2018年高考数学总复习-定积分和微积分基本定理

合集下载

高考数学第一轮知识点总复习 第四节 定积分与微积分基本定理

高考数学第一轮知识点总复习 第四节  定积分与微积分基本定理

答案:2
11.一条水渠横断面为抛物线型,如图,渠宽AB=4 m,渠深CO=2 m, 12.当水面距地面0.5 m时,求水的横断面的面积.
解析:如图,建立直角坐标系,设抛物线方程为x2=2py(p>0), 把点(2,2)代入抛物线得2p=2,∴x2=2y, 将点(x,1.5)代入得x=±3,
S 3 (1.5 1x2 )dx
dx
2 (4 x2 )dx
3 (x2 4)dx
0
0
2
(4x
1 3
x3 )
|02
(1 3
x3
4x) |32
23 . 3
题型三 定积分的几何意义
【例3】利用定积分的性质和定义表示下列曲线围成的平面区域的面积. (1)y=0,y= x,x=2; (2)y=x-2,x=y2.
分析 先将区域面积表示成若干个定积分的和或差,再运用牛顿—莱布尼 兹公式计算.
【例4】列车以72 km/h的速度行驶,当制动时,列车获得加速度为a=0.4 m/s2,问:列车应在进站前多少秒的时候,以及离车站多远处开始制动? 分析 因为列车停在车站时速度为0,故应先求出速度的表达式之后, 令v=0,求出t,再根据v和t应用定积分求出路程.
解 列车的初速度v0=72 km/h=20 m/s.
2
xdx
2 x2dx
21 dx
1
x
1
1
1x
x2 2
|12
x3 3
|12
ln
x |12
3 2
7 3
ln 2
ln 2 5 . 6
(4)设y= 16 6,x 则x(2x-3)2+y2=25(y≥0).
∵ 3 16 6x表示x2半dx径为5的圆的四分之一的面积, 2

2018届高考第三章 第3讲定积分与微积分基本定理

2018届高考第三章 第3讲定积分与微积分基本定理
b F(b)-F(a) 这个结论叫做微积分基本定理, 那么 f(x)dx = ___________.
a
又叫做牛顿—莱布尼茨公式.可以把 F(b)-F(a)记为 F(x)
b b F(b)-F(a) 即 f(x)dx=F(x) =__________. a
a
b , a
基础诊断 考点突破 课堂总结
T 2 4.若 则常数 T 的值为________. x dx=9,
0
解析
1 3 1 3 3 T 2 x dx= x = ×T =9. ∴T =27, ∴T=3. 3 0 3
0
T
答案 3
基础诊断
考点突破
课堂总结
5.已知
2 x (-1≤x≤0), 1 f(x)= 则 1 (0<x≤1), -
有正有负 位于 x 轴下方的曲边梯形的面积
基础诊断
考点突破
课堂总结
2.定积分的性质
a
b k f(x)dx b (1) k 为常数). kf(x)dx=___________( a b f1(x)dx± f2(x)dx b (2) f ( x )]d x = _________________. [f1(x)± a a 2
第3讲
定积分与微积分基本定理
基础诊断
考点突破
课堂总结
最新考纲
1.了解定积分的实际背景,了解定积分的基本
思想,了解定积分的概念,几何意义;2.了解微积分基本 定理的含义.
基础诊断
考点突破
课堂总结
知识梳理
1.定积分的概念与几何意义 (1)定积分的定义 如果函数 f(x)在区间[a,b]上连续,用分点将区间[a,b]等分成 n 个小区间,在每个小区间上任取一点 ξi(i=1,2,„,n),作

高考专题定积分与微积分基本定理

高考专题定积分与微积分基本定理

定积分与微积分基本定理[知识梳理]1.定积分的概念2.定积分的几何意义3.定积分的性质4.微积分基本定理5.定积分的应用(1)定积分与曲边梯形面积的关系设阴影部分的面积为S.6.定积分应用的两条常用结论(1)当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.(2)加速度对时间的积分为速度,速度对时间的积分是路程.[诊断自测] 1.概念思辨(1)在区间[a ,b ]上连续的曲线y =f (x )和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛ab |f (x )|d x .( )(2)若⎠⎛ab f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( )答案 (1)√ (2)× (3)√ (4)√ 2.教材衍化答案D(2)(选修A2-2P 67T 7)直线y =3x 与曲线y =x 2围成图形的面积为( )A.272 B .9 C.92 D.274 答案 C 解析由已知,联立直线与曲线方程得到⎩⎨⎧y =3x ,y =x 2,解得⎩⎨⎧x =0,y =0或⎩⎨⎧x =3,y =9,则围成图形的面积为⎠⎛03(3x -x 2)d x =⎝⎛⎭⎪⎫32x 2-13x 3|30=32×3×3-13×3×3×3 =16×3×3×3=92.故选C.3.小题热身答案 B答案 D题型1定积分的计算典例1 (优质试题·广州质检)定积分⎠⎛-22|x 2-2x |d x =( ) A .5 B .6 C .7 D .8被积函数中含有绝对值,可表示为分段函数后再求积分.答案 D 解析∵|x 2-2x |=⎩⎨⎧x 2-2x ,-2≤x <0,-x 2+2x ,0≤x ≤2,∴⎠⎜⎛-22|x 2-2x |d x =⎠⎜⎛-2(x 2-2x )d x +⎠⎛02(-x 2+2x )d x =⎝ ⎛⎭⎪⎫13x 3-x 2|0-2+⎝ ⎛⎭⎪⎫-13x 3+x 2|20=8.故选D. 典例2求和的积分,可转化为求积分的和.答案 23典例3本题应用转化法.答案π2方法技巧求定积分的常用方法1.微积分基本定理法:其一般步骤为:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数、对数函数等基本初等函数的和、差、积或商.(2)把定积分用定积分性质变形为求被积函数为上述函数的定积分.(3)分别用求导公式找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值.(5)计算原始定积分的值.2.用定积分的几何意义求:将待求定积分转化为一个易求平面图形的面积,进而求值.如典例3.3.用定积分的基本性质求:对绝对值函数,分段函数,可利用定积分的基本性质将积分区间分解为若干部分求解.冲关针对训练1.(2014·江西高考)若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( ) A .-1 B .-13 C.13 D .1 答案 B解析 令⎠⎛01f (x )d x =m ,则f (x )=x 2+2m ,所以⎠⎛01f (x )d x =⎠⎛01(x 2+2m )d x =⎝ ⎛⎭⎪⎫13x 3+2mx |10=13+2m =m ,解得m =-13,故选B.2.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 答案B题型2 利用定积分求平面图形的面积角度1 求平面图形的面积典例(优质试题·葫芦岛模拟)如图所示,正弦曲线y =sin x ,余弦曲线y =cos x 与两直线x =0,x =π所围成的阴影部分的面积为( )A .1 B. 2 C .2 D .2 2本题采用割补转化法.答案 D角度2 已知曲边梯形面积求参数典例 (优质试题·北京东城区检测)如图,已知点A ⎝ ⎛⎭⎪⎫0,14,点P (x 0,y 0)(x 0>0)在曲线y =x 2上,若阴影部分的面积与△OAP 的面积相等,则x 0=________.本题应用方程思想.答案6 4角度3与其他知识的交汇命题典例(2014·辽宁高考)正方形的四个顶点A(-1,-1),B(1,-1),C(1,1),D(-1,1)分别在抛物线y=-x2和y=x2上,如图所示.若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是________.本题应用数形结合思想方法.答案2 3方法技巧1.利用定积分求平面图形面积的步骤(1)根据题意画出图形.(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限.(3)把曲边梯形的面积表示成若干个定积分的和.(4)计算定积分,求出平面图形的面积.2.知图形的面积求参数.求解此类题的突破口是画图,一般是先画出它的草图,然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再由已知条件可找到关于参数的方程,从而可求出参数的值.见角度2典例.3.与概率相交汇问题.解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算.见角度3典例.冲关针对训练1.(优质试题·河北衡水中学三模)由曲线y=2-x2,直线y=x及x轴所围成的封闭图形(图中的阴影部分)的面积是()A.92 B.423+76 C.76 D.2+1答案 B2.(优质试题·洛阳统考)若⎠⎛0n |x -5|d x =25,则(2x -1)n 的二项展开式中x 2的系数为________.答案 180①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A .0 B .1 C .2 D .3 答案 C答案 A3.(优质试题·和平区期末)物体A以v=3t2+1(m/s)的速度在一直线l上运动,物体B在直线l上,且在物体A的正前方5 m处,同时以v=10t(m/s)的速度与A同向运动,出发后物体A追上物体B所用的时间t(s)为()A.3 B.4 C.5 D.6答案 C4.(优质试题·江西联考)⎠⎛01(2x +1-x 2)d x =________.答案 1+π4 解析 ⎠⎛011-x 2d x 表示以原点为圆心,以1为半径的圆的面积的14,∴⎠⎛011-x 2d x =π4.又∵⎠⎛012x d x =x 210=1,∴⎠⎛01(2x +1-x 2)d x =⎠⎛012x d x +⎠⎛11-x 2d x =1+π4.[基础送分 提速狂刷练]一、选择题1.(优质试题·凉山州模拟)⎠⎛1e ⎝⎛⎭⎪⎫x +1x d x =( )A .e 2B.e 2+12C.e 2-12D.e 2+32答案 B解析 ⎠⎛1e ⎝⎛⎭⎪⎫x +1x d x =⎝ ⎛⎭⎪⎫12x 2+ln x |e 1=⎝ ⎛⎭⎪⎫12e 2+1-⎝ ⎛⎭⎪⎫12+0=e 2+12,故选B.答案 C3.(优质试题·抚州期中)曲线y =2x 与直线y =x -1及直线x =1所围成的封闭图形的面积为( )A.34B.52 C .4-2ln 2 D .2ln 2-12 答案 D解析 画图得三个交点分别为(1,0),(1,2),(2,1),故曲线y =2x 与直线y =x -1及直线x =1所围成的封闭图形的面积为S =⎠⎛12⎝⎛⎭⎪⎫2x -x +1=⎝ ⎛⎭⎪⎫2ln x -12x 2+x |21=2ln 2-2+2+12-1=2ln 2-12,故选D.4.(优质试题·南昌一模)若⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =3+ln 2(a >1),则a 的值是( )A .2B .3C .4D .6 答案 A解析 由题意可知⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =(x 2+ln x )|a1=a 2+ln a -1=3+ln2,解得a =2.故选A.5.(优质试题·郑州质检)已知等比数列{a n },且a 6+a 8=⎠⎛0416-x 2d x ,则a 8(a 4+2a 6+a 8)的值为( ) A .π2 B .4π2 C .8π2 D .16π2 答案 D解析 因为a 6+a 8=⎠⎛416-x 2d x =14×π×42=4π,所以a 8(a 4+2a 6+a 8)=a 8a 4+2a 6a 8+a 28=a 26+2a 6a 8+a 28=(a 6+a 8)2=16π2,故选D.6.(优质试题·河南模拟)已知1sin φ+1cos φ=22,若φ∈⎝ ⎛⎭⎪⎫0,π2,则⎠⎛-1tan φ(x 2-2x )d x =( )A.13 B .-13 C.23 D .-23 答案 C7.设a =⎠⎛0πsin x d x ,则⎝ ⎛⎭⎪⎫a x -1x 6的展开式中常数项是( )A .-160B .160C .-20D .20 答案 A 解析依题意得,a =-cos x|π0=-(cosπ-cos0)=2,⎝⎛⎭⎪⎫ax -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6的展开式的通项T r +1=C r 6·(2x )6-r ·⎝⎛⎭⎪⎫-1x r =C r 6·26-r·(-1)r·x3-r.令3-r =0,得r =3.因此⎝⎛⎭⎪⎫a x -1x 6的展开式中的常数项为C 36·23·(-1)3=-160,故选A.8.如图,设抛物线y =-x 2+1的顶点为A ,与x 轴正半轴的交点为B ,设抛物线与两坐标轴正半轴围成的区域为M ,随机往M 内投一点P ,则点P 落在△AOB 内的概率是( )A.56B.45C.34D.23 答案 C解析 因为第一象限内抛物线与坐标轴所围区域的面积为⎠⎛01(-x 2+1)d x =(-13x 3+x )|10=23,△AOB 的面积为S =12×1×1=12,所以P点落在△AOB 内的概率为1223=34.故选C.9.(优质试题·枣庄模拟)一辆汽车做变速直线运动,在时刻t 的速度为v (t )=2+sin t (t 的单位:h ,v 的单位:km/h),那么它在0≤t ≤1这段时间内行驶的路程s (单位:km)是( )A .3-cos1B .3+cos1C .1+cos1D .1-cos1答案 A解析 由v (t )=2+sin t >0,故这辆车行驶的路程s =⎠⎛01v (t )d t =⎠⎛01(2+sin t )d t =(2t -cos t )10=(2-cos1)-(-cos0)=3-cos1,故选A.10.由曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面图形(如图中的阴影部分所示)的面积是()A .1 B.π4 C.223 D .22-2 答案 D二、填空题答案212.(优质试题·南开区二模)由曲线y =x 2,y =x 围成的封闭图形的面积为________.答案 1313.(优质试题·金版原创)若m >1,则f (m )=⎠⎛1m ⎝⎛⎭⎪⎫1-4x 2d x 的最小值为________.答案 -1解析 f (m )=⎠⎛1m ⎝⎛⎭⎪⎫1-4x 2d x =⎝ ⎛⎭⎪⎫x +4x |m 1=m +4m -5≥4-5=-1,当且仅当m =2时等号成立.14.(优质试题·山西大学附中模拟)曲线y =2sin x (0≤x ≤π)与直线y =1围成的封闭图形的面积为________.答案 23-2π3三、解答题15.(优质试题·阳东县校级月考)如图,过点A (6,4)作曲线f (x )=4x -8的切线l .(1)求切线l 的方程;(2)求切线l ,x 轴及曲线f (x )=4x -8所围成的封闭图形的面积S .解 (1)f ′(x )=424x -8=1x -2,∴切线l 的斜率k =f ′(6)=12,∴切线l 的方程为y -4=12(x -6),即x -2y +2=0.(2)令f (x )=0得x =2,把y =0代入x -2y +2=0得x =-2, ∴封闭图形的面积16.(优质试题·信阳调研)在区间[0,1]上给定曲线y =x 2.试在此区间内确定t 的值,使图中的阴影部分的面积S 1与S 2之和最小,并求最小值.解 面积S 1等于边长为t 与t 2的矩形面积去掉曲线 y =x 2与x 轴、直线x =t 所围成的面积,即S 1=t ·t 2-⎠⎛0tx 2d x =23t 3. S 2的面积等于曲线y =x 2与x 轴,x =t ,x =1围成的面积去掉矩形面积,矩形边长分别为t 2,1-t .即S 2=⎠⎛t1x 2d x -t 2(1-t )=23t 3-t 2+13.所以阴影部分面积S =S 1+S 2=43t 3-t 2+13(0≤t ≤1).令S ′(t )=4t 2-2t =4t ⎝ ⎛⎭⎪⎫t -12=0时,得t =0或t =12.t =0时,S =13;t =12时,S =14;t =1时,S =23. 所以当t =12时,S 最小,且最小值为14.。

2018届高三数学一轮复习:定积分与微积分的基本定理知识点归纳总结

2018届高三数学一轮复习:定积分与微积分的基本定理知识点归纳总结

1.定积分(1)定积分的相关概念在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.(2)定积分的几何意义①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分).②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.(3)定积分的基本性质①∫b a kf(x)d x=k∫b a f(x)d x.②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x.③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x.[探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等?提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么?提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积.2.微积分基本定理如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F(b)-F(a)记成F(x)|b a,即∫baf(x)d x=F(x)|b a=F(b)-F(a).[自测·牛刀小试]1.∫421x d x等于()A.2ln 2B.-2ln 2 C.-ln 2 D.ln 2解析:选D ∫421xd x =ln x |42=ln 4-ln 2=ln 2. 2.(教材习题改编)一质点运动时速度和时间的关系为V (t )=t 2-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( )A.176B.143C.136D.116解析:选A S =∫21(t 2-t +2)d t =⎝⎛⎪⎪⎭⎫13t 3-12t 2+2t 21=176. 3.(教材习题改编)直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积为________. 解析:∫20x 2d x =13x 3 |20=83. 答案:834.(教材改编题)∫101-x 2d x =________.解析:由定积分的几何意义可知,∫101-x 2d x 表示单位圆x 2+y 2=1在第一象限内部分的面积,所以∫101-x 2d x =14π. 答案:14π5.由曲线y =1x ,直线y =-x +52所围成的封闭图形的面积为________.解析:作出图象如图所示.解方程组可得交点为A ⎝⎛⎭⎫12,2,B ⎝⎛⎭⎫2,12,所以阴影部分的面积, 212⎰⎝⎛ -x +52-⎭⎫1x d x =⎝⎛⎭⎫-12x 2+52x -ln x 212=158-2ln 2. 答案:158-2ln 2[例1] 利用微积分基本定理求下列定积分:(1)∫21(x 2+2x +1)d x ;(2)∫π0(sin x -cos x )d x ;(3)∫20x (x +1)d x ;(4)∫21⎝⎛⎭⎫e 2x +1x d x ; (5)20π⎰sin 2x 2d x .[自主解答](1)∫21(x 2+2x +1)d x =∫21x 2d x +∫212x d x +∫211d x =x 33|21+x 2 |21+x |21=193. (2)∫π0(sin x -cos x )d x=∫π0sin x d x -∫π0cos x d x =(-cos x ) |π0-sin x |π0=2. (3)∫20x (x +1)d x =∫20(x 2+x )d x=∫20x 2d x +∫2x d x =13x 3 |20+12x 2 |20 =⎝⎛⎭⎫13×23-0+⎝⎛⎭⎫12×22-0=143. (4)∫21⎝⎛⎭⎫e 2x +1x d x =∫21e 2x d x +∫211x d x =12e 2x |21+ln x |21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (5)20π⎰ sin 2x 2d x =20π⎰⎝⎛⎭⎫12-12cos x d x =20π⎰12d x -1220π⎰cos x d x =12x 20π-12sin x 20π=π4-12=π-24. ———————————————————求定积分的一般步骤计算一些简单的定积分,解题的步骤是:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值.1.求下列定积分: (1)∫20|x -1|d x ; (2)20π⎰1-sin 2x d x .解:(1)|x -1|=⎩⎪⎨⎪⎧1-x , x ∈[0,1)x -1, x ∈[1,2]故∫20|x -1|d x =∫10(1-x )d x +∫21(x -1)d x=⎝⎛⎭⎫x -x 22 |10+⎝⎛⎭⎫x 22-x |21=12+12=1.(2) 20π⎰1-sin 2x d x=20π⎰|sin x -cos x |d x =40π⎰(cos x -sin x )d x +24ππ⎰(sin x -cos x )d x=(sin x +cos x )40π+(-cos x -sin x ) 24ππ=2-1+(-1+2)=22-2.[例2] ∫10-x 2+2x d x =________.[自主解答] ∫10-x 2+2x d x 表示y =-x 2+2x 与x =0,x =1及y =0所围成的图形的面积.由y =-x 2+2x 得(x -1)2+y 2=1(y ≥0), 又∵0≤x ≤1,∴y =-x 2+2x 与x =0,x =1及y =0所围成的图形为14个圆,其面积为π4.∴∫10-x 2+2x d x =π4.在本例中,改变积分上限,求∫20-x 2+2x d x 的值.解:∫20-x 2+2x d x 表示圆(x -1)2+y 2=1在第一象限内部分的面积,即半圆的面积,所以∫20-x 2+2x d x =π2.———————————————————利用几何意义求定积分的方法(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分. (2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小.2.(2013·福建模拟)已知函数f (x )=∫x 0(cos t -sin t )d t (x >0),则f (x )的最大值为________.解析:因为f (x )=∫x 02sin ⎝⎛⎭⎫π4-t d t =2cos ⎝⎛⎭⎫π4-t |x 0=2cos ⎝⎛⎭⎫π4-x -2cos π4 =sin x +cos x -1=2sin ⎝⎛⎭⎫x +π4-1≤2-1, 当且仅当sin ⎝⎛⎭⎫x +π4=1时,等号成立.[例3] (2012·山东高考)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A.103 B .4 C.163D .6[自主解答] 由y =x 及y =x -2可得,x =4,即两曲线交于点(4,2).由定积分的几何意义可知,由y =x 及y =x -2及y 轴所围成的封闭图形面积为∫40(x -x +2)d x =⎝⎛⎭⎫23x 32-12x 2+2x |40=163. [答案] C若将“y =x -2”改为“y =-x +2”,将“y 轴”改为“x 轴”,如何求解?解:如图所示,由y =x 及y =-x +2可得x =1.由定积分的几何意义可知,由y =x ,y =-x +2及x 轴所围成的封闭图形的面积为∫20f (x )d x =∫1x d x +∫21(-x +2)d x =23x32 |10+⎝⎛⎭⎫2x -x 22 |21 =76.———————————————————利用定积分求曲边梯形面积的步骤(1)画出曲线的草图.(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差. (4)计算定积分,写出答案.3.(2013·郑州模拟)如图,曲线y =x 2和直线x =0,x =1,y =14所围成的图形(阴影部分)的面积为( )A.23 B.13 C.12D.14解析:选D 由⎩⎪⎨⎪⎧y =14,y =x 2⇒x =12或x =-12(舍),所以阴影部分面积S =120⎰⎝⎛⎭⎫14-x 2d x +112⎰⎝⎛⎭⎫x 2-14d x=⎝⎛⎭⎫14x -13x 3120+⎝⎛⎭⎫13x 3-14x 112=14.[例4] 列车以72 km/h 的速度行驶,当制动时列车获得加速度a =-0.4 m/s 2,问列车应在进站前多长时间,以及离车站多远处开始制动?[自主解答] a =-0.4 m/s 2,v 0=72 km/h =20 m/s. 设t s 后的速度为v ,则v =20-0.4t . 令v =0,即20-0.4 t =0得t =50 (s). 设列车由开始制动到停止所走过的路程为s ,则s =∫500v d t =∫500(20-0.4t )d t=(20t -0.2t 2) |500=20×50-0.2×502=500(m),即列车应在进站前50 s 和进站前500 m 处开始制动. ———————————————————1.变速直线运动问题如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≥0),那么物体从时刻t =a 到t =b 所经过的路程为∫b a v (t )d t ;如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≤0),那么物体从时刻t =a 到t =b 所经过的路程为-∫b a v (t )d t .2.变力做功问题物体在变力F (x )的作用下,沿与力F (x )相同方向从x =a 到x =b 所做的功为∫b a F (x )d x .4.一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J解析:选B 力F (x )做功为∫2010d x +∫42(3x +4)d x=10x |20+⎝⎛⎪⎪⎭⎫32x 2+4x 42=20+26=46.1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算. 3条性质——定积分的性质 (1)常数可提到积分号外; (2)和差的积分等于积分的和差; (3)积分可分段进行.3个注意——定积分的计算应注意的问题(1)若积分式子中有几个不同的参数,则必须分清谁是积分变量; (2)定积分式子中隐含的条件是积分上限不小于积分下限; (3)面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点[典例] (2012·上海高考)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[解析] 由题意可得f (x )=⎩⎨⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎨⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1,与x 轴围成图形的面积为120⎰10x 2d x +112⎰(10x -10x 2)d x =103x 3120+⎝⎛⎭⎫5x 2-103x 3112=54. [答案] 54[易误辨析]1.本题易写错图形面积与定积分间的关系而导致解题错误.2.本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错. 3.解决利用定积分求平面图形的面积问题时,应处理好以下两个问题: (1)熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形; (2)准确确定被积函数和积分变量. [变式训练]1.由曲线y =x 2,y =x 3围成的封闭图形面积为( )A.112 B.14 C.13D.712解析:选A 由⎩⎪⎨⎪⎧y =x 2,y =x 3,得x =0或x =1,由图易知封闭图形的面积=∫10(x 2-x 3)d x =13-14=112.2.(2012·山东高考)设a >0.若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.解析:由题意∫a 0x d x =a 2.又⎝ ⎛⎭⎪⎫23x 32′=x ,即23x 32 |a 0=a 2, 即23a 32=a 2.所以a =49. 答案:49一、选择题(本大题共6小题,每小题5分,共30分) 1.∫e 11+ln x x d x =( ) A .ln x +12ln 2xB.2e -1 C.32 D.12解析:选C∫e 11+ln x xd x =⎝⎛⎭⎫ln x +ln 2x 2e 1=32. 2.(2012·湖北高考)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5 B.43 C.32D.π2解析:选B 由题中图象易知f (x )=-x 2+1,则所求面积为2∫10(-x 2+1)d x =2⎝⎛⎭⎫-x 33+x 1=43.3.设函数f (x )=ax 2+b (a ≠0),若∫30f (x )d x =3f (x 0),则x 0等于( ) A .±1 B. 2 C .±3D .2解析:选C ∫30f (x )d x =∫30(ax 2+b )d x =⎝⎛⎭⎫13ax 3+bx 30=9a +3b , 则9a +3b =3(ax 20+b ), 即x 20=3,x 0=±3.4.设f (x )=⎩⎪⎨⎪⎧x 2, x ∈[0,1],2-x , x ∈(1,2],则∫20f (x )d x =( )A.34 B.45 C.56D .不存在解析:选C 如图.∫20f (x )d x =∫10x 2d x +∫21(2-x )d x=13x 3 |10+⎝⎛⎭⎫2x -12x 2 |21 =13+⎝⎛⎭⎫4-2-2+12 =56. 5.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ) A.1603 m B.803 mC.403 m D.203m 解析:选A v =40-10t 2=0,t =2,∫20(40-10t 2)d t=⎝⎛⎭⎫40t -103t 3 |20=40×2-103×8=1603(m). 6.(2013·青岛模拟)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3解析:选D 结合函数图象可得所求的面积是定积分33ππ-⎰cos x d x =sin x33ππ-=32-⎝⎛⎭⎫-32= 3. 二、填空题(本大题共3小题,每小题5分,共15分)7.设a =∫π0sin x d x ,则曲线y =f (x )=xa x +ax -2在点(1,f (1))处的切线的斜率为________.解析:∵a =∫π0sin x d x =(-cos x ) |π0=2,∴y =x ·2x +2x -2. ∴y ′=2x +x ·2x ln 2+2.∴曲线在点(1,f (1))处的切线的斜率k =y ′|x =1=4+2ln 2. 答案:4+2ln 28.在等比数列{a n }中,首项a 1=23,a 4=∫41(1+2x )d x ,则该数列的前5项之和S 5等于________. 解析:a 4=∫41(1+2x )d x =(x +x 2) |41=18,因为数列{a n }是等比数列,故18=23q 3,解得q =3,所以S 5=23(1-35)1-3=2423. 答案:24239.(2013·孝感模拟)已知a ∈⎣⎡⎦⎤0,π2,则当∫a 0(cos x -sin x )d x 取最大值时,a =________. 解析:∫a 0(cos x -sin x )d x =(sin x +cos x ) |a=sin a +cos a -1 =2sin ⎝⎛⎭⎫a +π4-1, ∵a ∈⎣⎡⎦⎤0,π2,∴当a =π4时,2sin ⎝⎛⎭⎫a +π4-1取最大值. 答案:π4三、解答题(本大题共3小题,每小题12分,共36分) 10.计算下列定积分: (1)20π⎰sin 2x d x ;(2)∫32⎝⎛⎭⎫x +1x 2d x ; (3)120⎰e 2x d x .解:(1)20π⎰sin 2x d x =20π⎰1-cos 2x2d x =⎝⎛⎭⎫12x -14sin 2x 20π=⎝⎛⎭⎫π4-14sin π-0=π4. (2)∫32⎝⎛⎭⎫x +1x 2d x =∫32⎝⎛⎭⎫x +1x +2d x=⎝⎛⎭⎫12x 2+2x +ln x |32=⎝⎛⎭⎫92+6+ln 3-(2+4+ln 2)=92+ln 3-ln 2=92+ln 32. (3) 120⎰e 2x d x =12e 2x 120=12e -12. 11.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解:抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积S =∫10(x -x 2)d x =⎝⎛⎭⎫x 22-13x 3 |10=16. 又⎩⎪⎨⎪⎧y =x -x 2,y =kx , 由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k ,所以,S 2=∫1-k 0(x -x 2-kx )d x =⎝⎛⎭⎫1-k 2x 2-13x 3 |1-k 0=16(1-k )3. 又知S =16,所以(1-k )3=12, 于是k =1- 312=1-342. 12.如图,设点P 从原点沿曲线y =x 2向点A (2,4)移动,直线OP 与曲线y =x 2围成图形的面积为S 1,直线OP 与曲线y =x 2及直线x =2围成图形的面积为S 2,若S 1=S 2,求点P 的坐标.解:设直线OP 的方程为y =kx ,点P 的坐标为(x ,y ),则∫x 0(kx -x 2)d x =∫2x (x 2-kx )d x ,即⎝⎛⎭⎫12kx 2-13x 3 |x 0=⎝⎛⎭⎫13x 3-12kx 2 |2x, 解得12kx 2-13x 3=83-2k -⎝⎛⎭⎫13x 3-12kx 2, 解得k =43,即直线OP 的方程为y =43x ,所以点P 的坐标为⎝⎛⎭⎫43,169. 1.一物体做变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为________.解析:由题图可知,v (t )=⎩⎪⎨⎪⎧ 2t (0≤t ≤1),2 (1≤t ≤3),13t +1 (3≤t ≤6),因此该物体在12s ~6 s 间运动的路程为 s =612⎰v (t )d t =112⎰2t d t +∫312d t +∫63⎝⎛⎭⎫13t +1d t =t 2112+2t |31+⎝⎛⎭⎫16t 2+t |63=494(m). 答案:494m 2.计算下列定积分:(1)31-⎰ (3x 2-2x +1)d x ;(2)∫e 1⎝⎛⎭⎫x +1x +1x 2d x . 解:(1) 31-⎰ (3x 2-2x +1)d x =(x 3-x 2+x ) 31-=24.(2)∫e 1⎝⎛⎭⎫x +1x +1x 2d x =∫e 1x d x +∫e 11x d x +∫e 11x 2d x =12x 2 |e 1+ln x |e 1-1x|e 1 =12(e 2-1)+(ln e -ln 1)-⎝⎛⎭⎫1e -11 =12e 2-1e +32. 3.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积. 解:由⎩⎨⎧ y =x ,y =2-x ,得交点A (1,1);由⎩⎪⎨⎪⎧y =2-x ,y =-13x ,得交点B (3,-1).故所求面积S =∫10⎝⎛⎭⎫x +13x d x +∫31⎝⎛⎭⎫2-x +13x d x =⎝ ⎛⎭⎪⎫23x 32+16x 2 |10+⎝⎛⎭⎫2x -13x 2 |31 =23+16+43=136. 4.某技术监督局对一家颗粒输送仪生产厂进行产品质量检测时,得到了下面的资料:这家颗粒输送仪生产厂生产的颗粒输送仪,其运动规律属于变速直线运动,且速度v (单位:m/s)与时间t (单位:s)满足函数关系式v (t )=⎩⎪⎨⎪⎧ t 2 (0≤t ≤10),4t +60 (10<t ≤20),140 (20<t ≤60).某公司拟购买一台颗粒输送仪,要求1 min 行驶的路程超过7 673 m ,问这家颗粒输送仪生产厂生产的颗粒输送仪能否被列入拟挑选的对象之一?解:由变速直线运动的路程公式,可得s =∫100t 2d t +∫2010(4t +60)d t +∫6020140d t=13t 3 |100+(2t 2+60t ) |2010+140t |6020 =7 133 13(m)<7 676(m). ∴这家颗粒输送仪生产厂生产的颗粒输送仪不能被列入拟挑选的对象之一.。

北京市2018届高三数学理一轮复习 2.12 定积分与微积分基本定理课件 精品

北京市2018届高三数学理一轮复习 2.12 定积分与微积分基本定理课件 精品

(2)定积分的几何意义
条件 f(x)≥0
b
af(x)dx 的几何意义 表示由直线 x=a,x=b,y=0 及曲线 y= f(x)所围成的曲边梯形的面积
f(x)<0
表示由直线 x=a,x=b,y=0 及曲线 y= f(x)所围成的曲边梯形的面积的相反数
f(x)在[a,b] 表示位于 x 轴上方的曲边梯形的面积减去
π
解析
2 0
(sin
x-acos
x)dx=(-cosx-asinx)
|02=-a+1=2,
a=-1.
(2)定积分ʃ20|x-1|dx=____1____. 解析 ʃ20|x-1|dx=ʃ10|x-1|dx+ʃ21|x-1|dx ʃ10(1-x)dx+ʃ21(x-1)dx =(x-x22)|10+(x22-x)|21 =(1-12)+(222-2)-(12-1)=1.
失误与防范
1.若定积分的被积函数为分段函数,要分段积分然后求和. 2.定积分式子中隐含的条件是积分上限大于积分下限. 3.定积分的几何意义是曲边梯形的面积,但要注意:面积非负, 而定积分的结果可以为负.
课后作业
见练与测
题型三 定积分在物理中的应用
例 3. 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,
以速度 v(t)=7-3t+12+5t(t 的单位:s,v 的单位:m/s)行驶至停
止.在此期间汽车继续行驶的距离(单位:m)是( )
A.1+25ln 5
B.8+25ln11 3
C.4+25ln 5
D.4+50ln 2
n

b-n af(ξi),当
n→∞时,上述和式无限接近某个常数,这
i=1
b
个常数叫做函数 f(x)在区间[a,b]上的定积分,记作af(x)dx,即

第019讲 总复习:定积分和微积分基本定理知识梳理

第019讲 总复习:定积分和微积分基本定理知识梳理

定积分和微积分基本定理【考纲要求】1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念及其基本定理。

2.正确计算定积分,利用定积分求面积。

【知识络】【考点梳理】要点一、定积分的概念定积分的定义:如果函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<⋅⋅⋅<<<⋅⋅⋅<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=⋅⋅⋅,作和式11()()n nn i i i i b aI f x f nξξ==-=∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分.记作()baf x dx ⎰,即()baf x dx ⎰=1lim ()ni n i b af nξ→∞=-∑,这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式.要点诠释:(1)定积分的值是一个常数,可正、可负、可为零;(2)用定义求定积分的四个基本步骤:①分割;②近似代替;③求和;④取极限. 要点二、定积分的性质 (1)()()bba akf x dx k f x dx =⎰⎰(k 为常数),(2)[]1212()()()()bb ba aaf x f x dx f x dx f x dx ±=±⎰⎰⎰,(3)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰(其中b c a <<),(4)利用函数的奇偶性求积分:若函数()y f x =在区间[],b b -上是奇函数,则()0bb f x dx -=⎰; 若函数()y f x =在区间[],b b -上是偶函数,则0()2()bbbf x dx f x dx -=⎰⎰.定积分的概念定积分的性质微积分基本定理定积分的几何意义及应用要点三、微积分基本定理如果'()()F x f x =,且)(x f 在[]b a ,上连续,则()()()baf x dx F b F a =-⎰,其中()F x 叫做)(x f 的一个原函数.由于[]()'(),F x c f x +=()F x c +也是)(x f 的原函数,其中c 为常数.一般地,原函数在[]b a ,上的改变量)()(a F b F -简记作()baF x .因此,微积分基本定理可以写成形式:()()()()bbaaf x dx F x F b F a ==-⎰.要点诠释:求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数.由此,求导运算与求原函数运算互为逆运算.要点四、定积分的几何意义设函数)(x f 在区间[]b a ,上连续. 在[]b a ,上,当0)(≥x f 时,定积分⎰badx x f )(在几何上表示由曲线)(x f y =以及直线b x a x ==,与x 轴围成的曲边梯形的面积;如图(1)所示.在[]b a ,上,当0)(≤x f 时,由曲线)(x f y =以及直线b x a x ==,与x 轴围成的曲边梯形位于x 轴下方,定积分⎰badx x f )(在几何上表示上述曲边梯形面积的负值;在[]b a ,上,当)(x f 既取正值又取负值时,定积分⎰badx x f )(的几何意义是曲线)(x f y =,两条直线b x a x ==,与x 轴所围成的各部分面积的代数和. 在x 轴上方的面积积分时取正,在x 轴下方的面积积分时,取负.如图(2)所示.要点五、应用(一)应用定积分求曲边梯形的面积1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x = (()0f x ≥)围成的曲边梯形的面积:()[()()]bbaaS f x dx f x g x dx ==-⎰⎰;2. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x = (0)(≤x f )围成的曲边梯形的面积:()()[()()]bb baaaS f x dx f x dx g x f x dx ==-=-⎰⎰⎰;3. 如图,由曲线11()y f x =22()y f x =12()()0f x f x ≥≥及直线x a =,x b =()a b <围成图形的面积公式为:1212[()()]()()bb baaaS f x f x dx f x dx f x dx =-=-⎰⎰⎰.4.利用定积分求平面图形面积的步骤:(1)画出草图,在直角坐标系中画出曲线或直线的大致图像;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; (3)写出定积分表达式; (4)求出平面图形的面积. (二)利用定积分解决物理问题 ①变速直线运动的路程作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间[,]a b 上的定积分,即()baS v t dt =⎰.②变力作功物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W =()baF x dx ⎰.【典型例题】类型一:运用微积分定理求定积分 例1. 运用微积分定理求定积分(1)⎰-π)cos (sin dx x x ; (2)dx xx x ⎰+-212)1(; (3)⎰-+0)(cos πdx e x x .【解析】(1)∵(cos sin )sin cos '--=-x x x x ,∴00(sin cos )(cos sin )2-=--=⎰x x dx x x ππ;(2)∵2321(ln )23'-+=-+x x x x x x, ∴232221115()(ln )ln 2236x x x x dx x x -+=-+=-⎰.(3)∵(sin )cos '+=+xxx e x e ,∴01(cos )(sin )1x x x e dx x e e πππ--+=+=-⎰; 【总结升华】求定积分最常用的方法是微积分基本定理,其关键是找出使得()()F x f x '=的原函数()F x 。

高中数学考点13 定积分与微积分基本定理

高中数学考点13 定积分与微积分基本定理

考点13 定积分与微积分基本定理高考对此部分的考查比较少,但定积分的基本计算以及几何意义也会单独考查,复习过程中也不能遗漏,具体要求为:(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. (2)了解微积分基本定理的含义.一、定积分 1.曲边梯形的面积(1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x 所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤:①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②);②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②);③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和;④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积.2.求变速直线运动的路程如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内所作的位移s . 3.定积分的定义和相关概念(1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i −1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i −1,x i ]上任取一点ξi (i =1,2, …,n ),作和式11()()nni i i i b af x f nξξ==-∆=∑∑;当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作()d baf x x ⎰,即()d baf x x ⎰=1lim ()ni n i b af nξ→∞=-∑. (2)在()d baf x x ⎰中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 4.定积分的性质 (1)()()d d bba akf x x k f x x =⎰⎰(k 为常数);(2)[()()]d ()d ()d bb ba aaf xg x x f x x g x x ±=±⎰⎰⎰;(3)()d =()d +()d bc baacf x x f x x f x x ⎰⎰⎰(其中a <c <b ).【注】定积分的性质(3)称为定积分对积分区间的可加性,其几何意义是曲边梯形ABCD 的面积等于曲边梯形AEFD 与曲边梯形EBCF 的面积的和.5.定积分的几何意义(1)当函数f (x )在区间[a ,b ]上恒为正时,定积分ba ⎰ f (x )d x 的几何意义是由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(图①中阴影部分).(2)一般情况下,定积分ba ⎰ f (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a ,x =b 之间的曲边梯形面积的代数和(图②中阴影部分所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.6.定积分与曲边梯形的面积的关系(常用结论)定积分的概念是从曲边梯形面积引入的,但是定积分并不一定就是曲边梯形的面积.这要结合具体图形来确定:设阴影部分面积为S ,则 (1)()d ba S f x x =⎰; (2)()d baS f x x =-⎰;(3)()()d d cbacS f x x f x x =-⎰⎰; (4)()()()()d d []d bbbaaaS f x x g x x f x g x x =-=-⎰⎰⎰.7.定积分的物理意义 (1)变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即()d bas v t t =⎰.(2)变力做功一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s m ,则力F 所做的功为W =Fs .如果物体在变力F (x )的作用下沿着与F (x )相同的方向从x =a 移动到x =b ,则变力F (x )做的功()d baW F x x =⎰.二、微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么()d baf x x ⎰=F (b )−F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式,其中F (x )叫做f (x )的一个原函数.为了方便,我们常把F (b )−F (a )记作()|ba F x ,即()d baf x x ⎰=()|b a F x =F (b )−F (a ).【注】常见的原函数与被积函数的关系 (1)d |(bb a a C x Cx C =⎰为常数); (2)11d |(1)1bn n ba ax x x n n +=≠-+⎰; (3)sin d cos |bb a a x x x =-⎰; (4)cos d sin |bb a a x x x =⎰; (5)1d ln |(0)bb a ax x b a x=>>⎰; (6)e d e |bx x b a a x =⎰;(7)d |(0,1)ln x bxba a a a x a a a=>≠⎰;(8)322|(0)3b a ax x b a =>≥⎰.考向一 定积分的计算1.求定积分的三种方法(1)利用定义求定积分(定义法),可操作性不强; (2)利用微积分基本定理求定积分;(3)利用定积分的几何意义求定积分.当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.例如,定积分x ⎰的几何意义是求单位圆面积的14,所以0π=4x ⎰.2.用牛顿—莱布尼茨公式求定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼茨公式求出各个定积分的值; (5)计算原始定积分的值. 3.分段函数的定积分分段函数求定积分,可先把每一段函数的定积分求出后再相加. 4.奇偶函数的定积分(1)若奇函数y =f (x )的图象在[−a ,a ]上连续,则()d 0aa f x x -=⎰; (2)若偶函数y =g (x )的图象在[−a ,a ]上连续,则0()d 2()d aaag x x g x x -=⎰⎰.典例1 A .12B .1C .2D .3【答案】A故选A .【解题技巧】求定积分的关键是找到被积函数的原函数,为避免出错,在求出原函数后可利用求导与积分互为逆运算的关系进行验证.1.已知函数()e3211(1)2f x x dx x f x x'=⋅--⎰,则()()11f f '+=( ) A .-1 B .1 C .-2D .2考向二 利用定积分求平面图形的面积利用定积分求平面图形面积问题的常见类型及解题策略(1)利用定积分求平面图形面积的步骤①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示成若干个定积分的和;④计算定积分,写出答案.(2)知图形的面积求参数求解此类题的突破口:画图,一般是先画出它的草图;然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再由已知条件可找到关于参数的方程,从而可求出参数的值.(3)与概率相交汇问题解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算.典例2 设抛物线C:y=x2与直线l:y=1围成的封闭图形为P,则图形P的面积S等于A.1 B.1 3C.23D.43【答案】D【解析】由21y xy⎧=⎨=⎩,得1x=±.如图,由对称性可知,123114 2(11d)2(11)33 S x x x=⨯-=⨯-=⎰.故选D.2.如图,已知10,4A ⎛⎫⎪⎝⎭,点()()000,0P x y x >在曲线2y x 上,若阴影部分面积与OAP △面积相等,则0x =________.考向三 定积分的物理意义利用定积分解决变速直线运动与变力做功问题利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.典例3 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()731v t t +t=-+(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是 A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2【答案】C【解析】令v (t )=0得,3t 2−4t −32=0,解得t =4(83t =-舍去). 汽车的刹车距离是42400253(73)d [725ln(1)]|425ln 5.12t +t t t t t -=-++=++⎰故选C.3.一个物体做变速直线运动,在时刻t 的速度为()32v t t =-+(t 的单位:h ,v 的单位:km/h ),那么它在01t ≤≤这段时间内行驶的路程s (单位:km )的值为( ) A .23B .74C .53D .21.121(3sin )x x dx --⎰等于( )A .0B .2sin1C .2cos1D .22.11xe dx -⎰的值为( )A .2B .2eC .22e -D .22e +3.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为( )A .16 B 3C .13D .234.已知622a x x ⎛⎫+ ⎪⎝⎭展开式的中间项系数为20,则由曲线13y x =和a y x =围成的封闭图形的面积为( )A .512B .53 C .1D .13125.已知()()ln xxf x e e -=+,201sin 2a xdx π=⎰, 1.112b ⎛⎫= ⎪⎝⎭,23log c =则下列选项中正确的是( ) A .()()()f a f b f c >> B .()()()f a f c f b >> C .()()()f c f f a b >>D .()()()f c f b f a >>6.一物体在力F (x )=4x ﹣1(单位:N )的作用下,沿着与力F 相同的方向,从x =1m 处运动到x =3m 处,则力F (x )所作的功为( ) A .16J B .14J C .12JD .10J7.函数()()04xf x t t dt =-⎰在[]1,5-上( )A .有最大值0,无最小值B .有最大值0,最小值323-C .最小值323-,无最大值 D .既无最大值,也无最小值8.某人用随机模拟的方法估计无理数e 的值,做法如下:首先在平面直角坐标系中,过点1,0A 作x 轴的垂线与曲线xy e =相交于点B ,过B 作y 轴的垂线与y 轴相交于点C (如图),然后向矩形OABC 内投入M 粒豆子,并统计出这些豆子在曲线xy e =上方的有N 粒()N M <,则无理数e 的估计值是( )A .NM N -B .MM N -C .M N N-D .M N9.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线OL 时,表示收入完全平等.劳伦茨曲线为折线OKL 时,表示收入完全不平等.记区域A 为不平等区域,a 表示其面积,S 为OKL △的面积,将Gini aS=称为基尼系数.对于下列说法:①Gini 越小,则国民分配越公平;②设劳伦茨曲线对应的函数为()y f x =,则对(0,1)x ∀∈,均有()1f x x >; ③若某国家某年的劳伦茨曲线近似为2([0,1])y x x =∈,则1Gini 4=; ④若某国家某年的劳伦茨曲线近似为3([0,1])y x x =∈,则1Gini 2=. 其中正确的是:( ) A .①④ B .②③ C .①③④ D .①②④10.()102xex dx +⎰= ______ .11.抛物线22x y =和直线4y x =+所围成的封闭图形的面积是________. 12.已知数列{}n a 是公比120=⎰q x dx 的等比数列,且312a a a =⋅,则10a =________.13.在平面直角坐标系xOy 中,已知点()0,0O ,()2,0A ,()2,1B ,()0,1C ,现在矩形OABC 中随机选取一点(),P x y ,则事件:点(),P x y 的坐标满足22y x x ≤-+的概率为____________.1.(2015年高考湖南卷理科)2(1)d x x -=⎰.2.(2015年高考天津卷理科)曲线2y x =与直线y x =所围成的封闭图形的面积为 . 3.(2015年高考山东卷理科)执行如图所示的程序框图,输出的T 的值为 .4.(2015年高考福建卷理科)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .5.(2015年高考陕西卷理科)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为.1.【答案】A【解析】【分析】先由微积分基本定理求出函数式中的积分值,然后求导,令1x=可求得(1)f',再计算(1)f可得结论.【详解】因为e111ln|1edx xx==⎰,所以()()3212f x x x f x'=--,所以()()232'12f x x xf'=--,令1x=,得()()13212f f''=--,解得1(1)3f'=,所以321()23f x x x x=--,14(1)1233f=--=-,()()1411133f f⎛⎫'+=+-=-⎪⎝⎭,故选:A.【点睛】本题考查微积分基本定理,考查导数的运算,解题时计算出积分值,由求导公式求导,令1x=,赋值后就可化未知为已知.2.【解析】【分析】利用定积分求出阴影部分的面积,再建立面积等量关系,即可得答案;【详解】因为点()()000,0P x y x>在曲线2y x上,所以200y x=,则OAP△的面积00011112248S OA x x x==⨯=‖,阴影部分的面积为00233001133x xx dx x x==⎰∣,因为阴影部分面积与OAP△的面积相等,所以31138x x=,即238x=.所以x=【点睛】本题考查定积分求面积,考查数形结合思想,考查逻辑推理能力、运算求解能力. 3.【答案】B 【解析】 【分析】由速度在给定的时间范围内的定积分可得到答案. 【详解】这辆汽车在01t ≤≤这段时间内汽车行驶的路程()113401172d 22444s t t t t ⎛⎫=-+=-+=-+= ⎪⎝⎭⎰,所以这辆汽车在01t ≤≤这段时间内汽车行驶的路程s 为74. 故选:B. 【点睛】本题考查了定积分在物理中的应用,速度在时间范围内的积分是路程,属于基础题.1.【答案】D 【解析】()()()()()21cos 11cos 1|cos sin 3111132=-+--+=+=-⎰--x x dx x x,故答案为D. 2.【答案】C 【解析】 【分析】根据微积分基本定理结合积分的性质计算. 【详解】1111222(1)xx x e dx e dx e e -===-⎰⎰.故选:C . 【点睛】本题考查微积分基本定理,属于基础题. 3.【答案】C 【解析】 【分析】先计算图像交点,再利用定积分计算面积. 【详解】 如图所示:由2y y x ⎧=⎪⎨=⎪⎩0,0,x y =⎧⎨=⎩11x y =⎧⎨=⎩,根据图形的对称性,可得每片叶子的面积为)13023210211d 333x x x x ⎛⎫⎰=-= ⎪⎝⎭.故答案选C 【点睛】本题考查定积分的应用,考查运算求解能力 4.【答案】A 【解析】 【分析】先利用二项展开式的通项公式求出a ,再利用牛顿-莱布尼兹公式可求图形的面积. 【详解】622a x x ⎛⎫+ ⎪⎝⎭展开式的中间项为第4项且第4项为()3332462a T C x x ⎛⎫= ⎪⎝⎭, 因为系数为20,所以336C 202a ⎛⎫⋅= ⎪⎝⎭,解得2a =,由213x x =的0x =或1x =,所以封闭图形的面积为1412333010314135|2x x dx x x ⎛⎫= ⎪⎝⎭⎛⎫-=- ⎪⎝⎭⎰,故选:A . 【分析】本题考查二项展开式的指定项以及平面封闭图形的面积的计算,后者注意积分区间的确定,本题属于中档题. 5.【答案】C 【解析】 【分析】先判断()f x 为R 上的偶函数,再利用导数判断出()f x 在[)0,x ∈+∞上单调递增,在(],0x ∈-∞上单调递减,化简,,a b c ,利用函数的单调性比较大小即可. 【详解】()()ln x x f x e e -=+,x ∈R ,则()()()ln x x f x e e f x --=+=,所以()f x 为R 上的偶函数,并且()x xx xe ef x e e ---'=+,则[)0,x ∈+∞时,()0f x '≥,当且仅当0x =时,“=”成立, 所以()f x 在[)0,x ∈+∞上单调递增,在(],0x ∈-∞上单调递减,()22111sin cos 222a xdx x ππ==-=⎰,1.111110222b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,221log log 32c ==-, 又()22111log 3log 3222f c f f f ⎛⎫⎛⎫⎛⎫=-=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()()()f c f a f b >>.故选:C 【点睛】本题主要考查了函数导数的应用,函数的奇偶性,函数单调性的应用,考查了学生的逻辑推理与运算求解能力.6.【答案】B 【解析】 【分析】由定积分的物理意义,变力F (x )所作的功等于力在位移上的定积分,进而计算可得答案. 【详解】根据定积分的物理意义,力F (x )所作的功为()3141x dx -=⎰(2x 2-x )31|=14. 故选B 【点睛】本题主要考查了定积分在物理中的应用,同时考查了定积分的计算,属于基础题 7.【答案】B 【解析】 【分析】由定积分的运算,求得()32123f x x x =-,再利用导数求得函数()f x 的单调性与极值,结合端点的函数值,得到函数的最值,得到答案. 【详解】由题意,函数()()323200114(2)|233xxf x t t dt t t x x =-=-=-⎰, 则()24(4)f x x x x x '=-=-,当[1,0)x ∈-时,()0f x '>,()f x 单调递增; 当(0,4)x ∈时,()0f x '<,()f x 单调递减; 当(4,5]x ∈时,()0f x '>,()f x 单调递增;又由()713f -=-,()00f =,()3243f =-,()2553f =-, 所以函数()f x 的最大值为0,最小值为323-. 故选:B. 【点睛】本题主要考查了定积分的运算,以及利用导数研究函数的最值问题,其中解答中熟记函数的导数与原函数的关系是解答的关键,着重考查推理与运算能力. 8.【答案】D【解析】 【分析】利用定积分计算出矩形OABC 中位于曲线xy e =上方区域的面积,进而利用几何概型的概率公式得出关于e 的等式,解出e 的表达式即可. 【详解】在函数xy e =的解析式中,令1x =,可得y e =,则点()1,B e ,直线BC 的方程为y e =,矩形OABC 中位于曲线xy e =上方区域的面积为()()111xxS e e dx ex e =-=-=⎰,矩形OABC 的面积为1e e ⨯=, 由几何概型的概率公式得1N M e =,所以,Me N=. 故选:D. 【点睛】本题考查利用随机模拟的思想估算e 的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题. 9.【答案】A 【解析】 【分析】Gini 越小,不平等区域越小,可知①正确,结合劳伦茨曲线的特点,可知(0,1)x ∀∈,均有()f x x <,可知②错误,结合定积分公式,可求出a 的值,即可判断出③④是否正确,从而可选出答案. 【详解】对于①,根据基尼系数公式Gini a S=,可得基尼系数越小,不平等区域的面积a 越小,国民分配越公平,所以①正确;对于②,根据劳伦茨曲线为一条凹向横轴的曲线,可知(0,1)x ∀∈,均有()f x x <,可得()1f x x<,所以②错误;对于③,因为1223100111()d ()|236a x x x x x =-=-=⎰,所以116Gini 132a S ===,所以③错误;对于④,因为1324100111()d ()|244a x x x x x =-=-=⎰,所以114Gini 122a S ===,所以④正确.故选:A. 【点睛】本题考查不等式恒成立,考查定积分的应用,考查学生的推理能力与计算求解能力,属于中档题. 10.【答案】e【解析】 【分析】 利用积分运算得()121002()|xx ex dx e x +=+⎰,计算可得答案.【详解】 因为()12102()|xx ex dx e x +=+⎰(1)1e e =+-=. 故答案为:e . 【点睛】本题考查积分的运算,考查基本运算求解能力,属于基础题. 11.【答案】18【解析】 【分析】根据定积分的几何意义可求得结果. 【详解】联立224x yy x ⎧=⎨=+⎩,消去y 得2280x x --=,解得2x =-或4x =,所以所求面积是242(4)2x x dx -+-⎰2342(4)26x x x -=+-2344484482626⎛⎫⎛⎫=+⨯---+ ⎪ ⎪⎝⎭⎝⎭18=.故答案为:18. 【点睛】本题考查了定积分的几何意义,属于基础题. 12.【答案】1013【解析】 【分析】先由微积分基本定理求出13q =,再由312a a a =⋅求出首项,进而可求出结果. 【详解】因为等比数列{}n a 的公比123101133q x dx x ===⎰,且2231211a a a a q a q ===, ∴113a =,∴101013a =. 故答案为1013【点睛】本题主要考查等比数列的基本量运算,熟记微积分基本定理,以及等比数列的通项公式即可,属于基础题型. 13.【答案】23【解析】 【分析】求出矩形OABC 的面积S ,及22y x x =-+与x 轴围城的封闭图形的面积()22102d S x x x =-+⎰,结合几何概型的概率公式,可求出答案. 【详解】如图,由题意,矩形OABC 的面积212S =⨯=,22y x x =-+与x 轴围城的封闭图形面积为()223210212d 03S x x x x x ⎛⎫=-+=-+ ⎪⎝⎭⎰321422033=-⨯+-=,则123S P S ==. 所以在矩形OABC 中随机选取一点(),P x y ,事件:点(),P x y 的坐标满足22y x x ≤-+的概率为23. 故答案为:23.【点睛】本题考查几何概型概率的计算,弄清随机事件对应的平面区域是关键,本题属于中档题.1.【答案】0【解析】2220011(1)d ()|42022x x x x -=-=⨯-=⎰. 2.【答案】16【解析】由题意可得封闭图形的面积为122310011111()d ()|23236x x x x x -=-=-=⎰. 3.【答案】116116【解析】开始n =1,T =1,因为1<3,所以11212001131d 1|11222T x x x =+=+=+⨯=⎰,n =1+1=2; 因为2<3,所以13130023313111d |1223236T x x x =+=+=+⨯=⎰,n =2+1=3. 因为3<3不成立,所以输出T ,即输出的T 的值为116.4.【答案】512【解析】依题意知点D 的坐标为(1,4),所以矩形ABCD 的面积S =1×4=4, 阴影部分的面积S 阴影=3222111754d 44333| x x x =-=--=⎰,根据几何概型的概率计算公式得,所求的概率P =534S S ==阴影S =534=512.5.【答案】1.2【解析】建立空间直角坐标系,如图所示:原始的最大流量是()11010222162⨯+-⨯⨯=,设抛物线的方程为22x py =(0p >),因为该抛物线过点()5,2,所以2225p ⨯=,解得254p =,所以2252x y =,即2225y x =,所以当前最大流量是()()53235355222240(2)d (2)(255)[255]257575753x x x x ---=-=⨯-⨯-⨯--⨯-=⎰,故原始的最大流量与当前最大流量的比值是161.2403=,所以答案为1.2. 1.列一元一次方程解应用题的一般步骤 (1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题: 增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题: 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=每个期数内的利息×100% 利息=本金×利率×期数本金实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

2018版高考数学一轮复习课件:第2章 第13节 定积分与微积分基本定理

2018版高考数学一轮复习课件:第2章 第13节 定积分与微积分基本定理

4 (2)3
[(1)原式=1 x2dx+1
-1
-1
【导学号:01772093】
1-x2dx=13x3|1-1+1 1-x2dx=23+1
-1
-1
1-x2dx,1
1-x2dx 等于半径为 1 的圆面积的12,即1
1-x2dx=π2,故原式=π2
-1
-1
+23.
上一页
返回首页
下一页
第十五页,编辑于星期六:二十二点 二十七分。
________.
1 6
[如图,阴影部分的面积即为所求.
由yy= =xx2,, 得 A(1,1).
故所求面积为 S=1(x-x2)dx 0
=12x2-13x3 |10=16.]
上一页
返回首页
下一页
第九页,编辑于星期六:二十二点 二十七分。
高三一轮总复习
5.若Tx2dx=9,则常数 T 的值为________. 0
积分的几何意义可知,由 y= x,y=-x+2 及 x 轴所围成的封闭图形的面积为1 x 0
dx+2(-x+2)dx=23x |10+2x-x22|21=76. 1
上一页
返回首页
下一页
第十八页,编辑于星期六:二十二点 二十七分。
高三一轮总复习
(2)由yy= =xk2x,, 得yx==00, 或xy= =kk, 2, 则曲线 y=x2 与直线 y=kx(k>0)所围成的曲边梯形的面积为 k0(kx-x2)dx=2kx2-13x3|k0 =k23-13k3=43, 即 k3=8,∴k=2.]
a
上一页
返回首页
下一页
第六页,编辑于星期六:二十二点 二十七分。
高三一轮总复习

高考数学定积分与微积分基本定理选择题

高考数学定积分与微积分基本定理选择题

高考数学定积分与微积分基本定理选择题1. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值2. 下列关于定积分与微积分基本定理的说法错误的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值3. 下列关于定积分与微积分基本定理的说法错误的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值4. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值5. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值6. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值7. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值8. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值9. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值10. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值11. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值12. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值13. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值14. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值15. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值16. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值17. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值18. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值19. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值20. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值21. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值22. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值23. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值24. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值25. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值26. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值27. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值28. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值29. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值30. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值31. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值32. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值33. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值34. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值35. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值36. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值37. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值38. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值39. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值40. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值41. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值42. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值43. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值44. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值45. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值46. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值47. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值48. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值49. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值50. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值。

高考数学复习4-5定积分与微积分基本定理

高考数学复习4-5定积分与微积分基本定理
单击此处编辑母版文本样式
第二级
• 第三级
在每个局部小– 范第围四内级“以直代曲”(化归为计算矩形面积)
和逼近的思想方法 »第五级
③求和;④取极限
①分割;②近似代替;
单击此处编辑母版文本样式
第二级
• 第三级
– 第四级
»第五级
n b-a

i=1
n f(ξi)
当 n→∞时,上述和式无限趋近某个常数,这个常数叫 做函数 f(x)在区间[a,b]上的 定积分 .记作:bf(x)dx.即:
积为( )
1
1
A.12
B.4
1
7
C.3
D.12
单击此处编辑母版文本样式 [解析第] 二由级yy= =xx23, 得 x=0 或 1,由图易知封闭图形的
面积= • 第三级
1(x2-x3)–dx第=四13-级14=112,故选 A.
0
»第五级
单击此处编辑母版文本样式 第二级 • 第三级 – 第四级 »第五级
2i n
](i =
1,2,3,…,n),每个小区间长度为 Δx=2n.
(2)近似代替:ΔSi=f(εi)Δx=(2ni)3Δx.
单击此处编辑母版文本样式 第二级 • 第三级 – 第四级 »第五级
单击此处编辑母版文本样式 第二级 • 第三级 – 第四级 »第五级
[解] (1)e(x+1x+x12)dx 1



a
a
c
1.(2010·湖南,5)41xdx 等于(
)
2
A.-2ln2
B.2ln2
C.-ln2
D.ln2
[解析] ∵41xdx=ln x|24=ln 4-ln 2 2

2018年高考数学总复习-定积分和微积分基本定理

2018年高考数学总复习-定积分和微积分基本定理

第三节定积分和微积分基本定理考纲解读1.了解定积分的实际背景、基本思想及概念.2.了解微积分基本定理的含义.命题趋势探究定积分的考查以计算为主,其应用主要是求一个曲边梯形的面积,题型主要为选择题和填空题.知识点精讲 一、基本概念1.定积分的极念一般地,设函效()f x 在区间[a ,b]上连续.用分点0121i i a x x x x x -=<<<<<Ln x b <<=L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b ax n-D =),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n ξ=L ,作和式:1()nn ii S f x ξ==∆=∑1()ni i b af nξ=-∑,当x D 无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分.记为:()baS f x dx =⎰,()f x 为被积函数,x 为积分变量,[,]a b 为积分区间,b 为积分上限,a 为积分下限. 需要注意以下几点: (1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时),称为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法.①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b af n ξ=-∑;④取极限:()1()lim nbi an i b af x dx f nξ→∞=-=∑⎰(3)曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功(x)baS F dx =⎰2.定积分的几何意义从几何上看,如果在区间[],a b 上函数()f x 连续且恒有()0f x ≥,那么定积分()baf x dx ⎰表示由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的曲边梯形(如图3-13中的阴影部分所示)的面积,这就是定积分()baf x dx ⎰的几何意义.一般情况下,定积分()baf x dx ⎰的值的几何意义是介于x 轴、函数()f x 的图像以及直线,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号.二、基本性质性质11badx b a =-⎰.性质2 ()()(0)b ba akf x dx k f x dx k =⎰⎰其中是不为的常数(定积分的线性性质). 性质3 1212[()()]()()b b baaaf x f x dx f x dx f x dx ±=±⎰⎰⎰(定积分的线性性质).性质4 ()()()()b c ba a cf x dx f x dx f x dx a c b =+<<⎰⎰⎰其中(定积分对积分区间的可加性)推广1 1212[()()()]()()()b b b bmmaaaaf x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰L L 推广2 121()()()()kbc c ba ac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰L .三、基本定理设函数()f x 是在区间[,]a b 上连续,且()F x 是()f x 是在[,]a b 上的任意一个原函数,即'()()F x f x =,则()()()b af x dx F b F a =-⎰,或记为()()b a b f x dx F x a==⎰()()F b F a -,称为牛顿—莱布尼兹公式,也称为微积分基本定理.该公式把计算定积分归结为求原函数的问题,只要求出被积函数()f x 的一个原函数()F x .然后计算原函数()F x 在区间[],a b 上的增量()()F b F a -即可,这一定理提示了定积分与不定积分之间的内在联系.题型归纳及思路提示题型51 定积分的计算思路提示对于定积分的计算问题,若该定积分具有明显的几何意义,如圆的面积等(例3.26及其变式),则利用圆面积计算,否则考虑用牛顿-莱布尼茨公式计算. 例3.25(2012江西11)计算()12-1sin xx dx +⎰= .解析 ()123-111112sin =cos cos1cos113333x x dx x x ⎛⎫⎛⎫⎛⎫+-=----= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎰.A. B. C. D.变式1()421dx x =⎰A.-2ln 2B. 2ln 2C.-ln2D. ln 2变式2()1(2)xex dx +=⎰A.1 B 1e -. C.e D. +1e 变式3 设函数()()20f x ax c a =+≠,若()()()101f x dx f x x=≤≤⎰,则0x 的值为 .变式4 设函数()y f x =的定义域为R, 若对于给定的正数k ,定义函数()()(),(),k k f x k f x f x f x k≤⎧=⎨>⎩,则当函数()1,1f x k x ==时,定积分()214k f x dx ⎰的值为( )A.2ln 22+B. 2ln21-C.2ln2D. 2ln21+ 例3.26 根据定积分的几何意义计算下列定积分 (1)()402x dx -⎰; (2)1211x dx --⎰分析根据定积分的几何意义,利用图形的面积求解.解析 根据定积分的几何意义,所求的定积分是直线所围成图形(如图3-14所示)的面积的代数和,很显然这是两个面积相等的等腰直角三角形,如图3-14所示,其面积代数和是0,故()420x dx -=⎰.(2)根据定积分的几何意义,所求的定积分是曲线()2210x y y +=≥和x 轴围成图形(如图3-15所示)的面积,显然是半个单位圆,其面积是2π,故121=2x dx π--⎰.评注 定积分()bax dx ⎰的几何意义是函数和直线,x a x b ==以及x 轴所围成的图形面积的代数和,面积是正值,但积分值却有正值和负值之分,当函数时,()0f x >面积是正值,当函数()0f x <时,积分值是负值.变式1 根据定积分的几何几何意义计算下列定积分. (1)()402x dx +⎰; (2)024x dx --⎰; (3)100sin xdx π⎰; (4)344sin xdx ππ-⎰.题型52 求曲边梯形的面积思路提示函数()(),y f x y g x ==与直线(),x a x b a b ==<围成曲边梯形的面积为()()|f g |dx baS x x =-⎰,具体思路是:先作出所涉及的函数图象,确定出它们所围成图形的上、下曲线所对应函数,被积函数左、右边界分别是积分下、上限. 例3.27 由曲线23,y x y x ==围成的封闭图形的面积为( )A.112 B.14 C.13 D.712解析 由23x x =得01,x x ==或则由2y x =和3y x =围成的封闭图形的面积为()1233401111110343412x x dx x x ⎛⎫-=-=-= ⎪⎝⎭⎰,故选A . 变式1(2012湖北理3)已知二次函数()y f x =的图象如图3-16所求,则它与x 轴所围成图形的面积为( ) A.25π B.43 C.32 D.2π变式2 由曲线2y x =和直线()20,1,,0,1x x y t t ===∈所围成的图形(如图3-17中阴影部分所示)面积的最小值为( )A.23B.13C.12D.14变式3 求抛物线24y x =与24y x =-围成的平面图形的面积.变式4 求由两条曲线2214,y 4y x x ==和直线4y =所围成的面积.最有效训练题16(限时45分钟)1.已知函数()223f x x x =--,则()11f x dx -=⎰( )A. -2B.163- C.-4 D. 1632.定积分())1211x x dx --=⎰( )A,24π- B.12π- C.14π- D. 12π- 3.设()[]2,0,12,(1,2]x x f x x x ⎧∈=⎨-∈⎩,则()20f x dx =⎰( )A.34 B.45 C.56D.不存在 4.222,,sin x a xdx b e dx c xdx ===⎰⎰⎰,则,,a b c 的大小关系是( )A,a c b << B.a b c << C.c b a << D. c a b << 5.曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面区域的面积为( )A,1 B. 221 D. )2216.由直线,,033x x y ππ=-==与曲线cos y θ=所围成的平面图形的面积为( )A,12B.1337.抛物线22y x =与直线4y x =-围成的平面图形的面积为 .1-yxO图3-16118.已知()f x 是偶函数,且()506f x dx =⎰,则()55f x dx -=⎰ .9.()202|1x |dx --=⎰ .10.已知函数()y f x =的图象是折线段ABC ,其中()()10,0,5,1,02A B C ⎛⎫⎪⎝⎭,.函数()()01y xf x x =≤≤的图象与x 轴所围成的图形的面积为 .11.根据定积分的几何意义计算下列定积分.(1)11|x|dx -⎰; (2)22411x dx x ⎛⎫+ ⎪⎝⎭⎰; (3)11dx +⎰;(4)20cos 2x dx π⎰; (5)20cos 2cos sin x dx x x π-⎰ 12.有一条直线与抛物线2y x =相交于A,B两点,线段AB与抛物线所围成图形的面积恒等于43,求线段AB的中点P的轨迹方程.。

2018年高考数学总复习 第三章 导数及其应用 3.3 定积分与微积分基本定理

2018年高考数学总复习 第三章 导数及其应用 3.3 定积分与微积分基本定理

关闭
∴S=
2 0
(4x-x3)dx=
2������
2
-
1 4
������
4
|02 =4.
π
π
(2)
2
0
(sin x-acos x)dx=(-cos x-asin x)|02 =-a+1=2,a=-1.
(于3)依01A题(.12√意������知-x2,)题dx中=13的,B因.正16此方所形投区的域点的落C面.在14积叶为形1图2=内1D,部.阴13 的影概区域率等的于面13积,故等选关闭 D(1.)D (2)A (3)D
2.已知图形的面积求参数,一般是先画出它的草图;再确定积分的 上、下限,确定被积函数,由定积分求出其面积,然后应用方程的思 想建立关于参数的方程,从而求出参数的值.
3.与概率相交汇的问题.解决此类问题应先利用定积分求出相应 平面图形的面积,再用相应的概率公式进行计算.
考点1 考点2 考点3
-21-
(2) π 0(sin x-cos x)dx= π 0sin xdx- π 0cos xdx=(-cos x)|π 0-sin x|π 0=2.
(3)
2 1
e2������ + 1
������
dx=
2 1
e2xdx+
2 1
���1���dx=12e2x|12+ln x|12 = 12e4-12e2+ln 2-ln
A.√22
B.13
C.12
D.23
如图思,考∵怎满足样题求意定的积图分形与的概面率积的交S=汇01问���题���12d?x=23
������
3 2
|10
=

【2018新课标 高考必考知识点 教学计划 教学安排 教案设计】高三数学:定积分与微积分基本定理总讲

【2018新课标 高考必考知识点 教学计划 教学安排 教案设计】高三数学:定积分与微积分基本定理总讲
b a
, 即bf(x)dx= F ( x) a
b a
=F(b)
例题 1 定积分1[ 1-x-12-x]dx 等于(
0
)。 π-1 2
A.
π-2 4
π B. -1 2
C.
π-1 4
D.
解析:观察被积式可以发现,被积式构成形式为 f(x)-g(x),其中 f(x)= 1-x-12, 其图象是圆(x-1)2+y2=1 在 x 轴上方的部分,而 g(x)=x 为一次函数,其积分易求. 解:考虑定积分的运算性质与几何意义得
3 y=2x+3, 解:由方程组 可得 x1=-1,x2=3.故所求图形面积为 s= (2x+3)dx 2 y=x , 1


1 x dx=(x +3x)|
2 2
3
-1
3
1 32 - x3|-13= . 3 3
点拨: 利用定积分求平面图形的面积时, 关键是将待求面积的平面图形看成可求积分的 平面图形的和或差, 还要注意待求面积的平面图形在 y 轴上方还是下方, 以确定积分的正负.
3.bf(x)dx=c f(x)dx+bf(x)dx(其中 a<c<b).
a
a
c
二、求定积分的常用技巧 1. 求被积函数,要先化简,再求积分. 2. 求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和。 3. 对于含有绝对值符号的被积函数,要先去掉绝对值号才能积分。 三、微积分基本定理 一般地,如果 f(x)是区间[a,b]上的连续函数,并且 F′(x)=f(x),那么bf(x)dx= a F(b)-F(a) 这个结论叫做微积分基本定理, 又叫做牛顿—莱布尼兹公式. 其中 F(x)叫做 f(x) 的一个原函数. 为了方便, 我们常把 F(b)-F(a)记作 F ( x) -F(a)。 特别提示:一个函数的导数是唯一的,但导函数的原函数不一定唯一。

高中数学高考总复习定积分与微积分基本定理习题及详解

高中数学高考总复习定积分与微积分基本定理习题及详解

年 级 高二 学科数学内容标题 定积分的计算 编稿老师马利军一、教学目标:1。

理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题。

2。

理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题。

二、知识要点分析1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:⎰badx x f )(2. 定积分的几何意义:(1)当函数f (x )在区间[a ,b]上恒为正时,定积分⎰badx x f )(的几何意义是:y=f(x)与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下.⎰b adx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号。

在图(1)中:0s dx )x (f ba>=⎰,在图(2)中:0s dx )x (f ba<=⎰,在图(3)中:dx)x (f ba⎰表示函数y=f (x )图象及直线x=a,x=b 、x 轴围成的面积的代数和。

注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于⎰badx x f )(,仅当在区间[a,b ]上f (x )恒正时,其面积才等于⎰badx x f )(。

3. 定积分的性质,(设函数f (x),g (x )在区间[a,b]上可积) (1)⎰⎰⎰±=±bab abadx )x (g dx )x (f dx )]x (g )x (f [(2)⎰⎰=bab a dx x f k dx x kf )()(,(k 为常数)(3)⎰⎰⎰+=bcbac adx x f dx x f dx x f )()()((4)若在区间[a ,b ]上,⎰≥≥badx x f x f 0)(,0)(则推论:(1)若在区间[a,b]上,⎰⎰≤≤babadx x g dx x f x g x f )()(),()(则(2)⎰⎰≤babadx x f dx x f |)(||)(|(3)若f(x )是偶函数,则⎰⎰=-a aadx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=⎰-aadx x f4。

最新-2018届高三数学一轮复习 定积分与微积分基本定理理课件 新人教B版 精品

最新-2018届高三数学一轮复习 定积分与微积分基本定理理课件 新人教B版 精品

一、选择题
1.已知函数f(x)=x2-2x-3,则1-1f(x)dx=( )
A.-2
B.-136
C.-4
16 D. 3
• [答案] B
[解析] 1-1f(x)dx=1-1(x2-2x-3)dx
= 13x3-x2-3x-11=-136.
2.(2010·湖南理,5)41xdx等于(
)
2
A.-2ln2 B.2ln2 C.-ln2 D.ln2
(2010·曲师大附中)设常数a>0,(ax2+
1 x
)4展开
式中x3的系数为32π2,则a(x+sinx)dx=________. 0
解析:Tr+1=C4r(ax2)4-r
1 x
r=C4ra4-rx8-2r-
1 2
r,
令8-2r-
1 2
r=3,得r=2.所以C42a2=
3 2
π2.由于a>0,所
(1)切点A的坐标为________. (2)过切点A的切线方程为________.
• 分析:设出切点A的坐标,利用导数的几何意义,写出 切线方程,然后利用定积分求出所围成平面图形的面积, 从而确定切点A的坐标.
解析:设切点A(x0,y0),由y′=2x,过点A的切线 方程为
y-y0=2x0(x-x0), 即y=2x0x-x02. 令y=0,得x=x20.即C(x20,0).
• 重点难点
• 重点:了解定积分的概念,能用定义法求简单的定积分, 用微积分基本定理求简单的定积分.
• 难点:用定义求定积分
• 知识归纳 • 1.定积分的定义
设函数f(x)在区间[a,b]上连续,用分
点a=x0<x1<…<xi-1<xi<…<xn=b,将区间 [a,b]分成n个小区间,在每个小Байду номын сангаас间[xi-

解密06 定积分与微积分基本定理-备战2018年高考数学理

解密06 定积分与微积分基本定理-备战2018年高考数学理

考点1 定积分的计算题组一 用牛顿—莱布尼茨公式求定积分调研1 已知函数1(10)()πcos (0)2x x f x x x +-≤≤⎧⎪=⎨<≤⎪⎩,则π21()d f x x -=⎰A .12 B .1 C .2 D .32【答案】D 【解析】πππ200222101113()d (1)d cos d ()|sin |1222x f x x x x x x x x ---=++=++=+=⎰⎰⎰,故选D.☆技巧点拨☆1.用牛顿—莱布尼茨公式求定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差;(2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼茨公式求出各个定积分的值; (5)计算原始定积分的值. 2.分段函数的定积分分段函数求定积分,可先把每一段函数的定积分求出后再相加.题组二 用定积分的几何意义求定积分 调研2 计算333(cos )d x x x -=⎰.【答案】0【解析】∵3cos y x x =为奇函数,∴333(cos )d 0x x x -=⎰.调研3 m 等于 A .−1 B .0 C .1D .2【答案】B【解析】由已知可得: y =的图象为圆:22(1)1x y ++=对应的上半部分,由定积分的几何意义可得0m =,故选B.☆技巧点拨☆1.求定积分的三种方法(1)利用定义求定积分(定义法),可操作性不强; (2)利用微积分基本定理求定积分;(3)利用定积分的几何意义求定积分.当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.例如,定积分x ⎰的几何意义是求单位圆面积的14,所以π=4x ⎰.2.奇偶函数的定积分(1)若奇函数y =f (x )的图象在[−a ,a ]上连续,则()d 0aaf x x -=⎰;(2)若偶函数y =g (x )的图象在[−a ,a ]上连续,则()d 2()d aaag x x g x x -=⎰⎰.考点2 定积分的应用题组一 利用定积分求平面图形的面积调研1 已知a >0,若曲线y =x a =与0y =所围成的封闭区域的面积为2a ,则a =________.【答案】49【解析】由题意322002|3aa a x x ==⎰,所以a =49. 调研2 已知{()|,01}1,0x y x y Ω≤≤≤≤=,A 是由直线x =1,y =0和曲线y =x 4所围成的曲边三角形的平面区域,若向平面区域Ω内随机投一点M ,则点M 落在区域A 内的概率为________. 【答案】15【解析】区域Ω对应的是边长为1的正方形,其面积为S =1.区域A 是由直线x =1,y =0和曲线y =x 4围成的曲边三角形,如图中阴影部分,故区域A 的面积为S A =14510011d |55x x x ==⎰.所以点M 落在区域A 内的概率为15.☆技巧点拨☆利用定积分求平面图形的面积是近几年高考考查定积分的一个重要考查方向,多以选择题、填空题的形式考查.难度一般不大,属中低档题型.常见的题型及其解法如下: 1.利用定积分求平面图形面积的步骤①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示成若干个定积分的和;④计算定积分,写出答案.注意:当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.2.知图形的面积求参数求解此类题的突破口:画图,一般是先画出它的草图;然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再由已知条件可找到关于参数的方程,从而可求出参数的值.3.与概率相交汇问题解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算.题组二定积分的物理意义调研3 一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度55()51V t tt=-++(t的单位:s,v的单位:m/s)紧急刹车至停止.在此期间火车继续行驶的距离是A.55ln 10 m B.55ln 11 m C.(12+55ln 7) m D.(12+55ln 6) m 【答案】B【解析】令55501tt-+=+,注意到t>0,得t=10,即行驶的时间为10 s.行驶的距离s=10210551(5)d[555ln(1)]|55ln1112t t t t tt-+=-++=+⎰,即紧急刹车后火车继续行驶的距离为55ln 11 m.☆技巧点拨☆利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.1.(2018届江西省高三年级阶段性检测考试(二))1204d x x -=⎰A .7B .C .D .4【答案】C【解析】.故选C.2.(辽宁省鞍山市第一中学2018届高三上学期第二次模拟考试(期中))由曲线1xy =与直线y x =,3y =所围成的封闭图形的面积为 A .2ln3- B .ln3 C .2D .4ln3-【答案】D3.(安徽省淮南市第二中学、宿城第一中学2018届高三第四次考试)设()[](]cos ,0,π1,π,2πx x f x x ⎧∈⎪=⎨∈⎪⎩,则()2πd f x x =⎰A .0B .πC .π-D .π2【答案】B【解析】由已知得()2πd f x x =⎰π2ππ2π0π0πcos d 1d sin ||πx x x x x +=+=⎰⎰,故选B.4.(安徽省阜阳市临泉县第一中学2018届高三上学期第二次模拟)若,125b -=,π01sin d 4c x x =⎰,则的大小关系是A .B .C .D .【答案】D【解析】∵π01sin d 4c x x =⎰,∴,∵,∴,故选D.5.(陕西省西安市长安区2018届高三上学期质量检测大联考(一)2ny y ⎛⎫+ ⎪⎝⎭的展开式中常数项为A .8B .16C .24D .60【答案】C6.(陕西省西安市西北工业大学附属中学2017届高三下学期第七次模拟)已知平面区域(){,|0π,01}x y x y Ω=≤≤≤≤,现向该区域内任意掷点,则该点落在曲线2sin y x =下方的概率是A .12 B .1π C .2πD .π4【答案】A7.(东北师大附中、哈尔滨师大附中、辽宁省实验中学2017届高三下学期第四次联合模拟考试)已知函数()f x 的部分图象如图所示,向图中的矩形区域随机投出200粒豆子,记下落入阴影区域的豆子数,通过100次这样的试验,算得落入阴影区域的豆子的平均数为66,由此可估计()20d f x x ⎰的值约为A .9925 B .9950 C .310D .35【答案】B【解析】由定积分的几何意义知()2d f x x ⎰的值即为阴影部分面积S ,再由几何概型可知6620023S=⨯,解得9950S =.故本题选B .8.(四川省德阳市2018【答案】42π+【解析】令y =则()2240x y y +=≥,其图象为半圆,且面积为2π,又22221d |4x x --==⎰,所以填42π+. 9.(安徽省合肥一中、马鞍山二中等六校教育研究会2018届高三上学期第一次联考)如图所示,在平面直角坐标系内,四边形ABCD 为正方形且点C 坐标为11,2⎛⎫⎪⎝⎭.抛物线Γ的顶点在原点,关于x 轴对称,且过点C .在正方形ABCD 内随机取一点M ,则点M 在阴影区域内的概率为_________.【答案】2310.(江西省新余市第一中学2018届高三毕业班第四次模拟考试)设曲线cos y x =与x 轴、y 轴、围成的封闭图形的面积为b ,若()22ln 2g x x bx kx =--在[)1,+∞上单调递减,则实数k 的取值范围是__________. 【答案】[0,)+∞则()222ln 22ln g x x bx kx x x kx =--=--,()22g x x k x-'=-, 由()22ln 2g x x bx kx =--在[)1,+∞上单调递减,1.(2015年高考湖南卷)2(1)d x x -=⎰.【答案】0 【解析】2220011(1)d ()|42022x x x x -=-=⨯-=⎰.2.(2015年高考天津卷)曲线2y x =与直线y x =所围成的封闭图形的面积为 . 【答案】16【解析】由题意可得封闭图形的面积为122310011111()d ()|23236x x x x x -=-=-=⎰. 3.(2015年高考山东卷)执行如图所示的程序框图,输出的T 的值为 .【答案】错误!未找到引用源。

专题3 定积分与微积分基本定理知识点

专题3 定积分与微积分基本定理知识点

考点13定积分与微积分基本定理一、定积分 1.曲边梯形的面积(1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①).(2)求曲边梯形面积的方法与步骤:); 得即为曲23(1b ]等分成n 作和式n i =f (x )(2()f x 4.定积分的性质 (1)()()d d b ba akf x x k f x x =⎰⎰(k 为常数);(2)[()()]d ()d ()d bbbaaaf xg x x f x x g x x ±=±⎰⎰⎰;(3)()d =()d +()d b c baacf x x f x x f x x ⎰⎰⎰(其中a <c <b ).【注】定积分的性质(3)称为定积分对积分区间的可加性,其几何意义是曲边梯形ABCD 的面积等于曲边梯形AEFD 与曲边梯形EBCF 的面积的和. 5.定积分的几何意义(1)当函数f (x )在区间[a ,b ]上恒为正时,定积分ba⎰f (x )d x 的几何意义是由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(图①中阴影部分).(2)一般情况下,定积分ba⎰f (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a ,x =b 之间的6这要结合).这个结1a an +(3)sin d cos |bb a ax x x =-⎰;(4)cos d sin |bb a ax x x =⎰;(5)1d ln |(0)bb a ax x b a x=>>⎰; (6)e d e |bx x b a ax =⎰;(7)d |(0,1)ln x bxba a a a x a a a=>≠⎰; (8)322|(0)3b a ax x b a =>≥⎰.1.πcos d x x =⎰A .1B .2-C .0D .π2.若A C 3A C 4A C 5A C .a b c >>D .a c b >>6.(2015年高考湖南卷)20(1)d x x -=⎰.7.(2015年高考天津卷)曲线2y x =与直线y x =所围成的封闭图形的面积为.8.(2015年高考福建卷)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节定积分和微积分基本定理考纲解读1.了解定积分的实际背景、基本思想及概念.2.了解微积分基本定理的含义.命题趋势探究定积分的考查以计算为主,其应用主要是求一个曲边梯形的面积,题型主要为选择题和填空题.知识点精讲 一、基本概念1.定积分的极念一般地,设函效()f x 在区间[a ,b]上连续.用分点0121i i a x x x x x -=<<<<<L n x b <<=L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b ax n-D =),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n ξ=,作和式:1()n n ii S f x ξ==∆=∑ 1()ni i b af nξ=-∑,当x D 无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分.记为:()baS f x dx =⎰,()f x 为被积函数,x 为积分变量,[,]a b 为积分区间,b 为积分上限,a 为积分下限.需要注意以下几点: (1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时),称为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法.①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b af n ξ=-∑;④取极限:()1()lim nbi an i b af x dx f nξ→∞=-=∑⎰(3)曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功(x)baS F dx =⎰2.定积分的几何意义从几何上看,如果在区间[],a b 上函数()f x 连续且恒有()0f x ≥,那么定积分()baf x dx ⎰表示由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的曲边梯形(如图3-13中的阴影部分所示)的面积,这就是定积分()baf x dx ⎰的几何意义.一般情况下,定积分()baf x dx ⎰的值的几何意义是介于x 轴、函数()f x 的图像以及直线,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号.二、基本性质性质11badx b a =-⎰.性质2 ()()(0)b ba akf x dx k f x dx k =⎰⎰其中是不为的常数(定积分的线性性质). 性质3 1212[()()]()()b b baaaf x f x dx f x dx f x dx ±=±⎰⎰⎰(定积分的线性性质).性质4 ()()()()b c ba a cf x dx f x dx f x dx a c b =+<<⎰⎰⎰其中(定积分对积分区间的可加性)推广1 1212[()()()]()()()b b b bmmaaaaf x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰ 推广2 121()()()()kbc c ba ac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰.三、基本定理设函数()f x 是在区间[,]a b 上连续,且()F x 是()f x 是在[,]a b 上的任意一个原函数,即'()()F x f x =,则()()()b af x dx F b F a =-⎰,或记为()()b a b f x dx F x a==⎰ ()()F b F a -,称为牛顿—莱布尼兹公式,也称为微积分基本定理.该公式把计算定积分归结为求原函数的问题,只要求出被积函数()f x 的一个原函数()F x .然后计算原函数()F x 在区间[],a b 上的增量()()F b F a -即可,这一定理提示了定积分与不定积分之间的内在联系.题型归纳及思路提示题型51 定积分的计算思路提示对于定积分的计算问题,若该定积分具有明显的几何意义,如圆的面积等(例3.26及其变式),则利用圆面积计算,否则考虑用牛顿-莱布尼茨公式计算. 例3.25(2012江西11)计算()12-1sin xx dx +⎰= .解析()123-111112sin =cos cos1cos113333xx dx x x ⎛⎫⎛⎫⎛⎫+-=----= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎰.A. B. C. D.变式1 ()421dx x =⎰A.-2ln 2B. 2ln 2C.-ln2D. ln 2变式2()1(2)xex dx +=⎰A.1 B 1e -. C.e D. +1e变式3 设函数()()20f x ax c a =+≠,若()()()101f x dx f x x=≤≤⎰,则0x 的值为 .变式4 设函数()y f x =的定义域为R, 若对于给定的正数k ,定义函数()()(),(),k k f x kf x f x f x k≤⎧=⎨>⎩,则当函数()1,1f x k x ==时,定积分()214k f x dx ⎰的值为( )A.2ln 22+B. 2ln21-C.2ln2D. 2ln21+ 例3.26 根据定积分的几何意义计算下列定积分(1)()402x dx -⎰; (2)1-⎰分析根据定积分的几何意义,利用图形的面积求解.解析 根据定积分的几何意义,所求的定积分是直线所围成图形(如图3-14所示)的面积的代数和,很显然这是两个面积相等的等腰直角三角形,如图3-14所示,其面积代数和是0,故()420x dx -=⎰.(2)根据定积分的几何意义,所求的定积分是曲线()2210x y y +=≥和x 轴围成图形(如图3-15所示)的面积,显然是半个单位圆,其面积是2π,故1=2π-⎰.评注 定积分()bax dx ⎰的几何意义是函数和直线,x a x b ==以及x 轴所围成的图形面积的代数和,面积是正值,但积分值却有正值和负值之分,当函数时,()0f x >面积是正值,当函数()0f x <时,积分值是负值. 变式1 根据定积分的几何几何意义计算下列定积分.(1)()402x dx +⎰; (2)0-⎰; (3)100sin xdx π⎰; (4)344sin xdx ππ-⎰.题型52 求曲边梯形的面积思路提示函数()(),y f x y g x ==与直线(),x a x b a b ==<围成曲边梯形的面积为()()|f g |dx baS x x =-⎰,具体思路是:先作出所涉及的函数图象,确定出它们所围成图形的上、下曲线所对应函数,被积函数左、右边界分别是积分下、上限.例3.27 由曲线23,y x y x ==围成的封闭图形的面积为( )A.112 B.14 C.13 D.712解析 由23x x =得01,x x ==或则由2y x =和3y x =围成的封闭图形的面积为()1233401111110343412x x dx x x ⎛⎫-=-=-= ⎪⎝⎭⎰,故选A . 变式1(2012湖北理3)已知二次函数()y f x =的图象如图3-16所求,则它与x 轴所围成图形的面积为( )A.25π B.43 C.32 D.2π变式2 由曲线y x =和直线()20,1,,0,1x x y t t ===∈所围成的图形(如图3-17中阴影部分所示)面积的最小值为( )A.23 B.13 C.12 D.14变式3 求抛物线24y x =与24y x =-围成的平面图形的面积.变式4 求由两条曲线2214,y 4y x x ==和直线4y =所围成的面积.最有效训练题16(限时45分钟)1.已知函数()223f x x x =--,则()11f x dx -=⎰( )A. -2B.163-C.-4D. 1632.定积分)10x dx =⎰( )A,24π- B.12π- C.14π- D. 12π- 3.设()[]2,0,12,(1,2]x x f x x x ⎧∈=⎨-∈⎩,则()20f x dx =⎰( )A.34B.45C.56D.不存在 4.222,,sin x a xdx b e dx c xdx ===⎰⎰⎰,则,,a b c 的大小关系是( )A,a c b << B.a b c << C.c b a << D. c a b << 5.曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面区域的面积为( )A,1 B. 2 1 D. )216.由直线,,033x x y ππ=-==与曲线cos y θ=所围成的平面图形的面积为( )A,12B.1 D.7.抛物线22y x =与直线4y x =-围成的平面图形的面积为 .8.已知()f x 是偶函数,且()56f x dx =⎰,则()55f x dx -=⎰ .9.()202|1x |dx --=⎰ .10.已知函数()y f x =的图象是折线段ABC ,其中()()10,0,5,1,02A B C ⎛⎫⎪⎝⎭,.函数()()01y xf x x =≤≤的图象与x 轴所围成的图形的面积为 .11.根据定积分的几何意义计算下列定积分.(1)11|x|dx -⎰; (2)22411x dx x ⎛⎫+ ⎪⎝⎭⎰; (3)11dx +⎰;(4)20cos 2x dx π⎰; (5)20cos 2cos sin x dx x x π-⎰ 12.有一条直线与抛物线2y x =相交于A,B两点,线段AB与抛物线所围成图形的面积恒等于43,求线段AB的中点P的轨迹方程.。

相关文档
最新文档