七数上(RJ)-第三章综合--同步练习
北师大版七年级数学上册第三章 3.2 代数式 同步测试题(含答案)
北师大版七年级数学上册第三章 3.2 代数式同步测试题一、选择题1.下列式子中,不属于代数式的是( )A.a+3 B.2mn C.0 D.x>y2.下列语句正确的是( )A.1+a不是一个代数式B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式3.用代数式表示:a的2倍与3的和.下列表示正确的是( )A.2a-3 B.2a+3 C.2(a-3) D.2(a+3) 4.当m=-1时,代数式2m+3的值是( )A.-1 B.0 C.1 D.25.若x=-3,y=1,则代数式2x-3y+1的值为( )A.-10 B.-8 C.4 D.106.下列解释3a表示的意义不正确的是( )A.如果葡萄的价格是3元/千克,那么3a表示买a千克葡萄的金额B.如果一个等边三角形的边长为a,那么3a表示这个三角形的周长C.如果在校平均一天的生活费用为a元,那么3a表示3天的生活费用D.如果步行的速度为a米/分钟,那么3a表示步行3米所用的时间7.下列用代数式表示错误的是( )A.比a的2倍大1的数是2a+1 B.a的相反数与b的和是-a+bC.比a的平方小1的数是a2-1 D.a的2倍与b的差的3倍是2a-3b8.根据流程图中的程序,当输入数值x 为-2时,输出数值y 为( )A .4B .6C .8D .10 9.设某数为m ,则代数式3m 2-52表示( ) A .某数的3倍的平方减去5除以2 B .某数平方的3倍与5的差的一半C .某数的3倍减5的一半D .某数与5的差的3倍除以210.按如图所示的运算程序,能使输出y 值为5的是( )A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1二、填空题11.用代数式表示:(1)x 与y 两数的差的平方:_______;(2)a 与b 的平方差:_______.12.设一个三位数的个位数字为a ,十位数字为b ,百位数字为c ,请你用含a ,b ,c 的代数式表示这个三位数:_______.13.某风景区在“十一”黄金周期间推出了特惠活动:票价为每人100元,团体购票超过20人,票价可以享受八折优惠.活动期间,某旅游团有m(m>20)人来该景区观光,则应付票价总额为_______元.14.若x=1,则代数式2x2-x的值为_______.15.据省统计局发布,2019年我省有效发明专利数比2018年增长22.1%.假定2018年的年增长率保持不变,2018年和2020年我省有效发明专利分别为a万件和b万件,则b=_______.16.体育委员小金带了500元经费去买体育用品,已知一个足球x元,一个篮球y元,则代数式500-3x-2y表示的实际意义是_______.17.若a,b互为相反数,则代数式a+b-2的值为_______.18.用代数式表示:把a本书分给若干名学生,若每人5本,还剩余3本,则学生人数为_______人.19.已知a2+2a=1,则3(a2+2a)+2的值为_______.20.若代数式(m-2)x2+5y2+3的值与x的取值无关,则m=_______.三、解答题21.联系实际背景,说明代数式6a2的意义.22.某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x人、学生y人.(1)该旅游团应付多少门票费?(2)如果该旅游团有30个成人和15个学生,那么他们应付多少门票费?23.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.那么顾客到哪家超市购买这种商品更合算?请通过计算加以说明.24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款[4000+40(x-20)]元(用含x的代数式表示);若该客户按方案②购买,需付款(3_600+36x)元(用含x的代数式表示);(2)若x=30,通过计算说明此时选择哪种方案购买较为合算?参考答案一、选择题1.下列式子中,不属于代数式的是(D)A.a+3 B.2mn C.0 D.x>y2.下列语句正确的是(B)A.1+a不是一个代数式B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式3.用代数式表示:a的2倍与3的和.下列表示正确的是(B)A.2a-3 B.2a+3 C.2(a-3) D.2(a+3) 4.当m=-1时,代数式2m+3的值是(C)A.-1 B.0 C.1 D.25.若x=-3,y=1,则代数式2x-3y+1的值为(B)A.-10 B.-8 C.4 D.106.下列解释3a表示的意义不正确的是(D)A.如果葡萄的价格是3元/千克,那么3a表示买a千克葡萄的金额B.如果一个等边三角形的边长为a,那么3a表示这个三角形的周长C.如果在校平均一天的生活费用为a元,那么3a表示3天的生活费用D.如果步行的速度为a米/分钟,那么3a表示步行3米所用的时间7.下列用代数式表示错误的是(D)A.比a的2倍大1的数是2a+1 B.a的相反数与b的和是-a+bC.比a的平方小1的数是a2-1 D.a的2倍与b的差的3倍是2a-3b8.根据流程图中的程序,当输入数值x 为-2时,输出数值y 为(A)A .4B .6C .8D .10 9.设某数为m ,则代数式3m 2-52表示(B) A .某数的3倍的平方减去5除以2 B .某数平方的3倍与5的差的一半C .某数的3倍减5的一半D .某数与5的差的3倍除以210.按如图所示的运算程序,能使输出y 值为5的是(D)A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1二、填空题11.用代数式表示:(1)x 与y 两数的差的平方:(x -y)2;(2)a 与b 的平方差:a 2-b 2.12.设一个三位数的个位数字为a ,十位数字为b ,百位数字为c ,请你用含a ,b ,c 的代数式表示这个三位数:100c +10b +a .13.某风景区在“十一”黄金周期间推出了特惠活动:票价为每人100元,团体购票超过20人,票价可以享受八折优惠.活动期间,某旅游团有m(m >20)人来该景区观光,则应付票价总额为80m 元.14.若x =1,则代数式2x 2-x 的值为1.15.据省统计局发布,2019年我省有效发明专利数比2018年增长22.1%.假定2018年的年增长率保持不变,2018年和2020年我省有效发明专利分别为a 万件和b 万件,则b =(1+22.1%)2a .16.体育委员小金带了500元经费去买体育用品,已知一个足球x 元,一个篮球y 元,则代数式500-3x -2y 表示的实际意义是体育委员小金买了3个足球、2个篮球后剩余的经费.17.若a ,b 互为相反数,则代数式a +b -2的值为-2.18.用代数式表示:把a 本书分给若干名学生,若每人5本,还剩余3本,则学生人数为a -35人.19.已知a 2+2a =1,则3(a 2+2a)+2的值为5.20.若代数式(m -2)x 2+5y 2+3的值与x 的取值无关,则m =2.三、解答题21.联系实际背景,说明代数式6a 2的意义.解:答案不唯一,如:6个边长为a 的正方形的面积之和.22.某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x 人、学生y 人.(1)该旅游团应付多少门票费?(2)如果该旅游团有30个成人和15个学生,那么他们应付多少门票费?解:(1)该旅游团应付门票费为(10x +5y)元.(2)当x =30,y =15时,10x+5y=10×30+5×15=375,即他们应付375元门票费.23.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.那么顾客到哪家超市购买这种商品更合算?请通过计算加以说明.解:设商品价格为a(a>0)元,甲超市的价格为a(1-20%)(1-10%)=0.72a元,乙超市的价格为a(1-15%)2=0.722 5a元,丙超市的价格为a(1-30%)=0.7a元,因为0.7a<0.72a<0.722 5a,所以到丙超市购买最合算.24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款[4000+40(x-20)]元(用含x的代数式表示);若该客户按方案②购买,需付款(3_600+36x)元(用含x的代数式表示);(2)若x=30,通过计算说明此时选择哪种方案购买较为合算?解:当x=30时,4000+40(x-20)=4000+40×(30-20)=4 400(元),3 600+36x=3 600+36×30=4 680(元),因为4 400<4 680,所以选择方案①购买较为合算.。
七年级数学上册《第三章 整式》同步练习题及答案-华东师大版
七年级数学上册《第三章 整式》同步练习题及答案-华东师大版一、选择题1.下列式子中,是单项式的是( )A.x +y 2B.-12x 3yz 2C.5xD.x -y 2.多项式4xy 2-3xy 3+12的次数为( )A.3B.4C.6D.73.如果2x 2y 3与x 2y n +1是同类项,那么n 的值是( )A.1B.2C.3D.44.不改变代数式a 2﹣(2a +b +c)的值,把它括号前的符号变为相反的符号,应为( )A.a 2+(﹣2a +b +c)B.a 2+(﹣2a ﹣b ﹣c)C.a 2+(﹣2a)+b +cD.a 2﹣(﹣2a ﹣b ﹣c)5.将多项式3x 2y ﹣xy 2+x 3y 3﹣x 4y 4﹣1按字母x 的降幂排列,所得结果是( )A.﹣1﹣xy 2+3x 2y +x 3y 3﹣x 4y 4B.﹣x 4y 4+x 3y 3+3 x 2y ﹣x y 2﹣1C.﹣x 4y 4+x 3y 3﹣xy 2+3x 2y ﹣1D.﹣1+3 x 2y ﹣x y 2+x 3y 3﹣x 4y 46.一个四次多项式,它的任何一项的次数必是( )A.都小于4B.都等于4C.都不小于4D.都不大于47.一组按规律排列的多项式:a +b ,a 2﹣b 3,a 3+b 5,a 4﹣b 7,…其中第10个式子是( )A.a 10+b 19B.a 10﹣b 19C.a 10﹣b 17D.a 10﹣b 218.给出如下结论:①单项式-32x 2y 的系数为-32,次数为2; ②当x =5,y =4时,代数式x 2-y 2的值为1;③化简(x +14)-2(x -14)的结果是-x +34; ④若单项式57ax 2y n +1与-75ax m y 4的差仍是单项式,则m +n =5. 其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题9.﹣πx2y的系数是,次数是 .10.多项式3﹣2xy2+4x2yz的次数是,项数是.11.将多项式2x3y﹣4y2+3x2﹣x按x的降幂排列为:.12.不改变2-xy+3x2y-4xy2的值,把前面两项放在前面带有“+”号的括号里, 后面两项放在前面带有“-”号的括号里,得_______.13.七年级(1)班同学参加数学课外活动小组的有x人,参加合唱队的有y人,而参加合唱队人数是参加篮球队人数的5倍,且每位同学至多只参加一项活动,则三个课外小组的人数共________人.14.已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关则的值为.三、解答题15.已知(a-3)x2y∣b∣+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.16.已知关于x,y的多项式x4+(m+2)x n y-xy2+3,其中n为正整数.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?17.将下列各式去括号,并合并同类项.(1)(7y﹣2x)﹣(7x﹣4y)(2)(﹣b+3a)﹣(a﹣b)(3)(2x﹣5y)﹣(3x﹣5y+1)18.把a﹣2b看作一个“字母”,化简多项式﹣3a(a﹣2b)5+6b(a﹣2b)5﹣5(﹣a+2b)3,并求当a﹣2b=﹣1时的值.19.x表示一个两位数,y表示一个三位数.若把x放在y的左边组成一个五位数记做m 1,把y放在x的左边组成一个五位数记做m2,求证:m1-m2是9的倍数.20.如图是某住宅的平面结构示意图,图中标注了有关尺寸(墙壁厚度忽略不计,单位:m).(1)该住宅的面积是多少?(2)该住宅的主人计划把卧室以外的地面都铺上地砖,如果他所选的地砖的价格是60元/平方米,那么买地砖至少需要多少元?参考答案1.B2.B3.B4.B.5.B.6.D7.B8.B9.答案为:﹣π,3.10.答案为:四;三.11.答案为:2x3+3x2﹣x﹣4y2.12.答案为:(2-xy)-(-3x2y+4xy2)13.答案为:x+65 y.14.答案为:-.15.解:原式=-5.16.解:(1)因为多项式是五次四项式,所以n+1=5,m+2≠0,所以n=4,m≠-2.(2)因为多项式是四次三项式,所以m+2=0,n为任意正整数所以m=-2,n为任意正整数.17.解:(1)原式=7y﹣2x﹣7x+4y=11y﹣9x;(2)原式=﹣b+3a﹣a+b=2a;(3)原式=2x﹣5y﹣3x+5y﹣1=﹣x﹣1;18.解:﹣3a(a﹣2b)5+6b(a﹣2b)5﹣5(﹣a+2b)3=(a﹣2b)5(﹣3a+6b)+5(a﹣2b)3=﹣3(a﹣2b)6+5(a﹣2b)3.当a﹣2b=﹣1时原式=﹣3×(﹣1)6+5×(﹣1)3=﹣3×1+5×(﹣1)=﹣8.19.解:由题意知:m1=1000x+y,m2=100y+x.∴m1-m2=(1000x+y)-(100y+x)=1000x+y-100y-x=999x-99y=9(111x-11y).∵111x-11y为整数∴m1-m2是9的倍数.20.解:(1)15xym2(2)660xy元。
北师大版七年级数学上册章节同步练习题(全册-共57页)
北师⼤版七年级数学上册章节同步练习题(全册-共57页)北师⼤版七年级数学上册章节同步练习题(全册,共57页)⽬录第⼀章丰富的图形世界1 ⽣活中的⽴体图形2 展开与折叠3 截⼀个⼏何体4 从三个⽅向看物体的形状单元测验第⼆章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘⽅ 10 科学记数法11 有理数的混合运算 12 ⽤计算器进⾏运算单元测验第三章整式及其加减1 字母表⽰数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平⾯图形1 线段射线直线2 ⽐较线段的长短3 ⾓ 4⾓的⽐较5 多边形和圆的初步认识单元测验第五章⼀元⼀次⽅程1 认识⼀元⼀次⽅程2 求解⼀元⼀次⽅程3 应⽤⼀元⼀次⽅程——⽔箱变⾼了4 应⽤⼀元⼀次⽅程——打折销售5 应⽤⼀元⼀次⽅程——“希望⼯程”义演6 应⽤⼀元⼀次⽅程——追赶⼩明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表⽰4 统计图的选择第⼀章丰富的图形世界1.1⽣活中的⽴体图形(1)基础题:1.如下图中为棱柱的是()2.⼀个⼏何体的侧⾯是由若⼲个长⽅形组成的,则这个⼏何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长⽅体、正⽅体都是棱柱 B.三棱柱的侧⾯是三⾓形C.直六棱柱有六个侧⾯、侧⾯为矩形 D.球体和圆是不同的图形4.数学课本类似于,⾦字塔类似于,西⽠类似于,⽇光灯管类似于。
5.⼋棱柱有个⾯,个顶点,条棱。
6.⼀个漏⽃可以看做是由⼀个________和⼀个________组成的。
7.如图是⼀个正六棱柱,它的底⾯边长是3cm,⾼是5cm.(1)这个棱柱共有个⾯,它的侧⾯积是。
(2)这个棱柱共有条棱,所有棱的长度是。
提⾼题:⼀只⼩蚂蚁从如图所⽰的正⽅体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数⼀数,⼩蚂蚁有种爬⾏路线。
重难点解析人教版七年级数学上册第三章一元一次方程同步练习试题(含答案解析版)
人教版七年级数学上册第三章一元一次方程同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、解方程()()41111433x x --=-+的最佳方法是( ) A .去括号B .去分母C .移项合并()1x -项D .以上方法都可以 2、解一元一次方程11(1)123x x +=-时,去分母正确的是( )A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=- 3、解分式方程12x -﹣3=42x -时,去分母可得( ) A .1﹣3(x ﹣2)=4B .1﹣3(x ﹣2)=﹣4C .﹣1﹣3(2﹣x )=﹣4D .1﹣3(2﹣x )=44、下列运用等式的性质对等式进行的变形中,错误的是( )A .若 a =b ,则 ac =bcB .若 a (x 2+1)=b (x 2+1),则 a =bC .若 a =b ,则ab c c= D .若 x =y ,则 x -3=y -3 5、在方程6x +1=1,2x =23,7x −1=x −1,5x =2−x 中,解为13的方程个数是( ).A .1个B .2个C .3个D .4个6、关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .47、甲车队有汽车56辆,乙车队有汽车32辆,要使两车队汽车一样多,设由甲队调出x 辆汽车给乙队,则可得方程( )A .5632x x +=-B .5632x x -=+C .5632x -=D .3256x +=8、小涵在2020年某月的月历上圈出了三个数a ,b ,c ,并求出了它们的和为30,则这三个数在月历中的排位位置不可能是( )A .B .C .D .9、方程()3235x x --=去括号变形正确的是( )A .3235x x --=B .3265x x --=C .3235x x -+=D .3265x x -+=10、下列变形正确的是( )A .若3121x x -=+,则3211x x +=+B .若()()31510x x +--=,则33550x x +--=C .若3112x x --=,则231x x --=D .若1100.20.3x x +-=,则1123x x +-= 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于x 的方程10530m x -+=是的一元一次方程,则m =____________.2、若a ,b 为常数,无论k 为何值时,关于x 的一元一次方程(1)124b x ka +=-,它的解总是1,则a ,b 的值分别是_______.3、若a b =,则a c -=____________.4、为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折(标价的80%)出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是________.5、已知230x y +-=,用含x 的代数式表示y :__________,用含y 的代数式表示x :_________.三、解答题(5小题,每小题10分,共计50分)1、某玩具工厂出售一种玩具,其成本价为每件28元,如果直接由厂家门市部销售,每件产品售价为35元,同时每月还要支出其他费用2100元;如果委托商场销售,那么出厂价为32元.(1)求在两种销售方式下,每个月销售多少件时,所得利润相等;(2)若每个月销售量达到1000件时,采用哪种销售方式获得利润较多?2、解方程:(1)3x ﹣4=2x +5;(2)253164x x --+=. 3、解方程:(1)()()62127x x x -+=--(2)331124x x +--= 4、若32132b a a b +-=+,利用等式的性质,比较a 与b 的大小.5、某公司销售甲、乙两种球鞋,去年共卖出12200双,今年甲种鞋卖出的数量比去年增加6%,乙种鞋卖出的数量比去年减少5%,两种鞋的总销量增加了50双,去年甲、乙两种球鞋各卖了多少双?-参考答案-一、单选题1、C【解析】【分析】由于x-1的系数分母相同,所以可以把(x-1)看作一个整体,先移项,再合并(x-1)项.【详解】解:移项得,43(x-1)-13(x-1)=4+1,合并同类项得,x-1=5,解得x=6.故选C.【考点】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.2、D【解析】【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.【考点】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.3、B【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【考点】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.4、C【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】解:A、a=b,等式两边都乘以c,得到ac=bc,正确;B、a(x2+1)=b (x2+1),等式两边同时除以(x2+1),得到a=b,正确;C、a=b,等式两边同时除以c,c为零时不成立,故错误;D、x=y,等式两边都减3,得到x-3=y-3,正确.故选:C.【考点】本题主要考查等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果5、B 【解析】【分析】把x=13代入各方程进行检验即可.【详解】解:当x=13时,左边=6×13+1=3≠1,不符合题意;当x=13时,左边=2×13=23=右边,符合题意;当x=13时,左边=7×13-1=43,右边=13-1=-23,左边≠右边,不符合题意;当x=13时,左边=5×13=53,右边=2-13=53,左边=右边,符合题意.综上,符合题意的有2个,故选:B.【考点】本题考查了一元一次方程的解,熟知使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解是解答此题的关键.6、C【解析】【分析】根据一元一次方程的概念和其解的概念解答即可.【详解】解:因为关于x的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选C .【考点】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.7、B【解析】【分析】表示出抽调后两车队的汽车辆数然后根据两车队汽车一样多列出方程即可.【详解】解:设由甲队调出x 辆汽车给乙队,则甲车队有汽车(56-x )辆,乙车队有汽车(32+x )辆, 由题意得,56-x =32+x .故选:B .【考点】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.8、D【解析】【分析】由月历表数字之间的特点可依次排除选项即可.【详解】解:由A 选项可得:7,14b a c a =+=+,∴71432130a b c a a a a ++=++++=+=,解得3a =,故不符合题意;由B 选项可得:6,12b a c a =+=+,∴61231830a b c a a a a ++=++++=+=,解得4a =,故不符合题意;由C 选项得1,8b a c a =+=+,∴183930a b c a a a a ++=++++=+=,解得7a =,故不符合题意;由D 选项得6,14b a c a =+=+,∴61432030a b c a a a a ++=++++=+=, 解得103a =,故符合题意; 故选D .【考点】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.9、D【解析】【分析】直接利用去括号法则化简得出答案即可.【详解】解:3x −2(x −3)=5,去括号得:3x −2x +6=5,故选:D .【考点】本题主要考查了解一元一次方程,正确掌握去括号法则是解题关键.10、D【解析】根据移项,去括号,去分母,通分的运算法则逐一运算判断即可.【详解】解:A :3121x x -=+移项得:3211x x -=+,故错误;B :()()31510x x +--=去括号得:33550x x +-+=,故错误;C :3112x x --=去分目得:2312x x -+=,故错误; D :1100.20.3x x +-=所有项除10得:1123x x +-=,故正确; 故选:D【考点】本题主要考查了解一元一次方程的步骤,熟悉掌握运算的法则是解题的关键.二、填空题1、11【解析】【分析】根据一元一次方程的定义解答即可,一元一次方程指只含有一个未知数,未知数的最高次数为1且两边都为整式的等式.【详解】关于x 的方程10530m x -+=是的一元一次方程,101m ∴-=解得11m =故答案为:11本题考查了一元一次方程的定义,理解定义是解题的关键.2、0,11a b ==【解析】【分析】将方程的解代入原方程,并化简.因为无论k 为何值,它的解总是1,即可列出40110a b =⎧⎨-=⎩ ,解出a 和b 即可.【详解】把1x =代入方程得1124b ka +=-,化简得411ka b =-,∵k 的值为全体实数,∴40a =,且110b -=,∴0a =,11b =.【考点】本题考查一元一次方程的解.理解方程的解的定义“能够使方程左右两边相等的未知数的值”是解答本题的关键.3、b c -【解析】【分析】根据等式的基本性质1:等式左右两边同时加或减相同的数,等式仍然成立;即可解决.【详解】解:∵a=b∴a -c=b-c故答案:b c -【考点】本题主要考察了等式的性质,熟练的掌握等式的基本性质1是解题的关键.4、1710【解析】【分析】设该照相机的原售价是x 元,根据售价-进价=利润,列出一元一次方程,即可求解.【详解】设该照相机的原售价是x 元,根据题意得:0.81200120014%x -=⨯,解得:x=1710,答:该照相机的原售价是1710元.【考点】本题主要考查一元一次方程的实际应用,找出等量关系,列出方程,是解题的关键.5、 y 32x -=32x y =- 【解析】【分析】先把x 当常数,求解函数值y ,再把y 当常数,求解自变量,x 从而可得答案.【详解】 解: 230x y +-=,23,y x ∴=-+3,2x y -∴= 230x y +-=,32,x y ∴=-故答案为:y 32x -=,32x y =- 【考点】 本题考查的是函数自变量与因变量之间的关系,掌握用含有一个变量的代数式表示另外一个变量是解题的关键.三、解答题1、 (1) 每月销售700件时,所得利润相同.(2) 采用直接由厂家门市部销售的利润较多.【解析】【详解】试题分析:(1)设每个月销售x 件,用x 表示出两种销售方式分别得出获利情况,根据利润相等列出方程求解即可;(2)根据(1)用x 表示出两种销售方式分别得出获利情况,把x=1000件代入分别求得利润比较即可.试题解析:(1)设每个月销售x 件时,所得利润相等,依题意得(35-28)x-2100=(32-28)x 解得x=700经检验符合题意答:每个月销售700件时,所得利润相等(2)当销售量x=1000时,(35-28)x-2100=4900元(32-28)x=4000元故应由厂家门市部销售点睛:此题主要考查了一元一次方程的应用,正确表示出两种销售利润是解题关键.2、(1)9x = ;(2)13x =【解析】【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【考点】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键.3、(1)1x =-;(2)15x =-【解析】【分析】①方程去括号,移项,合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项,合并,把x 系数化为1,即可求出解.【详解】解:(1)去括号得:62227x x x --=+-,移项,合并得:33x =-,把x 系数化为1得:1x =-;(2)去分母得:()42331x x -+=-,去括号得:46231x x --=-,移项,合并得:51x -=,把x 系数化为1得:15x =-.【考点】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.4、b a >【解析】【分析】利用等式的性质将一个字母用另一个字母表示出来,再判断即可.【详解】解:等式两边同减去2a ,得:312b a b -=+ ,等式两边同减去2b ,得:1b a , 等式两边再同时加上1,得:1b a =+,∵1a a +>,∴b a >.【考点】本题主要考查了等式的基本性质.等式性质1:等式的两边同时加上或减去同一个数或字母,等式仍成立;等式性质2:等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立,熟练运用等式的性质进行变形是解决本题的关键.5、去年甲种鞋卖出6000双,则乙种鞋卖出6200双.【解析】【分析】设去年甲种球鞋卖了x 双,则乙种球鞋卖了(12200-x )双,根据条件建立方程,求出其解即可.【详解】设去年甲种鞋卖出x 双,则乙种鞋卖出()12200x -双,6%5%(12200)50x x --=65(12200)5000x x --=,1166000x =,6000x = 122001220060006200x -=-=答:去年甲种鞋卖出6000双,则乙种鞋卖出6200双.【考点】本题考查了列一元一次方程解关于增长率问题的实际问题的运用,一元一次方程的解法的运用,解答时根据变化后的相等数量关系建立方程是关键.。
最新人教版七年级数学上册第三章同步测试题及答案解析
最新人教版七年级数学上册第三章同步测试题及答案解析[3.1.1一元一次方程]一、选择题(每小题4分,共计12分)1.下列说法中,正确的是(D)A.x=-1是方程3x+2=0的解B.x=-1是方程9x+4x=13的解C.x=1是方程2x-2=3的解D.x=0是方程0.5(x+3)=1.5的解解析:根据方程的解的定义,使方程左右两边相等的未知数的值即为方程的解,逐一代入方程验证即可.2.若x=1是方程2x-a=0的解,则a的值为(C)A.1 B.-1C.2 D.-2解析:根据题意得2×1-a=0,∴a=2.故选C.3.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5 m 栽1棵,则树苗缺21棵;如果每隔6 m栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是(A) A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x解析:方式1的总间隔数为(x+21-1),公路长为5(x+21-1);方式2的总间隔数为(x -1),公路长为6(x-1),根据题意列出方程为5(x+21-1)=6(x-1).二、填空题(每小题4分,共计12分)4.已知ax m -1-2=0是关于x 的一元一次方程,则a ≠0,m =2.解析:因为x 的次数为1,所以m -1=1,即m =2;方程中必须含有未知数x 的项,所以a ≠0.5.已知关于x 的方程3x +2a -3=0的解是x =3,则a 的值为-3.6.某中学学生自己动手整修操场,如果让初二学生单独工作,需要6 h 完成;如果让初三学生单独工作,需要4 h 完成.现在由初二、初三学生一起工作x h ,完成了任务.根据题意,可列方程为(16+14)x =1.解析:初二、初三学生的工作效率分别是16,14,于是根据题意,可列方程为(16+14)x =1或16x +14x =1.三、解答题(共计26分)7.(满分8分)从甲地到乙地,某人骑自行车比乘公共汽车多用2 h ,已知骑自行车的平均速度为每小时16 km ,公共汽车的平均速度为每小时38 km ,求甲、乙两地之间的路程.(只列方程)解:设甲、乙两地之间的路程为x km ,那么这个人骑自行车所用的时间为x16 h ,这个人乘公交车所用的时间为x 38 h ,根据题意列方程为x 16-x38=2.8.(满分8分)A 种铅笔每支0.3元,B 种铅笔每支0.5元,小李用4元钱买了两种笔共10支,还剩0.2元.(1)设适当未知数,列方程. (2)填写下表:(3)从表中可知解:(1)设买A 种笔x 支,则买B 种笔(10-x )支, 所以0.3x +0.5(10-x )=4-0.2. (2)(3)因为两种笔共用3.8元,所以x=6是所列方程的解.故填6. 9.(满分10分)观察下面一系列方程,完成后面的问题:第1个方程是x+x2=3,解为x=2;第2个方程是x2+x3=5,解为x=6;第3个方程是x3+x4=7,解为x=12;……以上方程及其解有规律吗?你能写出第10个方程及其解吗?解:方程及其解有规律.这些方程可以看作:第1个方程x1+x2=1+2,解为x=1×2;第2个方程x2+x3=2+3,解为x=2×3;第3个方程x3+x4=3+4,解为x=3×4;……因此第10个方程x10+x11=10+11,解为x=10×11,即x10+x11=21,解为x=110.[3.1.2等式的性质]一、选择题(每小题4分,共计12分)1.已知x=3是4x+3a=6的解,则a的值为(A)A .-2B .-1C .1D .2解析:把x =3代入方程计算即可求出a 的值,把x =3代入方程得:12+3a =6,解得:a =-2.2.下列运用等式的性质对等式进行变形,正确的是(D) A .由x4=0,得x =4 B .由2x +1=4,得x =5 C .由-2x =6,得x =3D .由8x =5x +3,得x =1解析:A.由x 4=0,得x =0,故本选项错误;B.由2x +1=4,得x =32,故本选项错误;C.由-2x =6,得x =-3,故本选项错误;D.由8x =5x +3,得x =1,故本选项正确;故选D.3.下列根据等式性质进行的变形,不正确的是(C) A .如果a =b ,那么a -c =b -c B .如果a =b ,那么a +c =b +c C .如果a =b ,那么a m +1=b m +1D .如果a =b ,那么ac =bc解析:根据等式性质1,a =b 两边减c ,即可得到a -c =b -c ,故选项A 正确;根据等式性质1,a =b 两边加c ,即可得到a +c =b +c ,故选项B 正确;根据等式性质2,当m +1≠0时,a m +1=b m +1才成立,故选项C 错误;根据等式性质2,a =b 两边乘c ,即可得到ac =bc ,故选项D 正确.二、填空题(每小题4分,共计12分)4.解方程3-13x =4时,先两边减3,得-13x =1;再两边乘-3,得x =-3. 解析:根据等式的性质1,方程两边减3,得-13x =1;再两边乘-3,得x =-3. 5.a -5=b -5,则a =b ,这是根据等式的基本性质.6.如果“■、▲、●”表示三种不同的物体,第一、二两个天平能够保持平衡,要使第三个天平也保持平衡,则在“?”处应放5个“■”.解析:因为●●=▲■,▲=●■,所以●●=●■■,根据等式的基本性质把●●=●■■两边都拿去一个●,可得●=■■,又因为▲=●■,所以▲=■■■,所以●▲=5个■.三、解答题(共计26分)7.(满分8分)在将等式3a-2b=2a-2b变形时,小明的变形过程如下:因为3a-2b=2a-2b,所以3a=2a,(第一步)所以3=2.(第二步)(1)上述过程中,第一步的依据是什么?(2)小明第二步得出错误的结论的原因是什么?解:(1)根据等式性质1,等式两边加2b.(2)等式的两边只有同时除以一个不为0的数,等式才能成立.这里小明在不确定a是否为0的情况下,把方程两边除以a而导致出错.8.(满分8分)如图所示,在保持平衡的两架天平上有a,b,c三种物体.(1)a,b,c三种物体就单个而言哪个最重?(2)若天平一边放一些物体a,另一边放一些物体c,要使天平平衡,天平两边至少应该分别放几个物体a和物体c?解:(1)根据图示知:2a=3b,2b=3c.所以a=32b,b=32c,所以a=94c,因为94c>32c>c,所以a>b>c;所以a,b,c三种物体就单个而言,a最重;(2)由(1)知,a=94c,两边都乘以4,得4a=9c,所以若天平一边放一些物体a,另一边放一些物体c,要使天平平衡,天平两边至少应该分别放4个物体a和9个物体c.9.(满分10分)能否找到一个m值,使式子2m+3与7m-3的值相等,若能,请找出m 的值,若不能,请说明理由.解:若存在使2m+3=7m-3的m的值,则可根据等式的性质,两边减3,得2m=7m-6,两边减7m ,得2m -7m =-6,即-5m =-6,两边除以-5,得m =65. 所以,当m =65时,2m +3与7m -3的值相等.[3.2 解一元一次方程(一)——合并同类项与移项 第1课时]一、选择题(每小题4分,共计12分) 1.下列解方程的过程中,错误的是(D) A.x 2-x =10,得-x2=10B .4y -2y +y =4,得(4-2+1)y =4C .-12x =0,得x =0D .2x =-3,得x =-23解析:把2x =-3系数化1得x =-32.2.如果x =m 是方程12x -m =1的根,那么m 的值是(C) A .0 B .2 C .-2D .-6解析:把x =m 代入方程,得12m -m =1,解得m =-2. 3.下列“把系数化为1”正确的是(C) A .由-2x =0,得x =2 B .由-23x =-2,得x =-3 C .由-6x =78,得x =-13 D .由x -6x =-10,得x =-2二、填空题(每小题4分,共计12分)4.已知x-12x+4x=18,则x=4.5.小华同学在解方程5x-□x=1+3时,把□处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=1 2.解析:将x=2代入原式,得□的相反数为3,则□=-3.将□=-3代入原方程求得正确解为x=1 2.6.图1是边长为30 cm的正方形纸板,裁掉阴影后将其折叠成图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是1_000 cm3.图1图2解析:设长方体的高为x cm,则长方体的宽为2x cm,所以x+2x+x+2x=30,解得x=5,所以长方体的宽为10 cm,长方体的长为30-2×5=20 (cm),长方体的体积为5×10×20=1 000 (cm3).三、解答题(共计26分)7.(满分9分)解下列方程:(1)2x-7x=10;(2)-52y+32y=5;(3)13x-x=32.解:(1)合并同类项,得-5x=10.系数化为1,得x=-2.(2)合并同类项,得-y=5.系数化为1,得y=-5.(3)合并同类项,得-23x=32.系数化为1,得x=-94.8.(满分8分)按规律排列的一列数:2,-4,8,-16,32,-64,…,其中某四个相邻数的和为80,求这四个数中的最小数.解:设这四个相邻的数中第一个数为x,则后三个数依次为-2x,4x,-8x,根据题意列方程为x-2x+4x-8x=80,解得x=-16,所以-2x=32,4x=-64,-8x=128,所以四个数中的最小数为-64.9.(满分9分)甲、乙两人骑自行车,同时从相距65 km的两地相向而行,甲的速度是17.5 km/h,乙的速度是15 km/h,经过几小时,两人相距32.5 km?(列方程求解) 解:设经过x h,两人相距32.5 km,根据题意,可分两种情况:(1)相遇前相距32.5 km,则17.5x+15x=65-32.5,解得x=1;(2)相遇后相距32.5 km,则17.5x+15x=65+32.5,解得x=3.答:经过1 h或3 h,两人相距32.5 km.[3.2解一元一次方程(一)——合并同类项与移项第2课时]一、选择题(每小题4分,共计12分)1.在解方程3x+5=-2x-1的过程中,移项正确的是(C)A.3x-2x=-1+5B.-3x-2x=5-1C.3x+2x=-1-5D.-3x-2x=-1-52.已知3m-5和-2m+3互为相反数,则m的值为(C)A.85B.8C.2 D.-8解析:由题意,得3m -5-2m +3=0,移项合并得m =2.3.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,则共有小朋友(B)A .4个B .5个C .10个D .12个解析:设有x 个小朋友,由题意得3x -3=2x +2,解得x =5.故选B. 二、填空题(每小题4分,共计12分)4.若式子5x -7与4x +9的值相等,则x 的值等于16. 解析:根据题意得5x -7=4x +9.移项,得5x -4x =9+7.合并同类项,得x =16.5.若单项式-4x m -1y n +1与23x 2m -3y 3n -5是同类项,则m 的值为2,n 的值为3. 解析:根据同类项的概念可知m -1=2m -3并且n +1=3n -5,解得m =2,n =3. 6.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的人有20人.解析:设参加音乐兴趣小组的有x 人,根据题意列方程,得x +80×40%+80×35%=80,解得x =20.三、解答题(共计26分)7.(满分8分)方程4x +2m =3x +1和方程3x +2m =4x +1的解相同,求m 的值和方程的解.解:将两个方程分别化为用m 表示x 的方程, 得x =1-2m 和x =2m -1.因为它们的解相同,所以1-2m =2m -1,解得m =12. 将m =12代入x =1-2m 或者x =2m -1,解得x =0. 所以m =12,x =0.8.(满分8分)用一根绳子绕一个圆柱形油桶.若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺.这根绳子有多长?环绕油桶一周需要多少尺?解:设环绕油桶一周需要x尺,根据题意,得3x+4=4x-3,解得x=7,所以3x+4=25.答:这根绳子25尺,环绕油桶一周需要7尺.9.(满分10分)小华写信给老家的爷爷,慰问“八一”建军节.折叠长方形信纸装入标准信封时发现:若将信纸如图①两次对折后,沿着信封口边线滑入时宽绰有3.8 cm;若将信纸如图②三折折叠后,同样方法装入时宽绰1.4 cm;试求出信纸的纸长与信封的口宽.解:设信纸的纸长为x cm,根据题意,得x4+3.8=x3+1.4.移项,得x4-x3=1.4-3.8.合并同类项,得-x12=-2.4.解得x=28.8.所以信封的口宽为28.84+3.8=11(cm).答:信纸的纸长为28.8 cm,信封的口宽为11 cm.[3.3解一元一次方程(二)——去括号与去分母第1课时]一、选择题(每小题4分,共计12分)1.解方程2(x-2)-3(4x-1)=9正确的是(D)A.2x-4-12x+3=9,-10x=8,故x=-0.8B.2x-2-12x+1=9,-10x=10,故x=-1C.2x-4-12x-3=9,-10x=16,故x=-1.6D.2x-4-12x+3=9,-10x=10,故x=-1解析:2x-4-12x+3=9,2x-12x=9+4-3,-10x=10,故x=-1. 2.与方程6(x+2)=30具有相同解的方程是(D)A.x+2=30 B.x+2=1 6C.x+2=0 D.x-3=0解析:6(x+2)=30的解为x=3;x+2=30的解为x=28;x+2=16的解为x=-116;x+2=0的解为x=-2;x-3=0的解为x=3.3.某道路一侧原有路灯106盏,相邻两盏灯的距离为36 m,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70 m,则需更换的新型节能灯有(B)A.54盏B.55盏C.56盏D.57盏解析:设需更换的新型节能灯有x盏,则70(x-1)=36×(106-1),70x=3 850,x=55,则需更换的新型节能灯有55盏.故选B.二、填空题(每小题4分,共计12分)4.如果-2(x+3)的值与3(x-1)的值互为相反数,那么x等于9.解析:根据题意列方程,得-2(x+3)+3(x-1)=0,解得x=9.5.若关于x的一元一次方程ax-3=2x的解与方程5x+1=-9的解相同,则a的值为1 2.解析:解方程5x+1=-9得x=-2,将x=-2代入方程ax-3=2x,解得a=1 2.6.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了20张.解析:设购买甲种电影票x张,则购买乙种电影票(40-x)张,根据题意,得20x+15(40-x)=700,解得x=20.三、解答题(共计26分)7.(满分8分)已知方程5m-6=4m的解也是关于x的方程2(x-3)-n=4的解.求m,n 的值.解:解方程5m-6=4m,得m=6.∵方程5m-6=4m的解也是关于x的方程2(x-3)-n=4的解,∴方程2(x-3)-n=4的解为x=6,∴2×(6-3)-n=4,∴n=2.8.(满分9分)解方程:(1)3x-2(10-x)=5;(2)2x-5-3(x+3)=4;(3)3(2y+1)=2(1+y)+3(y+3).解:(1)去括号,得3x-20+2x=5,移项,得3x+2x=5+20,合并同类项,得5x=25,系数化为1,得x=5.(2)去括号,得2x-5-3x-9=4,移项,得2x-3x=4+5+9,合并同类项,得-x=18,系数化为1,得x=-18.(3)去括号,得6y+3=2+2y+3y+9,移项,得6y-2y-3y=2+9-3,合并同类项,得y=8.9.(满分9分)数学与生活!解:设买1听果奶需x 元,则买一听可乐需(x +0.5)元,由题意得x +4(x +0.5)=20-3, 解得x =3,x +0.5=3.5.故买1听果奶需3元,买一听可乐需3.5元.[3.3 解一元一次方程(二)——去括号与去分母 第2课时]一、选择题(每小题6分,共计18分)1.解方程2-3x -12=2x +12时,去分母,得(D) A .4-3x -1=2x +1 B .2-3x +1=2x +1 C .2-3x -1=2x +1 D .4-3x +1=2x +1解析:去分母,得(2-3x -12)×2=(2x +12)×2,即4-(3x -1)=2x +1.去括号,得4-3x +1=2x +1.2.若3x +12的值比2x -23的值小1,则x 的值为(B) A.135B .-135C.513D.-513解析:根据题意,得3x+12=2x-23-1,解得x=-135.3.小明读了一本故事书,第一天读了全书的13,第二天读了剩下的13,这时还有24页没有读,则他第二天读的页数为(A)A.12 B.18 C.24 D.36解析:设全书有x页,则13x+13×23x+24=x,即13x+29x+24=x,去分母得3x+2x+216=9x,移项、合并同类项得-4x=-216,系数化为1,得x=54,所以13×23×54=12.二、填空题(每小题6分,共计18分)4.当x=7时,x-x-13的值与x+35-7的值互为相反数.解析:根据题意得(x-x-13)+(x+35-7)=0.化简,得15x-5(x-1)+3(x+3)-105=0,解得x=7.5.小明在做家庭作业时发现练习册上的一道解方程的题目中的一个数字被墨水污染了:“x+12-5x-■3=-12”是被污染的内容,翻开书后面的答案,这道题的解是x=2,那么“■”的数字为4.解析:设■=m,把x=2代入x+12-5x-■3=-12,得2+12-10-m3=-12.解方程,得m=4.所以“■”的数字为4.6.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3 h,若船速为26 km/h,水速为2 km/h,求A港和B港相距多少千米.设A港和B港相距x km.根据题意,可列出的方程是x28=x24-3.解析:轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26 km/h,水速为2 km/h,则其顺流行驶的速度为26+2=28 km/h,逆流行驶的速度为:26-2=24 km/h.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B港所用的时间=它从B港返回A港的时间-3小时,据此列出方程即可.三、解答题(共计64分)7.(满分12分)解下列方程:(1)y-12=2-y+25;(2)0.2x-0.10.3-0.1x+0.20.4=1.解:(1)去分母,得5(y-1)=2×10-2(y+2).去括号,得5y-5=20-2y-4.移项,得5y+2y=20-4+5. 合并同类项,得7y=21.系数化1,得y=3.(2)原方程化为2x-13-x+24=1.去分母,得4(2x-1)-3(x+2)=12.去括号,得8x-4-3x-6=12.移项,得8x-3x=12+4+6.合并同类项,得5x=22.系数化1,得x=22 5.8.(满分12分)已知方程2-x-13=1-x2+3与方程4-kx+23=3k-2-2x4的解相同,求k的值.解:解方程2-x-13=1-x2+3,得x=7.把x=7代入4-kx+23=3k-2-2x4,得4-7k+23=3k-2-144,解得k=116.9.(满分20分)如图,折线AC-CB是一条公路的示意图,AC=8 km.甲骑摩托车从A地沿这条公路到B地,速度为40 km/h,乙骑自行车从C地到B地,速度为10 km/h,两人同时出发,结果甲比乙早到6 min.(1)求这条公路的长;(2)求甲追上乙所用的时间.解:(1)设这条公路的长为x km,由题意,得x-810-x40=110.解得x=12.答:这条公路的长为12 km. (2)设甲追上乙所用的时间为t h.由题意,得40t=10t+8,解这个方程,得t=4 15.答:甲追上乙所用的时间为415h.10.(满分20分)(1)a为何值时,3是关于x的方程3|a|-2x=6x+3的解;(2)已知:关于x的方程2(x-1)+1=x与3(x+m)=m-1有相同的解,求:以y为未知数的方程3-my3=m-3y2的解.解:(1)把x=3代入3|a|-2x=6x+3得3|a|-6=18+3,|a|=9,所以a=±9;(2)2(x-1)+1=x,解得x=1,把x=1代入3(x+m)=m-1得3(1+m)=m-1,解得m=-2,把m=-2代入方程3-my3=m-3y2得3+2y3=-2-3y2解得y=-1213.[3.4实际问题与一元一次方程第1课时]一、选择题(每小题7分,共计21分)1.一个水池有甲、乙两个水龙头.单独开甲龙头,4 h可以把空水池灌满;单独开乙龙头,6 h可把空水池灌满,现要灌满水池的23,需同时开甲、乙两个龙头的时间是(D)A.83h B.43h C.4 h D.85h解析:甲龙头每小时可灌水池的14,乙龙头每小时可灌水池的16,设灌满水池的23需同时开甲、乙两个龙头的时间是x h,则(14+16)x=23,解得x=85.2.某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x天.可列方程为(D)A.440+x40+50=1 B.440+x40×50=1C.440+x40+x50=1 D.440+x-440+x-450=1解析:甲4天的工作量为440,两队合作剩余天数的工作量为(x-440+x-450),所以可列方程为440+x-440+x-450=1,故选D.3.整理一批数据,由一个人做要40 h完成.现在计划由x人先做4 h,再增加2人和他们一起做8 h,完成这项工作,假设这些人的工作效率相同,则可列方程为(A)A.4x40+8(x+2)40=1B.4x40+8(x-2)40=1C.4(x-2)40+8x40=1D.4(x-2)40+8(x+2)40=1解析:设应先安排x人工作,根据题意得:一个人做要40 h完成,现在计划由一部分人先做4 h,工作量为4x40,再增加2人和他们一起做8 h的工作量为8(x+2)40,故可列式为4x40+8(x+2)40=1.故选A.二、填空题(每小题7分,共计21分)4.某车间接到x件零件加工任务,计划每天加工120件,可以如期完成,而实际每天多加工40件,结果提前6天完成,列方程得x120-x120+40=6.解析:等量关系为:计划用时间-实际用时间=6.列方程得x120-x120+40=6.5.一水池有甲、乙、丙三个水管,甲、乙是进水管,丙是出水管.单独开甲管需16 min 注满一池水,单独开乙管需10 min注满一池水,单独开丙管20 min放完一池水.现在先开甲、乙两管4 min,接着关上甲管打开丙管,再经过几分钟能将水池注满?设再经过x min能将水池注满,则根据题意,可列方程416+110(x+4)-120x=1.解析:把满水池的水量看成1.本题中的等量关系是:甲管4 min的进水量+乙管(4+x)min 的进水量-丙管开x min放出的水量=1.6.某一车间有技术工人85人,平均每天每人可加工甲部件16个或乙部件10个.两个甲种部件和三个乙种部件配成一套,可加工零件的套数为200.解析:设x名工人加工甲部件,则有(85-x)名工人加工乙部件,由题意得3×16x=2×10(85-x),解得x=25,可加工的零件套数为16×252=200.三、解答题(共计58分)7.(满分18分)某中学的学生自己动手修整操场,如果让初一学生单独干,需要7.5 h完成;如果让初二学生单独干,需要5 h完成.如果让初一、初二的学生先一起干1 h,再由初二学生单独完成剩余部分.修整操场共需多少时间完成?解:设修整操场共需x h完成,则初二学生单独完成剩余部分用了(x-1)h,根据题意,得(17.5+15)×1+x-15=1或17.5+x5=1,解得x=133.答:修整操场共需133 h 完成.8.(满分18分)整理一批图书,如果由一个人单独做要花60 h ,现先由一部分人用1 h 整理,随后增加15人和他们一起又做了2 h ,恰好完成整理工作,假设每个人的工作效率相同, 那么先安排整理的人员有多少人?解:设先安排整理的人员有x 人, 依题意得:x 60+2(x +15)60=1.解得:x =10. 答:先安排整理的人员有10人.9.(满分22分)要用20张白卡纸做包装盒,每张白卡纸可以做盒身2个,或者做盒底3个,如果1个盒身和2个盒底可以做成一个包装盒,那么能否把这些白卡纸分成两部分,一部分做盒身,一部分做盒底,使做成的盒身和盒底正好配套?请你设计一种分法.如果不允许剪开白卡纸,能不能找到符合题意的分法?如果允许剪开一张白卡纸,怎样才能既符合题意,又能充分利用白卡纸?解:设应该用x 张白卡纸做盒身,则用(20-x )张白卡纸做盒底,可做盒身2x 个,盒底3(20-x )个,根据题意,得2×2x =3(20-x ),解得x =847,所以20-x =1137.由于解为分数,所以不允许分开白卡纸.则只能用8张白卡纸做盒身,共可做16个盒身,用11张白卡纸做盒底,共可做33个盒底,而16个盒身只需32个盒底,所以只能做16个包装盒,且剩余一张白卡纸和一个盒底的材料,无法全部利用白卡纸;如果允许剪开一张白卡纸,可以将一张白卡纸一分为二,用8张加47张做盒身,11张加37张做盒底,可以做成盒身17个,盒底34个,正好配成17个包装盒,较充分地利用了材料.[3.4 实际问题与一元一次方程 第2课时]一、选择题(每小题6分,共计18分)1.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多(C)A.60元B.80元C.120元D.180元解析:设这款服装每件的进价为x元,由题意得300×80%-x=60,解得x=180,所以这款服装每件的标价比进价多120元.2.某商品提价10%后,欲恢复原价,则应降价(C)A.10% B.9%C.10011% D.1009%解析:设商品原价为a元,欲恢复原价,则应降价x,根据题意列方程为a(1+10%)(1-x)=a,解得x=111,即应降价10011%.3.某个体商贩同时卖出两件上衣,售价都是135元.按成本计算,其中一件盈利25%,另一件亏损25%,在这次交易中,该商贩(C)A.不赔不赚B.赚9元C.赔18元D.赚18元解析:设在这次买卖中原价都是x元,则可列方程(1+25%)x=135,解得x=108,比较可知第一件赚了27元;第二件可列方程(1-25%)x=135,解得x=180,比较可知第二件亏了45元,两件相比则一共亏了18元.故选C.二、填空题(每小题6分,共计18分)4.小明星期天到体育用品商店购买一个篮球花了120元,已知篮球按标价打八折,那么篮球的标价是150元.解析:设篮球的标价是x元,得0.8x=120,解得x=150.5.某商场在九月份以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的盈利是-8元.解析:设盈利25%的那件衣服的进价是x元,亏损25%的那件衣服的进价是y元,根据题意得(1+25%)x=60,(1-25%)y=60,解得x=48,y=80,∴60×2-48-80=-8(元).6.一商品随季节变化降价出售,如果按现价降价10%,仍可盈利12元,如果降价后再九折出售,就要亏损24元,这件商品的进价是348元.解析:设这种商品的现价为x元,x×(1-10%)-12=x×(1-10%)×90%+24,0.9x-12=0.81x+24,0.09x=36,x=400.400×(1-10%)-12=400×0.9-12=360-12=348(元).三、解答题(共计64分)7.(满分12分)某商品的进价是400元,标价为550元,打折销售时利润率为10%.则此商品是按几折销售的?解:设此商品是按x折销售的,根据题意,得550×x10-400=400×10%,解得x=8.答:此商品是按8折销售的.8.(满分12分)某商店先在广州以15元的价格购进某商品10件,后来又在深圳以每件12.5元的价格购进同样的商品40件,如果商店销售这种商品要达到20%的利润,那么每件售价应是多少?解:设每件售价应是x元,根据题意,得50x-15×10-12.5×40=20%(15×10+12.5×40),解得x=15.6.答:每件售价应是15.6元.9.(满分12分)某商场为减少库存积压,以每台3 080元的价格出售两台电视机,其中一台赚了12%,另一台亏了12%,在这次买卖中商场是盈利还是亏损,或是不盈不亏?若盈利或亏损,则盈利或亏损多少元?解:亏了.设第一台电视机进价为x元,根据题意得x+12%x=3 080,解得x=2 750.设第二台电视机进价为y元,根据题意得y-12%y=3 080,解得y=3 500,总利润为3 080×2-2 750-3 500=-90(元),答:亏了90元.10.(满分14分)某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12 200元,问一月份每辆电动车的售价是多少?解:设一月份每辆电动车的售价是x元.由题意得100x+12 200=100×(1+10%)×(x-80),解得x=2 100.答:一月份每辆电动车的售价是2 100元.11.(满分14分)一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?解:设这种服装每件的成本是x元.由题意得(1+40%)x×80%-x=15,解得x=125.答:这种服装每件的成本是125元.[3.4实际问题与一元一次方程第3课时]一、选择题(每小题6分,共计18分)1.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元,那么下面所列方程正确的是(A)A.2(x-1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x-1)=132.某球队参加比赛,开始9局保持不败,积分21分.比赛规则:胜一场得3分,平一场得1分.则该队共胜(C)A.4场B.5场C.6场D.7场解析:设该队共胜x场,则平(9-x)场,则3x+(9-x)=21,解得x=6,即该队共胜6场.3.某足球联赛一个赛季共进行26轮比赛(即每队均需赛26场),其中胜一场得3分,平一场得1分,负一场得0分.某队在这个赛季中平局的场数比负的场数多7场,结果共得34分,则这个队在这一赛季中胜、平、负的场数依次是(A)A.7,13,6 B.6,13,7C.9,12,5 D.5,12,9解析:设该队负的场数是x场,则平了(x+7)场,胜了(26-x-x-7)场,根据题意得:3(26-x-x-7)+x+7=34,解可得x=6,则平了x+7=13,胜了26-x-x-7=7,故选A.二、填空题(每小题6分,共计18分)4.数学竞赛共有20道题,答对一题得5分,不答或答错扣3分,则要得84分需要答对18道题.解析:设需要答对x道题,则答错或不答(20-x)道,列方程为5x-3(20-x)=84,解得x =18,即需要答对18道题.5.在一次“人与自然”知识竞赛中,竞赛试题共有25道,每道题都给出4个答案,其中只有一个答案正确,要求学生把正确答案选出来,每道题选对得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他最少选对了19道题.解析:设他最少选对了x道题,根据题意,得4x-2(25-x)=60,解得x=1813.题目中的数只能是正整数,所以要使得分不低于60分,他至少选对了19道题,此时的得分是64分.6.下表是某市足球联赛中A,B,C,D,E五个球队积分及胜负情况:=23,=6,=8.解析:由B队胜0场,平16场,负0场,积分16分可得平一场得1分;再由C队胜0场,平12场,负4场,积分12分,可得负一场得0分;再由A队胜8场,平4场,负4场,积分28分,可得胜一场得3分.所以a=3×5+1×8+0×3=23;因为b+c=14,所以c=14-b,所以3b+(14-b)+0×2=26,解得b=6,所以c=8.三、解答题(共计64分)7.(满分20分)一份数学竞赛试卷有20道选择题,规定做对一题得5分,不做或做错■■■■(此处因印刷原因看不清楚).文文做对了16道,但只得了64分,这是为什么?解:设不做或做错得x分,列方程,得16×5+(20-16)x=64,x=-4.答:所以不做或做错扣4分.8.(满分20分)某校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢一场得2分,输一场得1分.可是小谭忘记了输赢各多少场了,请你根据上面提供的信息分别求出该校队输、赢各多少场.解:设球队赢了x场,则输了(16-x)场,由题意得2x+(16-x)×1=28,解得x=12,16-x=4.答:球队赢了12场,输了4场.9.(满分24分)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表,某户居民五、六月份共用电500度,缴电费290.5元,已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度,问该户居民五、六月份各用电多少度?解:当5月份用电量为x度≤200度时,6月份用电(500-x)度,由题意,得0.55x+0.6(500-x)=290.5,解得:x=190,∴6月份用电500-x=310(度).当5月份用电量为x度>200度,六月份用电量为(500-x)度>200度,由题意,得0.6x +0.6(500-x)=290.5方程无解,∴该情况不符合题意.答:该户居民五、六月份分别用电190度、310度.[3.4实际问题与一元一次方程第4课时]一、选择题(每小题6分,共计18分)1.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算(C)A.甲B.乙C.丙D.一样解析:设商品原价为x,甲超市的售价为x(1-20%)(1-10%)=0.72x;乙超市售价为x(1-15%)2=0.722 5x;丙超市售价为x(1-30%)=0.7x;故到丙超市合算.故选C.2.小强想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3 000 h内),节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时,照明时间大约1 500 h,选哪一种灯省钱(A)A.节能灯B.白炽灯C.两种一样D.不能确定解析:节能灯的费用:0.01×1 500×0.5+50=57.5(元);白炽灯的费用:0.1×1 500×0.5+5=80(元),所以选择节能灯省钱.3.某同学花了30元钱购买图书馆会员证,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张4元,要想使得购会员证比不购会员证合算,该同学去图书馆阅览应超过(C)A.8次B.9次C.10次D.11次解析:设该同学去图书馆阅览次数为x次时,办会员证与不办会员证花费相同,则30+1·x=4x,解得x=10.所以去的次数超过10次时,办会员证合算.故选C.二、填空题(每小题6分,共计18分)4.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1 min,再付电话费0.2元;“神州行”不缴月基础费,每通话1 min需付话费0.4元(这里均指市内电话).若一个月内通话250 min,两种通话方式的费用相同.解析:设一个月内通话x min,两种通话方式的费用相同,列方程,得50+0.2x=0.4x.解得x=250.5.张新和李明相约到图书城去买书,根据他们的对话内容(如图),则李明上次所买书籍的原价是160元.。
人教版七年级数学上册《第三章综合》同步练习(含答案)
第三章 一元一次方程一、选择题1.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是( )A .120元B .100元C .72元D .50元2.一条船在一条河上的顺流航速是逆流航速的3倍,这条船在静水中的航速与河水的流速之比是( )A .3∶1B .2∶1C .1∶1D .5∶23.设有x 个人共种m 棵树苗,如果每人种8棵,则剩下2棵树苗未种,如果每人种10棵,则缺6棵树苗.根据题意,列方程正确的是()A .61028+=-x x B .61028-=+x x C .10682+=-m m D .10682-=+m m 4.如果a=b ,那么下列结论中不一定成立的是()A .1=ba B .a ﹣b=0 C .2a=a+b D .a 2=ab 5.下列方程中,是一元一次方程的是() A .x+y=1 B .x 2﹣x=1 C .2x +1=3x D .x2+1=3 6.(3分)一元一次方程410x +=的解是( )A .14 B .14- C .4 D .4- 7.已知2x =是关于x 的方程21x m -=的解,则m 的值是 ( ).A .3-B .3 C .2 D .7 8.若代数式4x ﹣5与212x -的值相等,则x 的值是( ) A .1 B .32 C .23 D .2 9.若关于x 的方程mx m ﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )A .x=0B .x=3C .x=﹣3D .x=210.若代数式x+3的值为2,则x 等于( )A 、1B 、-1C 、5D 、-5二、填空题11.在方程2x+y=3中,用含x 的代数式表示y 为_________________.12.在方程3x+4y=6中,如果2y=6,那么x= .13.若关于x 的方程2x+a=5的解为x=-1,则a= .14.已知x=6是关于x 的方程135=-m x 的解,则m 的值是 . 15.当x= 时,式子5x+2与3x ﹣4的值相等.16.刘俊问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”问王老师今年 岁.17.设一列数1a 、2a 、3a 、…、n a 中任意三个相邻数之和都是33,已知32a x =,2215a =,3838a x =+,那么2015a = .18.把一些图书分给某班学生阅读,如果每人3本,则剩余20本,如果每人4本,则还缺25本,那么这个班有 学生.三、计算题19.计算题:(1)解方程:4(2-x )-3(x+1)=6(2)解方程:332164x x +-=- (3)解方程组:32147x y x y +=-⎧⎨+=-⎩(4)解方程组4(2)153(2)32x y y x +=-⎧⎨+=-⎩四、解答题20.(10分)欧拉是一位著名的数学家,他把他的一生都献给了人类的数学事业,在他一生岁数的41那年,他发表了第一篇数学论文,并且获得了巴黎科学院奖金,此后过了7年,他成为彼得堡科学院的数学教授,在欧拉去世的前17年,他不幸双目失明了,但他继续在黑暗的世界里凭着他的记忆和心算进行数学研究,在这17年里,他写出了数学论文400篇,正好是他一生的岁数与他成为彼得堡学院数学教授时岁数之差的8倍.根据以上信息,请你算出数学家欧拉一生活了多少岁?21.在做解方程练习时,学习卷中有一个方程“11228y y -=+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解.与当3x =时代数式5(1)2(2)4x x ----的值相同.”聪明的小聪很快补上了这个常数.同学们,请你们也来补一补这个常数.22.某顾客在商场看中了甲、乙两种冰箱,其中甲冰箱的价格为2100元,日均耗电量为1度;乙冰箱是新节能产品,价格为2220元,日均耗电量为0.5度.若这两种冰箱的效果相同且甲冰箱可以打折但乙冰箱不打折,请你就价格方面计算说明,甲冰箱至少打几折时购买比较合算?(假设:每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天.)23.情景:试根据图中信息,解答下列问题:(1)购买8根跳绳需 元,购买14根跳绳需 元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.参考答案1.D .2.B3.C .4.A .5.C .6.B .7.B .8.B9.A10.B .11.y=-2x+3.12.﹣2.13.7.14.53. 15.-3.16.31.17.14.18.45名.19.(1)17- (2)34 (3)12x y =⎧⎨=-⎩ (4)31x y =-⎧⎨=⎩ 20.76岁.21.7.22.7折23.(1) 200;280.(2)有, 11根.。
最新人教版七年级数学上册第三章同步测试题及答案解析
最新人教版七年级数学上册第三章同步测试题及答案解析甲地到乙地的路程t1 - 骑自行车所用的时间t2 - 乘公共汽车所用的时间根据题意,列出方程:t2 = t1 + 216t1 = 38t2解:将第一个方程中的t2代入第二个方程中,得到16t1 = 38(t1+2),化简得到22t1 = 38×2,即t1 = 34/11.将t1代入第一个方程中,得到t2 = 40/11.因为路程等于速度乘以时间,所以甲、乙两地之间的路程为16×34/11 = 512/11 km。
1.解析:将2x=-3系数化1得x=-3/2.2.解析:将x=m代入方程得2m-m=1,解得m=-2.3.解析:将-6x=78系数化1得x=-13.4.解析:将x提取出来得x(1-1/2+4)=18,解得x=4.5.解析:将x=1/2代入方程得5/2-(-3/2)=4x,解得x=1/2.6.解析:设长方体的高为x,则2x+x=30,解得x=5.长方体的宽为2x=10,长为30-2x=20,体积为5x10x20=1000.7.解析:将53x+18=5x+68化简得48x=50,解得x=25/24.1.解方程2-3x/2=2/2时,去分母,得4-(3x-1)=2x+1,化简得4-3x+1=2x+1,即4-x=2x+1,移项得-x=18,系数化为1,得x=-18.2.若2/3的值比3/5的值小1,则x的值为-13/5.根据题意,得2/3=3/5-1,解得x=-13/5.3.___读了一本故事书,第一天读了全书的1/3,第二天读了剩下的,这时还有24页没有读,则他第二天读的页数为12.设全书有x页,则x+(2/3)x+24=x,即x+(2/3)x+24=x,去分母得3x+2x+72=9x,移项、合并同类项得-4x=-72,系数化为1,得x=18,所以(1/3)x=6,第二天读的页数为(2/3)x+24=12.4.当x=7时,x-3/(x+3)的值与(5/3)-7的值互为相反数。
北师版七年级数学上册第三章综合测试卷含答案
北师版七年级数学上册第三章综合测试卷时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.下列各式中,是单项式的是( )A . x 2-1B . a 2bC .πa +b D . x -y 32.下列各式书写规范的是( )A .112aB . x -y 2C . x ÷(x -y )D . a -b m3.对于多项式2x 2-3x -5,下列说法错误的是( )A .它是二次三项式B .最高次项的系数是2C .2x 2和-3x 是同类项D .各项分别是2x 2,-3x ,-54.[教材P89习题T1变式 2024 泰州姜堰区月考]下列计算正确的是( )A .3ab +2ab =5abB .5y 2-2y 2=3C .7a +a =7a 2D . m 2n -2mn 2=-mn 25.下列各式中,去括号不正确的是( )A . x +2(y -1)=x +2y -2B . x +2(y +1)=x +2y +2C . x -2(y +1)=x -2y -2D . x -2(y -1)=x -2y -26.已知a -b =1,则式子-3a +3b -11的值是( )A .-14B .1C .-8D .57. x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A .-1B .1C .-2D .28.[教材P 106复习题T 12变式]某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的结果为xy -2yz +3xz ,则正确的结果是( )A .2xy -5yz +xzB .3xy -8yz -xzC . yz +5xzD .3xy -8yz +xz9.[2024石家庄裕华区期末]将四张边长各不相同的正方形纸片①,②,③,④按如图方式放入长方形ABCD 内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示,若要求出两个阴影部分周长的差,只要知道下列哪个图形的边长( )(第9题)A .①B .②C .③D .④10.[新视角 规律探究题 2023 重庆]用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……按此规律排列下去,则第⑧个图案用的木棍根数是()(第10题)A.39 B.44 C.49 D.54二、填空题(每题3分,共24分)11.单项式-π3a3b2的系数是,次数是.12.[新视角结论开放题]对代数式“5x+2y”,请你结合生活实际,给出“5x+2y”一个合理解释:.13.[教材P78随堂练习T2变式]一个三位数,百位数字是3,十位数字和个位数字组成的两位数是b,用式子表示这个三位数是.14.如果单项式3x m y与-5x3y n是同类项,那么m-n=.15.若多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m等于.16.[2024太原五中月考]运动展风采,筑梦向未来.为迎接体育节的到来,学校计划将原来的长方形跳远沙坑扩大,使其长、宽分别增加0.5米.若原跳远沙坑的宽为a米,长是宽的3倍,则扩大后沙坑的周长为米.17.已知a-2b=3,2b-c=-5,c-d=10,则(a-c)+(2b-d)-(2b-c)的值为.18.[新视角规律探究题2024济宁兖州区期末]找出以下图形变化的规律,则第2 024个图形中黑色正方形的个数是.三、解答题(19,21,23题每题10分,其余每题12分,共66分)19.(1)化简:9m2-4(2m2-3mn+n2)+4n2;(2)先化简多项式,再求值:5ab-2[3ab-(4ab2+12ab)]-5ab2,其中a=-1,b=12.20.某木工师傅制作如图所示的一个工件(阴影部分).(1)用含a,b的式子表示工件的面积;(2)当a=8厘米,b=12厘米时,工件的面积是多少?(结果用含π的式子表示)21.[教材P106复习题T12变式]某同学做一道题:已知两个多项式A,B,求A-2B的值.他误将“A-2B”看成“A+2B”,经过正确计算得到的结果是x2+14x-6.已知A=-2x2+5x-1.(1)请你帮助这位同学求出正确的结果;(2)若x是最大的负整数,求A-2B的值.22.[2024深圳坪山区月考]已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)求值:a+b=;(2)分别判断以下式子的符号(填“>”“<”或“=”):b+c0;a-c0;ac0;(3)化简:-|2c|+|-b|+|c-a|+|b-c|.23.[情境题方案策略型]近期,某生态园喜获丰收,猕猴桃总产量为32 000千克.为了更好地销售,生态园决定将这批猕猴桃分为三部分,分别采取三种不同的销售方案出售完这批猕猴桃.方案一:将其中的16 000千克猕猴桃直接运往市区销售.若运往市区销售,每千克售价为x元,平均每天售出800千克,需要请6名工人,每人每天付工资600元.农用车运费及其他各项税费平均每天400元.方案二:将其中10 000千克猕猴桃交给某直播团队直播带货,猕猴桃每千克的售价比方案一中每千克售价x元的1.2倍再降8元,并用销售额的10%作为整个直播团队的费用和其他各项支出费用.方案三:将剩下的猕猴桃由市民亲自到生态园采摘,采摘购买的猕猴桃每千克售价比方案一中的售价少2元.(1)若采用方案一,将16 000千克猕猴桃全部运往市区销售,需要天;(2)请用含x的式子表示生态园出售完这批猕猴桃的总收入;(3)当x=20时,请计算出售完这批猕猴桃的总收入.24.[新考法材料阅读题2024广州越秀区期中]【阅读理解】请你阅读下列内容回答问题:商品条形码在生活中随处可见,它是商品的身份证.条形码是由13位数字组成的,前12位数字表示“国家代码、厂商代码和产品代码”相关信息,第13位数字为“校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性,它的编制是按照特定算法得来的,具体算法如下(以图①为例):步骤1:计算前12位数字中偶数位数字的和p,即p=9+5+4+2+4+2=26;步骤2:计算前12位数字中奇数位数字的和q,即q=6+0+3+9+1+6=25;步骤3:计算3p与q的和m,即m=3×26+25=103;步骤4:取大于或等于m且为10的整数倍的最小数n,即n=110;步骤5:计算n与m的差就是校验码X,即X=110-103=7.【知识运用】请回答下列问题:(1)若某数学辅导资料的条形码为582917455013Y,则校验码Y的值是;(2)如图②,某条形码中的一位数字被墨水污染了,请求出这个数字是多少;(3)如图③,某条形码中被污染的两个数字的和为13,请直接写出该商品完整的条形码.参考答案一、1. B 2. B 3. C 4. A 5. D 6. A 7. A 8. B 9. C10. B二、11.-π3;5 12.每张成人票x 元,每张儿童票y 元,5个成人和2个儿童买票共需花费(5x +2y )元(答案不唯一)13. 300+b 14.2 15.416.(8a +2) 17.818.3 036 点拨:观察前几个图形可知,第1个图形中黑色正方形的个数是2,第2个图形中黑色正方形的个数是3,第3个图形中黑色正方形的个数是5,第4个图形中黑色正方形的个数是6,第5个图形中黑色正方形的个数是8……进而得出规律:当n 为偶数时,第n 个图形中黑色正方形的个数是(n 2+n);当n 为奇数时,第n 个图形中黑色正方形的个数是(n+12+n). 所以第 2 024 个图形中黑色正方形的个数是2 0242+2 024=3 036.三、19.解:(1)原式=9m 2-8m 2+12mn -4n 2+4n 2=m 2+12mn .(2)原式=5ab -2(3ab -4ab 2-12ab)-5ab 2=5ab -6ab +8ab 2+ab -5ab 2=3ab 2. 当a =-1,b =12时,原式=3×(-1)×(12)2 =-34. 20.解:(1)ab -πa 24.(2)当a =8厘米,b =12厘米时,ab -πa 24=8×12-π×824=(96-16π)(平方厘米).所以工件的面积是(96-16π)平方厘米.21.解:(1)由题意,得2B =x 2+14x -6-(-2x 2+5x -1)=3x 2+9x -5,所以A -2B =-2x 2+5x -1-(3x 2+9x -5)=-5x 2-4x +4.(2)因为x 是最大的负整数,所以x =-1.所以A -2B =-5×(-1)2-4×(-1)+4 =3.22.解:(1)0(2)<;>;<(3)-|2c|+|-b|+|c-a|+|b-c|=-(-2c)-b+a-c+b-c=2c-b +a-c+b-c=a.23.解:(1)20(2)方案一的收入为16 000x-20×6×600-20×400=(16 000x-80 000)(元),方案二的收入为10 000×(1.2x-8)×(1-10%)=(10 800x-72 000)(元),方案三的收入为(32 000-16 000-10 000)×(x-2)=(6 000x-12 000)(元),则总收入为16 000x-80 000+10 800x-72 000+6 000x-12 000=(32 800x-164 000)(元).所以生态园出售完这批猕猴桃的总收入为(32 800x-164 000)元.(3)32 800×20-164 000=492 000(元).所以出售完这批猕猴桃的总收入为492 000元.24.解:(1)6(2)设这个数字是a,步骤1:p=7+0+2+a+1+6=16+a;步骤2:q=9+1+4+7+3+2=26;步骤3:m=3p+q=3(16+a)+26=3a+74;步骤4:n≥3a+74且为10的整数倍的最小数;步骤5:n-m=n-3a-74=2.所以n=3a+76.因为a(0≤a≤9)为自然数,所以只有当a=8时,n=100为10的整数倍.所以这个数字是8.(3)该商品完整的条形码为3624183293157或3629183243157.点拨:设被污染的两个数字中的前一个数字为b,则被污染的两个数字中的后一个数字为13-b;步骤1:p=6+b+8+2+3+5=b+24;步骤2:q=3+2+1+3+(13-b)+1=23-b;步骤3:m=3p+q=3(b+24)+23-b=2b+95;步骤4:n≥2b+95且为10的整数倍的最小数;步骤5:n-m=n-2b-95=7.所以n=2b+102.因为b(0≤b≤9)为自然数,所以当b=4时,n=110为10的整数倍,此时13-b=9;当b=9时,n=120为10的整数倍,此时13-b=4.综上,该商品完整的条形码为3624183293157或3629183243157.。
七年级数学上册第三章《一元一次方程》综合复习练习题(含答案)
七年级数学上册第三章《一元一次方程》综合复习练习题(含答案)一、单选题1.已知下列方程:①22x x -=;②0.31x =;③512xx =+;④243x x -=;⑤6x =;⑥20.x y +=其中一元一次方程的个数是( ) A .2B .3C .4D .52.若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( ) A .2m ≠-B .0m ≠C .2m ≠D .2m >-3.一支球队参加比赛,开局9场保持不败,共积21分,比赛规定胜一场得3分,平一场得1分,则该队共胜的场数为( ) A .6场B .7场C .8场D .9场4.关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍,则m 的值为( ) A .12B .14C .14-D .12-5.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4)B .π×92×x =π×92×(x+4)C .π×(92)2×x =π×(52)2×(x-4)D .π×92×x =π×92×(x-4)6.古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x ,则所列方程为( ) A .213337x x x ++=B .21133327x x x ++=C .21133327x x x x +++=D .21133372x x x x ++-=7.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .()()8374x x -=+B .8374x x +=-C .3487y y -+= D .3487y y +-= 8.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了( ) A .102里 B .126里C .192里D .198里9.小明解方程12123x x +--=的步骤如下: 解:方程两边同乘6,得()()31122x x +-=-① 去括号,得33122x x +-=-② 移项,得32231x x -=--+③ 合并同类项,得4x =-④以上解题步骤中,开始出错的一步是( ) A .①B .②C .③D .④10.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x 元,则可列方程为( )A .65191652x x x ++=B .21191653x x x ++=C .2191635x x x ++= D .25191652x x x ++= 11.把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .612.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( ) A .2932x x+=- B .9232x x -+=C .9232x x +-=D .2932x x-=+ 二、填空题13.《九章算术》是我国古代数学名著,书中记载:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱,问合伙人数、羊价各是多少?”设合伙人数为x 人,根据题意可列一元一次方程为__________________.14.如将()x y -看成一个整体,则化简多项式22()5()4()3()x y x y x y x y -----+-=__. 15.有一个一元一次方程:11623x x -=-■,其中“■”表示一个被污染的常数.答案注明方程的解是32x =-,于是这个被污染的常数是___ ___.16.已知2230m x -+=是关于x 的一元一次方程,则m =________________.17.22年冬奥会开幕式上,烟台莱州武校的健儿们参演的立春节目让全世界人民惊艳和动容,小明想知道这震撼人心的队伍的总人数.张老师说你可以自己算算:若调配55座大巴若干辆接送他们,则有8人没有座位;若调配44座大巴接送,则用车数量将增加两辆,并空出3个座位,你能帮小明算出一共去了_______名健儿参演节目吗?18.关于x 的方程5m +3x =1+x 的解比方程2x =6的解小2,则m =___ __. 19.已知x =1是方程31322x k x -=-的解,则23k +的值是_________ _____ 20.已知数轴上的点A ,B 表示的数分别为2-,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 ___ __. 三、解决问题 21.解方程:(1)43(23)12(4)x x x +-=--; (2)121146x x +--=.22.解方程(1)2(x +8)=3(x -1) (2)121124x x --=-23.以下是圆圆解方程1323+--x x =1的解答过程. 解:去分母,得3(x +1)﹣2(x ﹣3)=1. 去括号,得3x +1﹣2x +3=1. 移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.24.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?25.某市有甲、乙两个工程队,现有-小区需要进行小区改造,甲工程队单独完成这项工程.需要20天,乙工程队单独完成这项工程所需的时间比甲工程队多12(1)求乙工程队单独完成这项工程需要多少天?(2)现在若甲工程队先做5天,剩余部分再由甲、乙两工程队合作,还需要多少天才能完成?(3)已知甲工程队每天施工费用为4000元,乙工程队每天施工费用为2000元,若该工程总费用政府拨款70000元(全部用完),则甲、乙两个工程队各需要施工多少天?26.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣2,点B表示的数4,下列各数,3,2,0所对应的点分别C1,C2,C3,其中是点A,B的“联盟点”的是;(2)点A表示数﹣10,点B表示的数30,P在为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数为.27.对数轴上的点P进行如下操作:将点P沿数轴水平方向,以每秒m个单位长度的速度,向右平移n 秒,得到点P ',称这样的操作为点P 的“m 速移”点P '称为点P 的“m 速移”点. (1)点A 、B 在数轴上对应的数分别是a 、b ,且()25150a b ++-=. ①若点A 向右平移n 秒的“5速移”点A '与点B 重合,求n ;②若点A 向右平移n 秒的“2速移”点A '与点B 向右平移n 秒的“1速移”点B '重合,求n ; (2)数轴上点M 表示的数为1,点C 向右平移3秒的“2速移”点为点C ',如果C 、M 、C '三点中有一点是另外两点连线的中点,求点C 表示的数;(3)数轴上E ,F 两点间的距高为3,且点E 在点F 的左侧,点E 向右平移2秒的“x 速移”点为点E ',点F 向右平移2秒的“y 速移”点为点F ',如果3E F EF ''=,请直接用等式表示x ,y 的数量关系。
七年级数学第三章整式章节综合练习题(附答案)
七年级数学第三章整式章节综合练习题一、单选题1.a 的相反数是( ) A .aB .1aC .-aD .以上都不对2.计算()31-+-的结果是( )A.2B.-2C.4D.-4 3.在51,2,0,3-这四个数中,最大的数是( ) A. 2- B. 0C.53 D. 14.人类的遗传物质是,DNA DNA 是一个很长的链,最短的22号染色体也长达30 000 000个核苷酸.30 000 000用科学记数法表示为( ) A .7310⨯ B .63010⨯ C .70.310⨯ D .80.310⨯5.计算222a a +,结果正确的是( ) A. 42a B. 22a C. 43a D. 23a6.下列判断中,错误的是( ) A .1a ab --是二次三项式 B .22a b c -是单项式 C .2a b+是多项式 D .23π4R 中,系数是347.对于四舍五入得到的近似数55.6010⨯,下列说法正确的是( ) A .精确到百分位 B .精确到个位 C .精确到万位D .精确到千位8.已知201920a x =+,201919b x =+,201921c x =+,那么式子2a b c +-的值是( ) A .-4B .-3C .-2D .-19.已知a ,b 是有理数,若a 在数轴上的对应点的位置如图所示, 0a b +<,有以下结论:① 0b <;② 0b a ->;③ a b ->-;④1ba<-,则所有正确的结论是( )A.① ④B.① ③C.② ③D.② ④10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中的一个正方形剪开得到图③,图③中共有7个正方形;将图③中的一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 018个图中共有正方形的个数为( )A .6 046B .6 049C .6 052D .6 05511.一列数: 0、1、2、3?、6、7?、14、15、30、、、这串数是由小明按照一定规则写下来的,他第一次写下“0、1”,第二次接着写“2、3?”,第三次接着写“6、7?”第四次接着写“14、15”,就这样一直接着往下写,那么这串数接下来的三个数应该是下面的( ) A. 30、32、64 B. 31、62、63 C. 31、32、33 D. 31、45、4612.如图,从边长为()4a cm +的正方形纸片中剪去一个边长为()1a cm +的正方形()0a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A. ()2225a a cm + B. ()2315a cm +C. ()269a cm +D. ()2615a cm +二、解答题13.在如图所示的数轴上表示3.5和它的相反数、14-和它的倒数、绝对值等于1数、-2和它的立方,并用“<”把它们连接起来.14.某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m ):5310861310+,-,+,-,-,+,-. (1)守门员最后是否回到了初始位置? (2)守门员离开初始位置的最远距离是多少米?(3)守门员离开初始位置达到10m 以上(包括10m )的次数是多少?15.有理数a b c ,,在数轴上的位置如图所示,且表示数a 的点、数b 的点与原点的距离相等.(1)用“>”“<”或“=”填空:b ______0,a b +______0,a c -______0,b c -______0; (2) 11b a -+-= ________; (3)化简:a b a c b b c ++--+-.16.如图,一个长方形运动场被分隔成,,,,A B A B C 共5个区,A 区是边长为m a 的正方形,C 区是边长为m c 的正方形.(1)列式表示每个B 区长方形场地的周长,并将式子化简; (2)列式表示整个长方形运动场的周长,并将式子化简; (3)如果40a =,40a =,求整个长方形运动场的面积.17.如今,网上购物已成为一种新的消费时尚,新星饰品店想购买一种贺年卡在元旦时销售,在互联网上搜索了甲、乙两家网店(如图所示),已知两家网店的这种贺年卡的质量相同,请看图回答下列问题:(1)假若新星饰品店想购买x 张贺年卡,那么在甲、乙两家网店分别需要花多少钱(用含有x 的式子表示)?(提示:如需付运费时,运费只需付一次,即8元) (2)新星饰品店打算购买300张贺年卡,选择哪家网店更省钱?18.有一列数,第一个数为11x =,第二个数为23x =,从第三个数开始依次为34,,,nx x x .从第二个数开始,每个数是左右相邻两个数和的一半,如1322x x x +=,2432x x x +=. 1.求345,,x x x 的值,并写出计算过程; 2.根据1题的结果,推测9x 等于多少;3.探索这一列数的规律,猜想第k (k 为正整数)个数k x 等于多少.19.如图所示是一个长方形.1.根据图中尺寸大小,用含x 的代数式表示阴影部分的面积S ;2.若3x = 求S 的值.20.解方程:1231337x x -+=- 21.已知22 335,A x y xy =+-22 432,B x y xy =-+当 1,1x y =-=时,计算23A B -的值.22.化简2222(43)[2(1)23]a b a b ---+-三、计算题23.计算:(1) 323.7 1.355⎛⎫---- ⎪⎝⎭;(2) ()2133544⎡⎤⎛⎫⎛⎫-÷-÷-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;(3) 3751412824⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭;(4) ()()2018211113223⎡⎤⎛⎫-+-⨯÷-+ ⎪⎢⎥⎝⎭⎣⎦.24.先化简,再求值: (1) 22135322x x x x ⎡⎤⎛⎫---+⎪⎢⎥⎝⎭⎣⎦,其中2x =;(2) ()()37432xy y x xy y x --+-+-⎡⎤⎣⎦,其中2xy =-,3x y -=. 25.计算: 3111314(2)164248⎛⎫---⨯-⨯-+ ⎪⎝⎭四、填空题26.32-的绝对值是________,2 018的倒数是________.27.已知多项式()210mxm x +--是二次三项式,m 为常数,则m 的值为________.28.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是_____________.29.若关于,a b 的多项式()()2222322a ab b a mab b ---++中不含有ab 项,则m =________. 30.某音像社出租光盘的收费方法如下:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____________元,第10天应收租金__________元.31.若3mn m =+,则23510mn m nm +-+=__________.32.数轴上与原点的距离小于2的整数点的个数为x ,不大于2的整数点的个数为y ,等于2的整数点的个数为z ,则x y z ++=________.33.在如图所示的运算流程中,若输出的数3y =,则输入的数x =__________。
华东师大版七年级数学上册第三章同步测试题及答案
华东师大版七年级数学上册第三章同步测试题及答案3.1列代数式一.选择题1.以下是代数式的是()A.m=ab B.(a+b)(a﹣b)=a2﹣b2C.a+1 D. S=πR22.某商场举办促销活动,将原价x元的衣服改为(+1)元出售.下列叙述可作为此商场的促销标语的是()A.原价打三四折再加一元B.原价打四三折再加一元C.原价加一元再打三四折D.原价打七五折再加一元3.代数式a+b2读作()A.a与b的平方B.a与b的和的平方C.a的平方与b的平方的和D.a与b的平方的和4.用﹣a表示的一定是()A.正数B.负数 C.正数或负数D.以上都不对5.下列代数式中符合书写要求的是()A.B.n2C.a÷b D.6.在2x2,1﹣2x=0,ab,a>0,0,,π中,是代数式的有()A.5个B.4个C.3个D. 2个7.通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是()A.(a+b)元B.(a﹣b)元C.(a+5b)元D.(a﹣5b)元8.黄石市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示为()A.(11+t)℃B.(11﹣t)℃C.(t﹣11)℃D.(﹣t﹣11)℃二.填空题9.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为_________ 10.体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则代数式500﹣3a﹣2b表示的数为11.实验中学初三年级12个班中共有团员a人,则表示的实际意义是_________ .12.若x=﹣1,则代数式x3﹣x2+4的值为_________ .13.今年五月份,由于H7N9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a元/千克,则五月份的价格为_________ 元/千克.14.对单项式“5x”,我们可以这样理解:香蕉每千克5元,某人买了x千克,共付款“5x”元.请你结合生活实际,再给出“5x”的另一个合理解释为:_________ .三.解答题15.说出下列代数式的意义:(1)2(a+3);(2)a2+b2;(3).16.用字母表示图中阴影部分的面积.17.某镇有A、B两家纯净水销售站,它们所提供的纯净水的价格、质量都相同.为了促销,A站的纯净水每桶降价20%销售;B站规定:每个用户购买B站的纯净水,第1桶按照原价销售,若用户继续购买,则从第2桶开始每桶降价25%销售,促销活动都是三个月.若小明家预计三个月要购买12桶纯净水,请你帮他判断购买哪家的纯净水较省钱,并说明理由.18.如果某三角形第一条边长为(2a﹣b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少b(cm),求这个三角形的周长(用a、b的代数式表示).19.用如图正方形纸板制作一个无盖的长方体盒子,可在正方体的四角减去相同的正方形,剩余部分即可做成一个无盖的长方体形盒子.(1)设正方形纸的边长为a,减去的小正方形的边长为x,请用a与x表示这个无盖长方体形盒子的容积;(2)把正方形的纸板换成长为a,宽为b的长方形纸板,怎样做一个无盖长方体形盒子?画图说明你的做法;(3)把(2)中做的长方体形盒子的容积用代数式表示出来;(4)比较(1)和(3)的结果,说说它们的区别和联系.20.小明将连续的奇数1,3,5,7,9,…,排成如图所示的数阵,用一个矩形框框住其中的9个数,如图所示.(1)矩形阴影框中的9个数的和与中间一个数存在怎样的关系?(直接写出笞案)(2)若将矩形框上下左右移动,这个关系还成立吗?为什么?答案一、1. C 2.D 3.D4.D 分析:﹣a表示的有可能是A中说的正数,有可能B中说的负数,有可能C中说的正数或负数.故选D.5.D6.A 分析:因为1﹣2x=0,a>0,含有=和>,所以不是代数式,所以代数式的有2x2,ab,0,,π,共5个.故选A.7.A 分析:b÷(1﹣20%)+a=a+b.故选A.8.C 分析:设最低气温为x℃,则t﹣x=11,x=t﹣11.故选C.二、 9.分析:由题意得这批图书共有ab册,则图书的一半是:册.10.体育委员买了3个足球、2个篮球,剩余的经费11.平均每班团员数12.2分析:x3﹣x2+4=(﹣1)3﹣(﹣1)2+4=﹣1﹣1+4=﹣2+4,=2.13.0.9a 分析:因为原来鸡肉价格为a元/千克,现在下降了10%,所以五月份的价格为a﹣10%a=(1﹣10%)a=0.9a.14.某人的行走速度是x米/分,5分钟行走的路程三.15.解:(1)2(a+3)的意义是2与(a+3)的积;(2)a2+b2的意义是a,b的平方的和;(3)的意义是(n+1)除以(n﹣1)的商.16.解:(1)阴影部分的面积=ab﹣bx;(2)阴影部分的面积=R2﹣πR2.17.解:设每桶纯净水的原价为a元,则购买12桶纯净水,在A站需花费的金额为(1﹣20%)a•12=9.6a(元);在B站需花费的金额为a+(1﹣25%)a•11=9.25a(元);因为9.6a>9.25a,所以小明家应选择到B家纯净水销售站购买纯净水,这样较省钱.18.解:周长=(2a﹣b)+[(2a﹣b)+(a+b)]+[2(2a﹣b)﹣b]=2a﹣b+2a﹣b+a+b+4a﹣2b﹣b=9a﹣4b.19.解:(1)依题意,长方体盒子容积为:(a﹣2x)2•x;(2)画图如下:(3)设减去的正方形边长为x,根据题意得:(a﹣2x)(b﹣2x)•x;(4)(1)中底面积为正方形面积为(a﹣2x)2,(3)中底面积为长方形,面积为(a﹣2x)(b﹣2x),高都为x,(3)中当a=b时即得到(1)中的结果.20.解:(1)计算阴影框中9个数的和为,3+5+7+17+19+21+31+33+35=171,171÷19=9,所以,矩形阴影框中的9个数的和是中间一个数的9倍;(2)假设将矩形框向下移动一个格,则中间的数为33.则9个数的和为,17+19+21+31+32+33+35+45+47+49=297,297÷33=9,再假设将矩形框向左移动一个格,则中间的数为17,则9个数的和为:1+3+5+15+17+19+29+31+33=153,153÷17=9.所以这个关系还成立.3.2 代数式的值一、选择题1.当a=1,b=2时,a2+b2的值是( )A.5B.6C.7D.82.若a=-,b=2,c,d互为倒数,则代数式2(a+b)-3cd的值为 ( )A.2B.-1C.-3D.03.根据如图的程序计算y的值,若输入的x的值为,则输出的y值为( )A. B. C. D.二、填空题4.若m,n互为倒数,则mn2-(n-1)的值为______.5.在高中时我们将学到:叫做二阶行列式,它的算法是:ad-bc,那么=______.6.定义新运算“⊗”,a⊗b=a-4b,则12⊗(-1)=______.三、解答题7.求代数式的值:4x2+3xy-x2-9,其中x=2,y=-3.8.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高.如果用a表示脚印长度,b表示身高.关系类似于:b=7a-3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(2)在某次案件中,抓获了两名可疑人员,一个身高为 1.87m,另一个身高 1.75m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?9.第22届冬奥会将于2014年2月7日在索契拉开帷幕,激起了人们参与体育运动的热情,我们知道,人在运动时的心跳速率通常和人的年龄有关,如果用a表示一个人的年龄,b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有b=0.8(220-a).(1)正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时,10秒钟的心跳次数为22次,他有危险吗?答案1.A 分析:当a=1,b=2时,a2+b2=12+22=1+4=5.2. D 分析:c,d互为倒数,所以cd=1.当a=-,b=2时,2(a+b)-3cd=2×(-+2)-3×1=2×-3=3-3=0.3. B 分析:因为2<<4,所以当x=时,输出的y值为.4.1 分析:因为m,n互为倒数,所以mn=1,所以mn2-(n-1)=mn·n-n+1=n-n+1=1.5.-2 分析:根据题意可知,本题求当a=1,b=2,c=3,d=4时,ad-bc的值,所以ad-bc=1×4-2×3=4-6=-2.6.8 分析:12⊗(-1)=×12-4×(-1)=8.7.解:原式=3x2+3xy-9,当x=2,y=-3时,原式=3×4+3×2×(-3)-9=-15.8.解:(1)当a=24.5时,b=7×24.5-3.07=168.43(cm).即身高约为168.43cm.(2)当a=26.3时,b=7×26.3-3.07=181.03(cm).187-181.03=5.97.181.03-175=6.03.因为5.97<6.03,所以身高为1.87m的可疑人员的可能性更大.9.解:(1)当a=14时,b=0.8(220-a)=0.8×(220-14)=0.8×206=164.8≈165(次).(2)因为10秒钟心跳次数为22次,所以1分钟心跳次数为22×6=132(次).当a=45时,b=0.8(220-a)=0.8×(220-45)= 140>132,所以这个人没有危险.3.3 整式一、选择题1.单项式-的系数和次数依次是( )A.-2,2B.-,4C.,5D.-,52.代数式x,-,-,,中共有整式( )A.2个B.3个C.4个D.5个3.代数式(a-1)x3+(b-1)x是关于x的一次式,则a,b的值可以为( )A.0,3B.0,1C.1,2D.1,1二、填空题4.单项式-ab2c3的系数是________.5.(2012·泰州中考)根据排列规律,在横线上填上合适的代数式:x,3x2,5x3,______,9x5,….6.把多项式2x2-3x+x3按x的降幂排列是______.三、解答题7.把下列代数式按单项式、多项式、整式进行归类.x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1,.8.已知多项式-3x2y m+1+x3y-3x4-1是五次四项式,单项式3x3n y3-m z与多项式的次数相同.(1)求m,n的值.(2)把这个多项式按x降幂排列.9.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.答案1.D 分析:-=-xy2z2,即单项式的系数为-,次数为1+2+2=5.故选项D正确.2.B 分析:整式包括单项式和多项式,有x,-,,共有3个.3. C 分析:因为是关于x的一次式,所以不含有x3的项,即a-1=0,所以a=1;代数式是关于x的一次式,故b-1≠0,即b≠1.综上满足条件的只有C.4. -分析:因为单项式-ab2c3中的数字因数是-,所以单项式-ab2c3的系数是-.5. 7x4分析:系数分别为1,3,5,所以所填系数应为7,再看字母以及字母的指数,发现分别为x,x2,x3,所以所填部分的字母及字母的指数应为x4.答案: 6. x3+2x2-3x 分析:2x2,-3x,x3中的x的次数依次为2,1,3,所以按x的降幂排列是x3+2x2-3x.7.解:单项式有x2y,-,-29,600xz,axy.多项式有a-b,x+y2-5, 2ax+9b-5,xyz-1.整式有x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1.8.解:(1)根据题意知:m+1=3,m=2,因为单项式3x3n y3-m z是五次单项式,所以3n+3-m+1=5,n=1.(2)原多项式是-3x 2y 3+x 3y-3x 4-1,按x 的降幂排列为:-3x 4+x 3y-3x 2y 3-1.9.解:由于代数式是关于x,y 的五次单项式,所以b+2=0,b=-2,2+|a|=5,所以a=±3.当a=3时,a-3=0,该式就不再是关于x,y 的单项式了,故a=-3.所以a 2-3ab+b 2=(-3)2-3× (-3)×(-2)+(-2)2=9-18+4=-5.3.4 整式的加减一、选择题1.如果代数式4252y y -+的值为7,那么代数式212y y -+的值等于( ) A.2B.3C.-2D.42.下面的式子,正确的是( )A.3a 2+5a 2=8a 4B.5a 2b-6ab 2=-ab 2C.6xy-9yx=-3xyD.2x+3y=5xy3.一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( ) A.3x 2y-4xy 2B.x 2y-4xy 2C.x 2y+2xy 2D.-x 2y-2xy 24.若A=x 2-5x +2,B=x 2-5x-6,则A 与B 的大小关系是( ) A.A>B B.A=B C.A<B D.无法确定5.若A = 5a 2-4a +3,B =3a 2-4a +2,则A 与B 的大小关系是( ) A .A =B B .A>B C .A<B D .以上都可能成立6.当x =-1时,2ax 3-3bx +8的值为18,则12b -8a +2的值为( ) A .40 B .42 C .46 D .567.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1 B .5x +1 C .-13x -1 D .13x +18.三个连续奇数,中间的一个是2n +1(n 是整数),则这三个连续奇数的和为( ) A .2n -1 B .2n +3 C .6n +3 D .6n -3 9.若A 和B 都是五次多项式,则A -B 一定是( ) A .十次多项式 B .五次多项式C .次数不高于5的整式D .次数不高于5的多项式 二、填空题10.如果x =1时,代数式2ax 3+3bx +4的值是5,那么x =-1时,代数式2ax 3+3bx +4的值是__________. 11.定义a b c d 为二阶行列式,规定它的运算法则为abad bc c d =-,那么二阶行列式23____________11x x =-+.三、解答题 12.化简:(1) 7-3x-4x 2+4x-8x 2-15; (2) 2(2a 2-9b)-3(-4a 2+b) ; (3) 8x 2-[-3x-(2x 2-7x-5)+3]+4x.13.先化简,后求值:(1)(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y ;(2)若()0322=++-b a ,求3a 2b -[2ab 2-2(ab -1.5a 2b )+ab]+3ab 2的值.14.有这样一道题目:“当a =0.35,b =-0.28时,求多项式7a 3-3(2a 3b -a 2b -a 3)+ (6a 3b -3a 2b )-(10a 3-3)的值”.小敏在计算时把a =0.35,b =-0.28抄成了a =-0.35,b =0.28,结果她的结果也是正确的,你知道这是为什么吗?15.某工厂第一车间有m 人,第二车间的人数比第一车间的人数的2倍少5人,第三车间的人数比第一车间的人数的3倍还多7人,则第三车间的人数比第一、第二车间的人数的和多还是少?请说明理由.16.已知A=2x2-9x-11,B=3x2-6x+4,求:(1)A-B;(2)122A B+.17.图中的数阵是由全体奇数排成的.(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在图中任意作一个类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由.这九个数之和能等于2 016,2 018或2 025吗?若能,请写出这九个数中最小的一个;若不能,请说出理由.18.一辆出租车从A地出发,在一条东西走向的街道上营运,每次行驶的路程(向东记为正)记录如下(9<x<26,单位:km):(1(2)这辆出租车一共行驶了多少路程?答案一、1.A 2.C 3.C 4.A5.B 分析:可用作差法:A -B =5a 2-4a +3-(3a 2-4a +2)=5a 2-4a +3-3a 2+4a -2=2a 2+1.因为a 2≥0,所以2a 1+1≥1,所以A -B>0,即A>B.6.B 分析:把x =-1代入2ax 3-3bx +8得2a ×(-1)3—36×(-1)+8=-2a +3b +8.因为此式的值为18,所以-2a +3b +8=18,所以3b -2a =10,所以12b -8a = 40,所以12b -8a +2=40+2=42.7.A 分析:设这个多项式为M ,则M =3x 2+4x -1-(3x 2+9x )=3x 2+4x -1-3x 2-9x =-5x -1.8.C 分析:已知三个连续奇数中的中间一个为2n +1(n 为整数),那么,较小的一个为2n -1,较大的一个为2n +3,所以这三个奇数的和为(2n -1)+(2n +1)+(2n +3)=6n +3.9.C 分析:当A ,B 中含字母的项不都相同时,A -B 是次数不高于5的多项式;当A ,B 中含字母的项都相同时,A -B 为常数,此时是单项式,属于整式,故选C .二、10.3 分析:把x =1代入2ax 3+3bx +4=5,进行变形,然后利用整体代入法求值.因为当x =1时,代数式2ax 3 +3bx +4的值是5,所以2a + 3b +4=5,即2a +3b =1.当x =-1时,2ax 3+3bx +4=-2a -3b +4=-(2a +3b )+4=-1+4=3.11.-x +5 分析:由题意得2(x +1)-3(x -1)=2x +2-3x +3=-x +5.三、12、(1) -12x 2+x-8 ;(2) 16a 2-21b ; (3) 10x 2-8.13.(1)-x-8y=13;(2)ab 2+ab=12.14.解:7a 3-3(2a 3b -a 2b -a 3)+(6a 3b -3a 2b )-(10a 3-3)=7a 3-6a 3 b +3a 2 b +3a 3 +6a 3 b -3a 2b -10a 3+3=(7a 3+3a 3-10a 3)-6a 3b +6a 3b +3a 2b -3a 2b +3=3.因为3是常数,不含字母a 和b ,所以无论a ,b 是何值,结果都不变.故小敏将a ,b 抄错时,结果也是正确的.15.解:第三车间的人数比第一、第二车间的人数的和多12人,理由如下:由题意得,第二车间的人数为2m -5,第三车间的人数为3m +7,所以3m +7-(2m -5+m )=3m +7-(3m -5)=3m +7-3m +5=12>0,故第三车间的人数比第一、第二车间的人数的和多12人.16.解:(1)A -B = (2x 2-9x -11)-(3x 2-6x +4)=2x 2-9x -11-3x 2+6x -4=-x 2-3x -15;(2)22112(2911)2(364)22A B x x x x +=--+-+ 222911335612872222x x x x x x =--+-+=-+. 17.解:(1)平行四边形框内的九个数之和是中间的数的9倍.(2)任意作一个类似(1)中的平行四边形框,规律仍然成立,理由:不妨设平行四边形框中间的数为n ,则这九个数按大小顺序依次为(n -18),(n -16),(n -14), (n -2) ,n ,(n +2),(n +14),(n +16),(n +18).显然,其和为9n ,是n 的9倍.这九个数之和不能等于2 016.若和为2 016,则9n =2 016,n =224,是偶数,显然不在数阵中, 这九个数之和也不能等于2 018,因为2 018不能被9整除.这九个数之和能等于2 025,中间数为225,最小的数为225-18=207.题后总结:方框形题要从横行和竖列两个方面找数字间的规律.18.解:(1)因为9<x<26,所以x>0,102x -<,x -5>0,2(9-x )<0. 又因为向东为正,所以这辆出租车第一次向东行驶,第二次向西行驶,第三次向东行驶,第四次向西行驶.(2)因为1|||5||2(9)|2x x x x +-+-+-152(9)2x x x x =++---151822x x x x =++--+9232x =-,所以这辆出租车一共行驶了923km 2x ⎛⎫- ⎪⎝⎭.。
2020-2021学年人教版七年级数学上册第三章、第四章测试题及答案解析(各一套)
人教版七年级数学上册第三章测试题及答案解析(时间:90分钟分值:120分)一、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)1.(3分)若2a与1﹣a互为相反数,则a=.2.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为.3.(3分)如果3x2a﹣2﹣4=0是关于x的一元一次方程,那么a=.4.(3分)在等式中,已知S=800,a=30,h=20,则b=.5.(3分)将1000存入银行2年,年利息为5%,扣除20%的利息税,到期可取得本息和为.6.(3分)小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是岁.7.(3分)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需小时才能完成工作.8.(3分)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是.二、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)9.(3分)下列方程中,是一元一次方程的是()A.x2+x﹣3=x(x+2)B.x+(4﹣x)=0 C.x+y=1 D.10.(3分)与方程x﹣1=2x的解相同的方程是()A.x﹣2=1+2x B.x=2x+1 C.x=2x﹣1 D.11.(3分)下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5 B.若a=b,则ac=bcC.若=则2a=3b D.若x=y,则=12.(3分)某商场把进价为2400元的商品,标价3200元打折出售,仍获利20%,则该商品的打几折出售?()A.六B.七C.八D.九13.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+y﹣,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它是()A.1 B.2 C.3 D.414.(3分)把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.3x﹣2(x﹣1)=6 C.3x﹣2x﹣2=6 D.3x+2x﹣2=6 15.(3分)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c 三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c16.(3分)某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定三、解答题(本题共8小题,每小题16分,共72分.)17.(16分)解方程(1)3(x+1)﹣2(x+2)=2x+3(2)(3)x﹣﹣1(4).18.(9分)已知y1=6﹣x,y2=2+7x,若①y1=2y2,求x的值;②当x取何值时,y1比y2小﹣3;③当x取何值时,y1与y2互为相反数?19.(5分)老师在黑板上出了一道解方程的题=1﹣,小明马上举起了手,要求到黑板上去做,他是这样做的:4(2x﹣1)=1﹣3(x+2)①8x﹣4=1﹣3x﹣6 ②8x+3x=l﹣6+4 ③11x=﹣1 ④x=﹣⑤老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第步(填编号);然后,你自己细心地解下面方程:+=1,相信你,一定能做对.20.(6分)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?21.(11分)解有关行程的问题(应用题):(1)甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍.若两人同向而行,骑自行车先出发2小时,问摩托车经过多少时间追上自行车?(2)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.22.(7分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.23.(9分)小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是,购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是,从第一本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(2)买多少本时给两个商店付相等的钱?(3)小明现有24元钱,最多可买多少本?24.(9分)公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?参考答案与试题解析一、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)1.(3分)若2a与1﹣a互为相反数,则a=﹣1.【考点】解一元一次方程;相反数.【专题】计算题.【分析】本题考查列一元一次方程和解一元一次方程的能力,因为2a与1﹣a 互为相反数,所以可得方程2a+1﹣a=0,进而求出a值.【解答】解:由题意得:2a+1﹣a=0,解得:a=﹣1.故填:﹣1.【点评】根据题意列方程要注意题中的关键词的分析理解,只有正确理解题目所述才能列出方程.2.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为5.【考点】一元一次方程的解.【分析】把x=2代入方程得到一个关于a的方程,即可求得a的值.【解答】解:把x=2代入方程得:4+a﹣9=0,解得:a=5.故答案是:5.【点评】本题考查了方程的解得定义,理解定义是关键.3.(3分)如果3x2a﹣2﹣4=0是关于x的一元一次方程,那么a=.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.据此即可得到一个关于a的方程,从而求解.【解答】解:根据题意,得2a﹣2=1,解得:a=.故答案是:.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.4.(3分)在等式中,已知S=800,a=30,h=20,则b=50.【考点】解一元一次方程.【专题】计算题.【分析】将S=800,a=30,h=20,代入中,求出b的值即可.【解答】解:把S=800,a=30,h=20,代入中,800=,解得b=50.故答案为50.【点评】本题比较简单,只是考查一元一次方程的解法.5.(3分)将1000存入银行2年,年利息为5%,扣除20%的利息税,到期可取得本息和为1080元.【考点】有理数的混合运算.【专题】应用题.【分析】由于利息=本金×利率×年份,本息和=本金+利息,利用这些关系式即可求解.【解答】解:依题意得1000+1000×5%×(1﹣20%)×2=1000+1000×5%×80%×2=1000+80=1080(元).故到期可取得本息和为1080元.故答案为:1080元.【点评】此题主要考查了有理数的混合运算在实际问题中的应用,解题的关键是利用利息=本金×利率×年份,本息和=本金+利息解决问题.6.(3分)小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是7岁.【考点】一元一次方程的应用.【分析】设小郑今年的年龄是x岁,则今年妈妈的年龄是5x岁,根据小郑的年龄比妈妈小28岁列出方程解答即可.【解答】解:设小郑今年的年龄是x岁,则今年妈妈的年龄是5x岁,由题意得5x﹣x=28,解得:x=7.答:小郑今年的年龄是7岁.故答案为:7.【点评】此题考查一元一次方程的实际运用,找出题目蕴含的数量关系:妈妈的年龄﹣小郑的年龄=28是解决问题的关键.7.(3分)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需小时才能完成工作.【考点】一元一次方程的应用.【分析】把整个工作看作单位“1”,设甲、乙一起做还需x小时才能完成工作,根据甲先做30分钟,然后甲、乙一起做,完成的工作总量为1列出方程解答即可.【解答】解:设甲、乙一起做还需x小时才能完成工作,由题意得+(+)x=1,解得:x=.答:甲、乙一起做还需小时才能完成工作.故答案为:.【点评】此题考查一元一次方程的实际运用,掌握工作总量、工作效率、工作时间三者之间的关系是解决问题的关键.8.(3分)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是738.【考点】一元一次方程的应用.【专题】数字问题.【分析】设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x﹣1,根据这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,列出方程解答即可.【解答】解:设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x﹣1,由题意得100(3x﹣1)+10x+(2x+1)=100(2x+1)+10x+(3x﹣1)+99解得:x=3,则2x+1=7,3x﹣1=8,所以原来的三位数为738.故答案为:738.【点评】此题考查一元一次方程的实际运用,掌握数的计数方法,找出题目蕴含的数量关系是解决问题的关键.二、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)9.(3分)下列方程中,是一元一次方程的是()A.x2+x﹣3=x(x+2)B.x+(4﹣x)=0 C.x+y=1 D.【考点】一元一次方程的定义.【专题】计算题.【分析】根据一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0),进行选择.【解答】解:A、x2+x﹣3=x(x+2),是一元一次方程,正确;B、x+(4﹣x)=0,不是一元一次方程,故本选项错误;C、x+y=1,不是一元一次方程,故本选项错误;D、+x,不是一元一次方程,故本选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.10.(3分)与方程x﹣1=2x的解相同的方程是()A.x﹣2=1+2x B.x=2x+1 C.x=2x﹣1 D.【考点】同解方程.【分析】求出已知方程的解,再把求出的数代入每个方程,看看左、右两边是否相等即可.【解答】解:x﹣1=2x,解得:x=﹣1,A、把x=﹣1代入方程得:左边≠右边,故本选项错误;B、把x=﹣1代入方程得:左边=右边,故本选项正确;C、把x=﹣1代入方程得:左边≠右边,故本选项错误;D、把x=﹣1代入方程得:左边≠右边,故本选项错误;故选B.【点评】本题考查了一元一次方程的解的应用,注意:使方程左右两边相等的未知数的值叫方程的解.11.(3分)下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5 B.若a=b,则ac=bcC.若=则2a=3b D.若x=y,则=【考点】等式的性质.【分析】根据等式的基本性质对各选项进行逐一分析即可.【解答】解:A、不符合等式的基本性质,故本选项错误;B、不论c为何值,等式成立,故本选项正确;C、∵=,∴•6c=•6c,即3a=2b,故本选项错误;D、当a≠b时,等式不成立,故本选项错误.故选B.【点评】本题考查的是等式的基本性质,熟知等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解答此题的关键.12.(3分)某商场把进价为2400元的商品,标价3200元打折出售,仍获利20%,则该商品的打几折出售?()A.六B.七C.八D.九【考点】一元一次方程的应用.【分析】设该商品的打x折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【解答】解:设该商品的打x折出售,根据题意得,3200×=2400(1+20%),解得:x=9.答:该商品的打9折出售.故选:D.【点评】本题考查了一元一次方程的应用,正确区分利润与进价,打折与标价的关系是解题关键.13.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+y﹣,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它是()A.1 B.2 C.3 D.4【考点】解一元一次方程.【专题】计算题.【分析】设所缺的部分为x,2y+y﹣x,把y=﹣代入,即可求得x的值.【解答】解:设所缺的部分为x,则2y+y﹣x,把y=﹣代入,求得x=2.故选:B.【点评】考查了一元一次方程的解法.本题本来要求y的,但有不清楚的地方,又有y的值,则把所缺的部分当作未知数来求它的值.14.(3分)把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.3x﹣2(x﹣1)=6 C.3x﹣2x﹣2=6 D.3x+2x﹣2=6【考点】解一元一次方程.【分析】方程两边都乘以6即可得出答案.【解答】解:﹣=1,方程两边都乘以6得:3x﹣2(x﹣1)=6,故选B.【点评】本题考查了解一元一次方程的应用,注意:解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化成1.15.(3分)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c 三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c【考点】等式的性质.【专题】分类讨论.【分析】根据等式的基本性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.分别列出等式,再进行变形,即可解决.【解答】解:由图a可知,3a=2b,即a=b,可知b>a,由图b可知,3b=2c,即b=c,可知c>b,∴a<b<c.故选B.【点评】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.16.(3分)某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定【考点】一元一次方程的应用.【分析】此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.【解答】解:设赚了25%的衣服的售价x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的售价y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选B.【点评】本题考查了一元一次方程的应用,注意赔赚都是在原价的基础上,故需分别求出两件衣服的原价,再比较.三、解答题(本题共8小题,每小题16分,共72分.)17.(16分)解方程(1)3(x+1)﹣2(x+2)=2x+3(2)(3)x﹣﹣1(4).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x+3﹣2x﹣4=2x+3,移项合并得:x=﹣4;(2)去括号得:x﹣2﹣4﹣2x=3,移项合并得:﹣x=9,解得:x=﹣9;(3)去分母得:6x﹣2+2x=x+2﹣6,移项合并得:7x=﹣2,解得:x=﹣;(4)方程整理得:﹣=,去分母得:8﹣90x﹣78+180x=200x+40,移项合并得:110x=﹣110,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.(9分)已知y1=6﹣x,y2=2+7x,若①y1=2y2,求x的值;②当x取何值时,y1比y2小﹣3;③当x取何值时,y1与y2互为相反数?【考点】一次函数与一元一次不等式;一次函数与一元一次方程.【专题】计算题.【分析】①根据y1=2y2,列出关于x的等式即可求出x.②由y1比y2小﹣3,列出关于x的等式即可求解.③由y1与y2互为相反数,列出关于x的等式即可求解.【解答】解:①根据y1=2y2,∴6﹣x=2×2+14x,解得:x=.②由y1比y2小﹣3,∴y1=y2﹣(﹣3),∴6﹣x=2+7x﹣(﹣3),解得:x=﹣.③由y1与y2互为相反数,∴y1+y2=0,∴6﹣x+7x+2=0,解得:x=.【点评】本题考查了一次函数与一元一次不等式及一元一次方程,属于基础题,关键是根据题意正确列出方程.19.(5分)老师在黑板上出了一道解方程的题=1﹣,小明马上举起了手,要求到黑板上去做,他是这样做的:4(2x﹣1)=1﹣3(x+2)①8x﹣4=1﹣3x﹣6 ②8x+3x=l﹣6+4 ③11x=﹣1 ④x=﹣⑤老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第①步(填编号);然后,你自己细心地解下面方程:+=1,相信你,一定能做对.【考点】解一元一次方程.【专题】阅读型.【分析】解题过程错在第①步,原因是1没有乘以12,写出正确解法即可.【解答】解:他错在第①步;正确解法为:去分母得:(2x+1)+2(x﹣1)=6,去括号得:2x+1+2x﹣2=6,移项合并得:4x=7,解得:x=.故答案为:(1)①.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.20.(6分)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?【考点】二元一次方程组的应用.【专题】应用题.【分析】两个等量关系为:加工的甲部件的人数+加工的乙部件的人数=85;3×16×加工的甲部件的人数=2×加工的乙部件的人数×10.【解答】解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.需注意:两个甲种部件和三个乙种部件配成一套的等量关系为:3×甲种部件的个数=2×乙种部件的个数.21.(11分)解有关行程的问题(应用题):(1)甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍.若两人同向而行,骑自行车先出发2小时,问摩托车经过多少时间追上自行车?(2)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.【考点】一元一次方程的应用.【分析】(1)首先设摩托车经过x小时追上自行车,由题意得摩托车速度是每小时行45km,再根据等量关系:骑自行车者2小时路程+x小时路程+180km=骑摩托车x小时路程,根据等量关系列出方程,再解即可;(2)利用船的速度与水速,进而表示出顺流与逆流所用时间,再利用一共航行了7小时得出等式求出即可.【解答】解:(1)设摩托车经过x小时追上自行车,由题意得:2×15+15x+180=3×15×x,解得:x=7.答:摩托车经过7小时追上自行车.(2)设:A、B两地距离为y千米.则B、C两地距离为(y﹣10)千米;根据题意可得:+=7,解得:y=32.5.答:A、B两地之间的路程为32.5km.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.用到的公式是:路程=速度×时间.22.(7分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.【考点】一元一次方程的应用.【专题】图表型.【分析】(1)根据总价=单价×数量,现价=原价×0.8,列式计算即可求解;(2)设小红购买跳绳x根,根据等量关系:小红比小明多买2跟,付款时小红反而比小明少5元;即可列出方程求解即可.【解答】解:(1)25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x根,则25×0.8x=25(x﹣2)﹣5,解得x=11.故小红购买跳绳11根.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.(9分)小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是,购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是,从第一本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(2)买多少本时给两个商店付相等的钱?(3)小明现有24元钱,最多可买多少本?【考点】一元一次方程的应用.【专题】应用题;经济问题.【分析】(1)要知道到那个商店省钱,就要知道小明要买20本,要付多少钱.依题意列方程求出甲店所需付款和乙商店所需付款,然后进行比较到哪个商店省钱;(2)根据给两个商店付相等的钱这个等量关系列方程求解.(3)找出等量关系列方程求出用24元钱在甲商店可买多少本,在乙商店可买多少本,即可知道最多能买多少本.【解答】解:(1)甲店需付款10+10×0.7=17元;乙商店需付款:20×0.8=16元,故到乙商店省钱.(2)设买多少本时给两个商店付相等的钱,依题意列方程:10+(x﹣10)×70%=80%x,解得:x=30.故买30本时给两个商店付相等的钱.(3)设最多可买X本,则甲商店10+(X﹣10)×70%=24,解得:X=30;乙商店80%X=24解得:X=30.故最多可买30本.【点评】此题的关键是要比较,比较哪个店买多少本时便宜.24.(9分)公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.人教版七年级数学上册第四章测试题及答案解析(时间:90分钟分值:120分)一、选择题(每小题3分,共30分)1.(3分)分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.2.(3分)从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个3.(3分)如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.(3分)如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.5.(3分)下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′6.(3分)下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个7.(3分)如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25°B.35°C.45° D.55°8.(3分)如图,∠1+∠2等于()A.60°B.90°C.110°D.180°9.(3分)C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD 的长为()A.3cm B.4cm C.5cm D.6cm10.(3分)甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错二、填空题(每空3分,共30分)11.(3分)如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.(3分)如图,以图中A,B,C,D,E为端点的线段共有条.13.(3分)如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC=.14.(3分)如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=°.15.(3分)如图是某几何体的平面展开图,则这个几何体是.16.(3分)如图绕着中心最小旋转能与自身重合.17.(3分)如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.(3分)一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.(3分)已知∠A=40°,则它的补角等于.20.(3分)两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.(12分)如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB 的长度.22.(12分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.(12分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.(12分)如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.(14分)如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.26.(14分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.。
人教版七年级上册数学 第三章 同步测试题 含答案
人教版七年级上册数学第三章同步测试题含答案3.1从算式到方程一.选择题(共10小题)1.下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有()A.5个B.4个C.3个D.2个2.根据等式的性质,下列选项中等式不一定成立的是()A.若a=b,则a+2=b+2B.若ax=bx,则a=bC.若=,则x=y D.若3a=3b,则a=b3.下列变形错误的是()A.如果a=b,那么a+5=b+5B.如果a=b,那么a﹣c=b﹣c.C.如果ac=bc,那么a=b D.如果,那么a=b4.下列等式变形错误的是()A.由5x﹣7y=2,得﹣2﹣7y=5xB.由6x﹣3=x+4,得6x﹣3=4+xC.由8﹣x=x﹣5,得﹣x﹣x=﹣5﹣8D.由x+9=3x﹣1,得3x﹣1=x+95.若x=﹣5是关于x的方程2x﹣3=a的解,则a的值为()A.﹣13B.﹣2C.﹣7D.﹣86.下列方程中,是一元一次方程的是()A.=﹣1B.x2=4x+5C.8﹣x=1D.x+y=77.下列x的值是方程2x﹣3=7的解的是()A.x=﹣2B.x=2C.x=﹣5D.x=58.已知关于x的方程3x﹣m+4=0的解是x=﹣2,则m的值为()A.2B.﹣2C.4D.59.下列等式变形正确的是()A.若﹣2x=5,则x=B.若3(x+1)﹣2x=1,则3x+1﹣2x=1C.若5x﹣6=﹣2x﹣8,则5x+2x=8+6D.若,则2x+3(x﹣1)=610.下列说法不一定成立的是()A.若a=b,则a﹣3=b﹣3B.若a=3,则a2=3aC.若3a=2b,则=D.若a=b,则=二.填空题(共5小题)11.已知5a+8b=3b+10,利用等式性质可求得a+b的值是.12.已知关于x的方程4x﹣a=3的解是x=2,则a=.13.若a=b,则a﹣c=.14.当a=时,方程2x+a=x+10的解为x=4.15.已知关于x的方程9x﹣3=kx+11有正整数解,那么满足条件的所有整数k的和为.三.解答题(共2小题)16.已知(m+1)x|m|+2=0是关于x的一元一次方程,求m的值.17.如果y=3是方程2+(m﹣y)=2y的解,那么关于x的方程2mx=(m+1)(3x﹣5)的解是多少?参考答案1.解:下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有③④⑦,共3个.故选:C.2.解:∵若a=b,则a+2=b+2,∴选项A不符合题意;∵若ax=bx,则x=0时,a可以不等于b,∴选项B符合题意;∵若=,则x=y,∴选项C不符合题意;∵若3a=3b,则a=b,∴选项D不符合题意.故选:B.3.解:∵a=b,∴a+5=b+5,∴选项A不符合题意;∵a=b,∴a﹣c=b﹣c,∴选项B不符合题意;∵ac=bc,c=0时,a可以不等于b,∴选项C符合题意;∵,∴a=b∴选项D不符合题意.故选:C.4.解:∵5x﹣7y=2,∴﹣2﹣7y=﹣5x,∴选项A符合题意;∵6x﹣3=x+4,∴6x﹣3=4+x,∴选项B不符合题意;∵8﹣x=x﹣5,∴﹣x﹣x=﹣5﹣8,∴选项C不符合题意;∵x+9=3x﹣1,∴3x﹣1=x+9,∴选项D不符合题意.故选:A.5.解:将x=﹣5代入2x﹣3=a,∴a=﹣10﹣3=﹣13,故选:A.6.解:A、该方程是分式方程,故本选项不符合题意.B、该方程中的未知数最高次数是2,不是一元一次方程,故本选项不符合题意.C、该方程符合一元一次方程的定义,故本选项符合题意.D、该方程中含有2个未知数,不是一元一次方程,故本选项不符合题意.故选:C.7.解:2x﹣3=7,移项得:2x=10,方程的两边都除以2得:x=5,故选:D.8.解:把x=﹣2代入方程3x﹣m+4=0,得3×(﹣2)﹣m+4=0.解得:m=﹣2,故选:B.9.解:A、若﹣2x=5,则x=﹣,错误,故本选项不符合题意;B、若3(x+1)﹣2x=1,则3x+3﹣2x=1,错误,故本选项不符合题意;C、若5x﹣6=﹣2x﹣8,则5x+2x=﹣8+6,错误,故本选项不符合题意;D、若+=1,则2x+3(x﹣1)=6,正确,故本选项符合题意;故选:D.10.解:A.若a=b,则a﹣3=b﹣3,成立;B.若a=3,则a2=3a,成立;C.若3a=2b,则,成立;D.当a=b=0时,不成立.故选:D.11.解:5a+8b=3b+10,5a+8b﹣3b=3b﹣3b+10,5a+5b=10,5(a+b)=10,a+b=2.给答案为:2.12.解:∵关于x的方程4x﹣a=3的解是x=2,∴8﹣a=3,解得:a=5.故答案为:5.13.解:若a=b,则a﹣c=b﹣c,故答案为:b﹣c.14.解:∵2x+a=x+10的解为x=4,∴8+a=4+10,则a=6.故答案为:6.15.解:方程整理得:x=,由x为正整数,得到9﹣k=1或9﹣k=7或9﹣k=2或9﹣k=14,解得:k=8或2或7或﹣5,则所有整数k的和为:2+8+7﹣5=12.故答案为:12.16.解:由题意知:m+1≠0,|m|=1则m≠﹣1,m=1或m=﹣1所以m=1.17.解:当y=3时,2+m﹣3=6,解得:m=7,将m=7代入方程2mx=(m+1)(3x﹣5)得:14x=8(3x﹣5)即14x=24x﹣40,解得:x=4.3.2解一元一次方程合并同类项及移项一.选择题1.解方程1﹣=,去分母,去括号得()A.1﹣2x+2=x B.1﹣2x﹣2=x C.4﹣2x+2=x D.4﹣2x﹣2=x 2.一元一次方程+++=4的解为()A.30B.24C.21D.123.下列方程中,变形正确的是()A.由5x=x+2移向得5x+x=2B.由﹣2=去分母得2(x+1)﹣2=xC.由2x﹣3x=2﹣5合并同类项得﹣x=﹣3D.由﹣2x=4系数化为1得x=24.在解方程﹣=2时,去分母正确的是()A.4x﹣2﹣9x+15=2B.4x﹣2﹣9x+5=12C.4x﹣2﹣9x+15=12D.4x﹣2﹣9x﹣15=125.下列方程的变形中,正确的是()A.若x﹣4=9,则x=9﹣4B.若2(2x+3)=2,则4x+6=2C.若﹣x=4,则x=﹣2D.若﹣=1,则去分母得2﹣3(x﹣1)=16.若代数式x﹣1与2的值是互为倒数,则x=()A.﹣1B.2C.D.37.已知a给定的整数,记G(x)=a﹣x+|x﹣a|.若G(1)+G(2)+…+G(2015)+G(2016)=72,则a的值是()A.7B.8C.9D.108.梯形的面积公式S=(a+b)h,已知a=3,b=7,h=4,那么S的值为()A.15B.40C.20D.259.下列方程的变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5C.方程,未知数系数化为1,得x=1D.方程可化成10.已知a,b,c,d为有理数,现规定一种新的运算=ad﹣bc,那么当=18时,则x的值是()A.x=1B.C.D.x=﹣1二.填空题11.将循环小数0.化成最简分数:.12.若5与a﹣3互为相反数,则a的值.13.无限循环小数如何化成分数呢?设x=0.333…①,则10x=3.333…②,则②﹣①,得9x=3,即x=,所以0.=0.33,根据上述提供的方法:把0.化成分数为.14.如图的框图表示解方程3x+32=7﹣2x的流程,其中第3步的依据是.15.解方程=2﹣,有下列步骤:①3(3x+1)=12﹣(2x﹣1),②9x+3=12﹣2x+1,③9x﹣2x=12+1+3,④7x=16,⑤x=,其中首先发生错误的一步是.三.解答题16.解方程:①x+3=1+x.②4﹣3(2﹣x)=5x.17.解方程:(1)﹣3x+0.5x=10;(2).18.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab﹣b.如:1*3=1×32+2×1×3﹣3=12.(1)求(﹣2)*4的值;(2)若(x﹣1)*3=12,求x的值;(3)若m=*(2x),n=(2x﹣1)*2(其中x为有理数),试比较m、n大小关系,并说明理由.19.解下列方程:(1)4(x﹣1)=1﹣x;(2)=x.参考答案与试题解析一.选择题1.【解答】解:解方程1﹣=,去分母,去括号得4﹣2(x+1)=x,即4﹣2x﹣2=x.故选:D.2.【解答】解:+++=4,﹣+﹣+﹣+﹣=4,﹣=4,4x=4×21,x=21,故选:C.3.【解答】解:由5x=x+2移项得:5x﹣x=2,不符合题意;B、由﹣2=去分母得2(x+1)﹣8=x,不符合题意;C、由2x﹣3x=2﹣5合并同类项得﹣x=﹣3,符合题意;D、由﹣2x=4系数化为1得x=﹣2,不符合题意,故选:C.4.【解答】解:在解方程﹣=2时,去分母得:2(2x﹣1)﹣3(3x﹣5)=12,去括号得:4x﹣2﹣9x+15=12,故选:C.5.【解答】解:A、若x﹣4=9,则x=9+4,不符合题意;B、若2(2x+3)=2,则4x+6=2,符合题意;C、若﹣x=4,则x=﹣8,不符合题意;D、若﹣=1,则去分母得2﹣3(x﹣1)=6,不符合题意,故选:B.6.【解答】解:由题意(x﹣1)×2=1,解得x=,故选:C.7.【解答】解:∵当x≥a时,G(x)=0,当x<a时,G(x)=a﹣x+|x﹣a|=2(a﹣x),∵72=2(1+2+3+4+5+6+7+8),表明G(9)=0,∴a=9,故选:C.8.【解答】解:把a=3,b=7,h=4代入公式得:S=×(3+7)×4=20,故选:C.9.【解答】解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2≠﹣1+2,故本选项错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故本选项正确;C、方程,未知数系数化为1,得x=≠1,故本选项错误;D、方程﹣=1可化成﹣=1≠10,故本选项错误.故选:B.10.【解答】解:由题意,得2×5x﹣4(1﹣x)=18,解得x=,故选:C.二.填空题(共5小题)11.【解答】解:设x=0.,则100x=45.,又45.=45+0.,所以100x=45+x,所以99x=45,解得:x==.12.【解答】解:根据题意列得:5+a﹣3=0,移项得:a=3﹣5,解得:a=﹣2.故答案为:﹣2.13.【解答】解:设x=0.=0.777…①,则10x=7.777…②,则由①﹣②得,﹣9x=﹣7,即x=,0.=0.777…=,故答案为:.14.【解答】解:根据框图中的解方程流程,得第3步的依据为等式的基本性质2.故答案为:等式的基本性质2.15.【解答】解:去分母得:3(3x+1)=12﹣(2x﹣1),去括号得:9x+3=12﹣2x+1,移项得:9x+2x=12+1﹣3,合并得:11x=10,解得:x=,∴首先发生错误的一步是③.故答案为:③.三.解答题(共4小题)16.【解答】解:①移项得:x﹣x=1﹣3,合并得:﹣x=﹣2,解得:x=4;②去括号得:4﹣6+3x=5x,移项得:3x﹣5x=﹣4+6,合并得:﹣2x=2,解得:x=﹣1.17.【解答】解:(1)﹣3x+0.5x=10,合并同类项,得﹣2.5x=10,系数化为1,得x=﹣4;(2),去分母,得2(x+1)﹣8=x,去括号,得2x+2﹣8=x,合并同类项,得2x﹣x=8﹣2,系数化为1,得x=6.18.【解答】解:(1)(﹣2)*4=﹣2×42+2×(﹣2)×4﹣4=﹣32﹣16﹣4=﹣72;(2)∵(x﹣1)*3=12,∴(x﹣1)×32+2(x﹣1)×3﹣3=12,整理得:15x=30,解得:x=2;(3)由题意m =×(2x)2+2×2x﹣2x=18x2+16x,n=(2x﹣1)×22+2(2x﹣1)×2﹣2=16x﹣10,所以m﹣n=18x2+10>0.所以m>n.19.【解答】解:(1)4(x﹣1)=1﹣x,去括号,得4x﹣4=1﹣x,移项,得4x+x=1+4,合并同类项,得5x=5,系数化为1,得x=1;(2)=x,去分母,得3(x﹣1)﹣2=6x3.3解一元一次方程去括号与去分母1、下列方程中是一元一次方程的是()A、x-y=2005B、3x-2004C、x2+x=1D、21-x=32-x 2、下列四组变形中,属于去括号的是()A.5x+3=0,则5x=-3B.12x = 6,则x = 12C.3x-(2-4x)=5,则3x+4x-2=5D.5x=1+4,则5x=53、某同学在方程5x-1=□x+3时,把□处的数字看错了,解得x=-4/3,该同学把□看成了()A.3B.-8C. 8D. -34、 方程12 x -3 = 2 + 3x 的解是 ( )A.-2;B.2;C.-12;D.125、若5m +41与5(m -41)的值互为相反数,则m 的值为( ) A.0 B.203 C.201D.1016、若3-2x =6x -11则x +4的值是( )A.-423 B.27 C.543 D.47、下列说法中,正确的个数是( )①若mx =my ,则mx -my =0 ②若mx =my ,则x =y ③若mx =my ,则mx +my =2my ④若x =y ,则mx =myA.1B.2C.3D.4 8、下列变形符合等式性质的是( )A.如果2x -3=7,那么2x =7-3B.如果3x -2=x +1,那么3x -x =1-2C.如果-2x =5,那么x =5+2D.如果-31x =1,那么x =-3 9、x = 3和x = - 6中,________是方程x - 3(x + 2) = 6的解. 10、若代数式213k--的值是1,则k = _________.11、当x =________时,式子322x -与23x-互为相反数.12、当=x ___时,代数式24+x 与93-x 的值互为相反数13、关于x 的一元一次方程2x+a=x+1的解是-4,则方程-ay+1=3的解为:y=________________14、已知:3a 3b 2x 与31a 3b )21(4-x 是同类项,则(-x )2007x 2007的值是15、小明今年13岁,妈妈38岁,_______年后,小明的年龄是妈妈的21. 16、已知y =-x +b ,当x =-1时,y =-1;当x =1时,y 的值为17、解方程(1)3(x+2)-2(x+2)=2x+4 (2)2(10-0.5y)=-(1.5y+2)(3)341125x x -+-= (4)432.50.20.05x x ---=(5)2x +3=x -1 (6)911z +72=92z -75(7)52-x -103+x -352-x +3=0 (8)615+x =819+x -31x -18、今年父子的年龄之和是50,且父亲的年龄是儿子的4倍,求儿子今年多少岁?19、全班同学去划船,如果减少一条船,每条船正好坐9位同学;如果增加一条船,每条船上正好坐6位同学。
华东师大版七年级数学上册第三章同步测试题及答案
华东师大版七年级数学上册第三章同步测试题及答案3.1列代数式一.选择题1.以下是代数式的是()A.m=ab B.(a+b)(a﹣b)=a2﹣b2C.a+1 D. S=πR22.某商场举办促销活动,将原价x元的衣服改为(+1)元出售.下列叙述可作为此商场的促销标语的是()A.原价打三四折再加一元B.原价打四三折再加一元C.原价加一元再打三四折D.原价打七五折再加一元3.代数式a+b2读作()A.a与b的平方B.a与b的和的平方C.a的平方与b的平方的和D.a与b的平方的和4.用﹣a表示的一定是()A.正数B.负数 C.正数或负数D.以上都不对5.下列代数式中符合书写要求的是()A.B.n2C.a÷b D.6.在2x2,1﹣2x=0,ab,a>0,0,,π中,是代数式的有()A.5个B.4个C.3个D. 2个7.通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是()A.(a+b)元B.(a﹣b)元C.(a+5b)元D.(a﹣5b)元8.黄石市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示为()A.(11+t)℃B.(11﹣t)℃C.(t﹣11)℃D.(﹣t﹣11)℃二.填空题9.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为_________ 10.体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则代数式500﹣3a﹣2b表示的数为11.实验中学初三年级12个班中共有团员a人,则表示的实际意义是_________ .12.若x=﹣1,则代数式x3﹣x2+4的值为_________ .13.今年五月份,由于H7N9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a元/千克,则五月份的价格为_________ 元/千克.14.对单项式“5x”,我们可以这样理解:香蕉每千克5元,某人买了x千克,共付款“5x”元.请你结合生活实际,再给出“5x”的另一个合理解释为:_________ .三.解答题15.说出下列代数式的意义:(1)2(a+3);(2)a2+b2;(3).16.用字母表示图中阴影部分的面积.17.某镇有A、B两家纯净水销售站,它们所提供的纯净水的价格、质量都相同.为了促销,A站的纯净水每桶降价20%销售;B站规定:每个用户购买B站的纯净水,第1桶按照原价销售,若用户继续购买,则从第2桶开始每桶降价25%销售,促销活动都是三个月.若小明家预计三个月要购买12桶纯净水,请你帮他判断购买哪家的纯净水较省钱,并说明理由.18.如果某三角形第一条边长为(2a﹣b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少b(cm),求这个三角形的周长(用a、b的代数式表示).19.用如图正方形纸板制作一个无盖的长方体盒子,可在正方体的四角减去相同的正方形,剩余部分即可做成一个无盖的长方体形盒子.(1)设正方形纸的边长为a,减去的小正方形的边长为x,请用a与x表示这个无盖长方体形盒子的容积;(2)把正方形的纸板换成长为a,宽为b的长方形纸板,怎样做一个无盖长方体形盒子?画图说明你的做法;(3)把(2)中做的长方体形盒子的容积用代数式表示出来;(4)比较(1)和(3)的结果,说说它们的区别和联系.20.小明将连续的奇数1,3,5,7,9,…,排成如图所示的数阵,用一个矩形框框住其中的9个数,如图所示.(1)矩形阴影框中的9个数的和与中间一个数存在怎样的关系?(直接写出笞案)(2)若将矩形框上下左右移动,这个关系还成立吗?为什么?答案一、1. C 2.D 3.D4.D 分析:﹣a表示的有可能是A中说的正数,有可能B中说的负数,有可能C中说的正数或负数.故选D.5.D6.A 分析:因为1﹣2x=0,a>0,含有=和>,所以不是代数式,所以代数式的有2x2,ab,0,,π,共5个.故选A.7.A 分析:b÷(1﹣20%)+a=a+b.故选A.8.C 分析:设最低气温为x℃,则t﹣x=11,x=t﹣11.故选C.二、 9.分析:由题意得这批图书共有ab册,则图书的一半是:册.10.体育委员买了3个足球、2个篮球,剩余的经费11.平均每班团员数12.2分析:x3﹣x2+4=(﹣1)3﹣(﹣1)2+4=﹣1﹣1+4=﹣2+4,=2.13.0.9a 分析:因为原来鸡肉价格为a元/千克,现在下降了10%,所以五月份的价格为a﹣10%a=(1﹣10%)a=0.9a.14.某人的行走速度是x米/分,5分钟行走的路程三.15.解:(1)2(a+3)的意义是2与(a+3)的积;(2)a2+b2的意义是a,b的平方的和;(3)的意义是(n+1)除以(n﹣1)的商.16.解:(1)阴影部分的面积=ab﹣bx;(2)阴影部分的面积=R2﹣πR2.17.解:设每桶纯净水的原价为a元,则购买12桶纯净水,在A站需花费的金额为(1﹣20%)a•12=9.6a(元);在B站需花费的金额为a+(1﹣25%)a•11=9.25a(元);因为9.6a>9.25a,所以小明家应选择到B家纯净水销售站购买纯净水,这样较省钱.18.解:周长=(2a﹣b)+[(2a﹣b)+(a+b)]+[2(2a﹣b)﹣b]=2a﹣b+2a﹣b+a+b+4a﹣2b﹣b=9a﹣4b.19.解:(1)依题意,长方体盒子容积为:(a﹣2x)2•x;(2)画图如下:(3)设减去的正方形边长为x,根据题意得:(a﹣2x)(b﹣2x)•x;(4)(1)中底面积为正方形面积为(a﹣2x)2,(3)中底面积为长方形,面积为(a﹣2x)(b﹣2x),高都为x,(3)中当a=b时即得到(1)中的结果.20.解:(1)计算阴影框中9个数的和为,3+5+7+17+19+21+31+33+35=171,171÷19=9,所以,矩形阴影框中的9个数的和是中间一个数的9倍;(2)假设将矩形框向下移动一个格,则中间的数为33.则9个数的和为,17+19+21+31+32+33+35+45+47+49=297,297÷33=9,再假设将矩形框向左移动一个格,则中间的数为17,则9个数的和为:1+3+5+15+17+19+29+31+33=153,153÷17=9.所以这个关系还成立.3.2 代数式的值一、选择题1.当a=1,b=2时,a2+b2的值是( )A.5B.6C.7D.82.若a=-,b=2,c,d互为倒数,则代数式2(a+b)-3cd的值为 ( )A.2B.-1C.-3D.03.根据如图的程序计算y的值,若输入的x的值为,则输出的y值为( )A. B. C. D.二、填空题4.若m,n互为倒数,则mn2-(n-1)的值为______.5.在高中时我们将学到:叫做二阶行列式,它的算法是:ad-bc,那么=______.6.定义新运算“⊗”,a⊗b=a-4b,则12⊗(-1)=______.三、解答题7.求代数式的值:4x2+3xy-x2-9,其中x=2,y=-3.8.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高.如果用a表示脚印长度,b表示身高.关系类似于:b=7a-3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(2)在某次案件中,抓获了两名可疑人员,一个身高为 1.87m,另一个身高 1.75m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?9.第22届冬奥会将于2014年2月7日在索契拉开帷幕,激起了人们参与体育运动的热情,我们知道,人在运动时的心跳速率通常和人的年龄有关,如果用a表示一个人的年龄,b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有b=0.8(220-a).(1)正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时,10秒钟的心跳次数为22次,他有危险吗?答案1.A 分析:当a=1,b=2时,a2+b2=12+22=1+4=5.2. D 分析:c,d互为倒数,所以cd=1.当a=-,b=2时,2(a+b)-3cd=2×(-+2)-3×1=2×-3=3-3=0.3. B 分析:因为2<<4,所以当x=时,输出的y值为.4.1 分析:因为m,n互为倒数,所以mn=1,所以mn2-(n-1)=mn·n-n+1=n-n+1=1.5.-2 分析:根据题意可知,本题求当a=1,b=2,c=3,d=4时,ad-bc的值,所以ad-bc=1×4-2×3=4-6=-2.6.8 分析:12⊗(-1)=×12-4×(-1)=8.7.解:原式=3x2+3xy-9,当x=2,y=-3时,原式=3×4+3×2×(-3)-9=-15.8.解:(1)当a=24.5时,b=7×24.5-3.07=168.43(cm).即身高约为168.43cm.(2)当a=26.3时,b=7×26.3-3.07=181.03(cm).187-181.03=5.97.181.03-175=6.03.因为5.97<6.03,所以身高为1.87m的可疑人员的可能性更大.9.解:(1)当a=14时,b=0.8(220-a)=0.8×(220-14)=0.8×206=164.8≈165(次).(2)因为10秒钟心跳次数为22次,所以1分钟心跳次数为22×6=132(次).当a=45时,b=0.8(220-a)=0.8×(220-45)= 140>132,所以这个人没有危险.3.3 整式一、选择题1.单项式-的系数和次数依次是( )A.-2,2B.-,4C.,5D.-,52.代数式x,-,-,,中共有整式( )A.2个B.3个C.4个D.5个3.代数式(a-1)x3+(b-1)x是关于x的一次式,则a,b的值可以为( )A.0,3B.0,1C.1,2D.1,1二、填空题4.单项式-ab2c3的系数是________.5.(2012·泰州中考)根据排列规律,在横线上填上合适的代数式:x,3x2,5x3,______,9x5,….6.把多项式2x2-3x+x3按x的降幂排列是______.三、解答题7.把下列代数式按单项式、多项式、整式进行归类.x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1,.8.已知多项式-3x2y m+1+x3y-3x4-1是五次四项式,单项式3x3n y3-m z与多项式的次数相同.(1)求m,n的值.(2)把这个多项式按x降幂排列.9.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.答案1.D 分析:-=-xy2z2,即单项式的系数为-,次数为1+2+2=5.故选项D正确.2.B 分析:整式包括单项式和多项式,有x,-,,共有3个.3. C 分析:因为是关于x的一次式,所以不含有x3的项,即a-1=0,所以a=1;代数式是关于x的一次式,故b-1≠0,即b≠1.综上满足条件的只有C.4. -分析:因为单项式-ab2c3中的数字因数是-,所以单项式-ab2c3的系数是-.5. 7x4分析:系数分别为1,3,5,所以所填系数应为7,再看字母以及字母的指数,发现分别为x,x2,x3,所以所填部分的字母及字母的指数应为x4.答案: 6. x3+2x2-3x 分析:2x2,-3x,x3中的x的次数依次为2,1,3,所以按x的降幂排列是x3+2x2-3x.7.解:单项式有x2y,-,-29,600xz,axy.多项式有a-b,x+y2-5, 2ax+9b-5,xyz-1.整式有x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1.8.解:(1)根据题意知:m+1=3,m=2,因为单项式3x3n y3-m z是五次单项式,所以3n+3-m+1=5,n=1.(2)原多项式是-3x 2y 3+x 3y-3x 4-1,按x 的降幂排列为:-3x 4+x 3y-3x 2y 3-1.9.解:由于代数式是关于x,y 的五次单项式,所以b+2=0,b=-2,2+|a|=5,所以a=±3.当a=3时,a-3=0,该式就不再是关于x,y 的单项式了,故a=-3.所以a 2-3ab+b 2=(-3)2-3× (-3)×(-2)+(-2)2=9-18+4=-5.3.4 整式的加减一、选择题1.如果代数式4252y y -+的值为7,那么代数式212y y -+的值等于( ) A.2B.3C.-2D.42.下面的式子,正确的是( )A.3a 2+5a 2=8a 4B.5a 2b-6ab 2=-ab 2C.6xy-9yx=-3xyD.2x+3y=5xy3.一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( ) A.3x 2y-4xy 2B.x 2y-4xy 2C.x 2y+2xy 2D.-x 2y-2xy 24.若A=x 2-5x +2,B=x 2-5x-6,则A 与B 的大小关系是( ) A.A>B B.A=B C.A<B D.无法确定5.若A = 5a 2-4a +3,B =3a 2-4a +2,则A 与B 的大小关系是( ) A .A =B B .A>B C .A<B D .以上都可能成立6.当x =-1时,2ax 3-3bx +8的值为18,则12b -8a +2的值为( ) A .40 B .42 C .46 D .567.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1 B .5x +1 C .-13x -1 D .13x +18.三个连续奇数,中间的一个是2n +1(n 是整数),则这三个连续奇数的和为( ) A .2n -1 B .2n +3 C .6n +3 D .6n -3 9.若A 和B 都是五次多项式,则A -B 一定是( ) A .十次多项式 B .五次多项式C .次数不高于5的整式D .次数不高于5的多项式 二、填空题10.如果x =1时,代数式2ax 3+3bx +4的值是5,那么x =-1时,代数式2ax 3+3bx +4的值是__________. 11.定义a b c d 为二阶行列式,规定它的运算法则为abad bc c d =-,那么二阶行列式23____________11x x =-+.三、解答题 12.化简:(1) 7-3x-4x 2+4x-8x 2-15; (2) 2(2a 2-9b)-3(-4a 2+b) ; (3) 8x 2-[-3x-(2x 2-7x-5)+3]+4x.13.先化简,后求值:(1)(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y ;(2)若()0322=++-b a ,求3a 2b -[2ab 2-2(ab -1.5a 2b )+ab]+3ab 2的值.14.有这样一道题目:“当a =0.35,b =-0.28时,求多项式7a 3-3(2a 3b -a 2b -a 3)+ (6a 3b -3a 2b )-(10a 3-3)的值”.小敏在计算时把a =0.35,b =-0.28抄成了a =-0.35,b =0.28,结果她的结果也是正确的,你知道这是为什么吗?15.某工厂第一车间有m 人,第二车间的人数比第一车间的人数的2倍少5人,第三车间的人数比第一车间的人数的3倍还多7人,则第三车间的人数比第一、第二车间的人数的和多还是少?请说明理由.16.已知A=2x2-9x-11,B=3x2-6x+4,求:(1)A-B;(2)122A B+.17.图中的数阵是由全体奇数排成的.(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在图中任意作一个类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由.这九个数之和能等于2 016,2 018或2 025吗?若能,请写出这九个数中最小的一个;若不能,请说出理由.18.一辆出租车从A地出发,在一条东西走向的街道上营运,每次行驶的路程(向东记为正)记录如下(9<x<26,单位:km):(1(2)这辆出租车一共行驶了多少路程?答案一、1.A 2.C 3.C 4.A5.B 分析:可用作差法:A -B =5a 2-4a +3-(3a 2-4a +2)=5a 2-4a +3-3a 2+4a -2=2a 2+1.因为a 2≥0,所以2a 1+1≥1,所以A -B>0,即A>B.6.B 分析:把x =-1代入2ax 3-3bx +8得2a ×(-1)3—36×(-1)+8=-2a +3b +8.因为此式的值为18,所以-2a +3b +8=18,所以3b -2a =10,所以12b -8a = 40,所以12b -8a +2=40+2=42.7.A 分析:设这个多项式为M ,则M =3x 2+4x -1-(3x 2+9x )=3x 2+4x -1-3x 2-9x =-5x -1.8.C 分析:已知三个连续奇数中的中间一个为2n +1(n 为整数),那么,较小的一个为2n -1,较大的一个为2n +3,所以这三个奇数的和为(2n -1)+(2n +1)+(2n +3)=6n +3.9.C 分析:当A ,B 中含字母的项不都相同时,A -B 是次数不高于5的多项式;当A ,B 中含字母的项都相同时,A -B 为常数,此时是单项式,属于整式,故选C .二、10.3 分析:把x =1代入2ax 3+3bx +4=5,进行变形,然后利用整体代入法求值.因为当x =1时,代数式2ax 3 +3bx +4的值是5,所以2a + 3b +4=5,即2a +3b =1.当x =-1时,2ax 3+3bx +4=-2a -3b +4=-(2a +3b )+4=-1+4=3.11.-x +5 分析:由题意得2(x +1)-3(x -1)=2x +2-3x +3=-x +5.三、12、(1) -12x 2+x-8 ;(2) 16a 2-21b ; (3) 10x 2-8.13.(1)-x-8y=13;(2)ab 2+ab=12.14.解:7a 3-3(2a 3b -a 2b -a 3)+(6a 3b -3a 2b )-(10a 3-3)=7a 3-6a 3 b +3a 2 b +3a 3 +6a 3 b -3a 2b -10a 3+3=(7a 3+3a 3-10a 3)-6a 3b +6a 3b +3a 2b -3a 2b +3=3.因为3是常数,不含字母a 和b ,所以无论a ,b 是何值,结果都不变.故小敏将a ,b 抄错时,结果也是正确的.15.解:第三车间的人数比第一、第二车间的人数的和多12人,理由如下:由题意得,第二车间的人数为2m -5,第三车间的人数为3m +7,所以3m +7-(2m -5+m )=3m +7-(3m -5)=3m +7-3m +5=12>0,故第三车间的人数比第一、第二车间的人数的和多12人.16.解:(1)A -B = (2x 2-9x -11)-(3x 2-6x +4)=2x 2-9x -11-3x 2+6x -4=-x 2-3x -15;(2)22112(2911)2(364)22A B x x x x +=--+-+ 222911335612872222x x x x x x =--+-+=-+. 17.解:(1)平行四边形框内的九个数之和是中间的数的9倍.(2)任意作一个类似(1)中的平行四边形框,规律仍然成立,理由:不妨设平行四边形框中间的数为n ,则这九个数按大小顺序依次为(n -18),(n -16),(n -14), (n -2) ,n ,(n +2),(n +14),(n +16),(n +18).显然,其和为9n ,是n 的9倍.这九个数之和不能等于2 016.若和为2 016,则9n =2 016,n =224,是偶数,显然不在数阵中, 这九个数之和也不能等于2 018,因为2 018不能被9整除.这九个数之和能等于2 025,中间数为225,最小的数为225-18=207.题后总结:方框形题要从横行和竖列两个方面找数字间的规律.18.解:(1)因为9<x<26,所以x>0,102x -<,x -5>0,2(9-x )<0. 又因为向东为正,所以这辆出租车第一次向东行驶,第二次向西行驶,第三次向东行驶,第四次向西行驶.(2)因为1|||5||2(9)|2x x x x +-+-+-152(9)2x x x x =++---151822x x x x =++--+9232x =-,所以这辆出租车一共行驶了923km 2x ⎛⎫- ⎪⎝⎭.。
人教版(2023)七年级上册数学同步练:第三章综合训练(含答案)【可编辑可打印】
第三章综合训练一、选择题1.若2(a+3)的值与4互为相反数,则a 的值为( )A.1B.-72C.-5D.122.下列说法错误的是( ) A.如果ax=bx ,那么a=b B.如果a=b ,那么a c 2+1=bc 2+1C.如果a=b ,那么ac-d=bc-dD.如果x=3,那么x 2=3x3.下列方程变形正确的是( )A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程23t=32,未知数系数化为1,得t=1 D.方程x -10.2−x0.5=1化成3x=64.儿童节期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是( ) A.65元 B.80元 C.100元 D.104元5.方程2x+32-x=9x -53+1去分母得( ) A.3(2x+3)-x=2(9x-5)+6 B.3(2x+3)-6x=2(9x-5)+1 C.3(2x+3)-x=2(9x-5)+1 D.3(2x+3)-6x=2(9x-5)+66.如图①,天平呈平衡状态,其中左侧盘中有一袋玻璃球,右侧盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧盘,并拿走右侧盘中的1个砝码,天平仍呈平衡状态,如图②.则移动的玻璃球的质量为( )A .10 gB .15 gC .20 gD .25 g7.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c 对应密文a+1,2b+4,3c+9.例如明文1,2,3对应密文2,8,18.如果接收方收到密文7,18,15,那么解密得到的明文为 ( ) A.4,5,6 B.6,7,2 C.7,2,6 D.2,6,78.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A.5x-45=7x-3B.5x+45=7x+3C.x+455=x+37D.x -455=x -37二、填空题9.已知x=2是关于x 的方程ax-5x-6=0的解,则a= .10.对于有理数a ,b ,c ,d ,现规定一种新的运算|a b c d|=ad-bc.则满足等式|x 2x+132 1|=1的x 的值为 .11.当m= 时,单项式15x 2m-1y 2与-8x m+3y 2是同类项. 12.(1)若一个队胜m 场,则该队的总积分为 ;(2)某队的胜场总积分能否等于它的负场总积分?你的观点是: .三、解答题 13.解下列方程: (1)2x -13−10x -16=2x+14-1; (2)x 0.7−0.17-0.2x 0.03=1.14.当m 为何值时,式子2m-5m -13的值与式子7-m2的值的和等于5?15.一架飞机在两个城市之间飞行,风速为24千米/时,顺风飞行要2小时50分,逆风飞行要3小时,求飞机在静风中的速度.16.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?17.二十大报告指出“中国式现代化是人与自然和谐共生的现代化”.某市为促进节约用水,提高用水效率,建设节水型城市,将自来水划分为“家居用水”和“非家居用水”.根据新规定,“家居用水”用水量不超过6 t,按每吨2.2元收费;如果超过6 t,那么未超过部分仍按每吨2.2元收费,而超过部分则按每吨3元收费.如果某用户5月份水费平均为每吨2.4元,那么该用户5月份应交水费多少元?答案一、选择题 1.C 2.A 3.D4.B 设该书包每个的进价为x 元,根据题意列方程,得130×80%-x=30%x ,解得x=80.5.D6.A7.B 由题意,得a+1=7,2b+4=18,3c+9=15,解得a=6,b=7,c=2. 8.B二、填空题 9.810.-10 根据题意,得x 2−2(x+1)3=1, 解得x=-10.11.4 根据同类项的定义,相同字母的指数相同,得2m-1=m+3,解得m=4. 12.(1)m+11 (2)不能 (1)胜一场得分:2211=2(分),负一场得分:21-10×2=1(分).若一个队胜m 场,则总积分为2m+(11-m )=2m+11-m=m+11.(2)设一个队胜了x 场,则负了(11-x )场.若这个队的胜场总积分等于负场总积分,则有方程2x-(11-x )=0,解得x=113.其中x (胜场)的值必须是整数,故x=113不符合实际,由此可以判定没有哪个队的胜场总积分等于负场总积分. 三、解答题13.解 (1)去分母,得4(2x-1)-2(10x-1)=3(2x+1)-12. 去括号,得8x-4-20x+2=6x+3-12. 移项、合并同类项,得-18x=-7. 系数化为1,得x=718.(2)原方程可转化为10x 7−17-20x3=1.去分母,得30x-7(17-20x )=21. 去括号,得30x-119+140x=21. 移项、合并同类项,得170x=140. 系数化为1,得x=1417.14.解 根据题意,得2m-5m -13+7-m2=5.解这个方程,得m=-7.因此当m=-7时,式子2m-5m -13的值与式子7-m2的值的和等于5.15.解 设飞机在静风中的速度为x 千米/时,则(x+24)×256=(x-24)×3,解得x=840.答:飞机在静风中的速度是840千米/时.16.解 (1)设甲种奖品购买了x 件,乙种奖品购买了(30-x )件,根据题意,得30x+20(30-x )=800,解得x=20,则30-x=10.答:甲种奖品购买了20件,乙种奖品购买了10件.(2)设甲种奖品购买了x 件,乙种奖品购买了(30-x )件,设购买两种奖品的总费用为w 元,根据题意,得30-x ≤3x ,解得x ≥7.5,w=30x+20(30-x )=10x+600.∵10>0,∴w 随x 的增大而增大,∴x=8时,w 有最小值,为w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.17.解 设该用户5月份用水x t,根据题意,得2.4x=6×2.2+3(x-6).解这个方程,得x=8. 所以8×2.4=19.2(元).答:该用户5月份应交水费19.2元.。
北师大版七年级上册数学第三章综合同步练习题
第三章 整式及其加减小结与复习一、选择题(每小题3分,共30分)1.下列各说法中,错误的是( ) A.代数式的意义是的平方和B.代数式的意义是5与的积C.的5倍与的和的一半,用代数式表示为25y x + D.比的2倍多3的数,用代数式表示为2.当3a =,1b =时,代数式22a b-的值是( ) A.2B.0C.3D.523.下面的式子中正确的是( ) A.B.527a b ab +=C.22322a a a -=D.22256xy xy xy -=- 4.已知代数式的值是5,则代数式的值是( ) A.6 B.7 C.11 D.125.已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( ) A.10b a + B.ba C.100b a + D.10b a +6.已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果是( ) A.1B.23b +C.23a -D.-17.在排成每行七天的日历表中取下一个33⨯方块(如图).若所有日期数之和为189,则的值为( ) A.21B.11C.15D.98.某商品进价为a 元,商店将其进价提高30%作为零售价销售,在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动,这时一件商品的售价为( ) A.元 B.元 C.元 D.元 9.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( ). A .38B .52C .66D .74 10.有一种石棉瓦,每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为( ). A .60n 厘米 B .50n 厘米 C .(50n +10)厘米 D .(60n -10)厘米二、填空题(本题共10小题,每小题3分,共30分) 11.请写出一个..系数为-7,且只含有字母x ,y 的四次单项式__________. 12.15-x a -1y 与-3x 2y b +3是同类项,则a +3b =__________. 0 2 8 4 2 4 6 24 6 8 4m6 第9题13.去括号:3264(5)x x x ⎡⎤---+=⎣⎦ .14.x 平方的3倍与5的差,用代数式表示为 .15.化简)2(0y x --的结果是 . 16.一个学生由于粗心,在计算35a -的值时,误将“-”看成“+”,结果得63,则35a -的值应为____________. 17.当时,代数式13++qx px 的值为2005,则当时,代数式13++qx px 的值为__________.18.按照下图所示的操作步骤,若输入x 的值为-2,则给出的值为 .19.世博会期间,上海某学校组织教师和学生参观世博园,每位教师的车费为m 元,每位学生的车费为n 元,学生每满100人可优惠2人的车费,如果该校七年级有教师20人,学生612人,则需要付给汽车公司的总费用为_______元. 20.(2010湖北荆州)用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是 .三、解答题(本题共7小题,共60分) 21.( 16分)计算: (1)144mn mn -; (2)8x 2-4(2x 2+3x -1)(3)2237(43)2x x x x ⎡⎤----⎣⎦; (4)5x 2-2(3y 2-5x 2)+(-4y 2+7xy ).22.(7分)先化简,再求值:)4(3)125(23m m m -+--,其中3-=m .输入x平方乘以3输出x 减去523.(7分)在22x y ,22xy -,23x y ,xy - 四个代数式中,找出两个同类项,并合并这两个同类项. 24、(7分)阅读下面的解题过程:计算 2(-4a+3b )-3(a-2b )解:原式=(-8a+6b )-(3a-6b ) (第一步) =-8a+6b-3a-6b (第二步) =-11a+12b (第三步) 回答:(1)上面解题过程中有两步错误,第一处是第 步;第二处是第 步。
七数上册第三章一元一次方程3.4实际问题与一元一次方程(球赛积分表)同步练习(含解析新)
七数上册第三章一元一次方程3.4实际问题与一元一次方程(球赛积分表)同步练习(含解析新)七年级数学上册第三章一元一次方程3.4实际问题与一元一次方程(球赛积分表)同步练习(含解析新)下载文档七年级数学上册第三章一元一次方程3.4实际问题与一元一次方程(球赛积分表)同步练习(含解析新)第三章一元一次方程3.4.1 实际问题与一元一次方程(球赛积分表)一、选择题(共10小题)1.(·中山市期末)在﹣赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74[答案]C[详解]设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.[名师点睛]本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.2.(·广州市期末)足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场 B.4场 C.5场 D.6场[答案]C由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.故选C.[名师点睛]此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.3.(·大庆市期末)小彬是学校的篮球队长,在一场篮球比赛中,他一人得了25分,其中罚球得了5分,他投进的2分球比3分球多5个,则他本场比赛3分球进了()A.1个C.3个D.4个[答案]B[详解]解: 设他本场比赛3分球进了x个,根据题意得5+2(x+5)+3x=25,解得x=2.故他本场比赛3分球进了2个.[名师点睛]本题考查一元一次方程的应用:利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.解题关键是找出之间的相等关系列方程.4.(·重庆市期末)在12月4日全国普法日中,我去某校进行了法律知识竞赛,竞赛内容是10道有关中学生应该了解的法律常识,竞赛规则规定:答对一题得5分,不答或答错一题倒扣3分,若七年级1班某同学得了34分,则该同学答对题的个数是()A.9 B.8 C.7 D.6[答案]B[详解]解:设答对的题数为x道,则不答或答错的有(10﹣x)道,解得:x=8.∴该同学答对题的个数是8个.故选B.[名师点睛]本题考查了一元一次方程的应用,正确找出题目中的等量关系,根据等量关系列出方程是解决问题的关键.5.(·仙桃市期末)一次知识竞赛共有20道选择题,规定答对一道得5分,不做或错一题扣1分,结果某学生得分为88分,则他做对题数为()A.16 B.17 C.18 D.19[答案]C[详解]解:设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=88,解得:x=18.即他做对题数为18道.故选:C.[名师点睛]本题考查的知识点是一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.(·咸阳市期末)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5[答案]B[详解]设该队获胜x场,则负了(6-x)场.根据题意得3x+(6-x)=12,解得x=3.经检验x=3符合题意.故该队获胜3场.故选B.[名师点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键7.(·武汉市期末)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道 B.18道 C.19道 D.20道[答案]C[详解]设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.系.8.(·佛山市期末)在“足球进校园”活动中规定:胜一场得3分,平一场得1分,负一场得0分某班足球队踢了10场球,负了3场,得17分,这个足球队共胜了A.2场 B.4场 C.5场 D.7场[答案]C[详解]解:设这个足球队共胜了x场,则平了场,由题意,得,解得:.故选:C.[名师点睛]本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据三种比赛结果的得分之和为17分建立方程是关键.9.(·大连市期末)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()道.A.17 B.18 C.19 D.20[答案]B[详解]设小明答对了题,根据题意可得:,解得: .故选: .[名师点睛]此题主要考查了一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分.10.(·锦州市期末)数学考试出了15道题,做对一题得4分,做错一题倒扣2分,若王刚做了全部15道题,共得36分,则他做对了( )A.10道题 B.11道题C.12道题 D.13道题[答案]B[详解]解:设做对了道,则做错了道,由题意得:,解得:=11.故答案选:B.[名师点睛]本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据做对的得分+做错的得分=最后总得分36建立方程是关键.二、填空题(共5小题)11.(·厦门市期末)在某足球比赛的前11场比赛中,A队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为________________[答案][详解]设设该队共胜了x场,根据题意得:3x+(11-x)=23.故答案为:3x+(11-x)=23.[名师点睛]此题考查了列一元一次方程.列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.12.(·河间市期末)在一场NBA篮球比赛中,姚明共投中a个2分球,b个3分球,还通过罚球得到9分.在这场比赛中,他一共得了____________分.[答案]2a+3b+9[详解]解:2×a+3×b+9=2a+3b+9(分).故答案为:2a+3b+9.[名师点睛]本题考查了一元一次方程的应用,解题关键是找出数量关系,再列式解答.13.(·仙桃市期末)下表是2015﹣赛季欧洲足球冠军杯第一阶段G组赛(G组共四个队,每个队分别与其它三个队进行主客场比赛各一场,即每个队要进行6场比赛)积分表的一部分.(备注:总积分=胜场积分+平场积分+负场积分)本次足球小组赛中切尔西队总积分是___分.球队场次胜平负总积分切尔西 6 ?? 1 ?基辅迪纳摩 6 3 2 1 11波尔图 6 3 1 2 10特拉维夫马卡比 6 0 0 6 0[答案]13[详解]解:由特拉维夫马卡比队负6场积0分,可知负一场积0分,根据基辅迪纳摩队和波尔图队的胜场数相同,负场数相差1,积分差1,得平一场得1分,设胜一场积x分,根据题意得3x+1=10解得x=3,即胜一场积3分,平一场积1分,负一场积0分,又因为胜场数=负场数,所以切尔西队胜1+1+2+6-3-3=4场,平6-4-1=1场,总积分是3×4+1=13场,故答案为13.[名师点睛]本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.14.(·高平市期末)某次数学测验,共16个选择题,评分标准为:答对一题给6分,答错一题扣2分,不答得0分.某个学生只有1题未答,他想自己的分数不低于70分,他至少要答对________道题.[答案]13[详解]解:设他要对x题,依题意得:6x-2(15-x)≥70,解之得x≥12.5;因为题数应该是整数,所以至少要对13题.故答案为:13.[名师点睛]解决本题的关键是读懂题意,找到符合题意的不等关系式组.准确的解不等式是需要掌握的基本计算能力.注意:根据题意,未知数应该是最小整数.个得3分,爸爸投中1个得1分,结果两人一共投中了20个,得分刚好相等.小丽投中了_____个.[答案]5[详解]设小丽投中x个,根据题意得出:3x=20﹣x解得:x=5.故答案为:5.[名师点睛]本题考查了一元一次方程的应用,根据已知得出等量关系是解题的关键.16.(·石家庄市期末)数学课上,教师出示某区篮球赛积分表如下:(1)从表中可以看出,负一场积多少分,胜一场积多少分;(2)请你帮忙算出二队胜了多少场?(3)在这次比赛中,一个队胜场总积分能不能等于它的负场总积分?(4)在计算五队、六队胜出场次的时候,老师还没等同学们计算出来就立刻说出了答案,老师解释说:“我是通过找到积分与胜场之间的数量关系求出来的”,请你说出其中的奥秘.[答案](1)负1场积分2分;胜1场积3分;(2)二队胜了7场;(3)不能;(4)[分析](1)根据三队负11场得22分,可知负1场,积2分;由一队胜10场负1场积分32分可得胜一场的积分;(2)设二队胜x场,负(11-x)场,根据积分29分列方程,求解即可;(3)设这次比赛一个队共胜x场,则负(11﹣x)场,然后根据得分列出方程求解即可;(4)设这次比赛一个队共胜x场,则负(11﹣x)场,积分为y,根据y=胜场积分+负场积分=3x+2(11﹣x)=x+22,即可得到结论.[详解](1)三队负11场得22分,可知负1场积分=22÷11=2(分);由一队胜10场可知,其负1场,故胜1场积分=(32-1×2)÷10=3(分);(2)设二队胜x场,负(11-x)场.根据题意得:3x+2(11-x)=29解得:x=7.答:二队胜了7场.(3)设这次比赛一个队共胜x场,则负(11﹣x)场,根据题意得:3x=2(11-x)解得:x= .∵比赛场次x是正整数,∴一个队胜场总积分不能等于它的负场总积分.(4)设这次比赛一个队共胜x场,则负(11﹣x)场,积分为y,根据题意得:y=3x+2(11﹣x)=x+22,∴积分与获胜的场数之差=22.[名师点睛]本题考查了一元一次方程的应用以及从统计表中获取信息的能力.根据题意找出相等关系是解答本题的关键.17.(·南平市期末)某校七年级组织知识竞赛,共设20道选择题,各题分值相同,每题必答.右表记录了5个参赛学生的得分情况.问:参赛者答对题数答错题数得分A 20 0 100B 19 1 94C 18 2 88E 10 10 40(1)答对一题得分,答错一题得分;(2)有一同学说:同学甲得了70分,同学乙得了90分,你认为谁的成绩是准确的?为什么?[答案](1)5,﹣1;(2)同学甲的成绩是准确的,同学乙的成绩不准确.[详解]解:(1)∵答对20道题,答错0道题,得分100分,∴答对一题得5分,∵答对19道题,答错1道题,得分94分,∴答错一题得﹣1分;(2)同学甲的成绩是准确的,同学乙的成绩不准确.设同学甲答对了x道,则答错了(20﹣x)道,由题意得:5x﹣(20﹣x)=70,解得:x=15,设同学乙答对了y道,则答错了(20﹣y)道,由题意得:5y﹣(20﹣y)=90,解得:y=18 ,因为x,y是做对题目个数,所以x,y是自然数.因此,同学甲的成绩是准确的,同学乙的成绩不准确.[名师点睛]此题主要考查了一元一次方程的应用,正确表示出得分情况是解题关键.18.(·永州市期末)某次知识竞赛共有20道题,每题答对得5分,答错或不答都扣3分.小明共得了68分,那么小明答对了几道题?[答案]小明答对了16道题.[详解]设小明答对了x道题.根据题意,得5x-3(20-x)=68,经检验x=16符合题意.答:小明答对了16道题.[名师点睛]本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
人教版七年级数学上册第三章综合测试卷含答案
人教版七年级数学上册第三章综合测试卷一、选择题(每题3分,共30分)1.下列代数式书写规范的是()A. b×12B.4÷(a+b) C.225x D.3n2.[母题教材P71例2] 用语言叙述式子“a-12b”所表示的数量关系,下列说法正确的是()A. a与b的差的12B. a与b的一半的积C. a与b的12的差D. a比b大123.[2024·成都武侯区期末]某商店举办促销活动.促销的方法是将原价为x元/件的衣服以(45x-7)元/件出售,则下列关于代数式(45x-7)的含义的描述正确的是()A.原价打8折后再减去7元B.原价减去7元后再打8折C.原价减去7元后再打2折D.原价打2折后再减去7元4.当a=-1,b=3时,式子2a2+ab+b的值是()A.-5B.-2C.2D.65.[母题教材P75练习T2] 下列各说法中的两个量之间的关系属于反比例关系的有()①当路程一定时,汽车行驶的平均速度与行驶时间之间的关系;②当商品的进价一定时,利润与售价之间的关系;③当长方形的面积一定时,长方形的长与宽之间的关系;④计划从A地到B地铺设一段2 400米长的铁轨,每日铺设长度与铺设天数之间的关系.A.1个B.2个C.3个D.4个6.某商品原来的价格为a 元,前期在销售时连续两次降价10%.后期由于成本价格上涨,商店决定在两次降价的基础上提价20%,提价后商品的价格为( ) A. a 元B.0.918a 元C.0.972a 元D.0.96a 元7.[2023·雅安]若m 2+2m -1=0,则2m 2+4m -3的值是( ) A.-1B.-5C.5D.-38.学校礼堂的房间窗户装饰物如图所示,该装饰物由两个四分之一圆组成(半径相同),则窗户中能射进阳光的部分的面积为( )A. ab -π16b 2B. ab -π8b 2C. ab -π4b 2D. ab -π2b 29.[新视角·2023·济宁改编·规律探究题]已知一列均不为1的数a 1,a 2,a 3,…,a n 满足如下关系:a 2=1+a 11-a 1,a 3=1+a 21-a 2,a 4=1+a 31-a 3,…,a n +1=1+a n1-a n,若a 1=2,则a 2 025的值是( ) A.-12B.13C.-3D.210.如图,下面图形是用棋子按照一定规律摆成的,按照这种摆法,第n 个图形中共有棋子( )A.2n 枚B.(n 2+1)枚C. n (n -1)枚D. n (n +1)枚二、填空题(每题3分,共18分)11.下列各式中,是代数式的是 .(填序号) ①2x -1;②a =1;③S =πR 2;④π;⑤72m ;⑥12>13.12.[新视角·2024·北京丰台区期末·结论开放题]对于式子“m +n ”可以赋予其实际意义:一个篮球的价格是m 元,一个足球的价格是n 元,体育老师购买一个篮球和一个足球共需要付款(m +n )元,请你给式子“2a ”赋予一个实际意义: .13.[情境题 生活应用]房间面积一定时,每块砖的面积和铺砖的块数 (填“满足”或“不满足”)反比例关系.14.把一个两位数m 放在一个三位数n 的前面,组成一个五位数,这个五位数可表示为 .15.[2024·南京期末]如果|m |=2,那么代数式1-m +2m 2的值为 .16.将长为30 cm 的长方形白纸,按如图所示的方法黏合起来,黏合部分的宽为2 cm.(1)3张白纸黏合后的总长度为 cm ;(2)x 张白纸黏合后的总长度为 cm.(用含x 的代数式表示) 三、解答题(共72分) 17.(6分)用代数式表示: (1)m 的3倍与n 的一半的和; (2)比a 与b 的积的2倍小5的数;(3)x,y两数的平方和减去它们积的2倍.18.(8分)已知a,b互为相反数,c,d互为倒数,m的绝对值等于3,求a+bm2+cd-m的值.19.(10分)列式表示并求值.(1)超市购进一批上衣,标价为a元/件,后降价20%进行销售,小明购买了2件该上衣,一共花费了多少元?当a=120时,小明一共花费了多少元?(2)甲、乙两地相距b km,一辆汽车以v km/h的速度从甲地向乙地行驶,行驶t h后,汽车与乙地之间的距离为多少千米?当b=200,v=80,t=1.5时,汽车与乙地之间的距离为多少千米?20.(10分)一个水池内原有水500升,现在以20升/分钟的速度向水池内注水,35分钟可注满水池.(1)水池的容积是多少升?(2)若水池为空的,用Q(单位:升/分钟)表示注水的速度,用T表示注满水池需要的时间,用式子表示T与Q的关系,T与Q成什么比例关系?21.(12分)[2024·扬州江都区期中]如图,在一块长为3x,宽为y(3x>y)的长方形铁皮的四个角上,分别截去半径都为y2的圆的14.(1)试计算剩余铁皮的面积(阴影部分面积).(2)当x=4,y=8时,剩余铁皮的面积是多少?(π取3)22.(12分)某种杯子的高度是15 cm,两个以及三个这样的杯子叠放时的高度如图所示.(1)n个这样的杯子叠放在一起的高度是cm.(用含n的式子表示)(2)20个这样的杯子叠放在一起的高度是多少?23.(14分)[立德树人节约资源]为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下(注:水费按月份结算):每月用水量单价不超出6 m3的部分2元/m3超出6 m3不超出10 m3的部分4元/m3超出10 m3的部分8元/m3已知李老师家某月用水量为x m3.(1)若6<x≤10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)(2)若x>10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)答案一、1. D 2. C 3. A4. C 【点拨】因为a =-1,b =3,所以2a 2+ab +b =2×(-1)2+(-1)×3+3=2. 5. C6. C 【点拨】由题意得提价后商品的价格为a (1-10%)×(1-10%)(1+20%)=a ×0.9×0.9×1.2=0.972a (元).7. A 【点拨】因为m 2+2m -1=0, 所以m 2+2m =1.所以2m 2+4m =2. 所以2m 2+4m -3=2-3=-1.8. B 【点拨】由题意得窗户中能射进阳光的部分的面积为ab -2×14π×(b 2)2=ab -π8b 2. 9. D 【点拨】因为a 1=2, 所以a 2=1+21-2=-3,所以a 3=1-31+3=-12,所以a 4=1-121+12=13,所以a 5=1+131-13=2,…,由此可得这列数按2,-3,-12,13循环出现. 因为2 025÷4=506……1,所以a 2 025=a 1=2.10. D 【点拨】第1个图形中有2枚棋子,2=1×2;第2个图形中有6枚棋子,6=2×3;第3个图形中有12枚棋子,12=3×4;第4个图形中有20枚棋子,20=4×5;…,所以第n 个图形中有n (n +1)枚棋子. 二、11.①④⑤12.一个篮球的价格是a 元,购买2个篮球共需付款2a 元(答案不唯一)13.满足14.1 000m+n15.7或11 【点拨】因为|m|=2,所以m=±2.当m=2时,1-m+2m2=1-2+2×22=7;当m=-2时,1-m+2m2=1-(-2)+2×(-2)2=11.综上所述,代数式1-m+2m2的值为7或11.16.(1)86(2)(28x+2)三、17.【解】(1)3m+12n.(2)2ab-5.(3)x2+y2-2xy.18.【解】根据题意,得a+b=0,cd=1,m=±3,当m=3时,a+bm2+cd-m=032+1-3=-2,当m=-3时,a+bm2+cd-m=0(−3)2+1-(-3)=4.综上,a+bm2+cd-m的值为-2或4.19.【解】(1)一共花费了2a(1-20%)=1.6a(元).当a=120时,1.6a=1.6×120=192.故当a=120时,小明一共花费了192元.(2)汽车与乙地之间的距离为(b-vt)km.当b=200,v=80,t=1.5时,b-vt=200-80×1.5=80.故当b=200,v=80,t=1.5时,汽车与乙地之间的距离为80 km.20.【解】(1)水池的容积是500+20×35=1 200(升).(2)依题意得TQ=1 200或T=1200Q,T与Q成反比例关系.21.【解】(1)由题意可知S阴影=3xy-π·(y2)2=3xy-π4y2,所以剩余铁皮的面积是3xy-π4y2.(2)当x=4,y=8时,S阴影=3×4×8-3×82=48.4答:当x=4,y=8时,剩余铁皮的面积是48.22.【解】(1)(3n+12)(2)当n=20时,3n+12=3×20+12=72.答:20个这样的杯子叠放在一起的高度是72 cm.23.【解】(1)若6<x≤10,则李老师当月应交水费2×6+(x-6)×4=12+4(x-6)=4x-12(元).(2)若x>10,则李老师当月应交水费2×6+4×(10-6)+(x-10)×8=12+16+8(x-10)=28+8(x-10)=8x-52(元).。
(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(附解析)
《一元一次方程》应用题分类:相遇与追击类问题综合练习1.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)2.一架飞机往返于两城之间,顺风需要5小时30分,逆风时需6小时,已知风速是每小时24千米,求两城之间的距离.3.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?4.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开出时间迟到15分钟.若李伟打算在火车开出前10分钟到达火车站,求李伟此时骑摩托车的速度该是多少?5.一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们首次相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们首次相遇?6.运动场跑道周长400m,爷爷跑步的速度是小红的.(1)他们从同一起点沿跑道的相反方向同时出发,min后两人第一次相遇,求他们的跑步速度;(2)如果他们第一次相遇后小红立即转身也沿爷爷的方向跑,那么几分钟后他们再次相遇?7.某学校的一名学生从家到校去上课,他先以每小时4千米的速度步行了全程的一半后,再搭上速度为20千米/时的顺路班车,所以比原来需要的时间早到了一小时,问他家到学校的距离是多少千米?8.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?9.列方程解应用题:成都到雅安的高速公路全长147千米,上午八时一辆货车由雅安到成都,车速是每小时60千米,半小时后,一辆小轿车从雅安出发去追赶货车,车速是每小时80千米.问:小轿车从雅安出发到追到货车用了多少小时?10.某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是5千米/时.(人上下车的时间不记)(1)若小汽车送4人到达考场后再返回到出故障处接其他4人.请你通过计算说明能否在截止进考场的时刻前到达考场?(2)带队老师提出一种方案:先将4人用车送到考场,另外4人同时步行前往考场,小汽车到达考场后返回再接步行的4人到达考场.请你通过计算说明方案的可行性.(3)所有学生、老师都到达考场,最少需要多少时间?参考答案1.解:设连云港至徐州客运专线的铁路全长为xkm,列方程得:﹣=260,1.7x=358.8,解得x=,≈352km/h.答:提速后的火车速度约是352km/h.2.解:设两城之间的距离为x千米,由题意得:﹣=24×2解得:x=3168答:两城之间的距离为3168千米.3.解:由题目分析,根据时间差可列一元一次方程:x﹣x=,即:x=,解得:x=30千米.答:小张家到火车站有30km.4.解:设火车开出时间为x小时,由题意得:30(x﹣)=18(x+),解得x=1.设李伟骑车速度为每小时y千米,y==27.故李伟骑车速度为每小时27千米.5.解:(1)设甲、乙两人同时同地反向出发,x分钟后他们首次相遇.则(550+250)x=400,解得x=.故甲、乙两人同时同地反向出发,分钟后他们首次相遇.(2)设甲、乙两人同时同地同向出发,y分钟后他们首次相遇.则(550﹣250)y=400,解得y=.故甲、乙两人同时同地同向出发,分钟后他们首次相遇.6.解:(1)设小红的跑步速度是xm/min,则爷爷跑步的速度是xm/min,由题意得:x+×x=400,解得:x=200.x=120.答:小红的跑步速度是200m/min,则爷爷跑步的速度是120m/min.(2)设y分钟后他们再次相遇.由题意得:200y﹣120y=400,解得:y=5.答:5分钟后两人首次相遇.7.解:设他家到学校的距离是x千米,﹣1=,5x﹣40=x,x=10,故他家到学校的距离是10千米.8.解:设平路所用时间为x小时,29分=小时,25分=小时,则依据题意得:10(﹣x)=18(),解得:x=,则甲地到乙地的路程是15×+10×()=6.5km,答:从甲地到乙地的路程是6.5km.9.解:设轿车从出发到追上货车用了x小时,由题意得:60×+60x=80x解得:x=1.5;答:轿车从出发到追上货车用了1.5小时.10.解:(1)所需要的时间是:15×3÷60×60=45分钟,∵45>42,∴不能在截至进考场的时刻前到达考场;(2)先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为=0.25(h)=15(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后与先步行的4人相遇,5t+60t=13.75,解得t=.汽车由相遇点再去考场所需时间也是h.所以用这一方案送这8人到考场共需15+2××60≈40.4<42.所以这8个人能在截止进考场的时刻前赶到;(3)8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需(h),汽车从出发点到A处需(h)先步行的4人走了5×(km),设汽车返回t(h)后与先步行的4人相遇,则有60t+5t=x﹣5×,解得t=,所以相遇点与考场的距离为:15﹣x+60×=15﹣(km).由相遇点坐车到考场需:(﹣)(h).所以先步行的4人到考场的总时间为:(++﹣)(h),先坐车的4人到考场的总时间为:(+)(h),他们同时到达则有:++﹣=+,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(+)×60=37(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 一元一次方程
一、选择题
1.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是( )
A .120元
B .100元
C .72元
D .50元
2.一条船在一条河上的顺流航速是逆流航速的3倍,这条船在静水中的航速与河水的流速之比是( )
A .3∶1
B .2∶1
C .1∶1
D .5∶2
3.设有x 个人共种m 棵树苗,如果每人种8棵,则剩下2棵树苗未种,如果每人种10棵,则缺6棵树苗.根据题意,列方程正确的是()
A .
61028+=-x x B .610
28-=+x x C .10682+=-m m D .10682-=+m m 4.如果a=b ,那么下列结论中不一定成立的是()
A .1=b
a B .a ﹣b=0 C .2a=a+
b D .a 2=ab 5.下列方程中,是一元一次方程的是() A .x+y=1 B .x 2﹣x=1 C .2x +1=3x D .x
2+1=3 6.(3分)一元一次方程410x +=的解是( )
A .
14 B .14
- C .4 D .4- 7.已知2x =是关于x 的方程21x m -=的解,则m 的值是 ( ).
A .3-
B .
3 C .2 D .7 8.若代数式4x ﹣5与212
x -的值相等,则x 的值是( ) A .1 B .32 C .23 D .2 9.若关于x 的方程mx m ﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )
A .x=0
B .x=3
C .x=﹣3
D .x=2
10.若代数式x+3的值为2,则x 等于( )
A 、1
B 、-1
C 、5
D 、-5
二、填空题
11.在方程2x+y=3中,用含x 的代数式表示y 为_________________.
12.在方程3x+4y=6中,如果2y=6,那么x= .
13.若关于x 的方程2x+a=5的解为x=-1,则a= .
14.已知x=6是关于x 的方程13
5=-m x 的解,则m 的值是 . 15.当x= 时,式子5x+2与3x ﹣4的值相等.
16.刘俊问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”问王老师今年 岁.
17.设一列数1a 、2a 、3a 、…、n a 中任意三个相邻数之和都是33,已知32a x =,2215a =,3838a x =+,那么2015a = .
18.把一些图书分给某班学生阅读,如果每人3本,则剩余20本,如果每人4本,则还缺25本,那么这个班有 学生.
三、计算题
19.计算题:
(1)解方程:4(2-x )-3(x+1)=6
(2)解方程:332164
x x +-=- (3)解方程组:32147x y x y +=-⎧⎨+=-⎩
(4)解方程组4(2)153(2)32x y y x
+=-⎧⎨+=-⎩
四、解答题
20.(10分)欧拉是一位著名的数学家,他把他的一生都献给了人类的数学事业,在他一生岁数的4
1那年,他发表了第一篇数学论文,并且获得了巴黎科学院奖金,此后过了7年,他成为彼得堡科学院的数学教授,在欧拉去世的前17年,他不幸双目失明了,但他继续在黑暗的世界里凭着他的记忆和心算进行数学研究,在这17年里,他写出了数学论文400篇,正好是他一生的岁数与他成为彼得堡学院数学教授时岁数之差的8倍.根据以上信息,请你算出数学家欧拉一生活了多少岁?
21.在做解方程练习时,学习卷中有一个方程“11228
y y -
=+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解.与当3x =时代数式5(1)2(2)4x x ----的值相同.”聪明的小聪很快补上了这个常数.同学们,请你们也来补一补这个常数.
22.某顾客在商场看中了甲、乙两种冰箱,其中甲冰箱的价格为2100元,日均耗电量为1度;乙冰箱是新节能产品,价格为2220元,日均耗电量为0.5度.若这两种冰箱的效果相同且甲冰箱可以打折但乙冰箱不打折,请你就价格方面计算说明,甲冰箱至少打几折时购买比较合算?(假设:每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天.)
23.情景:
试根据图中信息,解答下列问题:
(1)购买8根跳绳需 元,购买14根跳绳需 元;
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.
参考答案
1.D .
2.B
3.C .
4.A .
5.C .
6.B .
7.B .
8.B
9.A
10.B .
11.y=-2x+3.
12.﹣2.
13.7.
14.5
3. 15.-3.
16.31.
17.14.
18.45名.
19.(1)17- (2)34 (3)12x y =⎧⎨=-⎩
(4)31x y =-⎧⎨=⎩ 20.76岁.
21.7.
22.7折
23.(1) 200;280.(2) 有, 11根.。