三角函数专题
三角函数专题复习
三角函数专题复习(一)1. 三角函数(约16课时)(1)任意角、弧度制:了解任意角的概念和弧度制,能进行弧度与角度的互化。
(2)三角函数①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。
②借助单位圆中的三角函数线推导出诱导公式(的正弦、余弦、正切),能画出的图象,了解三角函数的周期性。
③借助图象理解正弦函数、余弦函数在,正切函数在上的性质(如单调性、最大和最小值、图象与x轴交点等)。
④理解同角三角函数的基本关系式:⑤结合具体实例,了解的实际意义;能借助计算器或计算机画出的图象,观察参数A,ω,对函数图象变化的影响。
⑥会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。
一、要点●疑点●考点1、任意角和弧度制:①、任意角:正角(按逆时针方向旋转形成的角)、负角(按顺时针方向旋转形成的角)、零角(没有作任何旋转的角);②、象限角:角的顶点与原点重合,角的始边与x轴的正半轴重合,那么角的终边落在第几象限,我们就说这个角是第几象限的角;【注意】:如果角的终边落在坐标轴上,就认为这个角不属于任何一个象限。
③、a:终边相同的角的集合:S={β︱β=α+k·360o,k∈Z};b:终边在x轴上的角的集合:S={β︱β=k•180o,k∈Z};c:终边在y轴上的角的集合:S={β︱β=90o+k·180o,k∈Z};d:终边在坐标轴上的角的集合:S={β︱β=k·90o,k∈Z};e:终边在直线y=x上的角的集合:S={β︱β=45o+k•180o,k∈Z}④、角度制与弧度制:用度作为单位来度量角的单位制叫着角度制;用实数作为单位来度量角的单位制叫着弧度制;把长度等于半径长的弧所对的圆心角叫着1弧度的角,用符号rad表示,读着弧度。
如果半径为r的圆的圆心角α所对的弧长为l,那么,角αα的正负由角α的终边的旋转方向决定。
角度制与弧度制的转化只要通过【注意】:今后用弧度制表示角时,“弧度”二字或“rad”通常略去不写,而只写该角所对应的弧度数。
专题5.3 三角函数的图象与性质(原卷版)
专题5.3 三角函数的图象与性质题型一 三角函数的值域题型一 三角函数的值域例1.(2023春·重庆铜梁·高一铜梁中学校校考期中)求2()2cos 2sin 3R f x x x x =--+∈()的最小值是_____例2.(2023·上海·高三专题练习)已知函数()1πsin 223f x x ⎛⎫=- ⎪⎝⎭,ππ,44x ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的值域为______.练习1.(2023春·北京·高一清华附中校考期中)当0,2x π⎛⎤∈ ⎥⎝⎦时,()14sin sin f x x x =+的最小值为( ) A .5 B .4C .2D .1练习2.(2023春·江苏镇江·高三江苏省扬中高级中学校联考期中)函数π()cos (sin ),[0,]4f x x x x x =∈的最大值与最小值的和为( )A B C D .3练习3.(2022·高三课时练习)函数y =tan(π-x ),x ∈(,)43ππ-的值域为________.练习4.(2023·全国·高三专题练习)函数()sin 2sin 1cos x xf x x=+的值域__________.练习5.(2023·福建龙岩·统考模拟预测)已知()23sin 8cos2xf x x =-,若()()f x f θ≤恒成立,则sin θ=( )A .35B .35 C .45D .45-题型二 求三角函数的周期性,奇偶性,单调性,对称性例3.(2023春·北京·高三北京一七一中校考期中)下列函数中,最小正周期为π的奇函数是( )A .sin2cos2y x x =+B .sin cos y x x =+C .πsin 22y x ⎛⎫=+ ⎪⎝⎭D .πcos 22y x ⎛⎫=+ ⎪⎝⎭例4.(2023春·海南海口·高三海口一中校考期中)(多选)已知函数()π2sin 26f x x ⎛⎫=-- ⎪⎝⎭则( )A .函数()f x 的最小正周期为2πB .函数()f x 的图像关于直线π6x =-对称 C .函数()f x 为偶函数D .函数()f x 的图像向左平移ϕ个单位后关于y 轴对称,则ϕ可以为5π6练习6.(2023春·全国·高三专题练习)(多选)若函数44()sin cos f x x x =+,则( ) A .函数()f x 的一条对称轴为π4x =B .函数()f x 的一个对称中心为π,04⎛⎫⎪⎝⎭C .函数()f x 的最小正周期为π2D .若函数3()8()4g x f x ⎡⎤=-⎢⎥⎣⎦,则()g x 的最大值为2练习7.(2023春·安徽六安·高三六安市裕安区新安中学校考期中)(多选)函数()π2sin 2f x x =+⎛⎫ ⎪⎝⎭,则以下结论中正确..的是( )A .()f x 在π0,2⎛⎫⎪⎝⎭上单调递减B .直线 π6x =为()f x 图象的一条对称轴C .()f x 的最小正周期为2πD .()f x 在π0,2⎛⎫ ⎪⎝⎭上的值域是(练习8.(2023春·江西·高三校联考期中)(多选)已知函数π()cos 25x f x ⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的图象关于2π,05⎛⎫- ⎪⎝⎭对称B .()f x 的图象关于直线8π5x =对称 C .3π5f x ⎛⎫+ ⎪⎝⎭为奇函数D .()f x 为偶函数练习9.(2023·北京海淀·高三专题练习)函数()cos π6f x x ω=+⎛⎫ ⎪⎝⎭在[]π,π-的图象如图所示.则(1)()f x 的最小正周期为__________; (2)距离y 轴最近的对称轴方程__________.练习10.(2023·北京海淀·高三专题练习)函数()()()cos sin f x x a x b =+++,则( ) A .若0a b +=,则()f x 为奇函数B .若π2a b +=,则()f x 为偶函数C .若π2b a -=,则()f x 为偶函数 D .若πa b -=,则()f x 为奇函数题型三 解三角不等式例5.(2023春·广东佛山·高三佛山一中校考阶段练习)不等式tan 1x >-的解集是________.例6.(2023春·辽宁本溪·高三校考阶段练习)已知函数()π2cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)用五点法画出函数()f x 在2,33ππ⎡⎤-⎢⎥⎣⎦上的大致图像,并写出()f x 的最小正周期;(2)1≤.练习11.(2023秋·广东深圳·高三统考期末)已知函数()()lg 2cos 1f x x =-,则函数()f x 的定义域为( )A .ππ2π,2π,Z 33k k k ⎛⎫-+∈ ⎪⎝⎭B .ππ2π,2π,Z 33k k k ⎡⎤-+∈⎢⎥⎣⎦C .Z ππ,ππ2,266k k k ⎛⎫-+∈ ⎪⎝⎭D .Z ππ,ππ2,266k k k ⎡⎤-+∈⎢⎥⎣⎦练习12.(2023春·广东深圳·高一深圳市光明区高级中学统考期中)已知函数()()2sin (0,0π)f x x ωϕωϕ=+><<的部分图象如图所示.(1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)若()f x >x 的取值范围.练习13.(2021春·高三课时练习)解不等式1tan x ≤≤-练习14.(2023春·辽宁铁岭·高三铁岭市清河高级中学校考阶段练习)已知某地某天从6时到22时的温度变换近似地满足函数π510sin π2084y x ⎛⎫=-+ ⎪⎝⎭.(1)求该地这一天该时间段内温度的最大温差;(2)若有一种细菌在15C 到25C 之间可以存活则在这段时间内,该细菌最多能存活多长时间?练习15.(2023春·江西南昌·高三校考阶段练习)函数lgsin y x =_________.题型四 由三角函数的值域(最值)求参数例7.(2023·全国·高三专题练习)已知函数()()11sin 06f x a x x a =-≠,且()7π6f x f ⎛⎫≤ ⎪⎝⎭恒成立,则()f x =______例8.(2023春·上海青浦·高三上海市朱家角中学校考期中)设函数sin y x =定义域为[],a b ,值域为11,2⎡⎤--⎢⎥⎣⎦,则b a -的最大值为______练习16.(2023春·江苏镇江·高三江苏省镇江中学校考期中)已知()π0,sin sin3a f x x a x ⎛⎫>=-- ⎪⎝⎭=a __________.练习17.(2023春·辽宁朝阳·高三朝阳市第一高级中学校考期中)已知函数()cos f x x x =-的定义域为[,]a b ,值域为[1,2]-,则b a -的取值范围是( ) A .π,π3⎡⎤⎢⎥⎣⎦B .π5π,26⎡⎤⎢⎥⎣⎦C .π24π,3⎡⎤⎢⎥⎣⎦D .2433ππ,⎡⎤⎢⎥⎣⎦练习18.(2023·上海·高三专题练习)若函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,则ω的取值范围是__________.练习19.(2023·湖北襄阳·襄阳四中校考模拟预测)若函数()sin cos()f x x x ϕ=++的最小值为ϕ的一个取值为___________.(写出一个即可)练习20.(2023春·北京·高三北师大二附中校考期中)已知函数()ππ2sin 25f x x ⎛⎫=+ ⎪⎝⎭,若对任意的实数x ,总有()()()12f x f x f x ≤≤,则12x x -的最小值是( ) A .2 B .4C .πD .2π题型五 根据单调求参数例9.(2021·高一课时练习)若不等式tan x a >在ππ,42x ⎛⎫∈ ⎪⎝⎭- 上恒成立,则a 的取值范围为( ) A .1a > B .1a ≤ C .1a <- D .1a ≤-例10.(2023·山东烟台·统考二模)已知函数()()()cos 202πf x x ϕϕ=+≤<在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ϕ的取值范围为( ). A .4ππ3ϕ≤≤ B .π4π23ϕ≤≤ C .4π2π3ϕ≤≤ D .4π3π32ϕ≤≤练习21.(2023秋·云南楚雄·高三统考期末)已知函数()()πcos 03f x x ωω⎛⎫=-> ⎪⎝⎭,若()f x 在区间3π0,2⎛⎫⎪⎝⎭上为单调函数,则ω的取值范围是______.练习22.(2023春·河南南阳·高三南阳中学校考阶段练习)(多选)若函数cos2y x =与函数()sin 2y x ϕ=+在π0,4⎡⎤⎢⎥⎣⎦上的单调性相同,则ϕ的一个值为( )A .π6B .3π4C .4π3-D .4π3练习23.(2023春·四川成都·高三成都市第二十中学校校考阶段练习)已知函数 tan y x ω=在ππ,22⎛⎫- ⎪⎝⎭内是减函数, 则( ) A .01ω<< B .10ω-≤< C .1ω≥ D .1ω≤-练习24.(2023春·辽宁·高二辽宁实验中学校考阶段练习)若函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在,63ππ⎛⎫⎪⎝⎭上不单调,则实数ω的取值范围是______.练习25.(2023·河北承德·统考模拟预测)已知1ω>,函数π()cos 3f x x ω⎛⎫=- ⎪⎝⎭.(1)当2ω=时,求()f x 的单调递增区间; (2)若()f x 在区间ππ,63⎡⎤⎢⎥⎣⎦上单调,求ω的取值范围.题型六 根据对称求参数例11.(2023春·河北石家庄·高三石家庄市第十五中学校考阶段练习)若()ππcos 232f x x ϕϕ⎛⎫⎛⎫=++< ⎪⎪⎝⎭⎝⎭是奇函数,则ϕ=_________.例12.(湖南省名校2023届高三考前仿真模拟(二)数学试题)函数()()()sin cos f x x x ϕϕ=++的图象的一条对称轴方程是π4x =-,则ϕ的最小正值为( )A .π6B .π4C .π3D .π2练习26.(2023·全国·高三专题练习)(多选)若函数()ππsin cos sin sin 36f x x x ϕϕ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭的图象关于坐标原点对称,则ϕ的可能取值为( ) A .π3-B .π6-C .π3D .2π3练习27.(2023·重庆·统考模拟预测)已知函数π()sin()(0)3f x x ωω=+>,若对于任意实数x ,都有π()()3f x f x =--,则ω的最小值为( )A .2B .52C .4D .8练习28.(2023春·重庆渝中·高三重庆巴蜀中学校考期中)已知函数()2s πsin co 2f x x x x ⎛⎫=+ ⎪⎝⎭.(1)设[0,π)θ∈,函数()f x θ+是偶函数,求θ的值;(2)若()f x 在区间,π3m ⎡⎤-⎢⎥⎣⎦上恰有三条对称轴,求实数m 的取值范围.练习29.(2023·全国·高三专题练习)已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,若()0f =π6x =为()f x 图象的一条对称轴,则ω的最小值为______.练习30.(2022·高三课时练习)已知()()3sin f x x ωϕ=+对任意x 都有()()33ππ+=-f x f x ,则3f π⎛⎫⎪⎝⎭等于________.题型七 由图象确定三角函数解析式例13.(2023春·陕西安康·高三陕西省安康中学校考阶段练习)已知函数()()πcos 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则( )A .()7ππ2cos 123f x x ⎛⎫=+⎪⎝⎭ B .()ππ2cos 243f x x ⎛⎫=+ ⎪⎝⎭C .()11ππ2cos 243f x x ⎛⎫=-⎪⎝⎭ D .()11ππ2cos 243f x x ⎛⎫=+⎪⎝⎭例14.(2022春·福建·高二统考学业考试)(多选)函数()()sin 0y A x A ωϕ=+>的一个周期内的图象如图所示,下列结论正确的有( )A .函数()f x 的解析式是()π2sin 23f x x ⎛⎫=- ⎪⎝⎭B .函数()f x 的最大值是2C .函数()f x 的最小正周期是πD .函数()f x 的一个对称中心是π,06⎛⎫⎪⎝⎭练习31.(2023春·四川成都·高三石室中学校考期中)如图,函数()()sin f x A x =+ωϕ(0A >,0ω>,π<ϕ)的部分图象与坐标轴的三个交点分别为()1,0P -,Q ,R ,且线段RQ 的中点M 的坐标为31,22⎛⎫- ⎪⎝⎭,则()2f -等于( )A .1B .-1CD .练习32.(2023春·吉林长春·高三东北师大附中校考阶段练习)函数()()πsin (0,0,)2f x A x A ωϕωϕ=+>><的部图象如图所示,则ω=______,ϕ=______;练习33.(2023春·辽宁沈阳·高三沈阳二十中校联考期中)(多选)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭ 的部分图像如图所示,下列说法正确的是( )A .()f x 的图像关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图像关于直线5π12x =-对称 C .将函数2cos2y x =的图像向右平移π12个单位长度得到函数()f x 的图像D .若方程()f x m =在π,02⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m 的取值范围是(2,-练习34.(湖南省部分名校联盟2023届高三5月冲刺压轴大联考数学试题)(多选)如图是某质点作简谐运动的部分图象,位移y (单位:mm )与时间t (单位:s )之间的函数关系式是()sin 0,0,0,2y A t A πωϕωϕ⎛⎫⎛⎫=+>>∈ ⎪ ⎪⎝⎭⎝⎭,则下列命题正确的是( )A .该简谐运动的初相为π6B .该简谐运动的频率为12πC .前6秒该质点的位移为12mmD .当42π,33t ⎡⎤∈⎢⎥⎣⎦时,位移y 随着时间t 的增大而增大练习35.(2023春·河北衡水·高三衡水市第二中学期末)已知函数()()tan f x A x ωϕ=+π02ϕϕ⎛⎫>< ⎪⎝⎭,,()y f x =的部分图象如图,则 7π24f ⎛⎫= ⎪⎝⎭( )A .2+BC .D .题型八 描述三角函数的变换过程例15.(2022春·福建·高二统考学业考试)为了得到函数π()2cos 3f x x ⎛⎫=+ ⎪⎝⎭的图像,只需把曲线()cos f x x =上所有的点( )A .向左平移π3个单位,再把纵坐标伸长到原来的2倍B .向右平移π3个单位,再把纵坐标伸长到原来的2倍C .向左平移π3个单位,再把纵坐标缩短到原来的12D .向右平移π3个单位,再把纵坐标缩短到原来的12例16.(北京市2023届高三高考模拟预测考试数学试题)要得到cos 2xy =的图像,只要将sin 2xy =的图像( )A .向左平移π2个单位B .向右平移π2个单位C .向左平移π个单位D .向右平移π个单位练习36.(2021·高三课时练习)函数ππ()2sin(),0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图象如图所示, 为了得到这个函数的图象,只要将2sin y x =的图象上所有的点 ( )A .向右平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向右平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向右平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向右平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变练习37.(2023春·江西赣州·高三校考期中)(多选)要得到函数y x =的图象,只需将函数π24y x ⎛⎫=+ ⎪⎝⎭的图象上所有的点的( )A .先向左平移π8个单位长度,再横坐标伸长到原来的2倍(纵坐标不变)B .先向左平移π4个单位长度,再横坐标缩短到原来的12倍(纵坐标不变)C .先横坐标伸长到原来的2倍(纵坐标不变),再向左平移π4个单位长度D .先横坐标伸长到原来的2倍(纵坐标不变),再向左平移π8个单位长度练习38.(2023春·贵州·高三校联考期中)为了得到函数πsin 28y x ⎛⎫=- ⎪⎝⎭的图象,只要将函数πcos 24y x ⎛⎫=-- ⎪⎝⎭的图象( )A .向左平移5π8个单位长度 B .向右平移5π8个单位长度 C .向左平移5π16个单位长度 D .向右平移5π16个单位长度练习39.(2023春·重庆渝中·高三重庆巴蜀中学校考期中)为得到函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图象,只需把函数()cos g x x =图象上的所有点的( )A .横坐标伸长到原来的2倍,纵坐标不变,再把得到的图象向左平移π6个单位长度B .横坐标伸长到原来的2倍,纵坐标不变,再把得到的图象向右平移π12个单位长度 C .横坐标缩短到原来的12,纵坐标不变,再把得到的图象向左平移π6个单位长度D .横坐标缩短到原来的12,纵坐标不变,再把得到的图象向右平移π12个单位长度练习40.(2023春·辽宁朝阳·高二校联考期中(多选))已知函数()()2sin (π0,)f x x ωϕϕω><=+的部分图象如图所示,则()f x 的图象可以由函数()2sin g x x =的图象( )A .先纵坐标不变,横坐标变为原来的12,再向左平移11π12个单位长度得到 B .先纵坐标不变,横坐标变为原来的2倍,再向右平移π12个单位长度得到 C .先向右平移π12个单位长度,再纵坐标不变,横坐标变为原来的12得到 D .先向右平移π6个单位长度,再纵坐标不变,横坐标变为原来的12得到题型九 求图象变换前(后)的函数解析式例17.(2023·陕西榆林·统考模拟预测)将函数cos2y x =的图象向右平移π20个单位长度,再把所得图象各点的横坐标缩小到原来的12(纵坐标不变),所得图象的一条对称轴为x =( ) A .π80B .π60C .π40D .π20例18.(2023·江苏南通·统考模拟预测)将函数()πsin 13f x x ⎛⎫=++ ⎪⎝⎭的图象上的点横坐标变为原来的12(纵坐标变)得到函数()g x 的图象,若存在()0,πθ∈,使得()()2g x g x θ+-=对任意x ∈R 恒成立,则θ=( )A .π6B .π3C .2π3D .5π6练习41.(2023·河南郑州·模拟预测)把函数()y f x =图象上所有点的纵坐标不变,横坐标伸长到原来的2倍,再把所得曲线向右平移π4个单位长度,得到函数πcos 3y x ⎛⎫=- ⎪⎝⎭的图象,则()f x =( ) A .15πsin 212x ⎛⎫+ ⎪⎝⎭B .πsin 212x ⎛⎫- ⎪⎝⎭C .5πsin 212x ⎛⎫+ ⎪⎝⎭D .1πsin 212x ⎛⎫- ⎪⎝⎭练习42.(2023·辽宁·校联考三模)(多选)已知函数()()cos 202f x x πϕϕ⎛⎫=+-<< ⎪⎝⎭图像的一条对称轴为8x π=,先将函数()f x 的图像上所有点的横坐标伸长为原来的3倍,再将所得图像上所有的点向右平移4π个单位长度,得到函数()g x 的图像,则函数()g x 的图像在以下哪些区间上单调递减( ) A .[],2ππ B .[]2,ππ--C .79,22ππ⎡⎤⎢⎥⎣⎦D .9,42ππ⎡⎤--⎢⎥⎣⎦练习43.(2023春·重庆铜梁·高三铜梁中学校校考期中)(多选)将函数π3sin()3y x =+的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移π3个单位长度,得到函数()y g x =的图象,下列结论正确的是( ) A .函数()y g x =的图象关于点π,06⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在π0,2⎡⎤⎢⎥⎣⎦上单调递增D .函数()y g x =的图象关于直线5π12x =对称练习44.(2023·江西上饶·校联考模拟预测)已知π3是函数()sin cos f x x a x =+的一个零点,将函数()2y f x =的图象向右平移π12个单位长度后所得图象的表达式为( ) A .7π2sin 26y x ⎛⎫=- ⎪⎝⎭B .π2sin 212y x ⎛⎫=+ ⎪⎝⎭C .2cos 2y x =-D .2cos2y x =。
高考数学-三角函数专题复习
高考数学-三角函数专题复习三角函数专题考点例题解析】考点1.求值1、求sin330°、tan690°、sin585°的值。
解:利用三角函数的周期性和对称性,可得:sin330°=sin(360°-30°)=sin30°=1/2tan690°=tan(720°-30°)=tan30°=1/√3sin585°=sin(540°+45°)=sin45°=√2/22、已知角α为第三象限角,求sin(α+π/2)的值。
解:由于α为第三象限角,所以sinα<0,cosα<0.又因为sin(α+π/2)=cosα,所以sin(α+π/2)<0.3、已知sinθ+cosθ=5/3,cosθ-sinθ=2,求sin2θ的值。
解:将sinθ+cosθ和cosθ-sinθ相加,可得cosθ+cosθ=5/3+2=11/3,即cosθ=11/6.将cosθ-sinθ和sinθ+cosθ相减,可得2sinθ=-1/6,即sinθ=-1/12.代入sin2θ=2sinθcosθ的公式,可得sin2θ=-11/72.4、已知si n(π/4-α)=2/√5,求cosα的值。
解:sin(π/4-α)=sinπ/4cosα-cosπ/4sinα=2/√5,代入cosπ/4=√2/2和sinπ/4=√2/2,可得cosα=1/√10.5、已知f(cosx)=cos3x,求f(sin30°)的值。
解:将x=π/6代入f(cosx)=cos3x,可得f(cosπ/6)=cos(3π/6)=cosπ=-1.又因为sin30°=cosπ/6,所以f(sin30°)=-1.6、已知tanα=15π/22,求cos(π/2-α)的值。
解:tanα=15π/22,所以α为第三象限角,cos(π/2-α)=sinα>0.由tanα=sinα/cosα,可得cosα=15/√466,代入sin^2α+cos^2α=1,可得sinα=7/√466,最终可得cos(π/2-α)=7/15.7、已知tan(π/4+x)=2tan(π/4-x),求cos2x的值。
(完整word版)三角函数专题讲义
三角函数专题一、核心知识点归纳:1、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =; 当22x k ππ=-()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数. 在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称中心对称中心函 数 性 质2。
正、余弦定理:在ABC ∆中有: ①正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆半径) 2sin 2sin 2sin a R A b R B c R C =⎧⎪=⎨⎪=⎩⇒ sin 2sin 2sin 2a A Rb B Rc C R⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩注意变形应用 ②面积公式:111sin sin sin 222ABC S abs C ac B bc A ∆=== ③余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩ ⇒ 222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩二、方法总结:1.三角函数恒等变形的基本策略。
三角函数的专题复习-最经典最全
三角函数的专题复习-最经典最全
1. 三角函数的基本概念
- 正弦、余弦、正切、余切、正割、余割的定义及其关系- 弧度和角度的转换及其应用
- 三角函数在直角三角形中的应用
2. 三角函数的性质
- 周期性和奇偶性
- 正负变化规律
- 三角函数的大小关系及其应用
3. 三角函数的图像和性质
- 正弦函数的图像和性质
- 余弦函数的图像和性质
- 正切函数的图像和性质
- 三角函数图像的平移、伸缩等变换
4. 三角函数的求值和计算
- 特殊角的三角函数值
- 三角函数的和差化积公式
- 三角函数的倍角和半角公式
- 三角函数的三角恒等式
5. 三角函数的应用
- 三角函数在几何中的应用
- 三角函数在物理中的应用
- 三角函数在工程中的应用
- 三角函数在生活中的应用
6. 典型例题和题解析
- 理解和掌握三角函数的概念和性质
- 运用不同的定理和公式解决相关问题
- 练解题技巧和应用能力
以上是三角函数的专题复习内容,包括基本概念、性质、图像和性质、求值和计算、应用以及典型例题和习题解析。
希望这份文档对您的复习有所帮助,祝您复习顺利!。
高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)
1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。
(完整版)高中数学三角函数复习专题
高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。
(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。
2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。
(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。
三角函数专题练习(含答案)
三角函数1.已知函数()2sin 2x f x x =-. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.【答案】(1)2π;(2)考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值. 2.已知. 求的值;求的值.【答案】(1);(2).考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.3.已知函数 (1)求最小正周期;(2)求在区间上的最大值和最小值.【答案】(1) ;(2)最大值为2()(sin cos )cos 2f x x x x =++()f x ()f x [0,]2ππ1+考点:1.三角函数的性质;2.三角函数的最值. 4.(15年福建文科)若,且为第四象限角,则的值等于( ) A .B .C .D . 【答案】D 【解析】试题分析:由,且为第四象限角,则,则,故选D . 考点:同角三角函数基本关系式.5sin 13α=-αtan α125125-512512-5sin 13α=-α12cos 13α==sin tan cos ααα=512=-5.已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)将函数的图象向右平移个单位长度,再向下平移()个单位长度后得到函数的图象,且函数的最大值为2. (ⅰ)求函数的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数,使得. 【答案】(Ⅰ);(Ⅱ)(ⅰ);(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将化为,然后利用求周期;(Ⅱ)由函数的解析式中给减,再将所得解析式整体减去得的解析式为,当取1的时,取最大值,列方程求得,从而的解析式可求;欲证明存在无穷多个互不相同的正整数,使得,可解不等式,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数.试题解析:(I )因为.所以函数的最小正周期.()2cos 10cos 222x x x f x =+()f x ()f x 6πa 0a >()g x ()g x ()g x 0x ()00g x >2π()10sin 8g x x =-()f x ()10sin 56f x x π⎛⎫=++ ⎪⎝⎭2T πω=()f x x6πa ()g x ()10sin 5g x x a =+-sin x ()g x 105a +-13a =()g x 0x ()00g x >()00g x >0x ()2cos 10cos 222x x xf x =+5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭()f x 2πT =(II )(i )将的图象向右平移个单位长度后得到的图象,再向下平移()个单位长度后得到的图象. 又已知函数的最大值为,所以,解得. 所以.(ii )要证明存在无穷多个互不相同的正整数,使得,就是要证明存在无穷多个互不相同的正整数,使得,即. 由知,存在,使得. 由正弦函数的性质可知,当时,均有. 因为的周期为,所以当()时,均有. 因为对任意的整数,,所以对任意的正整数,都存在正整数,使得. 亦即存在无穷多个互不相同的正整数,使得. 考点:1、三角函数的图像与性质;2、三角不等式.6.如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin (x +Φ)+k ,据此函数可知,这段时间水深(单位:m )的最大值为____________.()f x 6π10sin 5y x =+a 0a >()10sin 5g x x a =+-()g x 21052a +-=13a =()10sin 8g x x =-0x ()00g x >0x 010sin 80x ->04sin 5x>45<003πα<<04sin 5α=()00,x απα∈-4sin 5x >sin y x =2π()002,2x k k παππα∈++-k ∈Z 4sin 5x >k ()()00022213k k πππαπαπα+--+=->>k ()002,2k x k k παππα∈++-4sin 5k x >0x ()00g x >6π【答案】8 【解析】试题分析:由图像得,当时,求得,当时,,故答案为8.考点:三角函数的图像和性质. 7.已知函数()()sin cos 0,,f x x x x ωωω=+>∈R 若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为 .【解析】试题分析:由()f x 在区间(),ωω-内单调递增,且()f x 的图像关于直线x ω=对称,可得π2ωω≤,且()222πsin cos sin 14f ωωωω⎛⎫=+=⇒+= ⎪⎝⎭,所以2ππ42ωω+=⇒= 考点:三角函数的性质.8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3 【解析】sin()16x π+Φ=-min 2y =5k =sin()16x π+Φ=max 3158y =⨯+=试题分析:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 考点:两角差正切公式9.在ABC ∆中,已知60,3,2===A AC AB .(1)求BC 的长; (2)求C 2sin 的值. 【答案】(12【解析】考点:余弦定理,二倍角公式。
三角函数的易错题专题及答案
三角函数的易错题专题及答案三角函数易错题专题一、选择题1.___α的终边落在直线x+y=0上,则sinα1-cos2α的值等于( )解析:由于终边在直线x+y=0上,所以sinα=-cosα,代入原式得:-cosα-cos2α。
再利用余弦的半角公式cos2α=2cos^2α-1,得到原式化简为-2cos^2α-cosα。
选项B。
2.将函数y=sin2x的图像向右平移π/4个单位,得到的解析式为( )解析:向右平移π/4个单位相当于将原来的自变量x替换成x-π/8,所以新的解析式为y=sin2(x-π/8)。
根据正弦的平移公式sin(x-π/8)=sinxcos(π/8)-cosxsin(π/8)=cos(π/8)sinx-sin(π/8)cosx,所以新的解析式为y=cos(π/8)sin2x-sin(π/8)cos2x。
选项D。
3.在△ABC中,锐角A满足sin4A-cos4A≤sinA-cosA,则( )解析:利用正弦的平方和余弦的平方公式,将不等式右边化简为2sin^2A-2sinAcosA,左边化简为2sin^2A-2cos^2A。
所以原不等式化简为sin^2A+2cos^2A-2sinAcosA≤0,即(sinA-cosA)^2≤0,只有当sinA=cosA时等号成立。
所以A=π/4,选项B。
4.在△ABC中,角A,B,C的对边分别为a,b,c,且a=1,A=60°,若三角形有两解,则b的取值范围为( )解析:根据正弦定理a/sinA=b/sinB=c/sinC,代入数据得sinB=√3/2,所以B=π/3或5π/3.由于三角形有两解,所以B的取值范围为(π/3,π)∪(5π/3,2π),即选项D。
5.将函数y=3sin(2x+π/7)的图像向右平移1/2个单位长度,得到的图像对应的函数( )解析:向右平移1/2个单位相当于将原来的自变量x替换成x-1/4,所以新的解析式为y=3sin(2(x-1/4)+π/7)。
完整版)高三三角函数专题复习(题型全面)
完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。
考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。
考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。
考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。
此外,该函数的图像还可以通过一定的变换得到。
一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。
cosθ)(θ∈(π/2,π)),则sin=-cosθ。
3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。
练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。
4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。
练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。
专题:三角函数(高三用)
三角函数复习专题(一)一、 核心知识点归纳: 1.弧长、扇形面积的公式:设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,则弧长公式l = ,扇形的面积公式S = = . 2.(1)三角函数定义(角α终边上任一点(),Px y ):其中r =sin α= ;cos α= ; tan α= (2)符号规律:sin α cos α tan α(3)同角三角函数的基本关系:①倒数关系: ②商数关系: ,③平方关系:注意三兄弟(三剑客)的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二. (4)特殊角的三角函数值表:(5)诱导公式:(奇变偶不变,符号看象限)k ·π/2+a 所谓奇偶指的是整数k 的奇偶性:①sin(2)cos(2)tan(2)k k k παπαπα±=⎧⎪±=⎨⎪±=⎩ ;②sin()cos()tan()παπαπα+=⎧⎪+=⎨⎪+=⎩ ;③sin()cos()tan()ααα-=⎧⎪-=⎨⎪-=⎩④sin()cos()tan()παπαπα-=⎧⎪-=⎨⎪-=⎩ ; ⑤sin(2)cos(2)tan(2)παπαπα-=⎧⎪-=⎨⎪-=⎩ ;⑥sin()2cos()2παπα⎧-=⎪⎪⎨⎪-=⎪⎩ ⑦sin()2cos()2παπα⎧+=⎪⎪⎨⎪+=⎪⎩ ;⑧3sin()23cos()2παπα⎧-=⎪⎪⎨⎪-=⎪⎩ :⑨3sin()23cos()2παπα⎧+=⎪⎪⎨⎪+=⎪⎩5.两角和与差的三角函数: (1)和(差)角公式:①sin()αβ+= ;sin()αβ-= ②cos()αβ+= ;cos()αβ-= ③tan()αβ+= ;tan()αβ-= 注:公式的逆用或者变形.........(2)二倍角公式:=a 2sin =a 2cos=a 2tan从二倍角的余弦公式里面可得出降幂公式:=a 2cos , =a 2sin6.辅助角公式:sin cos a b αα+=三、基础练习 1、(1)弧长为3π,圆心角为135°的扇形半径为________,面积为________ (2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?2、(1)求值:sin(-1 200°)·cos 1 290°+cos(-1020°)·sin(-1 050°)+tan 945°.点评:利用诱导公式化简求值时的原则—3、已知f (x )=a sin(πx +α)+b cos(πx +β)+4 (其中a ,b ,α,β为非零实数), f (2 011)=5,则f (2 012)= ( )A .3B .5C .1D .不能确定四、典型例题考点一:三角函数的概念例1若P (4,y )是角θ终边上一点,且sin θ=-255,则y =____.练习1.(2012·潍坊质检)已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于 ( )A .-114 B.114C .-4D .4练习2. 若角α的终边经过点P (1,-2),则tan 2α的值为 .变:若角α的终边与单位圆交于点255,55p ⎛⎫-- ⎪⎪⎝⎭,则sin 2a 的值为 . 考点二、同角三角函数的关系(注意22sin cos 1αα+=,这是一个隐含条件)例2、(2011·全国卷)已知α∈⎝ ⎛⎭⎪⎫π,3π2,tan α=2,则cos α=________.变式:若例题中条件变为“若sin θ=-45,tan θ>0”,则cos θ=________.练:若cos 2sin 5,αα+=-则tan α=( )(A )21 (B )2 (C )21- (D )2- 例3、已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值是 ( )A.25 B .-25C .-2D .2练习1.若tan α=2,则2sin α-cos αsin α+2cos α的值为 ( )A .0 B.34 C .1 D.54练习2.(2011·杭州师大附中月考)如果f (tan x )=sin 2x -5sin x cos x ,那么f (5)=________. 巩固练习:1、已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( )A .1或4B .1C .4D .82、已知1+tan π+α1+tan 2π-α=3+22,求cos 2(π-α)+sin ⎝ ⎛⎭⎪⎫3π2+α·cos ⎝ ⎛⎭⎪⎫π2+α+2sin 2(α-π)的值.3、已知函数2()322sin f x x x =-.(Ⅰ)若点(1,3)P -在角α的终边上,求()f α的值; (Ⅱ)若[,]63x ππ∈-,求()f x 的值域.三角函数复习专题(二)sin y x =cos y x = tan y x =图象定义域 值域最值周期性 奇偶性单调性对称性函 数 性 质题型一:三角函数的定义域、值域例1.(2012·珠海模拟)函数y =lg(2sin x -1)+1-2cos x 的定义域为_ 练习1.函数y =tan ⎝ ⎛⎭⎪⎫π4-x 的定义域是 ( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠π4,x ∈RB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-π4,x ∈R C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π+π4,k ∈Z ,x ∈R D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π+3π4,k ∈Z ,x ∈R 例2 (2010·江西高考)函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B .[-54,-1] C .[-54,1] D .[-1,54]变式:若例2中函数变为“y =2cos 2x +5sin x -4”试求值域. 练习2. y =2-3cos ⎝ ⎛⎭⎪⎫x +π4的最大值为________.此时x =________.练习3.(2012·湛江)函数y =2sin ⎝⎛⎭⎪⎫2x +π3⎝ ⎛⎭⎪⎫-π6<x <π6的值域为____ ____.题型二:三角函数的单调性:注意区分下列两种形式的单调增区间不同(1)y =sin ⎝ ⎛⎭⎪⎫2x -π4; (2)y =sin ⎝ ⎛⎭⎪⎫π4-2x .例3 (2011·全国卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+cos ⎝ ⎛⎭⎪⎫2x +π4,则 ( )A .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递增,其图象关于直线x =π4对称B .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递增,其图象关于直线x =π2对称C .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递减,其图象关于直线x =π4对称D .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递减,其图象关于直线x =π2对称练习4.函数y =|sin x |的一个单调增区间是 ( )A.⎝ ⎛⎭⎪⎫-π4,π4B.⎝ ⎛⎭⎪⎫π4,3π4C.⎝ ⎛⎭⎪⎫π,3π2D.⎝⎛⎭⎪⎫3π2,2π 练习5.(2012·华南师大附中模拟)已知函数y =sin ⎝ ⎛⎭⎪⎫π3-2x ,求:(1)函数的周期; (2)求函数在[-π,0]上的单调递减区间.题型三:三角函数的周期性和奇偶性例4.(2010湖北高考)函数f (x )=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为 ( )A.π2B .πC .2πD .4π练习6.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是 ( )A .y =sin ⎝ ⎛⎭⎪⎫2x +π2B .y =cos ⎝ ⎛⎭⎪⎫2x +π2C .y =sin ⎝ ⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2练习7. (2011·北京高考)已知函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期; (2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值.题型四:利用图像解题例5.(1)设2sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c << B .a c b << C .b c a << D .b a c << (2).函数y =-x ·cos x 的部分图象是( )练习8.在(0,2π)内,使sin x >c os x 成立的x 取值范围为( )A .(4π,2π)∪(π,45π) B .(4π,π) C .(4π,45π) D .(4π,π)∪(45π,23π) 练习9.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )yx π2- π2Oyx π2-π2Oyx π2-π2Oyxπ2-π2OA .B .C .D .三角函数复习专题(三)1、函数B x A y ++=)sin(ϕω),(其中00>>ωA(1).最大值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ; y =A sin(ωx +φ)+B 的图象有无穷多条对称轴,可由方程 (k ∈Z)解出x 的值就是对称轴;它还有无穷多个对称中心,它们是图象与x 轴的交点,可由 (k ∈Z),解得x =k π-φω(k ∈Z)的值作为对称中心横坐标,即其对称中心为(k π-φω,0)(k ∈Z). (2).相邻两对称轴间的距离为T2,相邻两对称中心间的距离也为T2.(3).由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
三角函数万能公式专题
三角函数万能公式专题三角函数在数学中有着广泛的应用,而其中的万能公式更是为解决各种三角函数问题提供了便利。
在本专题中,我们将详细介绍三角函数的万能公式及其应用。
一、正弦函数的万能公式正弦函数的万能公式可以表示为:sin(A ± B) = sinAcosB ± cosAsinB该公式可以帮助我们计算任意两个角度的正弦值之和或差。
通过使用这个公式,我们可以将复杂的正弦函数问题转化为简单的角度之和或差的正弦值计算。
例如,我们希望计算sin(30°+ 45°)的值。
根据正弦函数的万能公式,我们可以将其转化为sin30°cos45° + cos30°sin45°。
利用三角函数表中已知角度的正弦值和余弦值,我们可以轻松地计算出答案。
二、余弦函数的万能公式余弦函数的万能公式可以表示为:cos(A ± B) = cosAcosB ∓ sinAsinB这个公式可以帮助我们计算任意两个角度的余弦值之和或差。
同样地,通过使用这个公式,我们可以简化复杂的余弦函数问题。
例如,我们需要计算cos(60°- 45°)的值。
根据余弦函数的万能公式,我们可以将其转化为cos60°cos45° + sin60°sin45°。
通过查表或使用计算器,我们可以迅速得出结果。
三、正切函数的万能公式正切函数的万能公式可以表示为:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这个公式可以帮助我们计算任意两个角度的正切值之和或差。
同样地,通过使用这个公式,我们可以简化复杂的正切函数问题。
例如,我们想要计算tan(30°+ 45°)的值。
根据正切函数的万能公式,我们可以将其转化为(tan30° + tan45°) / (1 - tan30°tan45°)。
高考三角函数复习专题
三角函数复习专题一、核心知识点归纳:★★★1、正弦函数、余弦函数和正切函数的图象与性质:★★2.正、余弦定理:在ABC ∆中有: ①正弦定理:2sin sin sin a b cR A B C===R 为ABC ∆外接圆半径2sin 2sin 2sin a R A b R B c R C =⎧⎪=⎨⎪=⎩ ⇒ sin 2sin 2sin 2a A R b B R c C R ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩注意变形应用 ②面积公式:111sin sin sin 222ABC S abs C ac B bc A ∆===③余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩ ⇒ 222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩三、例题集锦: 考点一:三角函数的概念1.如图,设A 是单位圆和x 轴正半轴的交点,Q P 、是 单位圆上的两点,O 是坐标原点,6π=∠AOP ,[)παα,0,∈=∠AOQ .1若34(,)55Q ,求⎪⎭⎫⎝⎛-6cos πα的值;2设函数()f OP OQ α=⋅,求()αf 的值域. 2.已知函数2()22sin f x x x =-.Ⅰ若点(1,P在角α的终边上,求()f α的值; Ⅱ若[,]63x ππ∈-,求()f x 的值域.考点二:三角函数的图象和性质3.函数()sin()(0,0,||)2f x A x A ωφωφπ=+>><部分图象如图所示.Ⅰ求()f x 的最小正周期及解析式;Ⅱ设()()cos 2g x f x x =-,求函数()g x 在区间[0,]x π∈上的最大值和最小值.考点三、四、五:同角三角函数的关系、 诱导公式、三角恒等变换4.已知函数x x x f 2cos )62sin()(+-=π.1若1)(=θf ,求θθcos sin ⋅的值;2求函数)(x f 的单调增区间.3求函数的对称轴方程和对称中心 5.已知函数2()2sin cos 2cos f x x x x ωωω=-0x ω∈>R ,,相邻两条对称轴之间的距离等于2π.Ⅰ求()4f π的值;Ⅱ当 02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值. 6、已知函数2()2sin sin()2sin 12f x x x x π=⋅+-+ ()x ∈R . Ⅰ求函数()f x 的最小正周期及函数()f x 的单调递增区间;Ⅱ若0()23x f =,0ππ(, )44x ∈-,求0cos 2x 的值.7、已知πsin()410A +=,ππ(,)42A ∈. Ⅰ求cos A 的值; Ⅱ求函数5()cos 2sin sin 2f x x A x =+的值域.考点六:解三角形8.已知△ABC 中,2sin cos sin cos cos sin A B C B C B =+. Ⅰ求角B 的大小;Ⅱ设向量(cos , cos 2)A A =m ,12(, 1)5=-n ,求当⋅m n 取最 小值时,)4tan(π-A 值.9.已知函数23cos sin sin 3)(2-+=x x x x f ()R x ∈. Ⅰ求)4(πf 的值;Ⅱ若)2,0(π∈x ,求)(x f 的最大值;Ⅲ在ABC ∆中,若B A <,21)()(==B f A f ,求AB BC 的值.10、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 分,且满足2cos cos c b Ba A-=. Ⅰ求角A 的大小;Ⅱ若a =求△ABC 面积的最大值.11、 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc .9第题图Ⅰ求角A 的大小;Ⅱ设函数2cos 2cos 2sin 3)(2x x xx f +=,当)(B f 取最大值23时,判断△ABC 的形状.12、在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. Ⅰ求tan A ; Ⅱ求ABC ∆的面积.13、在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且274sin cos222A B C +-=. Ⅰ求角C 的大小; Ⅱ求sin sin A B +的最大值.高三文科---三角函数专题11.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45- B .35- C .35 D .452.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为)2,2(0-P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为3.动点(),A x y 在圆221x y +=上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间0t =时,点A 的坐标是13(,)22,则当012t ≤≤时,动点A 的纵坐标y 关于t 单位:秒的函数的单调递增区间是A 、[]0,1B 、[]1,7C 、[]7,12D 、[]0,1和[]7,124.函数f (x)Asin(wx ),(A,w,=+φφ)为常数,)0,0>>w A 的部分图象如图所示,则f (0)____的值是5.已知函数f (x)A tan(x )=ω+ϕω>0,2π<ϕ,y f (x)=的部分图象如下图,则f24π=__________. 6. 函数f x=sinx -cosx +6π的值域为A . -2 ,2B .33C .-1,1D .-33 8.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是 A ,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B ,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C 2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D ,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦14.定义在⎪⎭⎫⎝⎛20π,的函数y=6cosx 图像与y=5tanx 图像的交点为P,过点P 作PP 1⊥x轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为 .16.如图,四位同学在同一个坐标系中分别选定了一个适当的区间,各自作出三个函数sin 2y x =, sin()6y x π=+,sin()3y x π=-的图像如下,结果发现其中有一位同学作出的图像有错误,那么有错误..的图像是 A B C D17.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是20.设sin 1+=43πθ(),则sin 2θ=A 79- B 19- C 19 D 7922.已知,2)4tan(=+πx 则x x2tan tan 的值为__________25.若tan θ+1tan θ=4,则sin 2θ=A .15B . 14C . 13D . 1226.已知α为第二象限角,33cos sin =+αα,则cos2α=A 555527.若02πα<<,02πβ-<<,1cos ()43πα+=,3cos ()42πβ-=则cos ()2βα+= A33 B 33-53 D 628. 设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为 . 29.在△ABC 中,角A 、B 、C 所对应的边为c b a ,,1若,cos 2)6sin(A A =+π 求A 的值;2若c b A 3,31cos ==,求C sin 的值.30.如图,△ABC 中,AB=AC=2,BC=3点D 在BC 边上,∠ADC=45°,则AD 的长度等于___.31.在ABC ∆中,内角A,B,C 所对的边分别是c b a ,,,已知8b=5c,C=2B,则cosC=A257 B 257- C 257± D 2524 34.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且53cos =A ,135cos =B ,3=b 则c =35. 如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=A 、31010 B 、1010 C 、510 D 、51536. 在ABC ∆中,角,,A B C 所对边长分别为,,a b c , 若2222a b c +=,则cos C 的最小值为A .3. 22C . 12D . 12-37.在ABC 中,60,3B AC ==则2AB BC +的最大值为 . 39. 设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>43. 已知函数()tan(2),4f x x =+πⅠ求()f x 的定义域与最小正周期;II 设0,4⎛⎫∈ ⎪⎝⎭πα,若()2cos 2,2f =αα求α的大小45. 设函数22())sin 4f x x x π=++. I 求函数()f x 的最小正周期;II 设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.47.设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω Ⅰ求函数y f (x )= 的值域Ⅱ若y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.48. 函数2()6cos 33(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.Ⅰ求ω的值及函数()f x 的值域; Ⅱ若083()f x =,且0102(,)33x ∈-,求0(1)f x +的值. 52. 已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos 3sin 0a C a C b c --= 1求A ; 2若2a =,ABC ∆的面积为3;求,b c .53.在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5C .Ⅰ求tan C 的值; Ⅱ若a 2求∆ABC 的面积.54.在△ABC中,角A ,B ,C 的对边分别为a ,b ,c .已知,sin()sin()444A b C cB a πππ=+-+= 1求证: 2B C π-=2若2a =,求△ABC 的面积.56.已知向量(cos sin ,sin )x x x ωωω=-a ,(cos sin ,23cos )x x x ωωω=--b ,设函数()f x λ=⋅+a b ()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈.Ⅰ求函数()f x 的最小正周期;Ⅱ若()y f x =的图象经过点π(,0)4,求函数()f x 在区间3π[0,]5上的取值范围. 57.在ABC ∆中,已知3AB AC BA BC =. 1求证:tan 3tan B A =; 2若5cos 5C =,求A 的值.58. 已知△ABC 得三边长成公比为2的等比数列,则其最大角的余弦值为_____.59.已知ABC ∆ 的一个内角为120o ,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______60.已知等比数列{a n }的公比q=3,前3项和313.3S = I 求数列{a n }的通项公式;II 若函数()sin(2)(0,0)f x A x A p ϕϕπ=+><<<在6x π=处取得最大值,且最大值为a 3,求函数fx 的解析式.63.函数22xy sin x =-的图象大致是 64.函数fx=sin x ωϕ+的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y 轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.1若6πϕ=,点P 的坐标为0,332,则ω= ; 2求∆ABC 面积65设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.I 求BII 若1sin sin 4A C =,求C .66在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c =++.Ⅰ求A ;Ⅱ设a =S 为△ABC 的面积,求3cos cos S B C +的最大值,并指出此时B 的值.67在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A c ---+=-.Ⅰ求sin A 的值;Ⅱ若a =5b =,求向量BA 在BC 方向上的投影68已知函数()sin cos f x x a x =+的一个零点是3π4. Ⅰ求实数a 的值;Ⅱ设22()[()]2sin g x f x x =-,求()g x 的单调递增区间.69在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=.Ⅰ求证:,,a b c 成等比数列; Ⅱ若1,2a c ==,求△ABC 的面积S .三角函数1、在ABC ∆中,已知内角3A π=,边BC =设内角B x =,面积为y .1求函数()y f x =的解析式和定义域; 2求y 的最大值.2、已知a =coos α,sin α,b =coos β,sin β,其中0<α<β<π. 1求证:a +b 与a -b 互相垂直;2若k a +b 与a -k b 的长度相等,求β-α的值k 为非零的常数.3、已知3sin22B A ++cos 22BA -=2, cocacobs ≠0,求tanAtanB 的值; 5、已知ABC ∆中,1||=AC ,0120=∠ABC ,θ=∠BAC ,记→→•=BC AB f )(θ, 1求)(θf 关于θ的表达式; 2求)(θf 的值域;6、已知向量],2[),2cos ),122(cos(),2cos ),122(sin(ππππ∈-+=+=x x x b x x a ,函数b a x f ⋅=)(.I 若53cos -=x ,求函数)(x f 的值;II 将函数)(x f 的图象按向量c =)0)(,(π<<m n m 平移,使得平移后的图象关于原点对称,求向量c .9、在ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n ;I 求锐角B 的大小;II 如果2b =,求ABC ∆的面积ABC S ∆的最大值; 10、已知向量()()3cos2,1,1,sin2,,m a x n b a x a b R ==-∈,集合{}2cos ,22M x x x ππ⎡⎤=∈-⎢⎥⎣⎦,若函数()f x m n x M =∈在时,取得最大值3,最小值为-1,求实数,a b 的值16、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= I 求cos B 的值;II 若2=⋅BC BA ,且22=b ,求c a 和b 的值.21、已知向量m =()B B cos 1,sin -, 向量n = 2,0,且m 与n 所成角为错误!,其中A 、B 、C 是ABC ∆的内角;ABC1201求角B 的大小;2求 C A sin sin +的取值范围;26、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,C =2A,43cos =A , 1求B C cos ,cos 的值;2若227=⋅BC BA ,求边AC 的长; 30、已知ABC △的面积为3,且满足60≤⋅≤AC AB ,设AB 和AC 的夹角为θ. I 求θ的取值范围;II 求函数)4(sin 2)(2πθθ+=f -θ2cos 3的最大值与最小值.33、已知△ABC 的面积为3,且06,AB AC AB AC θ→→→→≤•≤设和的夹角为; 1求θ的取值范围;2求函数22()(sin cos )f θθθθ=+-的最大值和最小值; 36、已知A B 、是△ABC 的两个内角,向量2cos, sin 22A B A Ba +-=(),若6||2a =. Ⅰ试问B A tan tan ⋅是否为定值若为定值,请求出;否则请说明理由; Ⅱ求C tan 的最大值,并判断此时三角形的形状. 38、在△ABC 中,已知35=BC ,外接圆半径为5. Ⅰ求∠A 的大小; Ⅱ若ABC AC AB ∆=⋅,求211的周长. 40、如图A 、B 是单位圆O 上的点,C 是圆与x 轴正半轴的交点,A 点的坐标为)54,53(,三角形AOB 为正三角形. Ⅰ求COA ∠sin ;Ⅱ求2||BC 的值.45、已知函数fx=4sin 24π42x ππ≤≤1求)(x f 的最大值及最小值;2若不等式|fx -m|<2恒成立, 求实数m 的取值范围49、已知函数fx =·,其中=sin ωx +cos ωx,错误!cos ωx,=cos ωx -sin ωx,2sin ωx ω>0,若fx 相邻的对称轴之间的距离不小于错误!. 1求ω的取值范围;2在△ABC 中,a,b,c 分别为A,B,C 的对边,a =错误!,b+c =3,当ω最大时,fA =1,求△ABC 的面积.56、已知角C B A ,,为ABC ∆的三个内角,其对边分别为c b a ,,,若)2sin ,2cos (A A -=m ,)2sin ,2(cos A A =n ,32=a ,且21=⋅n m .1若ABC ∆的面积3=S ,求c b +的值. 2求c b +的取值范围.59、在锐角△ABC 中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,且tanA -tanB=1+tanA ·tanB .1若a 2-ab =c 2-b 2,求A 、B 、C 的大小;2已知向量m =sinA,cosA,n =cosB,sinB,求|3m -2n |的取值范围.62、已知函数0)6(,cos sin cos 2)(2=+=πf x x a x x f1求函数)(x f 的最小正周期及单调增区间;2若函数)(x f 的图象按向量)1,6(-=πm 平移后得到函数)(x g 的图象,求)(x g 的解析式.64、设向量)2,(),,0(),0,1(),sin ,cos 1(),sin ,cos 1(ππβπαββαα∈∈=-=+=c b a ,2sin,3,,2121βαπθθθθ-=-求且的夹角为与的夹角为与c b c a 的值;68已知A 、B 、C 为ABC ∆的三个内角,向量65(,cos )22A B A B +-=a ,且3|| 5.5=a 1求tan tan A B 的值;2求C 的最大值,并判断此时ABC ∆的形状.74、在△ABC 中,,0),1,(),cos ,sin 3(),2cos ,(cos πλ≤≤--x C x x B x x A 若△ABC 的重心在y 轴负半轴上,求实数λ的取值范围.76、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若).(R k k BC BA AC AB ∈=⋅=⋅ Ⅰ判断△ABC 的形状; Ⅱ若k c 求,2=的值.77、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos cos B C ba c=-+2. I 求角B 的大小;II 若b a c =+=134,,求△ABC 的面积.78、已知ABC ∆中,a 、b 、c 是三个内角A 、B 、C 的对边,关于x 的不等式2cos 4sin 60x C x C ++<的解集是空集. 1求角C 的最大值;2若72c =,ABC ∆的面积S =求当角C 取最大值时a b +的值. 84、在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A c Bb+=. Ⅰ求角A ; Ⅱ若m (0,1)=-,n ()2cos ,2cos 2C B =,试求|m +n |的最小值. 90、已知锐角△ABC 三个内角为A 、B 、C,向量22sin ,cos sin pA A A 与向量sin cos ,1sin qA A A 是共线向量.Ⅰ求角A. Ⅱ求函数232sin cos 2C By B 的最大值.96、已知]),0[,0)(cos()(πωωπ∈Φ>Φ+=x x f 是R 上的奇函数,其图像关于直线43=x 对称,且在区间]41,41[-上是单调函数,求ω和Φ的值; 98、已知向量(1tan ,1),(1sin 2cos 2,3)x x x =-=++-b a ,记().f x =⋅b a1求fx 的值域及最小正周期;2若224f f ααπ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭其中0,2πα⎛⎫∈ ⎪⎝⎭,求角.α。
高中数学高考三角函数复习专题
高中数学高考三角函数复习专题三角函数复专题一、核心知识点归纳:1、正弦函数、余弦函数和正切函数的图象与性质:函数性质:y=sinx y=cosx y=tanx图象定义域 R R R\{kπ+π/2|k∈Z}值域 [-1,1] [-1,1] R最值y_max=1 (when x=2kπ) y_max=1 (when x=2kπ+π/2) 无最大值y_min=-1 (when x=2kπ-π) y_min=-1 (when x=2kπ) 无最小值周期性2π 2π π奇偶性奇函数偶函数奇函数单调性在[2kπ-π/2,2kπ+π/2](k∈Z)上是增函数;在[2kπ+π/2,2kπ+3π/2](k∈Z)上是减函数。
在[kπ,kπ+π](k∈Z)上是减函数。
在[kπ-π/2,kπ+π/2](k∈Z)上是增函数;在[kπ+π/2,kπ+3π/2](k∈Z)上是减函数。
对称中心(kπ,0)(k∈Z) 对称中心(kπ+π/2,0)(k∈Z) 无对称中心对称性奇对称偶对称无对称轴对称轴x=kπ+π/2 (k∈Z) 对称轴x=kπ (k∈Z) 无对称轴2.正、余弦定理:在△ABC中有:①正弦定理:a/sinA=b/sinB=c/sinC=2R(R为△ABC外接圆半径)注意变形应用:sinA=2R/asinB=2R/bsinC=2R/c②面积公式:S△ABC=1/2absinC=1/2acsinB=1/2bcsinA ③余弦定理:b²=c²+a²-2accosBc²=a²+b²-2abcosCa²=b²+c²-2bccosA三、例题集锦:考点一:三角函数的概念1.如图,设A是单位圆和x轴正半轴的交点,P、Q是单位圆上的两点,O是坐标原点,∠AOP=π/6,∠AOQ=α,α∈[0,π)。
若Q(√3/2,y),求cos(α-π/6)。
一轮复习专题18 三角函数(知识梳理)
专题18三角函数(知识梳理)一、知识点(一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl=α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ;rad 01745.01801≈π= 。
3、特殊角的三角函数值30 45 60 90 120 135 150 18006π4π3π2π32π43π65ππsin 021222312322210cos 1232221021-22-23-1-tan3313⨯3-1-33-0210 225 240 270 300 315 330 36067π45π34π23π35π47π611ππ24、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅n πk 2第一象限角平分线36045⋅+n π+πk 24x 轴负半轴360180⋅+n π+πk 2第二象限角平分线 360135⋅+n π+πk 243x 轴 180⋅n πk 第三象限角平分线360225⋅+n π+πk 245y 轴正半轴36090⋅+n π+πk 22第四象限角平分线 360315⋅+n π+πk 247y 轴负半轴 360270⋅+n π+πk 223第一、三象限角平分线18045⋅+n π+πk 4y 轴18090⋅+n π+πk 2第二、四象限角平分线 180135⋅+n π+πk 43坐标轴90⋅n 2πk 象限角平分线9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
(完整版)数学高职高考专题复习_三角函数
高考三角函数问题专题复习一、三角函数基础题1、已知角α的终边通过点P(-3,4),则sinα+cosα+t an α= ( )A.1523-B.1517-C.151-D.15172、π617sin = ( )A.21 B.23- C.21- D.23-3、x y 2sin 21=的最小正周期是 ( ) A.2πB.πC.2πD. 4π 4、设tan α=2,且sin α<0,则cos α的值等于 ( ) A.55 B.51- C.55- D.51 5、y=cos 2(2x)的最小正周期是 ( )A .2πB. πC.4πD.8π 6、命题甲:sin x=1,命题乙:x=2π,则 ( )A.甲是乙充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充分必要条件D.甲不是乙的必要条件也不是乙的充分条件 7、命题甲:A=B ,命题乙:sinA=sinB,则 ( ) A.甲不是乙的必要条件也不是乙的充分条件 B.甲是乙的充分必要条件C.甲是乙的必要条件但不是充分条件D.甲是乙的充分条件但不是必要条件 8、函数y=sin x 在区间________上是增函数. ( ) A.[0,π] B.[π,2π] C.]25,23[ππ D .]87,85[ππ 9、函数)43tan(π+=x y 的最小正周期为 ( )A.3πB.πC.32π D.3π10、设角α的终边通过点P (-5,12),则cot α+sin α等于 ( ) A.137 B.-137 C.15679 D.- 1567911、函数y=cos3x -3sin3x 的最小正周期和最大值分别是 ( )A.32π, 1 B.32π, 2 C.2π, 2 D.2π, 1 12、若23cos ],2,[-=∈x x ππ ,则x 等于 ( ) A.67π B.34π C.35π D.611π 13、已知57cos sin ,51cos sin =-=+αααα,则tan α等于 ( )A.34- B.-43 C.1 D.- 114、ο150cos = ( )A.21 B.23 C.﹣21D. ﹣2315、在△ABC 中,AB=3,AC=2,BC=1,则sin A 等于 ( )A.0B.1C.23 D.2116、在]2,0[π上满足sinx≤-0.5的x 的取值范围是区间 ( ) A.[0,6π] B.[6π,65π] C.]67,65[ππ D .]611,67[ππ17、使等式cosx=a -2有意义的a 的取值范围是区间 ( )A .[0,2] B.[1,3] C.[0,1] D.[2,3]18、=-+-)690sin(495tan )585cos(οοο ( )A .22 B.32 C.32- D.2 19、如果51cos sin =+x x ,且0≤x<π,那么tanx= ( ) A .34- B.43- C.43 D.3420、要得到)62sin(π-=x y 的图象,只需将函数y=sin2x 的图象 ( )A .向右平行移动3π个单位 B.向右平行移动6π个单位 C.向右平行移动12π个单位 D.向左平行移动12π个单位21、已知παππ0,53cos =α,那么=+)sin(πα ( ) A .-1 B.53- C.54 D.54-22、tan165°-tan285°= ( )A .32- B.31+ C.32 D.32+23、函数y=2sin2xcos2x 是 ( )A .周期为2π的奇函数 B.周期为2π的偶函数 C.周期为4π的奇函数 D.周期为4π的偶函数24、在△ABC 中,已知∠BAC=120o ,AB=3,BC=7,则AC=____________.25、在△ABC 中,AB=3,BC=5,AC=7,则cosB=________.26、在△ABC 中,已知AB=2,BC=3,CA=4,则cosA=____ ______.27、函数y=x x cos sin 3+的值域是___ ______. 28、函数y=sinx-3cosx 的最小正周期是___________. 29、设38πα-=,则与α终边相同的最小正角是_________. 30、cos 2398o +cos 2232o =___________. 31、函数tan(3)4y x π=+的最小正周期是 . 二、三角函数式的变换及其应用32、015tan 115tan 1-+= ( )A.3-B.33C.3D.33- 33、已知=-=θθπθπθθsin cos ,24,81cos sin 那么且ππ ( )A .23 B.23- C.43 D.43- 34、当=+∈≠xxx x ,Z k k x cos 3cos sin 3sin )(2时π ( ) A .-2cos2x B.2cos2x C.4cos2x D.-4cos2x 35、=++-)67sin()67sin(θπθπ ( ) A .23B.θcosC.θcos -D.θ2cos 3 36、已知=--==)tan(,21tan ,3tan βαβα则 ( ) A .-7 B.7 C.-5 D.137、=+2280cos 1ο( )A .cos14° B.sin50° C.cos50° D.cos140° 38、如果=-=+=ββααβα那么且是锐角,1411)cos(,734sin ,, ( ) A .3π B.4π C.6π D.8π39、如果=++-x x x sin 1sin 1,20那么πππ ( )A .2cosx B.2sinx C.2sin 2x D.2cos 2x40、当=--=+)tan 1)(tan 1(43βαπβα,时 ( )A .21 B.31C.1D.2 41、在△ABC 中,已知cosAcosB=sinAsinB ,那么△ABC 是 ( ) A .直角三角形 B.钝角三角形 C.等边三角形 D.不等边锐角三角形42、在△ABC 中,已知cosA=135,cosB=53,那么cosC= ( ) A .6563- B.6563 C.6533- D.653343、已知sin α.+cos α.=53,则sin2α.=_______.44、函数y=2cosx -cos2x 的最大值是___ _____.45、如果51cos sin =+αα (0<α<π=,那么tg α的值是____ ____. 46、设0<α<2π,则2cos2sin sin 1ααα--等于______ __________.三、三角函数综合题47、在ABC 中,已知∠A=45o ,∠B=30o ,AB=2,求AC.48、在ABC 中,已知∠A=60o ,且BC=2AB ,求sinC.49、设函数θθθθθcos sin 25cos sin 2)(++=f , ]2,0[πθ∈,(Ⅰ)求)12(πf ; (Ⅱ)求函数f(θ)的最小值.50、已知sin α=54,α是锐角,求1)28(cos 22--απ的值。
高中数学三角函数专题:三角函数定义
高中数学三角函数专题:三角函数定义第一部分:三角函数的定义知识点一:直角三角形中三角函数定义。
“正”的含义:“正”指的是“正对面”,在直角三角形中指的是角的“对边”。
“余”的含义:“余”指的是“余光”,只有站在相邻的位置需要用余光去看对方,在直角三角形中指的是是角的“邻边”。
“弦”的含义:“弦”指的是直角三角形中“勾、股、弦”中的“弦”,指的是“斜边”。
“切”的含义:“切”指的是“直线与圆相切”,直线与圆相切最重要的性质是:圆心和切点的连线与切线垂直,“切”指的是“垂直”。
在直角三角形ABC 中,如下图所示:||||sin AC BC A =;||||cos AC AB A =;||||tan AB BC A =。
||||sin AC AB C =;||||cos AC BC C =;||||tan BC AB C =。
知识点二:特殊角三角函数值。
第一类直角三角形:三个内角分别为:030,060,090。
性质:在直角三角形中,030的对边为斜边的一半。
如下图所示:假设:030的对边a AB =||。
根据030的对边等于斜边的一半得到:a AB AC 2||2||==。
根据勾股定理得到:a BC a a a a a AB AC BC 3||34)2(||||||22222222=⇒=-=-=-=。
根据三角函数的定义得到:212||||30sin 0===a a AC AB ,2323||||30cos 0===a a AC BC ,33313||||30tan 0====a a BC AB 。
根据三角函数的定义得到:2323||||60sin 0===a a AC BC ,212||||60cos 0===a a AC AB ,33||||60tan 0===aaAB BC 。
第二类直角三角形:三个内角分别为:045,045,090。
性质:等腰直角三角形,两条直角边相等。
如下图所示:假设:a BC AB ==||||。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数知识归纳与典型例题1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
3. 终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.例1.与角1825-的终边相同,且绝对值最小的角的度数是_25-,合_536π-_弧度。
(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈.例2.α的终边与6π的终边关于直线x y =对称,则α=____Z k k ∈+,32ππ________。
4、α与2α的终边关系:由“两等分各象限、一二三四”确定.例3.若α是第二象限角,则2α是第__一、三___象限角5.弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈.例4.已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。
答案:22cm )6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r rαα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec rxα=()0x ≠,()csc 0r y y α=≠。
三角函数值只与角的大小有关,而与终边上点P 的位置无关。
例5.(1)已知角α的终边经过点P(5,-12),则ααcos sin +的值为_713-_。
(2)设α是第三、四象限角,m m --=432sin α,则m 的取值范围是___(-1,)23____.(3)若0|cos |cos sin |sin |=+αααα,试判断)tan(cos )cot(sin αα⋅的符号答:负7.三角函数线的特征是:正弦线MP “站在x 轴上(起点在x 轴上)”、余弦线OM “躺在x 轴上(起点是原点)”、正切线AT “站在点(1,0)A 处(起点是A )”.三角函数线的重要应用是比较三角函数值的大小和解三角不等式。
例6.(1)若08πθ-<<,则sin ,cos ,tan θθθ的大小关系为_____(tan sin cos θθθ<<) (2)若α为锐角,则,sin ,tan ααα的大小关系为_______ ,(sin tan ααα<<) (3)函数)3sin 2lg(cos 21+++=x x y 的定义域是_______, 答案:2(2,2]()33k k k Z ππππ-+∈ 8.特殊角的三角函数值:yTA xα B SO M P9. 同角三角函数的基本关系式:(1)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αααααα==同角三角函数的基本关系式的主要应用是,已知一个角的三角函数值,求此角的其它三角函数值。
在运用平方关系解题时,要根据已知角的范围和三角函数的取值,尽可能地压缩角的范围,以便进行定号;在具体求三角函数值时,一般不需用同角三角函数的基本关系式,而是先根据角的范围确定三角函数值的符号,再利用解直角三角形求出此三角函数值的绝对值。
例7.(1)函数sin tan cos cot y αααα+=+的值的符号为____大于0 ,(2)若π220≤≤x ,则使x x 2cos 2sin 12=-成立的x 的取值范围是____ , 答案:[0,]4π],43[ππ (3)已知53sin +-=m m θ,)2(524cos πθπθ<<+-=m m ,则θtan =___ 125- , (4)已知11tan tan -=-αα,则ααααcos sin cos 3sin +-=____ 35- ;2cos sin sin 2++ααα=________513_; (5)已知a =200sin ,则160tan 等于 ( B )A 、21a a --B 、21aa- C 、a a 21-- D 、a a 21-;(6)已知x x f 3cos )(cos =,则)30(sinf 的值为______ -1 。
10.三角函数诱导公式(2kπα+)的本质是:奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角).诱导公式的应用是求任意角的三角函数值,其一般步骤:(1)负角变正角,再写成2k π+α,02απ≤<;(2)转化为锐角三角函数。
例8.(1)97costan()sin 2146πππ+-+的值为____23-____ ; (2)已知54)540sin(-=+α,则=-)270cos(α___ 54- ___, 若α为第二象限角,则=+-+-)180tan()]360cos()180[sin(2ααα ____1003- ____。
11、两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-例9.(1)下列各式中,值为12的是 ( C )A 、1515sin cosB 、221212cos sin ππ- C 、22251225tan .tan .- D 30;(2)命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 ( ) A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件;(3)已知35sin()cos cos()sin αβααβα---=,那么2cos β的值为___725_ ; (4)131080sin sin -的值是____ 4 __;(5)已知0tan110a =,求0tan 50的值(用a ,乙求得的结果是212a a-,对甲、乙求得的结果的正确性你的判断是______甲、乙都对 ;12. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等),例10.(1)已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是____322_ ; (2)已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值;答案:490729(3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为______ 43(1)55y x x =<< ;(2)三角函数名互化(切割化弦),例11.(1)求值sin 50(13tan10)+;(答案:1 (2)已知sin cos 21,tan()1cos 23αααβα=-=--,求tan(2)βα-的值;答案:18(3)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。
例12.(1)已知A 、B 为锐角,且满足tan tan tan tan 1A B A B =++,则cos()A B +=__; (2)设ABC ∆中,tan A tan B Atan B ++=,4sin Acos A =,则此三角形是__ 等边 __三角形;(4)三角函数次数的降升(降幂公式:21cos 2cos2αα+=,21cos 2sin 2αα-=与升幂公式:21cos 22cos αα+=,21cos 22sin αα-=)。
例13.(1)若32(,)αππ∈,为_____ sin 2α;(2)函数25f (x )sin x cos x x =-x R )∈的单调递增区间为_______ 51212[k ,k ](k Z )ππππ-+∈ (5)式子结构的转化(对角、函数名、式子结构化同)。
例14.(1)化简tan (cos sin )ααα- sin tan cot csc αααα+++;()(2)求证:21tan 1sin 212sin 1tan 22αααα++=--;(sin α)(3):化简42212cos 2cos 22tan()sin ()44x x x x ππ-+-+ (1cos 22x )(6)常值变换主要指“1”的变换(221sin cos x x =+22sec tan tan cot x x x x =-=⋅tan sin 42ππ===等),例15.已知tan 2α=,求22sin sin cos 3cos αααα+-.(35) (7)正余弦“三兄妹—sin cos sin cos x x x x ±、”的内存联系――“知一求二”, 例16.(1)若 sin cos x x t ±=,则sin cos x x = 212t -± __,特别提醒:这里[t ∈;(2)若1(0,),sin cos 2απαα∈+=,求tan α的值。