B能的转化和能量守恒定律
高中物理的能量守恒定律知识点
高中物理的能量守恒定律知识点高中物理的学习中会有很多关于守恒的定律,下面店铺的小编将为大家带来能量守恒的定律介绍,希望能够帮助到大家。
高中物理的能量守恒定律介绍能量守恒定律内容能量守恒定律也称能的转化与守恒定律。
其内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体;在转化或转移的过程中,能量的总量不变。
高中物理都研究了哪些形式的能量?研究能量守恒定律,要搞明白咱们主要研究哪些能量呢?从解高中物理题的角度来分析,我们主要分析的是这五种形式的能量:动能、弹性势能、重力势能、内能、电势能。
注:内能包括摩擦生热与焦耳热两种形式,高中不考磁能。
动能、弹性势能、重力势能这三种形式能量之和称之为机械能。
当然,上述五种形式的能量,是力学与电磁学常考到的。
选修内容中的机械振动也是具有能量的,还有光子能量,核能等等,这些都不在本文讨论范围内,不过同学们需要知道,光电效应方程与波尔能级方程也都是能量守恒定律的推导。
能量守恒定律的公式E1=E2即,初始态的总能量,等于末态的总能量。
或者说,能量守恒定律,就是说上文提到的五种形式的能量之和是恒定的。
机械能守恒定律与能量守恒定律关系机械能守恒定律是能的转化与守恒定律的特殊形式。
两者大多都是针对系统进行分析的。
(1)在只有重力、弹力做功时,系统对应的只有动能、弹簧弹性势能、重力势能三种形式能量之间的变化。
(2)在有重力、弹簧弹力、静电场力、摩擦力、安培力等等,众多形式的力做功时,系统对应的有动能、弹簧弹性势能、重力势能、电势能、摩擦热、焦耳热等等众多形式的能量变化,而这些能量也是守恒的。
从上述对比中不难看出,机械能守恒是能量守恒的一种特例。
因此,在熟练掌握能的转化与守恒定律内容的基础上,我们可以使用能量守恒来解决机械能守恒的问题。
或者说,能量守恒掌握的非常棒了,我们就可以把机械能守恒忘掉了。
能量守恒定律的前提条件问:什么情况下能用能量守恒定律解题?回答,我们是建立在解物理题技巧的基础上的。
经典力学三大守恒定律和条件
经典力学三大守恒定律和条件经典力学是物理学的一个重要分支,研究物体运动的规律和力的作用。
在经典力学中,有三大守恒定律,它们是动量守恒定律、角动量守恒定律和能量守恒定律。
下面将分别介绍这三大守恒定律及其条件。
一、动量守恒定律动量守恒定律是经典力学中最基本的守恒定律之一,它描述了物体在没有外力作用下的动量不变性。
动量是物体的质量乘以其速度,用p表示。
动量守恒定律可以用以下公式表示:Δp = 0其中,Δp表示物体动量的变化量,当Δp等于0时,即物体动量保持不变,满足动量守恒定律。
动量守恒定律的条件:1. 在一个封闭系统内,没有外力作用于系统;2. 系统内的物体之间没有相互作用力。
二、角动量守恒定律角动量守恒定律描述了物体在没有外力矩作用下的角动量不变性。
角动量是物体的质量乘以其速度和与其速度垂直的距离的乘积,用L表示。
角动量守恒定律可以用以下公式表示:ΔL = 0其中,ΔL表示物体角动量的变化量,当ΔL等于0时,即物体角动量保持不变,满足角动量守恒定律。
角动量守恒定律的条件:1. 在一个封闭系统内,没有外力矩作用于系统;2. 系统内的物体之间没有相互作用力矩。
三、能量守恒定律能量守恒定律是经典力学中最重要的守恒定律之一,它描述了物体在运动过程中能量的转化和守恒。
能量可以分为动能和势能两种形式,动能是物体由于运动而具有的能量,势能是物体处于一定位置而具有的能量。
能量守恒定律可以用以下公式表示:ΔE = 0其中,ΔE表示物体能量的变化量,当ΔE等于0时,即物体能量保持不变,满足能量守恒定律。
能量守恒定律的条件:1. 在一个封闭系统内,没有外力做功;2. 系统内的物体之间没有能量的传递。
除了上述三大守恒定律外,还有一些相关的守恒定律,如动能守恒定律、角动量守恒定律和机械能守恒定律等。
它们都是基于经典力学的基本原理推导出来的。
动能守恒定律是能量守恒定律的一个特例,它描述了物体在运动过程中动能的转化和守恒。
动能守恒定律可以用以下公式表示:ΔK = 0其中,ΔK表示物体动能的变化量,当ΔK等于0时,即物体动能保持不变,满足动能守恒定律。
能量的转化与守恒定律
能量的转化与守恒定律能量是物体或系统在运动、变化或相互转化过程中所具有的性质。
在自然界中,能量可以互相转化,但总能量的数量保持不变,这就是能量守恒定律。
能量的转化与守恒定律给予我们对世界运动和变化的深刻认识和理解。
本文将介绍能量的转化过程、能量守恒定律的基本原理以及它们在生活中的应用。
一、能量的转化过程能量的转化是指能量从一种形式转化为另一种形式的过程。
常见的能量形式包括机械能、热能、化学能、光能等。
能量的转化过程通常遵循一定的规律和原理。
1. 机械能的转化机械能是物体由于运动而具有的能量,可以分为动能和势能两种形式。
当物体运动时,动能会增加;当物体从高处下落时,势能会转化为动能。
这种能量转化是运动力学中一个重要的概念,我们在日常生活中能够观察到很多机械能的转化例子,比如小球滚下斜坡时的动能增加、弹簧受力变形时的弹性势能等。
2. 热能的转化热能是物体内部粒子的热运动所具有的能量,热能的传递是指物体间由于温度差异而发生的能量传递过程。
热能可以通过传导、辐射和对流等方式进行传递。
例如,我们在用火取暖时,燃烧产生的热能会通过传导和辐射方式传递到周围的空气和物体中。
此外,热能的转化还可以引起物质的相变,比如冰融化时吸收热能,水汽凝结时释放热能。
3. 化学能的转化化学能是物质在化学反应中所具有的能量。
化学反应是指物质发生化学变化时,原子、离子或分子间的能量转化过程。
例如,火柴燃烧时,化学能转化为热能和光能,火药燃烧时,化学能转化为机械能和热能。
化学能的转化是现代工业生产和生活中不可或缺的一个过程。
4. 光能的转化光能是指由电磁波形式的光所具有的能量。
光能的转化过程包括光的吸收、反射和折射等。
当光线照射到物体上时,光能可以被物体吸收,并转化为热能或化学能。
例如,太阳光照射到地球上,被植物吸收后转化为光合作用所需的化学能。
光能的转化对于光电技术、光催化和光伏发电等领域具有重要的应用价值。
二、能量守恒定律的原理能量守恒定律是指在一个孤立系统中,能量的总量保持不变。
能量守恒和转化定律
三、能量守恒定律
演示3:滚摆实验
问:滚摆越滚越低的过程中,机械能发生了什么变化?减少的机械能到哪里去了呢?
大量事实证明,在普遍存在的能量的转化和转移过程中,消耗多少某种形式的能量,就得到多少其他形式的能量。
科学工作者经过长期的实践探索,直到19世纪,才确立了这个自然界最普遍的定律——能量守恒定律:…
活动1:来回迅速摩擦双手
活动2:用钢笔杆在头发或衣服上摩擦后再靠近细小的纸片
课本图16.5-1是转化过程示意图,让学生充分讨论后填写
学生悟出:
1.能量可以转化,转化时能的形式改变
2.能量可以转移,转移时能的形式没有变
实际上是通过摩擦把机械能转化成了内能
思考课本143页的“想想议议”
观看视频,增长见识
第三节能量守恒和转化:能量既不会消灭也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量不变
九.课后反思
教法
启发式教学法,自学讨论法,设疑问教学法,类比教学法。
学法
自学讨论法
教学手段
多媒体,幻灯片
教学流程
教师活动
学生活动
二次备课
一.引入新课
我们学习了动能和势能之间的转化,那么能量之间是否可以发生转化那?
九年级物理能量的转化和守恒
复习:
做功: 摩擦双手取暖过程中,是 机械 能转化 内能。 热传递: 用热水袋取暖过程中,能量从热水袋 转移到 手 。
由上述两个例子可知: 能量从一种形式 转化 为另一种形式,或者 从一个物体 转移 到另一个物体,在这些过 程中,能的总量是 不变 的。(选填“变”
或“不变”)。
我们把这个叫做能量守恒定律: 能量不会凭空消失,也不会凭空产生, 能量从一种形式转化为另一种形式,或 者从一个物体转移到另一个物体,在这 些过程中,能的总量是不变的。
热传递(实质是内能的转移) 发生热传递的条件是:物体间存在 温度差 即:能量只会从温度高的物体向温度低 的物体转移。(内能多不一定温度高)
一自然界中能量的形式有多种多样, 例如:我们学过的——内能。
电能 核能 太阳能 光能 机械能(包括动能和势能)
化学能
在一定条件下,各种形式的能是可以相互转化 例如: 1、摩擦生热: 机械 能转化为 内 能。 2、电灯发光: 电 能转化为 光 能。 3、柴火燃烧: 化学 能转化为 内 能。 4、水电站的水轮机发电: 机械 能转化为电 能 5、壶中的水沸腾时将壶盖顶起 内 能转化为 机械 能。 6、太阳能发电机发电:太阳 能转化为 电 能 7、电风扇转动: 电 能转化为 机械 能。
8、用打气筒给自行车轮胎打气: 机械 能转化为 内 能。 9、石块从空中落下: 重力势能 能转化为 动 能。 10、给蓄电池充电: 电 能转化为 化学 能 11、蓄电池放电: 化学 能转化为 电 能
说出下图中发生的能量转化或转移
1、酒精燃烧:
化学能转化为内能
火焰把水加热:
火焰内能转移到水中
3、塞子为什么会飞出?
万千瓦功率 2、一座65万千瓦功率的水电站,发 一天 电能 电一天所获得的电能,相当于完全 燃烧多少吨烟煤?(烟煤的燃烧值 为2.9×107 J/kg ) 解:Q = W = Pt = 6.5×108 W ×24×3600s = 5.616×1015 J 由Q = mq得 15 J 5.61 6 × 10 m =Q/q = 2.9×107 J/kg = 1.97×108 kg
能量转化和守恒定律
能量转化和守恒定律能量转化和守恒定律是物理学中的两个基本概念。
能量转化表明能量在不同形式之间的相互转换,而守恒定律则指出能量在一个封闭系统内是不会凭空消失或产生的。
在本文中,我们将深入探讨这两个概念,并分析它们的重要性和应用。
一、能量转化能量转化是指能量从一种形式转变为另一种形式的过程。
在自然界中,能量可以以各种形式存在,如动能、势能、热能、电能等。
这些能量形式之间可以相互转化,但总能量守恒。
例如,当一个物体被抬起并具有势能时,如果释放该物体,势能将转化为动能,使得物体开始运动。
能量转化符合能量守恒定律,即能量不会凭空消失或产生。
在一个封闭系统内,能量总量保持不变。
这是因为能量无法被创造或销毁,只能从一种形式转化为另一种形式。
因此,我们可以利用能量转化的原理来解释自然界中的各种现象,如机械运动、热力学过程以及电磁现象等。
二、守恒定律能量守恒定律是物理学中的基本定律之一。
它指出,在一个封闭系统内,能量的总量保持不变。
无论是机械系统、热力学系统还是电磁系统,能量都不会凭空消失或产生。
这意味着能量可以从一种形式转化为另一种形式,但总能量守恒。
守恒定律的应用非常广泛。
在机械运动中,根据牛顿定律,动能可以转化为势能或者热能,而守恒定律保证了总能量的守恒。
在热力学系统中,热能可以转化为机械能或者其他形式的能量,而守恒定律确保系统的总能量不变。
在电磁系统中,电能可以转化为热能、光能或者其他形式的能量,守恒定律保障了总能量的守恒。
三、能量转化和守恒定律的重要性能量转化和守恒定律在物理学中具有重要的地位和作用。
它们为我们解释和理解自然界中的各种现象提供了基础。
只有通过理解能量转化和守恒定律,我们才能更好地探索自然现象和发展科学技术。
通过研究能量转化和守恒定律,我们可以预测和分析各种物理过程。
例如,通过能量转化和守恒定律,我们可以计算机械系统中物体的速度、高度和位移等参数。
在热力学中,我们可以通过计算能量传递和转化来研究热力学过程。
能量守恒与能量转化定律
能量守恒与能量转化定律能量是宇宙中最基本的物质属性之一。
它存在于各种形式中,例如热能、机械能、化学能等。
在物质世界中,能量的守恒和转化是一条根本性的物理规律。
能量守恒定律是指在一个孤立系统中,能量的总量是不变的。
这意味着能量既不能从无到有,也不能从有到无,只能从一种形式转化为另一种形式。
换句话说,能量的守恒意味着能量在系统内的变化只是形式的转换,并且总能量保持不变。
例如,考虑一个摆钟系统。
当你上好摆线并轻轻拉动钟摆,钟摆会开始摆动。
在这个过程中,摆线逐渐向下运动,转化为摆钟的机械能。
但是,我们不会观察到能量的净损失。
因为根据能量守恒定律,在摆线向下运动的同时,它转化为的机械能与摆线的损失量相等,总能量保持不变。
这就是能量守恒定律的具体表现。
能量转化定律是指能量在不同形式间的转换。
它描述了能量转换的多样性和普遍性。
能量转化可以是单一的,也可以是多种形式之间的相互转换。
举例来说,考虑一个汽车引擎的工作过程。
汽车引擎燃烧汽油产生化学能,然后通过燃烧产生的高温和高压气体转化为机械能,驱动车轮运动。
在这个过程中,能量的形式发生了多次变化,包括化学能向热能的转换、热能向机械能的转换。
但是总能量保持不变,符合能量守恒定律。
能量转化的多样性在日常生活中无处不在,例如风能转化为电能、光能转化为电能、水能转化为机械能等等。
这些转化过程都是基于能量转化定律的基础上进行的。
更进一步地,能量转化定律也涉及到能量效率的概念。
能量效率是指在能量转化过程中能量的利用效果。
对于一个特定的能量转化系统,能量效率定义为输出能量与输入能量之比。
能量效率通常以百分比的形式表示,表示能量转化过程中的损耗程度。
能量转化定律的研究不仅对于能源利用和环境保护有重要意义,还对于解释自然界中的各种现象具有重要价值。
通过对能量的转化和守恒规律的研究,科学家们揭示了太阳能、火山爆发、地壳运动等自然现象背后的能量转化机制。
综上所述,能量守恒和能量转化定律是物理学中重要的基本原理。
九年级物理《能量的转化和守恒》
机械能可以全部转化为内能 而内能不可全部转化为机械 能而不引起其他变化 热机的效率不可能1000/0
通过以上分析我们知道了:
能量的耗散从能量转化的角度反 映出自然界中宏观过程的方向性。
正是因为能量转化的方向性,能 量的利用受这种方向性的制约,所以 能量的利用是有条件的,也是有代价 的.
减少的机械能到哪去了?
它们的高度降低,说明 机械能减少了. 但能量并没有 丢失,实际上是通过做功把 一部分机械能转化为了内能.
小球在地面弹跳的频闪照片
典型例题: B
能的总量是守恒的,但机械能不守恒,有条件限制
练习跟踪: 木块从粗糙的斜面顶端匀速下滑到底端的过程中( C) A.木块的重力势能全部转化为动能 B.木块的动能增加,重力势能减小 C.木块有一部分机械能转化为内能 D.木块的机械能全部转化为内能
措施:可__以__减__少__热__量__散__失__,__并__使___燃__料__充__分__燃__烧__________.
(2)方法:搓__手_________________________________________.
理由:做__功__可__以__改__变__物__体__的__内__能__(__或__用__暖__手__袋__取___暖__热__传__. 递可以改变物体的内能)
解:水吸收的热量Q吸=cmΔt=cρVΔt =4.2×103J/( kg·℃) ×103 kg /m3×40×10-3m3×(40-15) ℃
=4.2×106J,
天然气用量V=2366.05 m3-2365.89m3=0.16 m3,
天然气完全燃烧放热
Q放=Vq=0.16 m3×3.2×107J/m3 =5.12×106J, 该热水器的效率为
人教版九年级物理上册第十四章第3节 能量的转化和守恒
知2-讲
【解析】 题中装置转动时,要克服部件之间的摩擦力和空 气阻力做功,使其具有的机械能不断地被消耗而 最终停止转动。
总结
知2-讲
能量虽然守恒,但机器却不能“永动”,这是因 为我们都是在能的转化和转移过程中来利用能量的, 而能的转化和转移的效率不可能达到100%。
知2-练
1 【江西】能量守恒定律:能量既不会凭空消灭,也 不会凭空产生,它只会从一种形式__转__化__为其他形 式,或者从一个物体__转__移____到其他物体,而在转 移和转化的过程中,能量的总量保持不变。
(来自《点拨》)
知1-讲
【解析】 •飞机水平匀速飞行,其质量、速度和高度都不变, 则其动能和重力势能都不变。 •太阳能电池板工作时,消耗太阳能,得到电能, 将太阳能直接转化为电能。
总结
知1-讲
(守恒法)能量转化过程中,总是消耗的能量转化 为得到的能量。
知1-讲
【例2】下列四幅图中,仅发生能量转移的是( D )
以利用
B.能量是守恒的,所以我们有用不尽的能量
C.在能量转化和转移的过程中虽然能量的总量
保持不变,但有的能量却是无法利用的
D.以上说法都不对 【解析】
有的能量无法利用,如汽车刹车时,机械能转化
成的内能就无法利用。
(来自《点拨》)
总结
知2-讲
不能误认为能量守恒就不需要节约能源,因为能 量的利用是有条件的、有方向性的、有代价的。
说出以上过程中发生了哪些能量转化。(来自《教材》) 子弹的内能被空气阻力所消耗,子弹消耗完内能就 掉下来了,根据物理守恒定律,子弹内能转化成空气 的内能(加热).
2 火箭发射升空时,燃料通过燃烧将__化__学____能转化
能量的转化与能量守恒定律
能量的转化与能量守恒定律能量是指物体具有的做功能力或产生热的能力。
在自然界中,能量可以以不同的形式存在,并且可以进行转化。
能量的转化是指能量从一种形式转变为另一种形式的过程。
而能量守恒定律是指能量在转化过程中总能量守恒的原理。
本文将深入探讨能量的转化以及能量守恒定律的原理和应用。
一、能量的转化能量的转化是自然界中普遍存在的现象。
根据能量的性质和它的转化方式,我们可以将能量的转化分为以下几种常见形式:1. 动能转化:动能是指物体由于运动而具有的能量。
当一个物体被施加了力使其运动时,它的静止能转化为动能。
例如,当一个汽车开始启动时,其内部燃烧机将化学能转化为动能,推动汽车前进。
2. 势能转化:势能是指物体由于其位置或状态而具有的能量。
当一个物体因重力或弹性力而发生位移时,其势能会发生转化。
例如,将一个弹簧压缩到一定程度后,弹簧具有储存的弹性势能,当释放时会转化为动能或其他形式的能量。
3. 热能转化:热能是指物体由于温度差而具有的能量。
当物体与环境之间存在温度差时,热能会通过传导、辐射或对流的方式转化。
例如,太阳能通过辐射的方式转化为地球上的热能,供给生物和地球上的各种自然过程。
4. 光能转化:光能是指由于光的存在而产生的能量。
将光能转化为其他形式的能量,如电能或化学能,被广泛应用于光伏发电和光化学反应等领域。
二、能量守恒定律的原理能量守恒定律是物理学中的一个基本原理,它表明在一个封闭系统中,能量的总量始终保持不变。
具体来说,能量既不能被创造,也不能被毁灭,只能被转化成其他形式。
能量守恒定律可以从不同的角度进行解释。
从宏观角度看,封闭系统中的能量守恒是由质量守恒定律推导出来的。
根据爱因斯坦的质能关系,质量和能量是等价的,因此能量守恒可以被视为质量守恒的一种形式。
从微观角度看,能量守恒定律可以理解为能量的转化只涉及能量的形式改变,而能量的总量保持不变。
根据能量转化的各种过程,可以得出能量守恒定律的数学表达式,即能量转化前后的总能量相等。
4能量的转化与守恒
一、能量的转化与守恒1、能量的转移:能量可以从一个物体转移到另一个物体(如下左图),或者从物体的一部分转移到另一部分(如下右图),在转移过程中能量的形式不变。
2、能量的转化∶能量从一种形式转化为其他形式,在转化过程中能量的形式发生改变。
【重点提示】∶能量转移和转化的区别(1)能量的转移:能量的形式没有改变。
比如内能从高温物体转移到低温物体,能量的形式仍然是内能。
(2)能量的转化:能量的形式发生改变。
比如电能通过灯泡后转化为光能。
能量的转化一般在一定条件下进行,比如太阳的光能通过绿色植物的光合作用转化成化学能储存在植物体内,燃料的化学能通过燃烧转化为内能。
∶能量转化的普遍性:常见的能量形式有机械能、内能、光能、化学能、电能等,在一定条件下,各种形式的能量之间是可以相互转化的,如图所示。
例如;燃料通过燃烧把化学能转化为内能;在热机中,内能可以转化为机械能;通过火力发电机,内能转化为电能;通过电灯,电能转化为光能;使用干电池时,电池内的化学能转化为电能等。
∶能量的转化和转移具有方向性。
3、能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而在转化和转移过程中,能量的总量保持不变。
【重点提示】机械能守恒与能量守恒的区别:1、机械能守恒是有条件的——没有机械能损失和额外能量的补充,仅存在动能和机械能之间的转化,需只在重力或者弹力做功的条件下;2、能量守恒的成立是不需要条件的——有多少能量的消失(转移或者转化),就有多少其他形式的能量的产生。
3、永动机(1)不少人曾设想制造一种不需要动力就能源源不断地对外做功的机器,人们把这种机器叫做永动机。
然而,从没有一种永动机成功过。
(2)能量守恒定律使人们认识到:任何一部机器,只能使能量从一种形式转化为其他形式,而不能无中生有地制造能量。
因此,根本不可能制造出永动机。
1、发展是人类永恒的主题,能源与社会发展关系密切。
解释能量守恒定律-解释说明
解释能量守恒定律-概述说明以及解释1.引言1.1 概述能量守恒定律是物理学中的基本定律之一,它表明在一个封闭系统中,能量的总量是恒定的,不会增加也不会减少。
封闭系统是指与外界没有能量交换的系统。
能量守恒定律基于关于能量的实验观察和理论推导,成为了自然界中能量转化和运动的基准。
能量守恒定律的概念最早由英国物理学家赫尔曼·冯·亥姆霍兹在19世纪中叶提出。
他通过实验观察到,尽管能量在不同形式间可以转化,但是总能量的量是不变的。
这一观察结果引发了对能量守恒定律的深入研究,并逐渐发展成为现代物理学的基本原则之一。
能量守恒定律的重要性不言而喻。
它在物理学的众多领域中有着广泛的应用,包括力学、热力学、电磁学等。
在力学中,能量守恒定律可以帮助我们理解并预测物体的运动和变化。
在热力学中,能量守恒定律被用来解释能量的传递和转化过程,如热能转化为功、功转化为热能等。
在电磁学中,能量守恒定律被应用于电磁波的传播和介质与电磁场的相互作用等方面。
能量守恒定律的重要性还体现在能源利用和环境保护方面。
我们知道,能源是支撑社会发展和生活的重要基础,而能量守恒定律告诉我们,能源的利用应尽量高效,在能量转化过程中减少能量的损失和浪费,以保证社会的可持续发展。
同时,能量守恒定律也提醒我们要关注环境保护,在能源开发和利用过程中减少对自然环境的影响和破坏。
总之,能量守恒定律作为物理学的基本定律之一,具有重要的理论和实践意义。
它帮助我们认识和理解自然界中能量的本质和运动规律,引导着能源的合理利用和环境的可持续发展。
通过深入研究和探索能量守恒定律,我们可以更好地创造和利用能源,为人类社会的进步和发展做出更大的贡献。
文章结构部分可以如下所示:plaintext1.2 文章结构本文分为以下几个部分来解释能量守恒定律:1. 引言:首先介绍一下整篇文章的背景和意义,为读者提供全面的认识。
2. 正文:2.1 能量守恒定律的定义:详细阐述能量守恒定律的概念和原理,解释其中涉及的重要概念和定理。
能量守恒与转化定律
能量守恒与转化定律
能量守恒与转化定律是自然界中最基本的定律之一,它规定了能量在物理世界中的传递方式和变化规律。
能量守恒指的是能量在物质转化的过程中,其总量保持不变。
而能量转化则是指能量在物质之间相互转化的过程,例如热能转化为机械能或电能等。
能量守恒定律的应用非常广泛。
在物理学、化学、生物学等领域中,有很多实际问题都可以通过能量守恒定律来解决。
例如,在热机理论中,热机的效率就可以通过能量守恒定律来计算。
在化学反应中,反应前后总能量应该保持不变。
在生物学中,人体所吸收的食物中的化学能量,必须在人体中以准确的方式被转化和利用。
能量转化定律的运用也非常广泛。
在机械设备中,例如汽车、空调、电视等,能量的转化是它们正常运行的重要基础。
在化学反应中,能量转化也是化学反应中的一个重要环节。
在生物学中,能量转化则成为人们探究生命现象的一个关键点。
总之,能量守恒和转化定律是自然界中最基本和最广泛的定律之一。
这些定律不仅在物理、化学和生物学等科学领域中有着重要的应用,它们也为人们认识自然世界进一步提供了道路。
能量的转化和守恒定律
能量的转化和守恒定律能量是物质存在的基础,它是自然界中最重要的物理量之一。
能量的转化和守恒是物理学中的基本原理,也是自然界中各种现象发生的重要依据。
本文将探讨能量的转化和守恒定律。
一、能量的转化能量的转化是指能量从一种形态或物体转移到另一种形态或物体的过程。
根据能量形态的不同,能量的转化可以分为以下几种形式:1. 动能和势能的转化动能是物体由于运动而具有的能量,它与物体的质量和速度有关。
而势能是物体由于位置关系而具有的能量,它与物体所处的位置和形态有关。
动能和势能可以相互转化,例如将一个静止的物体抛出,它的势能逐渐转化为动能,随着物体的上升,动能逐渐减小,而势能逐渐增大,当物体到达最高点时,动能减小为零,势能达到最大值。
2. 动能和热能的转化动能和热能的转化在日常生活中经常发生,尤其是在摩擦、碰撞等情况下。
当两个物体发生碰撞时,动能会转化为热能,而热能则会通过传导、辐射等方式转移到周围环境中。
例如,当我们用双手搓热时,我们感觉到的热量来源于我们运动时产生的动能转化而来。
3. 光能和电能的转化光能是指电磁波传播过程中所携带的能量,它可以转化为电能。
我们生活中常用的太阳能光伏发电就是利用光能转化为电能的典型例子。
当光照射到光伏电池上时,光能被吸收并转化为电能,供给我们使用。
二、能量守恒定律能量守恒定律是指在一个孤立系统中,能量总量保持不变。
能量既不能创造也不能消灭,只能从一种形态转化为另一种形态。
例如,当我们用手电筒照亮一个房间时,电能转化为光能和热能,在转化的过程中,能量总量不变。
这是因为在这个过程中,我们只是改变了能量的形态,能量本身并没有增加或减少。
能量守恒定律可以简化为以下公式:能量转化前的总能量 = 能量转化后的总能量三、能量转化和守恒的重要性能量的转化和守恒是自然界各种现象发生的基础。
它使得能量能够在不同的物体或系统之间进行交换,维持着自然界的平衡。
守恒定律的存在使我们能够对各种物理现象进行准确描述和解释,为科学研究提供了基础原理。
能量守恒定律的具体过程
能量守恒定律的具体过程
能量守恒定律是指在一个封闭系统中,能量总量不会发生改变,只能从一种形式转化为另一种形式,或者从一个物体传递给另一个物体。
下面是能量守恒定律的具体过程:
1.能量转化:根据能量守恒定律,能量不会被创造或消失,只会从一种形式转化为另一种形式。
例如,当一个物体掉落到地面时,它的重力势能会转化为动能,然后再转化为热能和声能。
2.能量传递:能量也可以通过传递的方式在物体之间转移。
例如,当两个物体之间发生碰撞时,其中一个物体的动能会转移到另一个物体上。
3.能量损失:在实际过程中,能量转化和传递时常会有一定程度的损失,例如由于摩擦力或阻力而产生的热能。
这些能量损失可以导致系统总能量减少,但总能量的损失量必须与其他物体或形式的能量增加量相等。
4.能量平衡:在一个封闭系统内,各个能量转化和传递过程相互作用,但总能量保持不变。
即使在局部范围内发生能量转化和损失,整个系统的能量总量仍然保持恒定。
能量守恒定律描述了能量在一个封闭系统中的转化、传递和损失过程,强调了能量总量的不变性。
这个定律是物理学中一个重要的基本原理,对于解释和理解各种自然现象和能量相关的过程具有重要意义。
能的转化和守恒定律
能量转化和守恒定律1. 引言能量是物理学中一个重要的概念,它存在于自然界的各个角落。
能量转化和守恒定律是能量在不同形式间转化和守恒的基本原理。
本文将介绍能量转化和守恒定律的基本概念、原理和应用。
2. 能量转化能量转化是指能量从一种形式转化为另一种形式的过程。
根据能量所处的物理系统和形式的不同,能量转化可以包括以下几种形式:2.1 动能转化动能是物体由于运动而具有的能量。
当物体的速度改变时,动能可以转化为其他形式的能量,例如热能或势能。
例如,当一个运动的汽车急刹车时,汽车的动能将转化为热能和声能。
2.2 热能转化热能是物体内部分子运动引起的能量。
热能可以通过传导、对流和辐射等方式传递和转化。
例如,当我们将一个冷水壶放在火上加热时,热能从火传递到壶中,使其温度升高。
2.3 势能转化势能是物体由于位置或形状而具有的能量。
当物体的位置或形状发生改变时,势能可以转化为其他形式的能量,例如动能或热能。
例如,当一个摆锤从最高点释放下来时,其势能逐渐转化为动能。
3. 能量守恒定律能量守恒定律是自然界普遍适用的基本定律之一。
能量守恒定律表明,在一个封闭系统中,能量的总量保持不变。
换句话说,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
根据能量守恒定律,一个物体或系统的能量转化过程中,总能量的和始终保持不变。
这意味着,尽管能量可以在不同形式之间转化,但能量的总量始终保持恒定。
4. 能量转化和守恒定律在生活中的应用能量转化和守恒定律在日常生活中有许多重要应用。
以下是一些常见的例子:4.1 汽车行驶中的能量转化当汽车行驶时,燃油燃烧产生的化学能被转化为机械能,推动汽车前进。
同时,在车辆运动的过程中,动能转化为热能和声能。
因此,汽车行驶中的能量转化符合能量守恒定律。
4.2 电能的转化和使用在电力系统中,发电厂将其他形式的能量(如化石燃料或核能)转化为电能。
这些电能通过输电线路传输到各个地方,然后被用于驱动家电、照明和各种工业用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章B 能的转化和能量守恒定律
由于存在空气,任何摆动着的物体与空气摩擦,机械能将会逐渐转化为物体及空气的内能。
最后,机械能消失,摆动停止。
但是,如图7-10所示的一种叫做“动态雕塑”的摆设,小球和框架会变换着姿态不停地摆动!这是什么原因呢?当我们打开它的底座,就会发现其中的奥妙!在它的底座内装有一块电磁铁,电源通过电磁铁与铁制小球的作用,将能量不断地提供给小球,补充因摩擦而损耗的机械能。
拆去电池后,小球和框架摆动几下后就会停止运动。
自然界的一切生命运动的维持同样需要能量。
图7-11所示是一种肉食性植物,它不仅能像大多数植物一样通过光合作用利用来自太阳的能量,还可以靠捕食昆虫来补充能量。
19世纪中叶,迈尔、焦耳和亥姆霍兹等科学家在分析了各种能量转化现象的基础上,经过大量实验,向人们揭示了各种能在相互转化过程中所遵循的基本规律。
自然界物质的运动有许多不同的形式,每种运动形式都有对应的能,如机械运动对应机械能,热运动现象中有内能。
此外,还有电能、磁能、化学能、核能等。
各种形式的能又是可以相互转化的。
不同运动形式具有不同的特性以及不同的规律性,这反映了它们的差异性;但是不同形式的运动都具有能,而这些能又是可以相互转化的,这反映了它们的统一性。
1.能的形式
能以多种形式存在于自然界,每一种形式的能对应于一种运动形式。
各种形式的能是可以相互转化的。
大家谈
请你指出图7-12表现的对象所对应的能的形式,并谈谈你所知道的其他形式的能。
图
7-11
图7-10
下面我们一起来研究各种不同形式的能之间相互转化的问题。
自主活动
图7-13中用箭头标出了各种能之间的转化关系,请你列举其中三个事例,说明它们是如何实现转化的?
能量在相互转化的过程中遵循怎样的规律?
19世纪中叶,焦耳通过实验证明,做一定量的机械功,即消耗一定量的机械能,总会得到等量的内能,从而首先揭示了在机械能和内能转化的过程中,总能量是守恒的。
不仅如此,他还通过给电阻丝通电使隔热容器里的水的温度升高的实验,进一步揭示出在电能和内能的转化过程中,总能量也是守恒的。
在此基础上,焦耳及其他一些物理学家又将这个观念进一步推广,认为在任何形式能的转化过程中,能量并不会创生,也不会消失,总的能量都是保持不变的。
2.能量守恒定律(lawofconservationofenergy )
能量既不能创生,也不能消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,其总量不变。
这就是能量守恒定律。
能量守恒定律的发现使人们认识到,任何机器或装置只能使能量从一种形式转化为另一种形式,而不能无中生有地创造能量。
这为人们开发和利用能指明了方向。
为了有效地利用能,重要的是发现能的转化新途径,提高能的转化效率。
18世纪中叶,英国发明家瓦特发明了蒸汽机,大大提高了内能转化为机械能的效率,为此引发了第一次工业革命,使社会发
图7-13 (a )太阳
图7-12 (b )火山
生了深刻变化。
能量守恒定律是人类经过长期探索而确立的、普遍适用的基本规律。
恩格斯曾经把这一定律称为“伟大的运动定律”,认为它的发现是19世纪自然科学的三大发现之一。
能量守恒定律把不同的自然科学技术领域联系了起来,自从它被发现以来,就成为人们认识自然、利用自然的有力武器。
我们能制造出不消耗能量的“永动机”吗?
历史上曾有不少人都想设计一种机器,他们希望这种机器不消耗任何能量和燃料,却能源源不断地对外做功,这种机器被称为“永动机”。
图7-14是一个“永动机”的设计方案。
轮子中央有一个转动轴,轮子边缘安装着12个可活动的短杆,每个短杆的一端装有一个铁球。
方案的设计者认为,右边的球比左边的球离轴远些,因此,右边的球的重力与力臂的乘积要比左边的球的重力与力臂的乘积大。
这样,轮子就会永无休止地沿着箭头所指的方向转动下去,并且带动机器转动。
你认为它真会那样吗?
图7-14
我们仔细分析一下就会发现,虽然右边每个球的重力与力臂的乘积大,但是球的个数少,左边每个球的重力与力臂的乘积虽然小,但是球的个数多。
于是,轮子不会持续转动下去而对外做功,只会摆动几下,便停在图中所画的位置上。
事实证明,任何制造“永动机”的设想,无论它看上去是多么巧妙,都是一种徒劳。