液压与气压传动11-1 气压传动基础知识
气压传动基础知识
气压传动基础知识一、概括欢迎阅读这篇关于气压传动基础知识的文章!气压传动简单来说,就是通过气压来传递力量。
你没听错就像我们平时用的气球一样,气压传动也是利用气压的变化来产生动力。
那么这篇文章会带你了解气压传动的基本原理和应用。
首先气压传动的基本原理就是利用气体的压力来推动活塞或者膜片运动,从而转换出机械能。
你可能会觉得这个概念很抽象,但其实它在我们的日常生活中有很多应用。
比如气动工具、气动门、甚至汽车的刹车系统,都有气压传动的身影。
气压传动有很多优点,它操作简单,维护方便运行成本也相对较低。
同时因为气体本身的特性,气压传动还可以适应一些特殊环境,比如高温、高湿或者污染严重的环境。
所以气压传动在各个领域都有广泛的应用。
接下来我们会更深入地介绍气压传动的各个部分和它的工作原理。
相信通过阅读后面的内容,你会对气压传动有更全面的了解。
让我们一起踏上这个探索之旅吧!二、气压传动的基本原理气压传动简单来说,就是通过气压来驱动设备工作。
它的基本原理跟我们平时用的气压球差不多,想象一下当你给气压球打气,气压球会膨胀,这就是气压能转换成机械能的过程。
在气压传动中,也是同样的道理。
气压传动的核心部分包括气源、气管、气缸和控制元件。
气源就像我们给气压球打气的气泵,提供气压能量;气管则是连接气源和气缸的管道,相当于气压传输的“高速公路”;气缸是实际执行工作的部分,就像气压球的球体,负责把气压能量转换成机械运动;而控制元件则像是交通指挥员,控制气压的流向和速度。
当我们打开气源,气压通过气管进入气缸,气缸内的活塞就会在气压的作用下运动,从而带动设备工作。
这就像我们吹气球一样,吹气的时候气球会膨胀,我们放手后气球会飞出去,这就是气压传动的基本原理。
虽然简单但气压传动却有着广泛的应用,比如气动工具、自动化生产线等等,都离不开它。
理解了基本原理,我们就更容易掌握气压传动的应用技巧和维护方法了。
1. 气压传动的基本原理概述了解气压传动,先要理解气压传动的基本原理。
液压与气压传动知识点
液压与气压传动知识点液压和气压传动是现代工业中常用的两种传动方式。
液压传动是指利用压力传递力或者运动的一种动力传动方式,而气压传动则是利用气体的压缩和膨胀来传动力或者运动的一种动力传动方式。
液压传动和气压传动都具有一定的优点和局限性,可以根据实际使用环境和需求来选择适合的传动方式。
一、液压传动的基本原理和特点:1.液压传动基本原理:液压传动使用液体介质传递力或者动力。
利用液体的不可压缩性和容量不变性,通过压力的传递来实现力或者运动的传递。
2.液压传动的特点:(1)可以传递大量的力和扭矩,具有较大的工作能力。
(2)传动平稳,无冲击。
(3)传动效率高。
(4)传动精度高。
(5)需要专门的液压系统设备,维护成本相对较高。
二、气压传动的基本原理和特点:1.气压传动基本原理:气压传动利用气体的压缩和膨胀来传递力或者动力。
通过控制气体的压力和流量来实现力或者运动的传递。
2.气压传动的特点:(1)传动部件轻便,结构简单。
(3)传动速度较快。
(4)传动力和运动平稳性相对较差。
(5)传动效率较低。
(6)需要专门的气压系统设备,维护成本相对较高。
三、液压传动和气压传动的比较:1.功能比较:(1)液压传动一般用于需要稳定传动、大功率和大扭矩传输的场合,例如大型机械设备和工程机械等。
(2)气压传动一般用于工作环境复杂、易爆炸和易燃的场合,例如石油、化工和冶金等行业。
2.优缺点比较:(1)液压传动的优点是传动平稳、效率高、精度高,但成本较高,对环境要求较高。
(2)气压传动的优点是结构简单、安全可靠,但传动力和运动平稳性较差,效率较低。
3.应用领域比较:(1)液压传动广泛应用于船舶、冶金、矿山、工程机械等领域。
(2)气压传动广泛应用于汽车、矿山、石油、化工等领域。
总结起来,液压传动和气压传动都有各自的适用场合和优缺点。
在选择传动方式时,需要根据实际工作环境、力量要求、精度要求和经济成本等方面综合考虑,选择最适合的传动方式。
(完整版)液压与气压传动知识点重点
液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。
2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。
3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。
常用的黏度有3种:动力黏度,运动黏度,相对黏度。
4、液压油分为3大类:石油型、合成型、乳化型。
5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。
2、静止液体内任意一点的压力在各个方向上都相等。
5、液体压力分为绝对压力和相对压力。
6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。
7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。
9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。
当液体整个作线形流动时,称为一维流动。
10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。
液流完全紊乱,这时液体的流动状态称为紊流。
11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。
当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。
12、连续性方程是质量守恒定律在流体力学中的一种表达形式。
13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。
14、动量方程是动量定理在流体力学中的具体应用。
15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。
液压与气压传动知识点总结
液压与⽓压传动知识点总结液压与⽓压传动知识点总结 液压与⽓压传动有很多相关知识点,下⾯⼩编给⼤家整理了液压与⽓压传动知识点,欢迎阅读! 1、液压传动的⼯作原理是(帕斯卡)定律。
即密封容积中的液体既可以传递(⼒),⼜可以传递(运动)。
(帕斯卡、⼒、运动) 2、液压管路中的压⼒损失可分为两种,⼀种是(沿程压⼒损失),⼀种是(局部压⼒损失)。
(沿程压⼒损失、局部压⼒损失) 3、液体的流态分为(层流)和(紊流),判别流态的准则是(雷诺数)。
(层流、紊流、雷诺数) 4、我国采⽤的相对粘度是(恩⽒粘度),它是⽤(恩⽒粘度计)测量的。
(恩⽒粘度、恩⽒粘度计) 5、在液压系统中,由于某些原因使液体压⼒突然急剧上升,形成很⾼的压⼒峰值,这种现象称为(液压冲击)。
(液压冲击) 6、齿轮泵存在径向⼒不平衡,减⼩它的措施为(缩⼩压⼒油出⼝)。
(缩⼩压⼒油出⼝) 7、单作⽤叶⽚泵的特点是改变(偏⼼距e)就可以改变输油量,改变(偏⼼⽅向)就可以改变输油⽅向。
(偏⼼距e、偏⼼⽅向) 8、径向柱塞泵的配流⽅式为(径向配流),其装置名称为(配流轴);叶⽚泵的配流⽅式为(端⾯配流),其装置名称为(配流盘)。
(径向配流、配流轴、端⾯配流、配流盘) 9、V型密封圈由形状不同的(⽀撑环)环(密封环)环和(压环)环组成。
(⽀承环、密封环、压环) 10、滑阀式换向阀的外圆柱⾯常开若⼲个环形槽,其作⽤是(均压)和(密封)。
(均压、密封) 11、当油液压⼒达到预定值时便发出电信号的液-电信号转换元件是(压⼒继电器)。
(压⼒继电器) 12、根据液压泵与执⾏元件的组合⽅式不同,容积调速回路有四种形式,即(变量泵-液压缸)容积调速回路(变量泵-定量马达)容积调速回路、(定量泵-变量马达)容积调速回路、(变量泵-变量马达)容积调速回路。
(变量泵-液压缸、变量泵-定量马达、定量泵-变量马达、变量泵-变量马达) 13、液体的粘性是由分⼦间的相互运动⽽产⽣的⼀种(内摩擦⼒)引起的,其⼤⼩可⽤粘度来度量。
液压与气压传动知识点
1、液体在管道中存在两种流动状态,层流时粘性力起主导作用,紊流时惯性力起主导作用,液体的流动状态可雷诺数来判断。
2、液压传动是以液体为工作介质,利用液体的压力能来实现运动和动力传递的一种传动方式。
3、压力的表示方法:有绝对压力和相对压力。
4、液压系统中的压力取决:外负载的大小,与流量无关。
5、液压传动的动力元件是:液压泵、执行元件、液压缸。
6、液压泵都是考密封的工作容积发生变化而进行工作,属于容积泵。
7、液压泵正常工作须具备哪四个条件?试用外啮合齿轮泵说明。
答:1、应具备密封容积;2、密封容积的大小能交替变化。
泵的输油量和密封容积变化的大小及单位时间内变化的次数(变化频率)成正比;3、应有配油机构;4、吸油过程中,油箱必须和大气相通。
8、单作用叶片泵能吸压油的主要原因:存在偏心距9、变量泵中什么泵是通过改变转子和定子的偏心来实现变量?什么是泵是通过改变斜盘倾角实现变量?答:单作用叶片泵、径向柱塞泵是通过改变转子和定子的偏心距来实现变量,轴向柱塞泵是通过改变斜盘倾角来实现变量。
10、液压泵按其结构可分为:齿轮泵、叶片泵、柱塞泵。
11、齿轮泵的径向力不平衡是怎样产生的?消除径向力不平衡的措施有哪些?答:齿轮泵产生径向力不平衡的原因有三个方面:一是液体压力产生的径向力;二是齿轮传递力矩时产生的径向力。
三是困油现象产生的径向力,致使齿轮泵径向力不平衡现象加剧。
消除径向力不平衡的措施:缩小压油口的直径,使高压仅作用在一个齿到两个齿的范围,同时适当增大径向间隙;开压力平衡槽。
12、以齿轮泵为例,说明什么是困油现象?如何消除?答:在齿轮啮合时,一部分油困在两对齿轮所形成的封闭容腔内,这个容积随齿轮转动减小,后又逐渐增大,减少时会使被困油挤压产生高压,并从缝隙流出,导致油液发热,轴承等机件收到附加的不平衡负载作用;增大时造成局部真空产生气穴,这就是困油现象。
危害:使齿轮泵产生噪声并引起振动和气蚀降低容积效率,影响工作平稳性,缩短寿命。
(完整版)液压与气压传动知识点
1、动力粘度的物理意义是单位速度梯度下的切应力。
2、静压力的基本方程为p=p o+p gh。
3、般齿轮啮合系数&必须大于1。
4、解决齿轮泵困油现象的方法是在齿轮泵的两侧端盖上铣两条卸荷槽。
5、溢流阀的作用有调节系统的流量,并保持系统的压力基本稳定,用于过载保护,作卸荷阀,远程调压6液压传动是利用液体的压力能来做功的。
7、液体在管内流动时有层流和端流两种流态,液体的流态由雷诺数判断。
8、液压系统中的压力损失有局部压力损失和沿程压力损失两种。
9、液压传动系统由动力元件、执行元件、控制元件、辅助元件及工作介质五部分组成,各部分的作用分别为向系统提供动力源、将液压泵提供的液压能转变为机械能、对液体的流动方向、压力的高低以及流量的大小进行预期的控制、保证液压系统有效地传递力和运动,提高液压系统的工作性能、实现各种不同的控制功能。
其中液压泵的作用为将原动机输出的机械能转换为工作液体的压力能。
10、液压传动系统的调速方法有节流调速、容积调速、容积节流调速。
11、齿轮泵的瞬时流量是脉动的,齿轮泵的齿数越少,脉动率越大。
12、液压系统基本控制回路按其功能不同分方向、速度、压力控制回路。
13、油箱分总体式油箱和分离式油箱。
油箱的作用是储存油液,散发油液中的热量、逸出混在油液中的气体、沉淀油中的污物。
14、液压泵单位时间内排出液体的体积称为泵的流量,它的大小与泵的排量和转速有关。
15、根据节流阀在油路中的位置,节流调速回路可分为进油节流调速回路,回油节流调速回路,旁路节流调速回路。
16、当柱塞泵的柱塞数为奇数时,流量脉动系数较小。
17、单作用叶片泵通过改变定子和转子之间的偏心距来变量。
它能否实现双向变量?能。
18、油液的粘度随温度的升高而降低,随压力的升高而增加。
19、液压控制阀的作用是控制液压系统中执行元件的压力,流量和方向,可分为方向控制阀、压力控制阀和流量控制阀。
20、滑阀阀芯上环形槽的作用是减小径向不平衡力(防止液压卡紧)。
(完整版)液压与气压传动概念知识点总结考试重要考点
1.液压系统的工作原理:1).液压是以液体作为工作介质来进行能量传递和转换的;2).液压以液体压力能来传递动力和运动的;3).液压的工作介质是在受控制、受调节的状态下进行的。
2.液压传动系统的组成:动力装置、控制及调节装置、执行元件、辅助装置、工作介质。
3.液压传动系统的组成部分的作用:1)动力装置:对液压传动系统来说是液压泵,其作用是为液压传动系统提供压力油;对气压传动系统来说是气压发生装置(气源装置),其作用是为气压传动系统提供压缩空气。
2)控制及其调节装置:用来控制工作介质的流动方向、压力和流量,以保证执行元件和工作机构按要求工作;3)执行元件:在工作介质的作用下输出力和速度(或转矩和转速),以驱动工作机构作功;4)辅助装置:一些对完成主要工作起辅助作用的元件,对保证系统正常工作有着重要的作用;5)工作介质:利用液体的压力能来传递能量。
4.液压传动的特点:优点:1)与电动机相比,在同等体积下,液压装置能产生更大的动力;2)液压装置容易做到对速度的无极调节,而且调速范围大,并且对速度的调节还可以在工作过程中进行;3)液压装置工作平稳,换向冲击小,便于实现频繁换向;4)液压装置易于实现过载保护,能实现自润滑,使用寿命长;5)液压装置易于实现自动化,实现复杂的运动和操作;6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用;缺点:7)液压传动无法保证严格的传动比;8)液压传动有较多的能量损失(泄露损失、摩擦损失等),传动效率相对低;9)液压传动对油温的变化比较敏感,不宜在较高或较低的温度下工作;10)液压传动在出现故障时不易诊断。
5.在液压传动技术中,液压油液最重要的特性是它的可压缩性和粘性。
6.粘温特性:温度升高,粘度显著下降的特性。
7.静止液体的压力性质:1)液体的压力沿着内法线方向上相等;2)静止液体内任一点处的压力在各个方向上都相等。
8.帕斯卡原理:在密闭容器内,施加于静止液体上的压力可以等值传递到液体内各点,也称静压传递原理。
液压与气压传动总结(全)
一、名词解释1.帕斯卡原理(静压传递原理):(在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。
)2.系统压力:(系统中液压泵的排油压力。
)3.运动粘度:(动力粘度μ和该液体密度ρ之比值。
)4.液动力:(流动液体作用在使其流速发生变化的固体壁面上的力。
)5.层流:(粘性力起主导作用,液体质点受粘性的约束,不能随意运动,层次分明的流动状态。
)6.紊流:(惯性力起主导作用,高速流动时液体质点间的粘性不再约束质点,完全紊乱的流动状态。
)7.沿程压力损失:(液体在管中流动时因粘性摩擦而产生的损失。
)8.局部压力损失:(液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失)9.液压卡紧现象:(当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。
当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。
)10.液压冲击:(在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。
)11.气穴现象;气蚀:(在液压系统中,若某点处的压力低于液压油液所在温度下的空气分离压时,原先溶解在液体中的空气就分离出来,使液体中迅速出现大量气泡,这种现象叫做气穴现象。
当气泡随着液流进入高压时,在高压作用下迅速破裂或急剧缩小,又凝结成液体,原来气泡所占据的空间形成了局部真空,周围液体质点以极高速度填补这一空间,质点间相互碰撞而产生局部高压,形成压力冲击。
如果这个局部液压冲击作用在零件的金属表面上,使金属表面产生腐蚀。
这种因空穴产生的腐蚀称为气蚀。
)12.排量:(液压泵每转一转理论上应排出的油液体积;液压马达在没有泄漏的情况下,输出轴旋转一周所需要油液的体积。
)13.自吸泵:(液压泵的吸油腔容积能自动增大的泵。
)14.变量泵:(排量可以改变的液压泵。
)15.恒功率变量泵:(液压泵的出口压力p与输出流量q的乘积近似为常数的变量泵。
左健民液压与气压传动第五版课后答案1-11章
液压与气压传动课后答案(左健民)第一章液压传动基础知识1-1液压油的体积为331810m -⨯,质量为16.1kg ,求此液压油的密度。
解: 23-3m 16.1===8.9410kg/m v 1810ρ⨯⨯ 1-2 某液压油在大气压下的体积是335010m -⨯,当压力升高后,其体积减少到3349.910m -⨯,取油压的体积模量为700.0K Mpa =,求压力升高值。
解: ''33343049.9105010110V V V m m ---∆=-=⨯-⨯=-⨯由0P K V V ∆=-∆知: 643070010110 1.45010k V p pa Mpa V --∆⨯⨯⨯∆=-==⨯ 1- 3图示为一粘度计,若D=100mm ,d=98mm,l=200mm,外筒转速n=8r/s 时,测得转矩T=40N ⋅cm,试求其油液的动力粘度。
解:设外筒内壁液体速度为0u08 3.140.1/ 2.512/2fu n D m s m s F TA r rl πτπ==⨯⨯===由 dudy du dyτμτμ=⇒= 两边积分得0220.422()()22 3.140.20.0980.10.0510.512a a T l d D p s p s u πμ-⨯-⨯⨯∴===1-4 用恩式粘度计测的某液压油(3850/kg m ρ=)200Ml 流过的时间为1t =153s ,20C ︒时200Ml 的蒸馏水流过的时间为2t =51s ,求该液压油的恩式粘度E ︒,运动粘度ν和动力粘度μ各为多少? 解:12153351t E t ︒=== 62526.31(7.31)10/ 1.9810/E m s m s Eν--=︒-⨯=⨯︒ 21.6810Pa s μνρ-==⨯⋅1-5 如图所示,一具有一定真空度的容器用一根管子倒置一液面与大气相通的水槽中,液体与大气相通的水槽中,液体在管中上升的高度h=1m,设液体的密度为31000/kg m ρ=,试求容器内真空度。
液压与气液传动任务十一:典型气压系统控制
2.气动系统使用注意事项
(1)开机前后要放掉系统中的冷凝水。 (2)定期给油雾器加油。 (3)随时注意压缩空气的清洁度,对空气滤气器的滤 芯要定期清洗。 (4)开机前检查各旋钮是否在正确位置.对活塞杆、 导轨等外露部分的配合表面进行擦拭后方能开车。 (5)熟悉元件凋节和控制机构的操作特点,注意各元 件调节旋钮的旋向与压力、流量大小变化的关系,气 动设备长期不用,应将各旋钮放松,以免弹件元件失 效而影响元件的性能。
六、气压传动系统
1.汽车车门气动安全操纵系统
汽车车门安全操纵系统如图13-4所示,要求该气动系统能控制
汽车车门打开、关闭,并且当车门在关闭过程中若遇到障碍时,能
使车门再自动开启,起安全保护作用。其工作原理如下:
1.汽车车门气动安全操纵系统
车门的打开和关闭通过气缸12中活塞的左右移动实现,而气缸的 换向则用气控换向阀9来控制。气控换向阀又受1、2、3、4四个按钮式 二位三通换向阀操纵。气缸运动速度(即车门开启速度)由单向节流阀1
4.速度控制回路
单作用气缸快速返回回路活塞返回时,气缸下腔通 过快速排气阀排气。
4.速度控制回路
(2)双作用缸速度控制回路
1)双向调速回路
在换向阀的排气口上安装排 气节流阀,两种调速回路的调速
效果基本相同。
2)慢进快退回路 控制活塞杆伸出时采用排气 节流
控制,活塞杆慢速伸出;活 塞杆缩回时,
无杆腔余气经快排 阀排空,活塞杆快速 退回。
情境四 汽车装配生产线气动控制 任务十一 典型气压系统控制
五、气压传动系统及基本回路
(一)气压传动基本回路
任何复杂的气动控制回路,均有一些具 有特定功能的基本回路组成,常用回路是 指实际应用中经常会遇到的典型回路。常 见的有方向控制回路、压力控制回路、速 度控制回路等。
液压与气压传动知识点重点
液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。
2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。
3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。
常用的黏度有 3 种:动力黏度,运动黏度,相对黏度。
4、液压油分为3 大类:石油型、合成型、乳化型。
5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。
2、静止液体内任意一点的压力在各个方向上都相等。
5、液体压力分为绝对压力和相对压力。
6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。
7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。
9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。
当液体整个作线形流动时,称为一维流动。
10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。
液流完全紊乱,这时液体的流动状态称为紊流。
11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。
当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。
12、连续性方程是质量守恒定律在流体力学中的一种表达形式。
13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。
14、动量方程是动量定理在流体力学中的具体应用。
15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。
液压与气压传动的基础知识
环保等优点。混合传动技术能够适应不同的应用场景,满足多样化的需
求,具有广阔的应用前景。
应用领域拓展
新能源领域
随着新能源技术的不断发展,液压与气压传动技术在新能源领域的应用逐渐增多。例如, 在风能、太阳能等领域,液压与气压传动技术可以用于实现能量转换和存储,提高新能源 的利用效率。
智能制造领域
智能制造是未来制造业的发展方向,液压与气压传动技术在智能制造领域的应用将更加广 泛。例如,在自动化生产线、机器人等领域,液动。
工程机械
挖掘机、装载机、 压路机等。
军事工业
火炮操纵系统、导 弹发射车等。
农业机械
拖拉机、收割机等。
汽车工业
刹车系统、转向系 统等。
其他
机床、塑料机、冶 金设备等。
03
气压传动基础知识
气压传动的定义
气压传动是指利用空气压力来传递动力的传动方式,也称 为气压传动系统。
气压传动系统主要由气源、气动执行元件、控制元件和气 动辅助元件等部分组成。
液压传动系统主要由动力元件、执行元件、控制元件和辅助 元件组成。
液压传动的原理
基于帕斯卡原理,即施加在密闭液体 上的压力可以等值地传递到液体内部 的任何位置,并通过液体压力能实现 能量转换和传递。
液压传动系统通过将液体压力能转换 为机械能,实现直线或旋转运动,广 泛应用于各种机械、设备和装置中。
液压传动的应用
航空航天领域
航空航天领域对传动系统的高效性、可靠性和安全性要求极高,液压与气压传动技术在该 领域的应用具有较大潜力。例如,在飞机起落架、航空发动机控制系统等领域,液压与气 压传动技术可以发挥重要作用。
面临的挑战和机遇
挑战
随着新技术的发展和应用领域的拓展,液压与气压传动技术面临着诸多挑战。例如,如 何提高系统的可靠性和稳定性、降低能耗和提高效率、实现智能化和自动化控制等。
液压与气压传动技术液压传动基础知识
1.3 液体动力学
• 应用伯努利方程时必须注意的问题:
– (1) 断面1、2需顺流向选取(否则hw为负值), 且应选在缓变的过流断面上。
– (2) 断面中心在基准面以上时,h取正值;反之取 负值。通常选取特殊位置水平面作为基准面。
1.3 液体动力学
• 例1-1 如图1-10所示,液体在管道内作连续流动,截面1-1 和1-2处的通流面积分别为和,在1-1和1-2处接一水银测压 计,其读数差为,液体密度为,水银的密度为,若不考虑 管路内能量损失,试求:1)截面1-1和1-2哪一处压力高? 为什么?;2)通过管路的流量为多少?
– 液体中压力相等的液面叫等压面,静止液体的 等压面是一水平面。
•
– 当不计自重时,液体静压力可认为是处处相等 的
– 在一般情况下,液体自重产生的压力与液体传 递压力相比要小得多,所以在液压传动中常常 忽略不计。
图1-4 重力作用下的静止液体
1.2液体静力学 • 静压力方程的物理本质
– 式 中表示单位质量液体的位能,常称为位置水头;
1.3.3 伯努利方程
– 伯努利方程也称为能量方程,它实际上是流动液体 的能量守恒定律。
– 理想液体伯努利方程
• 流动液体中的能量:
– 压力能
– 位能
– 动能。
1.3 液体动力学 • 理想液体伯努利方程
• 实际液体的伯努利方程
– 式中
• α——动能修正系数动能修正系数(层流时α=2,紊流时α=1) • ——单位重量液体所消耗的能量
但在高压下或研究系统动态性能及计算远距离操纵的液压 系统时,必须予以考虑。
1.1 液压传动工作介质
3.粘度 • 液体的粘性:
– 物理本质
• 液体在外力作用下流动时,分子间的内聚力会 阻碍分子间的相对运动而产生一种内摩擦力。
液压与气压传动基础知识
15/49
气源装置
气源装置为气动系统提供满足一定质量要求的压缩空气, 气源装置为气动系统提供满足一定质量要求的压缩空气,是气动 系统的重要组成部分。 系统的重要组成部分。 气动系统对压缩空气的主要要求:具有一定压力和流量, 气动系统对压缩空气的主要要求:具有一定压力和流量,并具有 一定的净化程度。 一定的净化程度。 气源装置由以下四部分组成 气压发生装置——空气压缩机; 空气压缩机; 气压发生装置 空气压缩机 净化、贮存压缩空气的装置和设备; 净化、贮存压缩空气的装置和设备; 管道系统; 管道系统; 气动三大件。 气动三大件。
液压与气压传动技术简介
1/49
湖南工业大学
液压与气压传动的工作原理和特征
传动分类简介 液压与气压传动是以流体(液压油液或压縮 液压与气压传动是以流体( 空气) 空气)为工作介质进行能量传递和控制的一种 传动形式。(元件组成基本回路, 。(元件组成基本回路 传动形式。(元件组成基本回路,回路再组成 一定功能的传动系统) 一定功能的传动系统) 以液压千斤顶为例来简述液压传动的工作 液压千斤顶为例来简述液压传动的工作 原理(类比打气筒及日用洗涤用品压出装置)。 原理(类比打气筒及日用洗涤用品压出装置)。
6/49
典 型 液 压 图 形 符 号 图
湖南工业大学
系 统 原 理
液压与气压传动系统的组成
能源装置——将机械能转换为流体压力能的装置。液 将机械能转换为流体压力能的装置。 能源装置 将机械能转换为流体压力能的装置 压泵或空气压縮机。 压泵或空气压縮机。 执行元件——将流体的压力能转换为机械能的元件。 将流体的压力能转换为机械能的元件。 执行元件 将流体的压力能转换为机械能的元件 液压缸或气缸、液压马达或气马达。 液压缸或气缸、液压马达或气马达。 控制元件——控制系统压力、流量、方 向的元件以 控制系统压力、 控制元件 控制系统压力 流量、 及进行信号转换、 及进行信号转换、逻辑运算和放大等功能的信号控制 元件。如溢流阀、节流阀、方向阀等。 元件。如溢流阀、节流阀、方向阀等。 辅助元件——保证系统正常工作除上述三种元件外的 辅助元件 保证系统正常工作除上述三种元件外的 装置。如油箱、过滤器、蓄能器、油雾器、消声器、 装置。如油箱、过滤器、蓄能器、油雾器、消声器、 管件等。 管件等。 工作介质—传递能量和信号 液压油、压缩空气。) 传递能量和信号, (工作介质 传递能量和信号,液压油、压缩空气。)
液压与气动技术第1章 液压与气压传动基础知识
1.2.2 液压传动系统的图形符号
图1-2(a) 和图1- 2(b) 中的各个元件是半结构式图形画出来的,直观性 强,易理解,但难于绘制,元件多时更是如此。在工程实际中,除某些 特殊情况外,一般都用简单的图形符号绘制,如图1-2 (c) 所示。图形 符号只表示元件的功能,不表示具体结构和参数。
物8就向下运动。
16
1.1.2 液压传动的基本原理
通过对上面液压千斤顶工作过程的分析,可以初步了解到液压传
动的基本工作原理如下: (1)液压传动是利用有压力的液体(液压油)作为传递运动和动力
的工作介质;
(2)液压传动中要经过两次能量转换,先将机械能转换成油液的压 力能,再将油液的压力能转换成机械能; (3)液压传动是依靠密封容器或密闭系统中密封容积的变化来实现 运动和动力的传递。
环境条件下工作。
③ 为了减少泄漏,以及为了满足某些性能上的要求,液压元件的配合件制造 精度要求较高,加工工艺较复杂。 ④ 液压传动要求有单独的能源,不像电源那样使用方便。 ⑤ 液压系统发生故障不易检查和排除。
31
1.4 液压油
1.液压油的用途
液压油主要有以下几种作用。 ① 传递运动与动力。将泵的机械能转换成液体的压力能并传至
液压泵
3
油箱
23
1.2.1 液压传动系统的组成
液压泵 3 由电动机驱动旋转,从油箱 1 中吸油,经过滤器 2 后被液压 泵吸入并输出给系统。当换向阀 6 阀芯处于图1-2 (a) 所示位置时,压 力油经阀 5 、阀 6 和管道进入液压缸 7的左腔,推动活塞向右运动。 液压缸右腔的油液经管道、阀 6 、管道流回油箱。改变阀 6 阀芯工作 位置,使之处于左端位置时,如图1-2(b) 所示,液压缸活塞反向运动。 工作台的移动速度是通过流量控制阀来调节的。阀口开大时,进入缸的 流量较大,工作台的速度较快;反之,工作台的速度较慢。为适应克服 大小不同阻力的需要,泵输出油液的压力应当能够调整。工作台低速移 动时,流量控制阀开口小,泵输出多余的油液经溢流阀4和管道流回油箱, 调节溢流阀弹簧的预压力,就能调节泵输出口的油液压力。
气压传动基础知识
二、理想气体的状态变化过程 1. 等容变化过程(查理定律) p1 p2 常数 T1 T2
2. 等压变化过程(盖-吕萨克定律)
v1 v2 常数 T1 T2
第二节
气体状态方程
二、理想气体的状态变化过程 3. 等温变化过程
p1v1 p2v2 常数
4. 绝热变化过程
p v p v 常数
第二节
气体状态方程
二、理想气体的状态变化过程 4. 多变过程
第二节
气体状态方程
第三节 逻辑运算简介
一、逻辑“或”和逻辑“与”
OR Operation
INPUTS INPUT A LOW 0 LOW HIGH HIGH 0 1 1 INPUT B LOW 0 HIGH LOW HIGH 1 0 1
《气动技术技术》/《气压传动》
主要内容
① 气压传动的基础知识、组成及特点。
② 气动元件,含气源装置、气马达、气缸、气压控制方向 阀、气压控制压力阀、气压控制流量阀和附件,要掌握这 些元件的工作原理、图形符号、结构形式等。 ③ 气动回路实例分析(安装、使用、维护)。
第一章 气压传动基础知识
第一节 空气的物理性质
一、空气的性质 空气的组成 空气的密度和黏度 二、湿空气 绝对湿度 相对湿度 三、气体体积的易变特性
第一章 气压传动基础知识
一、空气的性质
1、空气的组成
第一章 气压传动基础知识
一、空气的性质 相对分子量:
化学式子当中,是拿一个分子质量和一个碳原子的 1/12的比值。 与原子的质量计量一样,分子的质量计量 也先后存在3个量名称:相对分子质量、分子质量和分子 量。众所周知,分子的质量为组成分子的各原子的质量之 和。
液压与气压传动知识点
液压与气压传动知识点摘要:本文旨在介绍液压与气压传动的基本原理、系统组成、应用领域及各自的优缺点。
液压与气压传动是现代机械中常用的两种能量传递方式,广泛应用于各种工业和民用设备中。
1. 液压传动1.1 基本原理液压传动是通过液体作为工作介质来传递能量的一种方式。
在封闭的系统中,液体受到压力作用,通过管道输送到执行元件(如液压缸或液压马达),从而实现能量的传递和控制。
1.2 系统组成液压系统通常由以下几个基本部分组成:- 泵:提供动力,将机械能转换为液体的压力能。
- 阀:用于控制液体的流动方向、流量和压力。
- 执行元件:如液压缸和液压马达,将液体的压力能转换为机械能。
- 辅助元件:包括油箱、过滤器、冷却器等,用于保证系统正常运行。
- 控制元件:如传感器和控制器,用于实现系统的自动化控制。
1.3 应用领域液压传动因其高功率密度和可调性,被广泛应用于工程机械、航空航天、冶金机械、农业机械等领域。
1.4 优点- 高效率的能量传递。
- 可实现大范围的力和速度调节。
- 紧凑的尺寸和高功率输出。
1.5 缺点- 系统复杂,维护成本较高。
- 泄漏问题可能导致环境污染和安全隐患。
- 对污染敏感,需要清洁的工作环境。
2. 气压传动2.1 基本原理气压传动是利用气体(通常是空气)作为工作介质来传递能量的一种方式。
与液压传动类似,气压传动通过压缩空气在系统中流动,驱动气缸或其他执行元件工作。
2.2 系统组成气压系统的主要组成部分包括:- 压缩机:提供压缩空气。
- 储气罐:储存压缩空气,平衡供需。
- 阀:控制气流的方向、流量和压力。
- 执行元件:如气缸和气动马达,将气压能转换为机械能。
- 控制元件:如电磁阀和PLC,用于实现自动化控制。
2.3 应用领域气压传动因其清洁、安全和低成本的特点,被广泛应用于自动化设备、汽车制造、食品加工、医疗设备等领域。
2.4 优点- 清洁、安全,适用于多种环境。
- 系统简单,维护成本低。
- 响应速度快,易于实现自动化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《液压与气压传动》第11章气压传动基础知识
对于阀口或管路
式中
S =αA α为收缩系数,A 为孔口实际面积。
1/SR2 =∑1/Si2
多个元件组合后有效截面积的计算
并联元件
SR=∑Si 串联元件
《液压与气压传动》第11章气压传动基础知识
不可压缩气体通过节流小孔的流量
1. 当气体以较低的速度通过节流小孔时,可以不计其 压缩性,将其密度视为常数。近似公式: qm=εcA [2ρ(p1-p2)]1/2
空气的密度 单位体积内空气的质量。 空气的粘度 气体在流动过程中,空气质点之间相对运动产生阻力的 性质。
1. 较液体的粘度小很多,随温度的升高而升高。
《液压与气压传动》第11章气压传动基础知识
空气的物理性质
空气的压缩性和膨胀性
1. 2.
湿空气
体积随压力和温度而变化的性质分别表征为压缩性和膨胀性。 空气的压缩性和膨胀性远大于固体和液体的压缩性和膨胀性。
当v < c,Ma <1时,称为亚声速流动; 当v=c,Ma =1时,超声速流动。称为声速流动,也叫临界状态流 动; 当v >c,Ma >1时,称为超声速流动。 《液压与气压传动》第11章气压传动基础知识
气体在管道中的流动特性
当v ≤50m/s 时,不必考虑压缩性。 当v ≈140m/s 时,应考虑压缩性。
式中 ε为空气膨胀修正系数;c 为流量系数;A 为节流
孔面积。
《液压与气压传动》第11章气压传动基础知识
充气、放气温度与时间的计算
定积容器充气问题 1. 充气时引起的温度变化 向容器充气的过程视为绝热过程,容器内压力由 p1升高到p2,,容器内温度也由室温T1升高到T2, 充气后的温度为 T2=kTs/[1+p1(k-1)/p2] 式中 Ts为热力学温度,设定Ts=Ti ; k为绝热指数。 但容器内温度下降至室温,其内的气体压力也要 下降,下降后的稳定值为 p=p2T1/T2
《液压与气压传动》第11章气压传动基础知识
气体的流动规律
气体流动基本方程
1. 2. 连续性方程 伯努利方程
ρ1v1பைடு நூலகம்1 =ρ2v2A2
(注意ρ1≠ρ2)
因气体可以压缩( ρ ≠常数) ,又因气体流动很快,来不及与周 围环境进行热交换,按绝热状态计算,则有 v2/2+ gz + kp /(k-1)ρ+ghw= 常数 因气体粘度小,不考虑摩擦阻力,则有
v2/2+ gz + kp /(k-1)ρ= 常数
在低速流动时,气体可认为是不可压缩的( ρ =常数),则有 v2/2+ gz + p /ρ= 常数
《液压与气压传动》第11章气压传动基础知识
声速与马赫数
1. 2.
声音引起的波称为“声波”。声波在介质中的传播速度称为声速。 声音传播过程属绝热过程。 气流速度与当地声速(c=341m/s)之比称为马赫数 , Ma= v/c Ma 是气体流动 的一个重要参数,集中反映了气流的压缩性, Ma愈大,气流密度 变化越大。
在气动装置中,气体流动速度较低,且经过 压缩,可以认为不可压缩;自由气体经空压 机压缩的过程中是可压缩的。
《液压与气压传动》第11章气压传动基础知识
气动元件的通流能力
定义 气动元件的通流能力,是指单位时间内通过阀、管路等的气 体质量。 有效截面积 1. 2. 由于实际流体存在粘性,流速的收缩比节流孔实际面积小, 此最小截面积称为有效截面积,它代表了节流孔的通流能力。 有效截面积的简化计算
1.
1.
所含水份的程度用湿度和含湿量来表示。湿度的表示方法有 绝 对湿度和相对湿度之分。
压缩空气一旦冷却下来,相对湿度将大大增加,到温度降到露 点以后,水蒸气就要凝析出来。
压缩空气的析水量
《液压与气压传动》第11章气压传动基础知识
理想气体的状态方程
理想气体的状态方程 1. 不计粘性的气体称为理想气体。空气可视为理想气体。 2. 一定质量的理想气体在状态变化的瞬间, 有如下气体状态方 程成立 pV / T = 常量 或 p=ρRT 气体状态变化过程 1. 等温过程 p1V1= p2V2= 常量 2. 绝热过程 一定质量的气体和外界没有热量交换时的状态变 化过程叫做绝热过程。 p1V1k = p2V2k =常量 气动系统中快速充、排气过程可视为绝热过程。
《液压与气压传动》第11章气压传动基础知识
充气过程
充气时,容器中的压力逐渐上升, 充气过程基本上分为声速和 亚声速两个充气阶段。当容 器中气体压力小于临界压力, 在最小截面处气流的速度都 是声速,流向容器的气体流 量将保持为常数。 在容器中压力达到临界压力以 后,管中气流的速度小于声 速,流动进入亚声速范围, 随着容器中压力的上升,充 气流量将逐渐降低。
第11章气压传动基础知识
空气的物理性质 理想气体的状态方程 气体的流动规律 气动元件的流通能力
充气、放气温度与时间的计算
《液压与气压传动》第11章气压传动基础知识
空气的物理性质
气压传动是以压缩空气作为工作介质进行能量的传递和控制的一种传 动形式。 空气的物理性质 空气的组成
1. 主要成分有氮气、氧气和一定量的水蒸气。 2. 含水蒸气的空气称为湿空气,不含水蒸气的空气称 为干空气。