001lnx x x e ln e x =⋅,∴001x lnx =, ∴0000000001111()1110x x minlnx x e lnx x m x e x x x +--+-=--=-=-=,即0m ,综上所述,实数m 的取值范围为(-∞,0].10.已知函数()(1)x f x e a x =++(其中a R ∈,e 是自然对数的底数). (1)若对任意x R ∈,都有()0f x ,求a 的取值范围;(2)设33()(1)()g x x lnx m x m R =+-∈的最小值为()m ϕ,当0m <时,证明:111331()()03m m e e m ϕ+---.【解析】解:(1)()f x 的定义域为(,)-∞+∞,()x f x e a '=+,()i 若0a >时,当x R ∈时,()0f x '>,()f x 在(,)-∞+∞上递增,且x →-∞时,()f x →-∞,所以()0f x 不恒成立,故0a >不符合条件;()ii 若0a =时,()0x f x e =>,所以0a =符合条件; ()iii 若0a <时,令()0f x '=,得()x ln a =-,当(x ∈-∞,())ln a -时,()0f x '<,()f x 在(-∞,())ln a -上递减; 当(()x ln a ∈-,)+∞时,()0f x '>,()f x 在(()ln a -,)+∞上递增,所以()()(())[()1][()1]0ln a min f x f ln a e a ln a a a ln a -=-=+-+=-+-+,即()0ln a -,得1a -, 综上,a 的取值范围是[1-,0].(2)()g x 的定义域为(0,)+∞,2222()33(313)0g x x lnx x mx x lnx m '=++=++=,得13m x e --=,于是当13(0,)m x e--∈时,()0g x '<,()g x 递减;当13(,)m x e--∈+∞时,()0g x '>,()g x 递增,所以13131313311()()(1)33m m m m m m g ee m e m e ϕ--------+===-+-=--, 31()10m m e ϕ--'=-=,得13m =-,当1(,)3m ∈-∞-时,()0m ϕ'>,()m ϕ递增;当1(,0)3m ∈-时,()0m ϕ'<,()m ϕ递减,所以1()()03max m ϕϕ=-=,所以()0m ϕ;要使1111313311()()033m m m m e e m e ϕ++----=--,等价于1133m m e +-,等价于1(3)13ln m m---, 由(1)知1a =-时,得1x e x +,在1x >-时,得(1)ln x x +,用1x -替代x ,得1lnx x -,用1x替代x ,得111lnx x x--(当且仅当1x =时取等号), 取3x m =-,显然1(3)13ln m m---成立, 综上知,113131()()03m m e e m ϕ+---.高考预测三:函数不等式证明中的隐零点问题 11.已知函数2()f x ax ax xlnx =--,且()0f x . (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<. 【解析】解:(1)因为2()()(0)f x ax ax xlnx x ax a lnx x =--=-->, 则()0f x 等价于()0h x ax a lnx =--,求导可知1()h x a x'=-. 则当0a 时()0h x '<,即()y h x =在(0,)+∞上单调递减, 所以当01x >时,0()h x h <(1)0=,矛盾,故0a >. 因为当10x a <<时()0h x '<、当1x a>时()0h x '>, 所以1()()min h x h a=,又因为h (1)10a a ln =--=, 所以11a=,解得1a =; 另解:因为f (1)0=,所以()0f x 等价于()f x 在0x >时的最小值为f (1), 所以等价于()f x 在1x =处是极小值,所以解得1a =;(2)由(1)可知2()f x x x xlnx =--,()22f x x lnx '=--, 令()0f x '=,可得220x lnx --=,记()22t x x lnx =--,则1()2t x x'=-, 令()0t x '=,解得12x =, 所以()t x 在区间1(0,)2上单调递减,在1(2,)+∞上单调递增,所以1()()2102min t x t ln ==-<,又2212()0t e e =>,所以()t x 在1(0,)2上存在唯一零点,所以()0t x =有解,即()0f x '=存在两根0x ,2x ,且不妨设()f x '在0(0,)x 上为正、在0(x ,2)x 上为负、在2(x ,)+∞上为正, 所以()f x 必存在唯一极大值点0x ,且00220x lnx --=, 所以222200000000000()22f x x x x lnx x x x x x x =--=-+-=-, 由012x <可知20002111()()224max f x x x <-=-+=; 由1()0f e '<可知0112x e <<,所以()f x 在0(0,)x 上单调递增,在0(x ,1)e 上单调递减,所以0211()()f x f e e>=;综上所述,()f x 存在唯一的极大值点0x ,且220()2e f x --<<.12.已知函数31()3f x x ax =-+,()x g x e =.(1)设()()()f x F xg x '=,①当1a =-时,求曲线()y F x =在点(1,F (1))处的切线方程;②当0a >时,求证:2()F x e >-对任意(0,)x ∈+∞恒成立.(2)讨论()()()G x f x g x =的极值点个数.【解析】解:(1)2()x a x F x e -=,22()xx x aF x e --'=, ①当1a =-时,2212(),(1)0,(1)xx x F x F F e e-+'='==-,∴切线方程为2y e=-;②证明:即证对任意0x >,21()20xx e a x e e +-+>,只需证0a >时,2()2()0x h x e e a x =+->对任意0x >都成立, ()22x h x e ex '=-,()22x h x e e ''=-,令()0h x ''=得1x =,且(0,1)x ∈时,()0h x ''<,()h x '单减,(1,)x ∈+∞时,()0h x ''>,()h x '单增, ()h x h ∴'>'(1)0=, ()h x ∴在(0,)+∞上单增, ()(0)20h x h ae ∴>=+>,∴当0a >时,2()F x e >-对任意(0,)x ∈+∞恒成立.(2)33211()(),()()33x x G x x ax e G x e x x ax a =-+'=--++,()G x ∴只有一个极值点或三个极值点,令321()3x x x ax a ϕ=--++,当()G x 只有一个极值点时,()x ϕ的图象必穿过x 轴且只穿过一次,即()x ϕ为单调减函数或者()x ϕ极值同号,()()i x ϕ为单调减函数时,2()20x x x a ϕ'=--+在R 上恒成立,则△440a =+,解得1a -; ()()ii x ϕ极值同号时,设1x ,2x 为极值点,则12()()0x x ϕϕ,2()20x x x a ϕ'=--+=有解,则1a >-,且221122121220,20,2,x x a x x a x x x x a --+=--+=+=-=-,32111111111112()(2)(2)((1))333x x x ax a x a x a x ax a a x a ϕ=--++=----++=++,同理22()((1))x a x a ϕ=++,∴121222()()((1))((1))033x x a x a a x a ϕϕ=++++,化简得221212(1)(1)()0a x x a a x x a +++++,22(1)()(1)(2)0a a a a a ∴+-++-+,解得10a -<,∴当0a 时,()G x 只有一个极值点;当()G x 有三个极值点时,12()()0x x ϕϕ<,同理可得0a >,综上,当0a 时,()f x 有且仅有一个极值点;当0a >时,()f x 有三个极值点. 13.设函数()f x x alnx =-,其中e 为自然对数的底数. (1)若1a =,求()f x 的单调区间;(2)若1()()x g x f x x e -=-+,0a e ,求证:()g x 无零点. 【解析】解:(1)若1a =,则()f x x lnx =-, ∴11()1x f x x x-'=-=当(0,1)x ∈时,()0f x '<,()f x 单调递减, 当(1,)x ∈+∞时,()0f x '>,()f x 单调递增.()f x 单调递减区间为(0,1),单调递增区间为(1,)+∞.(2)由11()()(0)x x g x f x x e e alnx x --=-+=->可知,1()(0)x xe ag x x x--'=>, 当0a =时,1()x g x e -=,显然()g x 没有零点;当0a e <时,设1()x h x xe a -=-,1()(1)0x h x e x -'=+>, 在[0,)+∞单调递增,又(0)0h a =-<,h (2)20e a =->,()h x ∴在(0,2)上存在唯一一个零点,不妨设为0x ,则001xx e a -=,∴当0(0,)x x ∈时,()0h x <,即()0g x '<,当0(x x ∈,)+∞时,()0h x >,即()0g x '>,()g x ∴在0(0,)x 上单调递减,在0(x ,)+∞上单调递增,()g x ∴的最小值为0000()1xg x x e alnx =--,001x x e a -=,∴010x ae x -=,两边取对数可得001x lna lnx -=-,即001lnx lna x =+-, 00000()(1)2a ag x a lna x ax alna a a alna a a alna x x ∴=-+-=+----=-,(当且仅当01x =时取等号), 令m (a )a alna =-,则m '(a )lna =-,∴当(0,1)a ∈时,m '(a )0>,当(1a ∈,]e 时,m '(a )0<,m ∴(a )在(0,1)上单调递增,在(1,]e 上单调递减. 又()(1)(1)0n n m e e n --=-->,m (e )0=,∴当0a e <时,m (a )0,当且仅当a e =时取等号,由001x x e a -=可知当1a =时,01x =,故当a e =时,01x ≠,故0()g x m >(a )0, 0()0g x ∴>.∴当0a e 时,()g x 没有零点.14.已知函数()ax f x xe =.(其中常数 2.71828e =⋯,是自然对数的底数) (1)求函数()f x 的极值;(2)当1a =时,若()1f x lnx bx --恒成立,求实数b 的取值范围. 【解析】解:(1)()(1)ax ax ax f x e axe e ax '=+=+, ①0a =时,()f x x =在R 上单调递增,()f x 没有极值; ②0a >时,1()(1)()ax ax f x e ax ae x a-'=+=-, ∴函数()f x 在1(,)a -∞-上单调递减,在1(,)a -+∞上单调递增,函数()f x 存在极小值,其极小值为11()f a ea -=-,()f x 没有极大值;③0a <时,1()(1)()ax ax f x e ax ae x a-'=+=-, ∴函数()f x 在1(,)a -∞-上单调递增,在1(,)a -+∞上单调递减,函数()f x 存在极大值,其极大值为11()f a ea -=-,()f x 没有极小值;(2)当1a =时,()1f x lnx bx --恒成立,1x xe lnx b x--∴恒成立,(0)x >.设11()x x xe lnx lnx g x e x x x --==--,22()x x e lnxg x x +'=, 设2()x h x x e lnx =+,下面证明()0h x =有唯一解.又()0h x '>,()h x 单调递增,h (1)0e =>,0x →时,()h x →-∞,所以()h x 在(0,1)上有零点, 令()0h x =,得(01)(*)x lnxxe x x=-<<, 又()(01)lnx lnxlnxe f lnx x x--=-=-<<,所以(*)式等价于()()(01)f x f lnx x =-<<, 由(1)知当1a =时,()f x 在(0,)+∞单调递增,所以()()f x f lnx x lnx =-⇔=-,设()(01)m x x lnx x =+<<,()m x 单调递增,又11()10m e e =-<,m (1)10=>,所以01(x e∃∈,1)使得0()0m x =,即x lnx =-有唯一解0x ,即00x lnx =-,因此方程0()()f x f lnx =-有唯一解,代入得02000x x e lnx +=, ()0h x ∴=有唯一解.0(0,)x x ∈时,()0h x <,()0g x '<,()g x 单调递减;0(x x ∈,)+∞时,()0h x >,()0g x '>,()g x 单调递增;所以()g x 的最小值为000000000111()1x lnx x g x e x x x x x -=--=--=, 所以1b .即b 的取值范围为(-∞,1].15.已知函数()()xe f x a lnx x x=+-(其中a R ∈且a 为常数,e 为自然对数的底数, 2.71828)e =⋯.(Ⅰ)若函数()f x 的极值点只有一个,求实数a 的取值范围;(Ⅱ)当0a =时,若()f x kx m +(其中0)m >恒成立,求(1)k m +的最小值()h m 的最大值. 【解析】解:(Ⅰ)函数()f x 的定义域为(0,)+∞,其导数为22(1)1(1)()()x x x e x x e x x f x a a x x x e---'=⋅-=-. 由()01f x x '=⇒=或xxa e =, 设()xx u x e =,1()xxu x e -'=, ∴当(0,1)x ∈时,()0u x '>;当(1,)x ∈+∞时,()0u x '<.即()u x 在区间(0,1)上递增,在区间(1,)+∞上递减, ∴()1()1u x u e==极大, 又当0x →时,()0u x →,当x →+∞时,()0u x →且()0u x >恒成立. ∴当0a 或1a e>时,方程x x a e =无根,函数()f x 只有1x =一个极值点.当1a e =时,方程x x a e =的根也为1x =,此时()f x '的因式0xxa e-恒成立,故函数()f x 只有1x =一个极值点. 当10a e <<时,方程x xa e=有两个根1x 、2x 且1(0,1)x ∈,2(1,)x ∈+∞, ∴函数()f x 在区间1(0,)x 单调递减;1(x ,1)单调递增;2(1,)x 单调递减;2(x ,)+∞单调递增,此时函数()f x 有1x 、1、2x 三个极值点.综上所述,当0a 或1ae时,函数()f x 只有一个极值点. (Ⅱ)依题意得lnx x kx m -+,令()(1)x lnx k x m ϕ=-+-,则对(0,)x ∀∈+∞,都有()0x ϕ成立.1()(1)x kxϕ'=-+,∴当10k +时,函数()x ϕ在(0,)+∞上单调递增,注意到()(1)0m m e k e ϕ=-+,∴若(m x e ∈,)+∞,有()0x ϕ>成立,这与()0x ϕ恒成立矛盾;当10k +>时,因为()x ϕ'在(0,)+∞上为减函数,且1()01k ϕ'=+, ∴函数()x ϕ在区间1(0,)1k +上单调递增,在1(,)1k +∞+上单调递减, ∴1()()(1)11x ln k m k ϕϕ=-+--+, 若对(0,)x ∀∈+∞,都有()0x ϕ成立,则只需(1)10ln k m -+--成立,1(1)11m ln k m k e --∴+--⇒+,当0m >时,则(1)k m +的最小值1()m h m me --=,1()(1)m h m e m --'=-,∴函数()h m 在(0,1)上递增,在(1,)+∞上递减, ∴21()h m e ,即(1)k m +的最小值()h m 的最大值为21e ; 综上所述,(1)k m +的最小值()h m 的最大值为21e . 16.已知函数2()sin 2f x b x ax a eb =-+-,()xg x e =,其中a ,b R ∈, 2.71828e =⋯为自然对数的底数. (1)当0a =时,讨论函数()()()F x f x g x =的单调性;(2)求证:对任意1[2a ∈,1],存在(b ∈-∞,1],使得()f x 在区间[0,)+∞上恒有()0f x <.【解析】解:(1)0a =时,()(sin )x f x e x e =-, 则()(sin cos )x f x e x e x '=-+,sin cos )24x x x e π++<,sin cos 0x x e ∴+-<,故()0f x '<, 则()f x 在R 递减;(2)证明:当0x 时,1x y e =, 要证明对任意的[0x ∈,)+∞,()0f x <,则只需证明任意[0x ∈,)+∞,220six ax a e -+-<, 设g (a )22sin 2(2)sin x ax a e x a x e =-+-=-++-, 看作以a 为变量的一次函数, 要使2sin 20x ax a e -+-<,则1()02(1)0g g ⎧<⎪⎨⎪<⎩,即22110220sinx x e sinx x e ⎧-+-<⎪⎨⎪-+-<⎩①②, sin 10x e +-<恒成立,∴①恒成立,对于②,令2()sin 2h x x x e =-+-, 则()cos 2h x x x '=-,设x t =时,()0h x '=,即cos 20t t -=,cos 122t t ∴=<,1sin sin 62t π<=, ()h x ∴在(0,)t 上,()0h x '>,()h x 递增,在(,)t +∞上,()0h x '<,()h x 递减,则x t =时,()h x 取得最大值2()sin 2h t t t e =-+-222cos sin 35327sin ()2(1)()02244416t t t e e e e =-+-=++-+-=-<, 故②成立,综上,在区间[0,)+∞上恒有()0f x <.17.已知函数()sin cos x f x e x x =--,()sin cos x g x e x x =++. (1)证明:当54x π>-时,()0f x ; (2)若()2g x ax +,求a .【解析】解:(1)证明:()sin cos )4x x f x e x x e x π=--=+,()cos sin )4x x f x e x x e x π'=-+=-,()()sin cos )4x x f x g x e x x e x π''==++=++,考虑到(0)0f =,(0)0f '=,所以①当5(4x π∈-,)4π-时)04x π+<,此时()0f x >,②当[4x π∈-,0]时,()0f x ''>,所以()f x '单调递增,所以()(0)0f x f ''=,所以函数()f x 单调递减,()(0)0f x f =, ③当[0x ∈,3]4π时,()0f x ''>,所以()f x '单调递增, 所以()(0)0f x f '>'=,所以函数()f x 单调递增,()(0)0f x f =,当3[4x π∈,)+∞时,1())204x f x e x e π=+->, 综上所述,当54x π>-时,()0f x . (2)构造函数()()2sin cos 2x F x g x ax e x x ax =--=++--, 考虑到(0)0f =,(0)0F =,()cos sin x F x e x x a '=+--, ()sin cos ()x F x e x x f x ''=--=,由(1)可知:()()F x f x ''=在54x π>-时恒成立, 所以()cos sin x F x e x x a '=+--在5(4π-,)+∞上单调递增, ①若2a =,则()F x '在5(4π-,0)为负,(0,)+∞为正, ()F x 在5(4π-,0)单调递减,(0,)+∞递增, 所以()0F x , 而当54x π-时,55()sin cos 22sin cos 222022x x F x e x x x e x x ππ=++--++-+-->, 故2a =满足题意. ②若2a >,(0)20F a '=-<,因为()2x F x e a '--,所以())20x F ln a e a '--,由零点存在定理,必存在0(0x ∈,))ln a ,使得0()0F x '=, 此时满足0(0,)x x ∈时,()0F x '<,()F x 单调递减, 所以()(0)0F x F <=,矛盾,舍去, ③若2a <,(0)20F a '=->,因为当0x <时,()2x x F x e a e a '+-<,2a <<时,((0F ln a '-<,此时必存在0((x ln a ∈,0)使得0()0F x '=, 此时满足0(x x ∈,0)时,()0F x '>,()F x 单调递增, 所以()(0)0F x F <=,矛盾,舍去, 而当2a时,当()cos sin 2x F x e x x '>---,所以在0(x x ∈,0)时,()0F x '>成立,()F x 单调递增,()(0)0F x F <=,矛盾,舍去. 综上所述,2a =. 18.已知函数sin ()cos 2a x f x x x x=+-. (Ⅰ)当2a =时,证明:()f x x >对(0,)x π∈恒成立;(Ⅱ)若函数()()g x xf x =在(0,)x π∈存在极大值点0x ,求200cos sin a x x -的最小值. 【解析】解:(Ⅰ)证明:2a =时,sin ()cos xf x x x x=+-, 要证()f x x >对(0,)x π∈恒成立, 即证sin cos 0xx x->对(0,)x π∈恒成立, 即证sin cos 0x x x ->对(0,)x π∈恒成立, 令()sin cos h x x x x =-,(0,)x π∈, 则()cos cos sin sin 0h x x x x x x x '=-+=>, 故()h x 在(0,)π单调递增,且(0)0h =,故()0h x >,即sin cos 0x x x ->, 故()f x x >在(0,)x π∈上恒成立; (Ⅱ)2()()sin cos 2a g x xf x x x x x ==+-, 故()cos cos sin sin g x ax x x x x ax x x '=+-+=+, ()g x 在(0,)x π∈上存在极大值点0x ,()sin (sin )0g x ax x x x a x ∴'=+=+=有0x x =这个解, (0,)x π∈,∴只有0sin a x -=,22200cos 1sin 1x x a ∴=-=-,故22300cos sin (1)2a x x a a a a a -=-+=-,[1a ∈-,0), 设f (a )32a a =-,[1a ∈-,0),则f '(a )223a =-,令f '(a )0=,解得:a =,故(1,a ∈-时,f '(a )0<,(a ∈,0)时,f '(a )0>,故f (a )(min f ==,故200cos sin a x x -的最小值是. 19.已知函数()sin f x x ax =-,[0x ∈,?]2π,其中a 为常数.(1)若()f x 在[0x ∈,]2π上是增函数,求a 的取值范围;(2)证明:当1a 时,31()?6f x x -.【解析】解(1)因为()f x 在[0,]2π上是增函数,所以()cos 0f x x a '=-在[0,]2x π∈上恒成立,显然()f x '在[0,]2π上单调递减,故()()02min f x f a π'==-,解得0a 即为所求.(2)要证31()?6f x x -,只需证31sin 06ax x x --恒成立,令31()sin 6g x ax x x =--,[0,]2x π∈,则21()cos 2g x a x x '=--,令21()cos 2h x a x x =--,[0,]2x π∈,则()sin h x x x'=-,令()sin m x x x =-,[0,]2x π∈,则()cos 10m x x '=-,所以()m x 在[0x ∈,]2π上单调递减,所以()(0)0m x m =,所以()0h x ',所以()h x 在[0,]2x π∈上单调递减,所以()(0)10h x h a =-,即()0g x ',所以()g x 在[0,]2π上单调递减,所以()(0)0g x g =,即31sin 06ax x x --恒成立,所以当1a 时,31()?6f x x -.高考预测四:双零点问题20.已知函数2()(lnx ax f x a x+=是常数)在1x =处切线的斜率等于1.(1)求函数()f x 的单调区间并比较f (2),f (3),f (4)的大小;(2)若方程322(lnx x ex mx e =-+为自然对数的底数)有且只有一个实根,求实数m 的取值; (3)如果方程()f x lnx kx =-有两个不同的零点1x ,2x ,求证212x x e >.【解析】解:(1)2()lnx ax f x x +=的导数为22212()()ax lnx ax f x x +-+'=,在1x =处切线的斜率为121a a +-=,解得0a =, 即有()lnx f x x =,21()lnxf x x -'=, 当0x e <<时,()0f x '>,()f x 递增;当x e >时,()f x 递减. 则()f x 的增区间为(0,)e ,减区间为(,)e +∞; f (2)22ln =,f (4)4242ln ln f ===(2),而f (3)f >(4), 则f (2)f =(4)f <(3); (2)由题意得,22lnxx ex m x=-+在(0,)+∞上有唯一解, 由(1)可得,()lnxf x x=的增区间为(0,)e ,减区间为(,)e +∞, 所以()max f x f =(e )1e=,设2()2g x x ex m =-+,则()g x 在(0,)e 上单调递减,在(,)e +∞上单调递增, 所以()min g x g =(e )2m e =-,所以当且仅当21m e e -=时,322lnx x ex mx =-+有且只有一个实根,所以21m e e=+; (3)不妨设120x x >>,12()()0f x f x ==,110lnx kx ∴-=,220lnx kx -=,可得1212()lnx lnx k x x +=+,1212()lnx lnx k x x -=-,要证明1x 22x e >,即证明122lnx lnx +>,也就是12()2k x x +>, 因为1212lnx lnx k x x -=-,所以即证明:1212122lnx lnx x x x x ->-+, 即:1121222(1)1x x x ln x x x ->+,令12x t x =,则1t >,于是2(1)1t lnt t ->+. 令2(1)()1t g t lnt t -=-+,1t >,则22214(1)()0(1)(1)t g t t t t t -'=-=>++,故函数()g t 在(1,)+∞上是增函数,所以()g t g >(1)0=, 即2(1)1t lnt t ->+成立. 所以原不等式成立.21.已知函数1()2x f x e kx k +=--(其中e 是自然对数的底数,)k R ∈ (1)讨论函数()f x 的单调性;(2)当函数()f x 有两个零点1x ,2x 时.证明:122x x +>-. 【解析】解:(1)由1()2x f x e kx k +=--,x R ∈,得1()x f x e k +'=-, ①当0k 时,则1()0x f x e k +'=->对x R ∈恒成立, 此时()f x 的单调递增,递增区间为(,)-∞+∞; ②当0k >时,由1()0x f x e k +'=->,得到1x lnk +>,即1x lnk >-, 由1()0x f x e k -'=-<,得到1x lnk +<,即1x lnk <-所以,0k >时,()f x 的单调递增区间是(1,)lnk -+∞;递减区间是(,1)lnk -∞-; 综上,当0k 时,()f x 的单调递增区间为(,)-∞+∞.当0k >时,()f x 的单调递增区间是(1,)lnk -+∞;递减区间是(,1)lnk -∞-; (2)函数()f x 有两个零点1x ,2x 时,则需要满足0k >时,1()20x f x e kx k +∴=--=有两个解,即1(2)x e k x +=+,由于10x e +>恒成立,则(2)0k x +>,设21x x >,由题意得:112112(2)(2)x x e k x e k x ++⎧=+⎪⎨=+⎪⎩,11(2)1x lnk ln x ∴=++-①, 22(2)1x lnk ln x =++-②,②-①得:221122x x x ln x +-=+③, 令2122x t x +=+,则1t >,21(2)2x t x =+-, ∴③可化为:11(2)2t x x lnt +--=,121lnt x t ∴+=-,221tlntx t +=-, 12411lnt tlntx x t t ∴+=+---, 要证:122x x +>-, 只需证:211lnt tlntt t +>--, 即证:2(1)1t lnt t ->+, 构造函数2(1)()1t F t lnt t -=-+, 则22212(1)2(1)(1)()0(1)(1)t t t F t t t t t +---'=-=++, ()F t ∴在(1,)+∞递增, ()F t F ∴>(1)0=, 122x x ∴+>-.22.已知函数()()x f x e ax a a R =-+∈,其中e 为自然对数的底数. (1)讨论函数()y f x =的单调性;(2)若函数()f x 有两个零点1x ,2x ,证明:122x x lna +<. 【解析】解:(1)函数()x f x e ax a =-+,求导,()x f x e a '=-. ①当0a 时,()0f x '>,则函数()f x 为R 上的单调递增函数. ②当0a >时,令()0f x '=,则x lna =.若x lna <,则()0f x '<,()f x 在(,)lna -∞上是单调减函数; 若x lna >,则()0f x '>,()f x 在(,)lna +∞上是单调增函数. (2)证明:由(Ⅰ)可知,不妨设121x x <<, 由121200x x e ax a e ax a ⎧-+=⎪⎨-+=⎪⎩两式相减得2121x x e e a x x -=-.要证122x x lna +<,即证122x x e a +<,也就是证1221221x x x x e e ex x +-<-, 即212112122122222121(1)0x x x x x x x x x x e eee eex x x x ---++---=-<--,即证212122211x x x x ee x x ---->-,又210x x ->,只要证21212221(*)x x x x e ex x ---->-.令2102x x t -=>,则(*)式化为 2t t e e t -->, 设()()2(0)t t g t e e t t -=-->,()()20t t g t e e -'=+->,所以()g t 在(0,)+∞上单调递增,所以()(0)0g t g >=. 122x x lna ∴+<.23.已知函数21()2f x ax x xlnx =-+,a R ∈.(1)若()f x 在其定义域上单调递减,求a 的取值范围. (2)若()f x 存在两个不同极值点1x ,2x ,且21x ex >,求证21221232x x a x x ->-.【解析】(1)解:由21()2f x ax x xlnx =-+,得()(0)f x ax lnx x '=+>,()f x 在其定义域上单调递减,0ax lnx ∴+在(0,)+∞恒成立,即lnxa x-在(0,)+∞恒成立, 令()lnxg x x=-,则21()lnx g x x -'=, 当(0,)x e ∈时,()0g x '<,当(,)x e ∈+∞时,()0g x '>. ()g x ∴在(0,)e 上单调递减,在(,)e +∞上单调递增.∴1()()min g x g e e==-.则1a e-;(2)证明:若()f x 存在两个不同极值点,1x ,2x ,且210x ex >. 欲证21221232x x a x x ->-,只需证2212212()3a x x x x ->-, 只需证221221122()2()()a x x x x x x ->-++, 也就是证1212121()2x x a x x x x --+>+. 12()()0f x f x '='=,11ax lnx =-,22ax lnx =-, ∴212211()x a x x lnx lnx lnx -=-=. ∴2122112212111()1x x x x x a x x ln x x x x x ---+=+++.令21x t x =,则t e ,则1212121()1x x ta x x lnt x x t---+=+++, 设1()1th t lnt t-=++,则2222111()0(1)(1)t t h t t t t t --+'=+=>++, 可知()h t 在[e ,)+∞上单调递增.1()1t h t lnt h t -∴=+>+(e )1221111132e e e -=+=>=+++. ∴21221232x x a x x ->-.24.已知函数()(1)1f x k x klnx k =--+-,其中k R ∈,0k ≠. ()I 讨论函数()f x 的单调性;(Ⅱ)设函数()f x 的导函数为()g x .若函数()f x 恰有两个零点1x ,212()x x x <,证明:122()03x x g +>.【解析】(Ⅰ)解:由()(1)1f x k x klnx k =--+-,得(1)()(1)k k x kf x k x x--'=--=,(0,)x ∈+∞. (1)当10k -,即1k 时,()(1)0kf x k x'=--<, ()f x ∴在(0,)+∞上单调递减;(2)当10k ->,即1k <时,(1)()k x kf x x--'=. ①当0k <时,0k ->且(1)0k x ->,(1)()0k x kf x x--∴'=>, ()f x ∴在(0,)+∞上单调递增;②当01k <<时,(1)()(1)1()k k x k x kk f x xx-----'==,01kk>-, 当x 变化时,()f x ,()f x '的变化情况如下表:综上,当0k <时,()f x 在(0,)+∞上单调递增, 当01k <<时,()f x 在(0,)1kk-上单调递减,在(1k k -,)+∞上单调递增, 当1k 时,()f x 在(0,)+∞上单调递增,(Ⅱ)证明:由()I 知,当01k <<时,函数()f x 在(0,)1kk-上单调递减, 在(1k k -,)+∞上单调递增, 又f (1)0=,函数()f x 恰有两个零点1x ,212()x x x <, ∴102k <<或112k <<. ①当102k <<,即011k k<<-时, 令21x =,当0x +→时,()f x →+∞,且()(1)01kf f k <=-,∴有唯一的1(0,1)x ∈,使得1()0f x =,则不等式122()03x x g +>等价于1231x kk+>-, 又11(1)10k x klnx k --+-=,即1111x klnx k -=-, ∴只需证明111213x x lnx +->,即当101x <<时,证明1113(1)02x lnx x --<+成立,令3(1)()21x h x lnx x -=-+,则2219(1)(4)()0(2)(2)x x h x x x x x --'=-=>++, ()h x ∴在(0,1]上单调递增,即当01x <<时,有()h x h <(1)0=. ∴原不等式122()03x x g +>成立. ②当112k <<,即11k k >-时, 令11x =,当x →,+∞时,()f x →+∞,且()(1)01kf f k <=-,∴有唯一的2(1,)x ∈+∞,使得2()0f x =,则不等式122()03x x g +>等价于21231x kk+>-, 又22(1)10k x klnx k --+-=,即2211x klnx k -=-, 只需证明2221213x x lnx +->,即当21x >时,证明2223(1)021x lnx x -->+成立, 令3(1)()21x H x lnx x -=-+,则2219(1)(41)()0(21)(21)x x H x x x x x --'=-=>++. ()H x ∴在区间[1,)+∞上单调递增,即当1x >时,有()H x H >(1)0=. ∴原不等式122()03x x g +>成立. 综上,当函数()f x 恰有两个零点1x ,212()x x x <,原不等式122()03x x g +>成立. 25.已知函数()2()ag x lnx x a R x =++∈.(Ⅰ)讨论()g x 的单调性; (Ⅱ)当10a e <<时,函数2()()(2)2af x xg x x x =-+-在其定义域内有两个不同的极值点,记作1x ,2x ,且12x x <,若1m ,证明:112mm x x e +>. 【解析】解:22212()()2()a x x aI g x a R x x x+-'=+-=∈, 方程220x x a +-=的判别式△18a =+,①当18a -时,△0,()0g x ',()g x 在(0,)+∞为增函数,。

学业水平考试 数学浙江-知识清单与训练 20 不等式的性质及一元二次不等式

学业水平考试 数学浙江-知识清单与训练 20 不等式的性质及一元二次不等式

知识点一 不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号>、<、≥、≤、≠连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式. 知识点二 两个实数比较大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a b a -b =0⇔a ba -b <0⇔a b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a b ab =1⇔a ba b<1⇔a b (a ∈R ,b >0).知识点三 不等式的性质 (1)对称性:a >b ⇔b <a ;(2)传递性:a >b ,b >c ⇒________; (3)可加性:a >b ⇔a +c ________b +c , a >b ,c >d ⇒a +c ________b +d ; (4)可乘性:a >b ,c >0⇒ac ________bc , a >b >0,c >d >0⇒ac ________bd ;(5)可乘方:a >b >0⇒a n ________b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒n a ________nb (n ∈N ,n ≥2).知识点四“三个二次”的关系判别式Δ=b2-4acΔ>0 Δ=0 Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个相异实根x1,x2(x1<x2)有两个相等实根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集ax2+bx+c<0(a>0)的解集例1下列命题中,一定正确的是()A.若a>b,且1a>1b,则a>0,b<0B.若a>b,b≠0,则ab>1C.若a>b,且a+c>b+d,则c>dD.若a>b,且ac>bd,则c>d例2不等式3x2-x-2>0的解集是()A.(-23,1) B.(1,+∞)C.(-∞,-23)∪(1,+∞) D.(-∞,2)∪(3,+∞)例3(2015年10月学考)设a,b,c∈R,下列命题正确的是()A.若|a|<|b|,则|a+c|<|b+c|B.若|a|<|b|,则|a-c|<|b-c|C.若|a|<|b-c|,则|a|<|b|-|c|D .若|a |<|b -c |,则|a |-|c |<|b |例4 一个城市计划今后每年使工业废气排放量比前一年降低10%.按此计划,若经过n 年,工业废气排放量低于现在的一半,则n 应当满足的不等关系为________.例5 (2016年10月学考)函数f (x )=x +3+1ax +2(a ∈R ),若其定义域内不存在实数x ,使得f (x )≤0,则a 的取值范围是________________. 例6 解关于x 的不等式:ax 2+(1-a )x -1>0.例7 某工厂生产商品M ,若每件定价80元,则每年可销售80万件,税务部门对市场销售的商品要征收附加税.为了既增加国家收入,又有利于市场活跃,必须合理确定征收的税率.据市场调查,若政府对商品M 征收的税率为P %(即每百元征收P 元)时,每年的销售量减少10P 万件,据此,问: (1)若税务部门对商品M 每年所收税金不少于96万元,求P 的范围;(2)在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,应如何确定P 值; (3)若仅考虑每年税收金额最高,又应如何确定P 值.一、选择题1.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <ND .与x 有关2.若集合A ={x ||x -1|<2},B ={x |x -2x >0},则A ∩B 等于( )A .{x |-1<x <3}B .{x |x <0,或x >2}C .{x |-1<x <0,或2<x <3}D .{x |-1<x <0}3.对于实数a ,b ,c ,下列命题属于真命题的是( ) A .若a >b ,则ac 2>bc 2 B .若a >b >0,则1a >1bC .若a <b <0,则b a >abD .若a <b <0,则ab >b 24.二次方程ax 2+bx +c =0的两根为-2、3,a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3}D .{x |-3<x <2}5.已知不等式|8x +9|<7和不等式ax 2+bx >2的解集相同,则实数a ,b 的值分别为( ) A .-8,-10 B .-4,-9 C .-1,9 D .-1,26.函数y = x 2+mx +m2对一切x ∈R 恒成立,则实数m 的取值范围是( )A .m >2B .m <2C .m <0或m >2D .0≤m ≤2二、填空题7.预算用2 000元购买单价为50元的桌子和20元的椅子,但椅子数不少于桌子数,且不多于桌子数的1.5倍,若购买桌子和椅子的数目分别为x ,y ,用不等式表示上述不等关系为________. 8.当a <0时,关于x 的不等式(x -5a )(x +a )>0的解集是________. 9.给出以下四个命题:①a >b ⇒a n >b n (n ∈N *);②a >|b |⇒a n >b n (n ∈N *);③a <b <0⇒1a >1b ;④a <b <0⇒1a -b >1a .其中真命题的序号是________.10.若不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值为________.11.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________. 三、解答题12.若不等式t 2-4mt +m +4m 2≥0对一切非负实数t 恒成立,试求实数m 的取值范围.13.若不等式ax 2+bx +c ≥0的解集是{x |-13≤x ≤2},求不等式cx 2+bx +a <0的解集.答案精析知识条目排查 知识点二(1)> = < > = < 知识点三(2)a >c (3)> > (4)> > (5)> (6)> 知识点四{x |x <x 1或x >x 2} {x |x ≠x 1} {x |x ∈R } {x |x 1<x <x 2} ∅ ∅ 题型分类示例 例1 A 例2 C 例3 D 例4 (1-10%)n <12例5 0≤a ≤23例6 解 原不等式可化为(x -1)(ax +1)>0. (1)当a =0时,原不等式为x -1>0, ∴解集为{x |x >1}. (2)当a >0时,-1a<1,∴原不等式的解集为{x |x >1或x <-1a }.(3)当a <0时,①当-1<a <0时,-1a>1.∴原不等式的解集为{x |1<x <-1a}.②当a =-1时,原不等式变为-(x -1)2>0, ∴解集为∅.③当a <-1时,-1a<1,∴原不等式的解集为{x |-1a<x <1}.例7 解 税率为P %时,销售量为(80-10P )万件, 即销售金额为f (P )=80(80-10P ),税金为g (P )=80(80-10P )·P %,其中0<P <8.(1)由⎩⎪⎨⎪⎧80(80-10P )·P %≥96,0<P <8,解得2≤P ≤6.(2)∵f (P )=80(80-10P ) (2≤P ≤6)为减函数,∴当P =2时,厂家获得最大销售金额为f (2)=4 800(万元). (3)∵0<P <8,g (P )=80(80-10P )·P %=-8(P -4)2+128, ∴当P =4时,国家所得税收金额最高为128万元. 考点专项训练 1.A2.C [∵由|x -1|<2,解得-1<x <3, ∴A ={x |-1<x <3}, 由x -2x >0,解得x <0或x >2,∴B ={x |x <0或x >2},∴A ∩B ={x |-1<x <0或2<x <3}.]3.D [∵c 2≥0,∴c =0时,有ac 2=bc 2,故A 为假命题; 由a >b >0,有ab >0⇒a ab >b ab ⇒1b >1a,故B 为假命题;⎭⎪⎬⎪⎫a <b <0⇒-a >-b >0⇒-1b >-1a >0,a <b <0⇒-a >-b >0⇒a b >ba,故C 为假命题;⎭⎬⎫a <b ⇒a -b <0,b <0⇒b (a -b )>0, ∴ab >b 2,故D 为真命题.] 4.C 5.B 6.D7.⎩⎪⎨⎪⎧50x +20y ≤2 000,x ≤y ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.8.{x |x <5a 或x >-a } 解析 ∵a <0,∴5a <-a , 由(x -5a )(x +a )>0得x <5a 或x >-a . 9.②③解析 ①中取a =-1,b =-2,n =2,不成立; ②a >|b |,得a >0,∴a n >b n 成立; ③a <b <0,得1a >1b成立;④a <b <0,得a -b <0且a -b >a ,故1a -b <1a ,④不成立.10.-14解析 由条件知,方程ax 2+bx +2=0的两根为-12,13,∴⎩⎨⎧-b a =-12+13=-16,2a =(-12)×13=-16.∴⎩⎪⎨⎪⎧a =-12,b =-2.∴a +b =-14. 11.(-∞,-5]解析 设f (x )=x 2+mx +4,要使x ∈(1,2)时,不等式x 2+mx +4<0恒成立.则有⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0,即⎩⎪⎨⎪⎧1+m +4≤0,4+2m +4≤0.解得m ≤-5.12.解 ∵t ≥0,且g (t )=t 2-4mt +m +4m 2≥0,∴问题转化为二次函数g (t )在区间[0,+∞)上的最小值为非负数,故有⎩⎨⎧ 2m <0,g (0)≥0或⎩⎨⎧2m ≥0,g (2m )≥0.解得m 的取值范围为(-∞,-14]∪[0,+∞).13.解 方法一 由ax 2+bx +c ≥0的解集为{x |-13≤x ≤2}知a <0.又-13,2为方程ax 2+bx +c =0的两个根,∴-b a =53,c a =-23.∴b =-53a ,c =-23a .∴不等式cx 2+bx +a <0变为 (-23a )x 2+(-53a )x +a <0, 即2ax 2+5ax -3a >0, 又a <0,∴2x 2+5x -3<0. ∴所求不等式的解集为 {x |-3<x <12}.方法二 由已知得a <0且(-13)+2=-ba ,(-13)×2=ca,知c >0. 设方程cx 2+bx +a =0的两根分别为x 1,x 2,x 1<x 2, 则x 1+x 2=-b c ,x 1·x 2=a c,其中a c =1(-13)×2,-bc =-b a c a =(-13)+2(-13)×2=1(-13)+12, ∴x 1=1-13=-3,x 2=12.∴不等式cx 2+bx +a <0的解集为 {x |-3<x <12}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20炼 一元不等式的证明利用函数性质与最值证明一元不等式是导数综合题常涉及的一类问题,考察学生构造函数选择函数的能力,体现了函数最值的一个作用——每一个函数的最值带来一个恒成立的不等式。

此外所证明的不等式也有可能对后一问的解决提供帮助,处于承上启下的位置。

一、基础知识:1、证明方法的理论基础(1)若要证()f x C <(C 为常数)恒成立,则只需证明:()max f x C <,进而将不等式的证明转化为求函数的最值(2)已知()(),f x g x 的公共定义域为D ,若()()min max f x g x >,则()(),x D f x g x ∀∈> 证明:对任意的1x D ∈,有()()()()11min max ,f x f x g x g x ≥≤∴由不等式的传递性可得:()()()()11min max f x f x g x g x ≥>>,即()(),x D f x g x ∀∈>2、证明一元不等式主要的方法有两个:第一个方法是将含x 的项或所有项均挪至不等号的一侧,将一侧的解析式构造为函数,通过分析函数的单调性得到最值,从而进行证明,其优点在于目的明确,构造方法简单,但对于移项后较复杂的解析式则很难分析出单调性第二个方法是利用不等式性质对所证不等式进行等价变形,转化成为()()f x g x >的形式,若能证明()()min max f x g x >,即可得:()()f x g x >,本方法的优点在于对x 的项进行分割变形,可将较复杂的解析式拆成两个简单的解析式。

但缺点是局限性较强,如果()min f x 与()max g x 不满足()()min max f x g x >,则无法证明()()f x g x >。

所以用此类方法解题的情况不多,但是在第一个方法失效的时候可以考虑尝试此法。

3、在构造函数时把握一个原则:以能够分析导函数的符号为准则。

4、若在证明()0f x >中,解析式()f x 可分解为几个因式的乘积,则可对每个因式的符号进行讨论,进而简化所构造函数的复杂度。

5、合理的利用换元简化所分析的解析式。

6、判断解析式符号的方法:(1)对解析式进行因式分解,将复杂的式子拆分为一个个简单的式子,判断出每个式子的符号即可得到解析式的符号(2)将解析式视为一个函数,利用其零点(可猜出)与单调性(利用导数)可判断其符号 (3)将解析式中的项合理分组,达到分成若干正项的和或者若干负项的和的结果,进而判断出解析式符号 二、典型例题:例1:求证:ln 1x x ≤- 思路:移项构造函数求解即可证明:所证不等式等价于:ln 10x x -+≤令()ln 1f x x x =-+ 则只需证明:()max 0f x ≤ ()'111xfx x x-=-=令()'0f x >解得:1x < ∴()()max 10f x f ∴== ()()10f x f ∴≤= 即所证不等式成立 小炼有话说:(1)此题的解法为证明一元不等式的基本方法,即将含x 的项移至不等号的一侧,构造函数解决。

(2)一些常见不等关系可记下来以备使用:① ln 1x x ≤- ② 1xe x ≥+ ③ ()sin 0,x x x >∈+∞例2:设函数()1xf x e -=-,证明:当1x >-时,()1xf x x ≥+ 思路:本题依然考虑构造函数解决不等式,但如果仅仅是移项,则所证不等式为101x x e x ---≥+,令()11x x g x e x -=--+,其导函数比较复杂(也可解决此题),所以考虑先对不等式进行等价变形,转变为形式较为简单的不等式,再构造函数进行证明 证明:111x x e x -≥+111111x x x e x e x ⇔≤-⇔≤++1x >-,所以所证不等式等价于110xxe x e x ≥+⇔--≥ 设()1x g x e x =-- ∴只需证()min 0g x ≥即可()'1x g x e =- 令()'00g x x >⇒> ()g x ∴在(),0-∞单调递减,在()0,+∞单调递增 ()()min 00g x g == ()()00g x g ≥=故不等式得证小炼有话说:本题在证明时采取先化简再证明的策略,这也是我们解决数学问题常用的方法之一,先把问题简单化再进行处理。

在利用导数证明不等式的问题中,所谓的“简化”的标准就是构造的函数是否易于分析单调性。

例3:已知函数()()1ln 1f x x x x =+-+,证明:()()10x f x -≥思路:若化简不等式左边,则所证不等式等价于()()221ln 10x x x ---≥,若将左边构造为函数,则函数的单调性难于分析,此法不可取。

考虑原不等式为乘积式,且与0进行比较,所以考虑也可分别判断各因式符号,只需让()1x -与()f x 同号即可。

而()1x -的正负一眼便可得出,()f x 的符号也不难分析,故采取分别判断符号的方法解决。

解:()'11ln 1ln x fx x x x x +=+-=+ ()''22111x f x x x x-=-= ()'f x ∴在()0,1单调递减,在()1,+∞单调递增()()''110f x f ∴≥=> ()f x ∴为增函数()10f = ()0,1x ∴∈时,()()10f x f <= ()()10x f x ∴-> [)1,x ∈+∞时,()()10f x f ≥= ()()10x f x ∴-≥∴综上所述,()()10x f x -≥成立小炼有话说:与0比较大小也可看做是判断一侧式子的符号,当不等式的一侧可化为几个因式的乘积时,可分别判断每一个因式的符号(判断相对简单),再决定乘积的符号。

例4:已知()ln x f x e a x a =--,其中常数0a > (1)当a e =时,求函数()f x 的极值 (2)求证:221ln 0x x ee x x ----≥解:(1)当a e =时,()ln x f x e e x e =--()'x ef x e x =-,()'10f = ()''20x ef x e x=+> ()'f x ∴在()0,+∞单调递增()0,1x ∴∈时,()()''10f x f <=,()1,x ∈+∞,()()''10f x f >= ()f x ∴在()0,1单调递减,在()1,+∞单调递增∴()f x 的极小值为()10f =,无极大值(2)思路:本题如果直接构将左侧构造函数,则导数过于复杂,不易进行分析,所以考虑将所证不等式进行变形成“()()min max f x g x ≥”的形式。

由第(1)问可得:ln 0xe e x e --≥,即ln x e e x e -≥,则所证不等式两边同时除以2x e -,即证:2ln xx x e e x e --≥,而ln xe e x e -≥,所以只需构造函数证明2x x e e-≤即可解:由(1)得ln 0ln xxe e x e e e x e --≥⇒-≥ 所证不等式:221ln 0x x ee x x ----≥2ln xx x e e x e-⇔-≥设()22x x x g x xe e --==()()'2221x x x g x e xe x e ---=-=-令()'0g x >可解得:1x <()g x ∴在()0,1单调递增,在()1,+∞单调递减 ()()max 1g x g e ∴==()ln x e e x e g x ∴-≥≥即2ln x x x e e x e--≥221ln 0x x e e x x --∴--≥例5:已知()()2ln ,2f x x x ax g x x =-=--(1)当1a =-时,求()f x 在[](),30m m m +>的最值 (2)求证:()0,x ∀∈+∞,12ln 1x x e ex+>- 解:(1)()()'ln ,ln 2f x x x x f x x =+=+()f x ∴的单调区间为203m m e>∴+>①210m e<≤()22min 11f x f e e ⎛⎫==- ⎪⎝⎭()()()()max 33ln 33f x f m m m m =+=++++② 21m e>时,()()()()min max ln ,3ln 33f x m m m f x m m m =+=++++ (2)思路:所证不等式12ln 1x x e ex +>-,若都移到左边构造函数,则函数12ln 1x y x e ex=+-+很难分析单调性,进而无法求出最值。

本题考虑在两边分别求出最值,再比较大小即可 解:所证不等式等价于12ln 1x x e ex +>-2ln x x x x x e e⇔+>- 设()ln p x x x x =+ ()'1ln 1ln 2p x x x =++=+ 令()'210p x x e >⇒>()p x ∴在210,e ⎛⎫ ⎪⎝⎭单调递减,在21,e ⎛⎫+∞ ⎪⎝⎭单调递增 ()()22min 11p x p x p e e ⎛⎫∴>==- ⎪⎝⎭设()2xq x xee-=- ()()'1x q x x e -=- ()q x ∴在()0,1单调递增,在()1,+∞单调递减 ()()()max 11q x q x q e∴≤==-()()min max p x q x ∴> ()()()()()min max 0,,x p x p x q x q x ∴∀∈+∞≥>≥∴所证不等式成立例6:设b a R b a b ax x x x f ,,,(1)1ln()(∈+++++=为常数),曲线)(x f y =与直线x y 23=在(0,0)点相切. (1)求b a ,的值. (2)证明:当20<<x 时,69)(+<x xx f . 解:(1)()f x 过()0,0点()0101f b b ∴=+=⇒=- ()'11fx a x =+++ ()'1301022f a a =++=⇒=1a b =⎧∴⎨=-⎩ ()()ln 11f x x =+(2)思路:所证不等式等价于()9ln 116xx x +<+,若将x 的表达式挪至不等号一侧,则所构造的函数()()9ln 116x g x x x =++-+中96xx +,求导后结构比较复杂。

相关文档
最新文档