2017高考数学(理)(新课标版)考前冲刺复习:第2部分专题4第1讲空间几何体含答案
2017高考数学(文)(新课标版)考前冲刺复习讲义:第2部分专题四第1讲 空间几何体含答案
第1讲空间几何体空间几何体的三视图[学生用书P39]自主练透夯实双基1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.由三视图还原几何体的步骤一般先由俯视图确定底面,再利用正视图与侧视图确定几何体.[题组通关]1.(2016·东北四市联考(二))如图,在正方体ABCD。
A1B1C1D1中,P是线段CD的中点,则三棱锥P。
A1B1A的侧视图为( )D [解析] 如图,画出原正方体的侧视图,显然对于三棱锥P。
A1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为 D.2.(2016·石家庄质量检测(二))一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为()D [解析]分析三视图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD,故选D。
3.(2016·湖北“五个一名校联盟"考试)某四面体的三视图如图,则其四个面中最大的面积是()A.2 B.2错误!C。
错误! D.2错误!D [解析]在正方体ABCD.A1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D 1.BCB 1,如图所示,其四个面的面积分别为2,2错误!,2错误!,2错误!,故选 D 。
由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.空间几何体的表面积与体积[学生用书P39]共研典例 类题通法1.柱体、锥体、台体的侧面积公式(1)S 柱侧=ch (c 为底面周长,h 为高);(2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高); (3)S 台侧=错误!(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).2.柱体、锥体、台体的体积公式(1)V 柱体=Sh (S 为底面面积,h 为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).(1)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.错误!B。
2017高考数学理新课标版考前冲刺复习讲义:第2部分专
第1讲 坐标系与参数方程极坐标方程及其应用 共研典例 类题通法1.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a ,0),半径为a :ρ=2a cos θ; (3)当圆心位于M (a ,π2),半径为a :ρ=2a sin θ.2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π+θ0;(2)直线过点M (a ,0)且垂直于极轴:ρcos θ=a ; (3)直线过点M (b ,π2)且平行于极轴:ρsin θ=b .3.极坐标与直角坐标的互化方法(2016·高考全国卷乙)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t(t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .【解】 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1.(1)求曲线的极坐标方程的一般思路曲线的极坐标方程问题通常可利用互换公式转化为直角坐标系中的问题求解,然后再次利用互换公式即可转化为极坐标方程.熟练掌握互换公式是解决问题的关键.(2)解决极坐标问题的一般思路一是将极坐标方程化为直角坐标方程,求出交点的直角坐标,再将其化为极坐标;二是将曲线的极坐标方程联立,根据限制条件求出极坐标.[题组通关]1.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.[解] (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.2.(2016·唐山模拟)在极坐标系中,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22(ρ≥0,0≤θ<2π).(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标.[解] (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,故圆O 的直角坐标方程为:x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为:x -y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎫1,π2,即为所求.3.(1)(2015·高考广东卷改编)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离.(2)化圆的直角坐标方程x 2+y 2=r 2(r >0)为极坐标方程.[解] (1)由2ρsin ⎝⎛⎭⎫θ-π4=2,得2ρ⎝⎛⎭⎫22sin θ-22cos θ=2,所以y -x =1.由点A的极坐标为⎝⎛⎭⎫22,7π4得点A 的直角坐标为(2,-2),所以d =|2+2+1|2=522.即点A 到直线l 的距离为522.(2)将x =ρcos θ,y =ρsin θ代入x 2+y 2=r 2中,得ρ2cos 2θ+ρ2sin 2θ=r 2,即ρ2(cos 2θ+sin 2θ)=r 2,ρ=r .所以,以极点为圆心、半径为r 的圆的极坐标方程为ρ=r (0≤θ<2π).参数方程及其应用 共研典例 类题通法几种常见曲线的参数方程 (1)圆以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α.其中α是参数.当圆心为(0,0)时,方程为⎩⎪⎨⎪⎧x =r cos α,y =r sin α.其中α是参数.(2)椭圆中心在原点,以坐标轴为对称轴的椭圆的参数方程有以下两种情况:椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ.其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ.其中φ是参数. (3)直线经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α其中t 为参数.(2016·长沙模拟)已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θy =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的普通方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|P A |·|PB |的值. 【解】 (1)曲线C 的普通方程:(x -1)2+(y -2)2=16,直线l 的参数方程:⎩⎨⎧x =3+12t y =5+32t(t 为参数).(2)将直线l 的参数方程代入圆C 的普通方程可得t 2+(2+33)t -3=0, 设t 1,t 2是方程的两个根,则t 1t 2=-3, 所以|P A ||PB |=|t 1||t 2|=|t 1t 2|=3.参数方程与普通方程的互化及参数方程的应用(1)将参数方程化为普通方程的过程就是消去参数的过程,常用的消参方法有代入消参、加减消参、三角恒等式消参等,往往需要对参数方程进行变形,为消去参数创造条件.(2)在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.[题组通关]1.(2016·呼和浩特模拟)过点P (-1,0)作倾斜角为α的直线,与曲线x 23+y 22=1相交于M ,N 两点.(1)写出直线MN 的参数方程; (2)求|PM |·|PN |的最小值.[解] (1)因为直线MN 过点P (-1,0),且倾斜角为α,所以直线MN 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos αy =t sin α(t 为参数).(2)将直线MN 的参数方程代入曲线x 23+y 22=1中得,2(-1+t cos α)2+3(t sin α)2=6,整理得, (3-cos 2α)t 2-4cos α·t -4=0,Δ=16 cos 2α-4×(-4)×(3-cos 2α)=48>0.设M ,N 两点对应的参数分别为t 1,t 2, 则|PM |·|PN |=|t 1·t 2|=43-cos 2α,所以当cos α=0时,|PM |·|PN |取得最小值43.2.已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.[解] (1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点坐标为(1,0),⎝⎛⎭⎫12,-32.(2)C 1的普通方程为x sin α-y cos α-sin α=0. A 点坐标为(sin 2α,-cos αsin α), 故当α变化时,P 点轨迹的参数方程为⎩⎨⎧x =12sin 2α,y =-12sin αcos α(α为参数), P 点轨迹的普通方程为⎝⎛⎭⎫x -142+y 2=116. 故P 点轨迹是圆心为⎝⎛⎭⎫14,0,半径为14的圆.3.(2016·洛阳统考)在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4cos φ,y =3sin φ(φ为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2cos θ.(1)求曲线C 2的直角坐标方程;(2)已知点M 是曲线C 1上任意一点,点N 是曲线C 2上任意一点,求|MN |的取值范围. [解] (1)由ρ=2cos θ得ρ2=2ρcos θ, 将ρ2=x 2+y 2,ρcos θ=x 代入上面方程, 得x 2+y 2=2x , 即(x -1)2+y 2=1.(2)|MC 2|min -1≤|MN |≤|MC 2|max +1.|MC 2|2=(4cos φ-1)2+9sin 2φ=7cos 2φ-8cos φ+10,当cos φ=-1时,|MC 2|2max =25,|MC 2|max =5;当cos φ=47时,|MC 2|2min =547,|MC 2|min =3427. 所以3427-1≤|MN |≤5+1,即|MN |的取值范围是⎣⎡⎦⎤3427-1,6.极坐标方程与参数方程的综合应用共研典例 类题通法对于同时含有极坐标方程和参数方程的题目,可先同时将它们转化为直角坐标方程求解,这样思路会更加清晰.(2016·河南六市联考)在平面直角坐标系中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+ty =t -3(t 为参数),在以直角坐标系的原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=2cos θsin 2.(1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)若直线l 与曲线C 相交于A ,B 两点,求△AOB 的面积. 【解】 (1)由曲线C 的极坐标方程ρ=2cos θsin 2θ,得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程是y 2=2x .由直线l 的参数方程⎩⎪⎨⎪⎧x =1+t ,y =t -3,得t =3+y ,代入x =1+t 中,消去t 得x -y -4=0,所以直线l 的普通方程为x -y -4=0.(2)将直线l 的参数方程代入曲线C 的直角坐标方程y 2=2x ,得t 2-8t +7=0, 设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=8,t 1t 2=7,所以|AB |=2|t 1-t 2|=2×(t 1+t 2)2-4t 1t 2=2×82-4×7=62, 因为原点到直线x -y -4=0的距离d =|-4|1+1=22,所以△AOB 的面积是12|AB |·d =12×62×22=12.解决极坐标、参数方程的综合问题应关注三点(1)对于参数方程或极坐标方程应用不够熟练的情况下,我们可以先化成直角坐标的普通方程,这样思路可能更加清晰.(2)对于一些运算比较复杂的问题,用参数方程计算会比较简捷. (3)利用极坐标方程解决问题时,要注意题目所给的限制条件及隐含条件. [题组通关]1.(2016·郑州市第二次质量检测)在平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m ,0),且倾斜角为π6,以O 为极点,x 轴正半轴为极轴,建立极坐标系.(1)写出曲线C 的极坐标方程与直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|P A |·|PB |=1,求实数m 的值. [解] (1)曲线C 的直角坐标方程为:(x -1)2+y 2=1, 即x 2+y 2=2x ,即ρ2=2ρcos θ, 所以曲线C 的极坐标方程为:ρ=2cos θ.直线l 的参数方程为⎩⎨⎧x =m +32t y =12t(t 为参数).(2)设A ,B 两点对应的参数分别为t 1,t 2,将直线l 的参数方程代入x 2+y 2=2x 中, 得t 2+(3m -3)t +m 2-2m =0, 所以t 1t 2=m 2-2m , 由题意得|m 2-2m |=1,解得m =1或m =1+2或m =1- 2.2.(2016·福建省毕业班质量检测)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos αy =sin α(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin(θ-π4)= 2.(1)求C 的普通方程和l 的倾斜角;(2)设点P (0,2),l 和C 交于A ,B 两点,求|P A |+|PB |.[解] (1)由⎩⎪⎨⎪⎧x =3cos αy =sin α消去参数α,得x 29+y 2=1,即C 的普通方程为x 29+y 2=1.由ρsin(θ-π4)=2,得ρsin θ-ρcos θ=2,(*)将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入(*),化简得y =x +2, 所以直线l 的倾斜角为π4.(2)由(1)知,点P (0,2)在直线l 上,可设直线l 的参数方程为⎩⎨⎧x =t cos π4y =2+t sin π4(t 为参数),即⎩⎨⎧x =22t y =2+22t(t 为参数),代入x 29+y 2=1并化简,得5t 2+182t +27=0,Δ=(182)2-4×5×27=108>0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=-1825<0,t 1t 2=275>0,所以t 1<0,t 2<0,所以|P A |+|PB |=|t 1|+|t 2|=-(t 1+t 2)=1825.3.(2016·郑州质检)在直角坐标系xOy 中,曲线M 的参数方程为⎩⎨⎧x =3cos α+sin α,y =23sin αcos α-2sin 2α+2(α为参数),若以直角坐标系中的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线N 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=22t (t 为参数).(1)求曲线M 的普通方程和曲线N 的直角坐标方程; (2)若曲线N 与曲线M 有公共点,求t 的取值范围.[解] (1)由x =3cos α+sin α得x 2=(3cos α+sin α)2 =2cos 2α+23sin αcos α+1,所以曲线M 可化为y =x 2-1,x ∈[-2,2],由ρsin ⎝⎛⎭⎫θ+π4=22t 得22ρsin θ+22ρcos θ=22t ,所以ρsin θ+ρcos θ=t , 所以曲线N 可化为x +y =t .(2)若曲线M ,N 有公共点,则当直线N 过点(2,3)时满足要求,此时t =5,并且向左下方平行移动直到相切之前总有公共点,相切时仍然只有一个公共点,联立⎩⎪⎨⎪⎧x +y =t ,y =x 2-1, 得x 2+x -1-t =0, 由Δ=1+4(1+t )=0, 解得t =-54.综上可求得t 的取值范围是-54≤t ≤5.课时作业1.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =sin α+cos αy =1+sin 2α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin(θ+π4)=2,曲线C 2的极坐标方程为ρ=22a cos(θ-3π4)(a >0).(1)求直线l 与曲线C 1的交点的极坐标(ρ,θ)(ρ≥0,0≤θ<2π); (2)若直线l 与C 2相切,求a 的值.[解] (1)曲线C 1的普通方程为y =x 2,x ∈[-2,2],直线l 的直角坐标方程为x +y =2,联立⎩⎪⎨⎪⎧y =x 2x +y =2,解得⎩⎪⎨⎪⎧x =1y =1或⎩⎪⎨⎪⎧x =-2y =4(舍去),故直线l 与曲线C 1的交点的直角坐标为(1,1),其极坐标为(2,π4).(2)曲线C 2的直角坐标方程为x 2+y 2+2ax -2ay =0,即(x +a )2+(y -a )2=2a 2(a >0). 由直线l 与C 2相切,得|-a +a -2|2=2a ,故a =1.2.(2016·山西高三考前质量检测)已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φy =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.[解] (1)C 1:ρsin(θ+π6)=32,C 2:ρ2=61+2sin 2θ.(2)因为M (3,0),N (0,1),所以P ⎝⎛⎭⎫32,12,所以OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝⎛⎭⎫θ+π6=32得ρ1=1,P ⎝⎛⎭⎫1,π6. 把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝⎛⎭⎫2,π6. 所以|PQ |=|ρ2-ρ1|=1,即P ,Q 两点间的距离为1.3.(2016·贵阳市监测考试)极坐标系与直角坐标系xOy 有相同的长度单位,以原点为极点,以x 轴正半轴为极轴,曲线C 1的极坐标方程为ρ=4cos θ(ρ≥0),曲线C 2的参数方程为⎩⎪⎨⎪⎧x =m +t cos αy =t sin α(t 为参数,0≤α<π),射线θ=φ,θ=φ+π4,θ=φ-π4与曲线C 1分别交于(不包括极点O )点A 、B 、C .(1)求证:|OB |+|OC |=2|OA |;(2)当φ=π12时,B 、C 两点在曲线C 2上,求m 与α的值.[解] (1)证明:依题意|OA |=4cos φ,|OB |=4cos ⎝⎛⎭⎫φ+π4,|OC |=4cos ⎝⎛⎭⎫φ-π4,则|OB |+|OC |=4cos ⎝⎛⎭⎫φ+π4+4cos ⎝⎛⎭⎫φ-π4=22(cos φ-sin φ)+22(cos φ+sin φ)=42cos φ=2|OA |. (2)当φ=π12时,B 、C 两点的极坐标分别为⎝⎛⎭⎫2,π3、⎝⎛⎭⎫23,-π6,化为直角坐标为B (1,3)、C (3,-3),所以经过点B 、C 的直线方程为y -3=-3(x -1),而C 2是经过点(m ,0)且倾斜角为α的直线,故m =2,α=2π3.4.将曲线C 1:x 2+y 2=1上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到曲线C 2,A 为C 1与x 轴正半轴的交点,直线l 经过点A 且倾斜角为30°,记l 与曲线C 1的另一个交点为B ,与曲线C 2在第一、三象限的交点分别为C ,D .(1)写出曲线C 2的普通方程及直线l 的参数方程;(2)求|AC |-|BD |.[解] (1)由题意可得C 2:x 22+y 2=1,l :⎩⎨⎧x =1+32t y =12t (t 为参数). (2)将⎩⎨⎧x =1+32t y =12t 代入x 22+y 2=1,整理得5t 2+43t -4=0.设点C ,D 对应的参数分别为t 1,t 2,则t 1+t 2=-435, 且|AC |=t 1,|AD |=-t 2,又|AB |=2|OA |cos 30°=3,故|AC |-|BD |=|AC |-(|AD |-|AB |)=|AC |-|AD |+|AB |=t 1+t 2+3=35. 5.已知直线l 的参数方程为⎩⎨⎧x =-1-3t 2,y =3+12t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)求圆C 的直角坐标方程;(2)点P (x ,y )是直线l 与圆面ρ≤4sin ⎝⎛⎭⎫θ-π6的公共点,求3x +y 的取值范围. [解] (1)因为圆C 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ. 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,所以x 2+y 2=23y -2x ,所以圆C 的直角坐标方程为x 2+y 2+2x -23y =0.(2)设z =3x +y ,由圆C 的方程x 2+y 2+2x -23y =0,得(x +1)2+(y -3)2=4, 所以圆C 的圆心是(-1,3),半径是2.将⎩⎨⎧x =-1-32t ,y =3+12t代入z =3x +y ,得z =-t , 又直线l 过C (-1,3),圆C 的半径是2,所以-2≤t ≤2,所以-2≤-t ≤2,即3x +y 的取值范围是[-2,2].6.(2016·兰州诊断考试)在极坐标系中,已知圆C 的圆心C ⎝⎛⎭⎫2,π4,半径r = 3. (1)求圆C 的极坐标方程;(2)若α∈⎣⎡⎭⎫0,π4,直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos αy =2+t sin α(t 为参数),直线l 交圆C 于A ,B 两点,求弦长|AB |的取值范围.[解] (1)设圆上任意一点坐标为(ρ,θ),由余弦定理得:(3)2=ρ2+(2)2-2ρ×2×cos ⎝⎛⎭⎫θ-π4, 整理得ρ2-2ρ(cos θ+sin θ)-1=0.(2)因为x =ρcos θ,y =ρsin θ,所以x 2+y 2-2x -2y -1=0.将直线l 的参数方程代入圆的直角坐标方程中得:(2+t cos α)2+(2+t sin α)2-2(2+t cos α)-2(2+t sin α)-1=0, 整理得t 2+(2cos α+2sin α)t -1=0,设t 1,t 2为该方程的两根,所以t 1+t 2=-2cos α-2sin α,t 1·t 2=-1,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=8+4sin 2α,因为α∈⎣⎡⎭⎫0,π4, 所以2α∈⎣⎡⎭⎫0,π2, 所以|AB |∈[22,23).。
专题4 第1讲 空间几何体(教师版)
第1讲 空间几何体【要点提炼】考点一 表面积与体积1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr(r +l)(r 为底面半径,l 为母线长).(2)S 圆锥侧=πrl ,S 圆锥表=πr(r +l)(r 为底面半径,l 为母线长).(3)S 球表=4πR 2(R 为球的半径).2.空间几何体的体积公式V 柱=Sh(S 为底面面积,h 为高);V 锥=13Sh(S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径). 【热点突破】【典例】1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.【答案】 402π【解析】 因为母线SA 与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直角三角形.设底面圆的半径为r ,则母线长l =2r.在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158. 因为△SAB 的面积为515,即12SA ·SBsin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.【答案】 233 【解析】 如图,取BC 的中点O ,连接AO.∵正三棱柱ABC -A 1B 1C 1的各棱长均为2,∴AC =2,OC =1,则AO = 3.∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3.又11BB C S =12×2×2=2, ∴11D BB C V =13×2×3=233. 易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算).(2)一些不规则几何体的体积不会采用分割法或补形思想转化求解.(3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.【拓展训练】1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π【答案】 B【解析】 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.【答案】 327 【解析】 设CD =DE =x(0<x<1),则四边形ABDE 的面积S =12(1+x)(1-x)=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝ ⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 【要点提炼】考点二 多面体与球解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.【典例】2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________.【答案】 64π【解析】 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上,即球心就是△PAB 的外心,根据正弦定理AB sin ∠APB=2R ,解得R =4, 所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【答案】 23π 【解析】 圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π. 规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心.(3)多面体的内切球可利用等积法求半径.【拓展训练】2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】 C【解析】 如图所示,设球O 的半径为R ,因为∠AOB =90°,所以S △AOB =12R 2,因为V O -ABC =V C -AOB ,而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大,此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36, 故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.【答案】 20π【解析】 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3,∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1,则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21, 可得PA 2=R 21-r 21=102,∴PA =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10,∴r 2=102,∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题训练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形【答案】 A【解析】 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12 【答案】 C【解析】 设正四棱锥的底面正方形的边长为a ,高为h ,侧面三角形底边上的高(斜高)为h ′,则由已知得h 2=12ah ′. 如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22, ∴h ′2=12ah ′+14a 2, ∴⎝ ⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( ) A.12 B.13 C.14 D.18【答案】 C【解析】 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形,设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元【答案】 B【解析】 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】 B【解析】 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h(h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B.4π3 C.5π3 D .2π 【答案】 C【解析】 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3. 7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】 A【解析】 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a.由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3 B .3π C.4π3 D .8π【答案】 A【解析】 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3, ∴2r =AB sin ∠ACB =112=2, 即O 1A =1,O 1O =12AA 1=3, ∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A. 9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27 C .81πD .128π【答案】 B 【解析】 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h(0<h<5),底面半径为r(0<r<5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h<5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h<53时,V ′>0,V 单调递增;当53<h<5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝ ⎛⎭⎪⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( )A.36B.12C.13D.32【答案】 C【解析】 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O ,∵球O 的半径为1, ∴正方体的边长为233,即PA =PB =PC =233, 球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △PAB ×PC =13× 12×⎝ ⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形, S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13. 二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值【答案】 AD【解析】 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确. 12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π【答案】 AD【解析】 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE.由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.【答案】 1【解析】 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r ·l =2.由于侧面展开图为半圆,可知12πl 2=2π, 可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.【答案】 2 600π【解析】 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2 600π(cm 2). 15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________.【答案】 823π 【解析】 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π. 16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2π2【解析】 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q ,连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形,则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ. 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1,同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点,∴∠PEQ =π2, 知PQ 的长为π2×2=2π2,即交线长为2π2.。
2017届高三数学高考二轮复习(书讲解课件)第一部分 专题四 第一讲 空间几何体
第十四页,编辑于星期六:一点 十七分。
第一讲 空间几何体
考点一 空间几何体与三视图
课前自主诊断 课堂对点补短 限时规范训练 上页 下页
考点一 考点二
考点三
[经典结论·全通关] 一个物体的三视图的排列规则 俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放 在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽 度一样.即“长对正、高平齐、宽相等”.
=BC2,所以 AB⊥AC,所以 AB⊥平面 CC1A1A.
过点 B1 作平行于平面 ABC 的平面分割几何体,则该几何体的体
积 V=VABC-EB1F+VB1-FEA1C1=12×3×4×2+13×4×3
×3=24.
第二十七页,编辑于星期六:一点 十七分。
第一讲 空间几何体
课前自主诊断 课堂对点补短 限时规范训练
考点二
试题
通解
根据三视图可得该几何体的直观图如图中几
上页 下页
优解
考点一 考点二
考点三
何体 A1ABB1C1C 所示,且 AA1,BB1,CC1 都与平面 ABC 垂直,所以平面 AA1B1B,平 面 BB1C1C,平面 CC1A1A 都与平面 ABC 垂 直,又 AB2+AC2=BC2,所以 AB⊥AC,所 以 AB⊥平面 CC1A1A.连接 AB1,CB1 分割几何体,则该几何体的 体积 V=VB1-ABC+VB1-CAA1C1=13×2×12×3×4+13
A.4π
B.92π
C.6π
D.323π
第十二页,编辑于星期六:一点 十七分。
第一讲 空间几何体
考点三
课前自主诊断
课堂对点补短
限时规范训练 上页 下页
试题 解析
高考数学二轮复习 第二部分专项二 专题四 1 第1讲 空间几何体的三视图、表面积与体积
专题四立体几何与空间向量第1讲空间几何体的三视图、表面积与体积年份卷别考查内容及考题位置命题分析2018卷Ⅰ空间几何体的三视图及侧面展开问题·T71.“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面的位置关系(特别是平行与垂直).2.考查一个小题时,此小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一个小题难度稍高,一般会出现在第10~16题的位置上,此小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.空间几何体的截面问题·T12卷Ⅱ圆锥的侧面积·T16卷Ⅲ三视图的识别·T3三棱锥的体积及外接球问题·T102017卷Ⅰ空间几何体的三视图与直观图、面积的计算·T7卷Ⅱ空间几何体的三视图及组合体体积的计算·T4卷Ⅲ球的内接圆柱、圆柱的体积的计算·T82016卷Ⅰ有关球的三视图及表面积的计算·T6卷Ⅱ空间几何体的三视图及组合体表面积的计算·T6卷Ⅲ空间几何体的三视图及组合体表面积的计算·T9直三棱柱的体积最值问题·T10空间几何体的三视图(基础型) 一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.由三视图还原到直观图的三个步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.[注意]在读图或者画空间几何体的三视图时,应注意三视图中的实线和虚线.[考法全练]1.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N 的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.3.把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为()A.12B.22C.24D.14解析:选D.由三棱锥C -ABD 的正视图、俯视图得三棱锥C -ABD 的侧视图为直角边长是22的等腰直角三角形,如图所示,所以三棱锥C -ABD 的侧视图的面积为14,故选D.4.(2018·长春质量监测(二))如图,网格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为( )A .2 B. 5 C .2 2D .3解析:选D.如图,三棱锥A -BCD 即为所求几何体,根据题设条件,知辅助的正方体棱长为2,CD =1,BD =22,BC =5,AC =2,AB =3,AD =5,则最长棱为AB ,长度为3.5.(2018·石家庄质量检测(一))如图,网格纸上的小正方形的边长为1,粗线表示的是某三棱锥的三视图,则该三棱锥的四个面中,最小面的面积是( )A .2 3B .2 2C .2D. 3解析:选C.在正方体中还原该几何体,如图中三棱锥D -ABC 所示,其中正方体的棱长为2,则S △ABC =2,S △DBC =22,S △ADB =22,S △ADC =23,故该三棱锥的四个面中,最小面的面积是2,选C.空间几何体的表面积和体积(综合型)柱体、锥体、台体的侧面积公式 (1)S 柱侧=ch (c 为底面周长,h 为高). (2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).柱体、锥体、台体的体积公式 (1)V 柱体=Sh (S 为底面面积,h 为高). (2)V 锥体=13Sh (S 为底面面积,h 为高).(3)V 台=13(S +SS ′+S ′)h (S ,S ′分别为上下底面面积,h 为高)(不要求记忆).[典型例题]命题角度一 空间几何体的表面积(1)(2018·潍坊模拟)某几何体的三视图如图所示,则该几何体的表面积为( )A .4+23B .4+4 2C .6+2 3D .6+4 2(2)(2018·合肥第一次质量检测)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6【解析】 (1)由三视图还原几何体的直观图如图所示,易知BC ⊥平面P AC ,又PC ⊂平面P AC ,所以BC ⊥PC ,又AP =AC =BC =2,所以PC =22+22=22,又AB =22,所以S △PBC =S △P AB =12×2×22=22,S △ABC =S △P AC =12×2×2=2,所以该几何体的表面积为4+4 2.(2)由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2×12×4π×12+2×12×π×12+2×3+12×2π×1×3=8π+6. 【答案】 (1)B (2)C求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面几何问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得几何体的表面积.命题角度二 空间几何体的体积(1)(2018·武汉调研)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.22C.33D.23(2)(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.【解析】 (1)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,四棱锥D -ABC 1D 1的底面积为S 四边形ABC 1D 1=2×2=22,高h =22,其体积V =13S 四边形ABC 1D 1h =13×22×22=23.故选D.(2)由题意画出图形,如图,设AC 是底面圆O 的直径,连接SO ,则SO 是圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的面积为8,得12l 2=8,得l =4.在Rt △ASO 中,由题意知∠SAO =30°,所以SO =12l =2,AO =32l =2 3.故该圆锥的体积V =13π×AO 2×SO =13π×(23)2×2=8π.【答案】 (1)D (2)8π求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算体积的几何体.[对点训练]1.(2018·洛阳第一次统考)一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为( )A .8-2π3B .4-π3C .8-π3D .4-2π3解析:选A.由三视图可得该几何体的直观图如图所示,该几何体是一个棱长为2的正方体上、下各挖去一个底面半径为1,高为1的圆锥后剩余的部分,其体积为23-2×13×π×12×1=8-2π3.故选A.2.(2018·唐山模拟)如图,网格纸上小正方形的边长为1,粗线画的是一个几何体的三视图,则该几何体的体积为( )A .3 B.113 C .7D.233解析:选B.由题中的三视图可得,该几何体是由一个长方体切去一个三棱锥所得的几何体,长方体的长,宽,高分别为2,1,2,体积为4,切去的三棱锥的体积为13,故该几何体的体积V =4-13=113.故选B.多面体与球(综合型)[典型例题]命题角度一 外接球(2018·南宁模拟)三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A⊥PB ,三棱锥P -ABC 的外接球的体积为( )A.272π B.2732πC .273πD .27π【解析】 因为三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,所以△P AB ≌△PBC ≌△P AC .因为P A ⊥PB ,所以P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=2732π,故选B.【答案】 B解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.命题角度二 内切球已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6B.4π3C.2π3D.π2【解析】 当注入水的体积是该三棱锥体积的78时,设水面上方的小三棱锥的棱长为x (各棱长都相等),依题意,⎝⎛⎭⎫x 43=18,得x =2.易得小三棱锥的高为263,设小球半径为r ,则13S 底面·263=4·13·S 底面·r ,得r =66,故小球的表面积S =4πr 2=2π3.故选C.【答案】 C求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.命题角度三 与球有关的最值问题(2018·高考全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3【解析】 如图,E 是AC 中点,M 是△ABC 的重心,O 为球心,连接BE ,OM ,OD ,BO .因为S △ABC =34AB 2=93,所以AB =6,BM =23BE =23AB 2-AE 2=2 3.易知OM ⊥平面ABC ,所以在Rt △OBM 中,OM =OB 2-BM 2=2,所以当D ,O ,M 三点共线且DM =OD +OM 时,三棱锥D -ABC 的体积取得最大值,且最大值V max =13S △ABC ×(4+OM )=13×93×6=18 3.故选B.【答案】 B多面体与球有关的最值问题,主要有三种:一是多面体确定的情况下球的最值问题,二是球的半径确定的情况下与多面体有关的最值问题;三是多面体与球均确定的情况下,截面的最值问题.[对点训练]1.(2018·福州模拟)已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A.83π B.323π C .16πD .32π解析:选B.设该圆锥的外接球的半径为R ,依题意得,R 2=(3-R )2+(3)2,解得R =2,所以所求球的体积V =43πR 3=43π×23=323π,故选B.2.(2018·洛阳第一次联考)已知球O 与棱长为4的正四面体的各棱均相切,则球O 的体积为( )A.823πB.833πC.863π D.1623π解析:选A.将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长22,则球O 的体积V =43πR 3=823π,故选A.3.已知四棱锥S -ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积等于( )A.42π3B.162π3C.322π3D.642π3解析:选D.由题意得,当四棱锥的体积取得最大值时,该四棱锥为正四棱锥.因为该四棱锥的表面积等于16+163,设球O 的半径为R ,则AC =2R ,SO =R ,如图,所以该四棱锥的底面边长AB =2R ,则有(2R )2+4×12×2R × (2R )2-⎝⎛⎭⎫22R 2=16+163,解得R =22,所以球O 的体积是43πR 3=6423π.故选D.一、选择题1.(2018·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )解析:选A.正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A.2.(2018·高考北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选C.将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC ∥AD ,BC =1,AD =AB =P A =2,AB ⊥AD ,P A ⊥平面ABCD ,故△P AD ,△P AB 为直角三角形, 因为P A ⊥平面ABCD ,BC ⊂平面ABCD , 所以P A ⊥BC ,又BC ⊥AB ,且P A ∩AB =A ,所以BC ⊥平面P AB ,又PB ⊂平面P AB ,所以BC ⊥PB ,所以△PBC 为直角三角形,容易求得PC =3,CD =5,PD =22, 故△PCD 不是直角三角形,故选C.3.(2018·沈阳教学质量监测(一))如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3B.8π3C.16π3D.32π3解析:选A.由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.4.(2018·西安八校联考)某几何体的三视图如图所示,则该几何体的体积是( )A.4π3B.5π3 C .2+2π3D .4+2π3解析:选B.由三视图可知,该几何体为一个半径为1的半球与一个底面半径为1,高为2的半圆柱组合而成的组合体,故其体积V =23π×13+12π×12×2=5π3,故选B.5.(2018·长春质量检测(一))已知矩形ABCD 的顶点都在球心为O ,半径为R 的球面上,AB =6,BC =23,且四棱锥O -ABCD 的体积为83,则R 等于( )A .4B .2 3 C.479D.13解析:选A.如图,设矩形ABCD 的中心为E ,连接OE ,EC ,由球的性质可得OE ⊥平面ABCD ,所以V O ABCD =13·OE ·S 矩形ABCD =13×OE×6×23=83,所以OE =2,在矩形ABCD 中可得EC =23,则R =OE 2+EC 2=4+12=4,故选A.6.(2018·南昌调研)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A.23 B.43 C .2D.83解析:选A.由三视图可知,该几何体为三棱锥,将其放在棱长为2的正方体中,如图中三棱锥A -BCD 所示,故该几何体的体积V =13×12×1×2×2=23.7.(2018·辽宁五校协作体联考)如图所示,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是三棱锥的三视图,则此三棱锥的体积是( )A .8B .16C .24D .48解析:选A.由三视图还原三棱锥的直观图,如图中三棱锥P ABC 所示,且长方体的长、宽、高分别为6,2,4,△ABC 是直角三角形,AB ⊥BC ,AB =2,BC =6,三棱锥P -ABC 的高为4,故其体积为13×12×6×2×4=8,故选A.8.将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A.π27B.8π27C.π3D.2π9解析:选B.如图所示,设圆柱的半径为r ,高为x ,体积为V ,由题意可得r 1=2-x2,所以x =2-2r ,所以圆柱的体积V =πr 2(2-2r )=2π(r 2-r 3)(0<r <1),设V (r )=2π(r 2-r 3)(0<r <1),则V ′(r )=2π(2r -3r 2),由2π(2r -3r 2)=0得r =23,所以圆柱的最大体积V max =2π⎣⎡⎦⎤⎝⎛⎭⎫232-⎝⎛⎭⎫233=8π27. 9.(2018·福州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为 ( )A .14B .10+4 2 C.212+4 2 D.21+32+4 2解析:选D.由三视图可知,该几何体为一个直三棱柱切去一个小三棱锥后剩余的几何体,如图所示.所以该多面体的表面积S =2×⎝⎛⎭⎫22-12×1×1+12×(22-12)+12×22+2×22+12×32×(2)2=21+32+42,故选D. 10.(2018·太原模拟)某几何体的三视图如图所示,则该几何体中最长的棱长为( )A .3 3B .2 6 C.21D .2 5解析:选B.由三视图得,该几何体是四棱锥P -ABCD ,如图所示,ABCD 为矩形,AB =2,BC =3,平面P AD ⊥平面ABCD ,过点P 作PE ⊥AD ,则PE =4,DE =2,所以CE =22,所以最长的棱PC =PE 2+CE 2=26,故选B.11.(2018·南昌调研)已知三棱锥P -ABC 的所有顶点都在球O 的球面上,△ABC 满足AB =22,∠ACB =90°,P A 为球O 的直径且P A =4,则点P 到底面ABC 的距离为( )A. 2 B .2 2 C. 3D .2 3解析:选B.取AB 的中点O 1,连接OO 1,如图,在△ABC 中,AB =22,∠ACB =90°,所以△ABC 所在小圆O 1是以AB 为直径的圆,所以O 1A =2,且OO 1⊥AO 1,又球O 的直径P A =4,所以OA =2,所以OO 1=OA 2-O 1A 2=2,且OO 1⊥底面ABC ,所以点P 到平面ABC 的距离为2OO 1=2 2.12.(2018·高考全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.32解析:选A.记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′的中点E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×⎝⎛⎭⎫222=334,所以α截此正方体所得截面面积的最大值为334,故选A. 二、填空题13.(2018·洛阳第一次联考)一个几何体的三视图如图所示,则该几何体的体积为________.解析:由题图可知该几何体是一个四棱锥,如图所示,其中PD ⊥平面ABCD ,底面ABCD 是一个对角线长为2的正方形,底面积S =12×2×2=2,高h =1,则该几何体的体积V =13Sh =23.答案:2314.(2018·福州四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为________.解析:在长、宽、高分别为3,33,33的长方体中,由几何体的三视图得几何体为如图所示的三棱锥C -BAP ,其中底面BAP 是∠BAP =90°的直角三角形,AB =3,AP =33,所以BP =6,又棱CB ⊥平面BAP 且CB =33,所以AC =6,所以该几何体的表面积是12×3×33+12×3×33+12×6×33+12×6×33=27 3. 答案:27 315.(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,所以SA 2=80,SA =4 5.因为SA 与底面所成的角为45°,所以∠SAS ′=45°,AS ′=SA ·cos 45°=45×22=210.所以底面周长l =2π·AS ′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π16.(2018·潍坊模拟)已知正四棱柱的顶点在同一个球面上,且球的表面积为12π,当正四棱柱的体积最大时,正四棱柱的高为________.解析:设正四棱柱的底面边长为a ,高为h ,球的半径为r ,由题意知4πr 2=12π,所以r 2=3,又2a 2+h 2=(2r )2=12,所以a 2=6-h 22,所以正四棱柱的体积V =a 2h =⎝⎛⎭⎫6-h 22h ,则V ′=6-32h 2,由V ′>0,得0<h <2,由V ′<0,得h >2,所以当h =2时,正四棱柱的体积最大,V max =8.答案:2。
高中数学高考数学学习资料:专题4 第1讲 空间几何体
)
答案:C
[悟方法
触类旁通]
该类问题主要有两种类型:一是由几何体确定三视图;二 是由三视图还原成几何体.解决该类问题的关键是找准投影 面及三个视图之间的关系.抓住“正侧一样高,正俯一样长, 俯侧一样宽”的特点作出判断.zxxk
[联知识 串点成面]
常见的一些简单几何体的表面积和体积公式:
圆柱的表面积公式:S=2πr2+2πrl=2πr(r+l)(其中r为 底面半径,l为圆柱的高); 圆锥的表面积公式:S=πr2+πrl=πr(r+l)(其中r为底面 半径,l为母线长);
[答案] B
3.(2011· 北京高考)某四棱锥的三视图如图所示,该四棱锥的表面积 是 ( )
A.32 C.48
B.16+16 2 D.16+32 2
解析:该空间几何体是底面边长为 4、高为 2 的正四棱锥,这个四棱 1 锥的斜高为 2 2,故其表面积是 4×4+4× ×4×2 2=16+16 2. 2
答案:B
4.(2011· 福建高考)三棱锥P-ABC中,PA⊥底面ABC,PA =3,底面ABC是边长为2的正三角形,则三棱锥P-
ABC的体积等于________.
1 1 解析:依题意有,三棱锥 P-ABC 的体积 V= S△ABC· |PA|= 3 3 × 3 ×22×3= 3. 4
答案: 3
[悟方法
圆台的表面积公式:S=π(r′2+r2+r′l+rl)(其中r和
r′分别为圆台的上、下底面半径,l为母线长);
柱体的体积公式:V=Sh(S 为底面面积,h 为高); 1 锥体的体积公式:V= Sh(S 为底面面积,h 为高); 3 1 台体的体积公式: V= (S′+ S′S+S)h(S′、S 分别为上、 3 下底面面积,h 为高); 4 球的表面积和体积公式:S=4πR2,V= πR3(R 为球的半径). 3
高考数学(理科)二轮专题:第二篇专题四第1讲 概率、随机变量及其分布列
专题四 概率与统计第1讲 概率、随机变量及其分布列(限时45分钟,满分96分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·株洲二模)如图,在边长为1的正方形内有不规则图形Ω,由电脑随机从正方形中抽取10 000个点,若落在图形Ω内和图形Ω外的豆子分别为3 335,6 665,则图形Ω面积的估计值为A.13B.12C.14D.16解析 设图形Ω 的面积为S ,∵由电脑随机从正方形中抽取10 000个点,落在图形Ω内和图形Ω外的豆子分别为3 335,6 665,∴S 1=3 33510 000≈13,∴S ≈13.故选A. 答案 A2.(2019·潍坊模拟)四色猜想是世界三大数学猜想之一,1976年数学家阿佩尔与哈肯证明,称为四色定理.其内容是:“任意一张平面地图只用四种颜色就能使具有共同边界的国家涂上不同的颜色.”用数学语言表示为“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4四个数字之一标记,而不会使相邻的两个区域得到相同的数字.”如图,网格纸上小正方形的边长为1,粗实线围成的各区域上分别标有数字1,2,3,4的四色地图符合四色定理,区域A 和区域B 标记的数字丢失.若在该四色地图上随机取一点,则恰好取在标记为1的区域的概率所有可能值中,最大的是A.115B.110C.13D.1130解析 A ,B 只能有一个可能为1,题目求最大,令B 为1,则总数有30个,1号有10个,则概率为13.故选C.答案 C3.(2019·浙江衢州五校联考)随机变量的分布列如下:若E (X )=13,则D (X )的值是A.19B.29C.49D.59解析 由题设可得a +b =23,b -a =13⇒a =16,b =12,所以由数学期望的计算公式可得 E (X 2)=0×13+1×23=23,(E (X ))2=19,所以由随机变量的方差公式可得 D (X )=E (X 2)-(E (X ))2=59.故选D.答案 D4.(2019·河北省级示范校联合体联考)袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下24个随机数组:232 321 230 023 123 021 132 220 011 203 331 100 231 130 133 231 031 320 122 103 233 221 020 132 由此可以估计,恰好第三次就停止的概率为 A.18B.14C.16D.524解析 由题意可知,满足条件的随机数组中,前两次抽取的数中必须包含0或1,且0与1不能同时出现,出现0就不能出现1,反之亦然,第三次必须出现前面两个数字中没有出现的1或0,可得符合条件的数组只有3组:021,130,031,故所求概率为P =324=18.故选A.答案 A5.(2019·郑州一模)魔法箱中装有6张卡片,上面分别写着如下六个定义域为R 的函数:f 1(x )=2x ,f 2(x )=2x,f 3(x )=x 2,f 4(x )=sin x ,f 5(x )=cos x ,f 6(x )=1-2x1+2x,现从魔法箱中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得新函数为奇函数的概率是A.25B.35C.12D.13解析 首先结合f (-x )+f (x )与0的关系,判断该六个函数的奇偶性,结合题意可知1,4,6为奇函数,3,5为偶函数,2为非奇非偶函数,从6张卡片抽取2张,有C 26=15种,而任取2张卡片得到的新函数为奇函数,说明该两个函数为一奇一偶函数,故有3×2=6种,结合古典概型计算公式,相除得25.故选A.答案 A6.(2019·辽阳期末)一批排球中正品有m 个,次品有n 个,m +n =10(m ≥n ),从这批排球中每次随机取一个,有放回地抽取10次,X 表示抽到的次品个数.若D (X )=21,从这批排球中随机抽取两个,则至少有一个正品的概率p =A.4445B.1415C.79D.1315解析 依题意可得X ~B ⎝⎛⎭⎫10,n10, 则DX =10×n10×⎝⎛⎭⎫1-n 10=21, 又m ≥n ,则n ≤5,从而n =3, 则p =1-C 23C 210=1415.故选B.答案 B7.(2019·济南期末)如图,在△ABC 中,∠C =90°,BC =2,AC =3,三角形内的空白部分由三个半径均为1的扇形构成,向△ABC 内随机投掷一点,则该点落在阴影部分的概率为A.π6B .1-π6C.π4D .1-π4解析 由题意,题目符合几何概型,在△ABC 中,∠C =90°,BC =2,AC =3,面积为12×BC ×AC =3,阴影部分的面积为:三角形面积-12圆面积=3-π2,所以点落在阴影部分的概率为3-π23=1-π6.故选B.答案 B8.(2019·贵州重点中学联考)有一种“三角形”能够像圆一样,当作轮子用.这种神奇的三角形,就是以19世纪德国工程师勒洛的名字命名的勒洛三角形.这种三角形常出现在制造业中(例如图1中的扫地机器人).三个等半径的圆两两互相经过圆心,三个圆相交的部分就是勒洛三角形,如图2所示.现从图2中的勒洛三角形内部随机取一点,则此点取自阴影部分的概率为A.2π-334π-23 B.23π3-3C.32π-23D.2π-332π-23解析 设圆半径为R ,如图,易得△ABC 的面积为12·32R 2=34R 2,阴影部分面积为3·60πR 2360-3·34R 2=2π-334R 2,勒洛三角形的面积为2π-334R 2+34R 2=π-32R 2,若从勒洛三角形内部随机取一点, 则此点取自阴影部分的概率为P =阴影部分面积勒洛三角形面积=2π-334R 2π-32R 2=2π-332π-23.故选D.答案 D二、填空题(本大题共4小题,每小题5分,共20分)9.一个盒子装有3个红球和2个蓝球(小球除颜色外其他均相同),从盒子中一次性随机取出3个小球后,再将小球放回.重复50次这样的实验.记“取出的3个小球中有2个红球,1个蓝球”发生的次数为ξ,则ξ的方差是________.解析 由题意知ξ~B (n ,p ),其中n =50,p =C 23C 12C 35=610=35,∴D (ξ)=50×35×25=12.答案 1210.(2019·淮南二模)关于圆周率π的近似值,数学发展史上出现过很多有创意的求法,其中可以通过随机数实验来估计π的近似值.为此,李老师组织100名同学进行数学实验教学,要求每位同学随机写下一个实数对(x ,y ),其中0<x <1,0<y <1,经统计数字x 、y 与1可以构成钝角三角形三边的实数对(x ,y )为28个,由此估计π的近似值是________(用分数表示).解析 实数对(x ,y )落在区域⎩⎨⎧0<x <10<y <1的频率为0.28,又设A 表示“实数对(x ,y )满足⎩⎨⎧0<x <10<y <1且能与1构成钝角三角形”,则A 中对应的基本事件如图阴影部分所示:其面积为π4-12,故P (A )=π4-12≈0.28,所以π≈7825.答案782511.(2019·长春外国语学校月考)已知直线l 过点(-1,0),l 与圆C :(x -1)2+y 2=3相交于A 、B 两点,则弦长|AB |≥2的概率为________.解析 显然直线l 的斜率存在, 设直线方程为y =k (x +1), 代入(x -1)2+y 2=3中得, (k 2+1)x 2+2(k 2-1)x +k 2-2=0, ∵l 与⊙C 相交于A 、B 两点, ∴Δ=4(k 2-1)2-4(k 2+1)(k 2-2)>0, ∴k 2<3,∴-3<k <3,又当弦长|AB |≥2时,∵圆半径r =3, ∴圆心到直线的距离d ≤2,即|2k |1+k2≤2, ∴k 2≤1,∴-1≤k ≤1.由几何概型知,事件M :“直线l 与圆C 相交弦长|AB |≥2”的概率 P (M )=1-(-1)3-(-3)=33.答案3312.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析 设种子发芽为事件A ,种子成长为幼苗为事件B (发芽又成活为幼苗). 依题意P (B |A )=0.8,P (A )=0.9. 根据条件概率公式P (AB )=P (B |A )·P (A )=0.8×0.9=0.72, 即这粒种子能成长为幼苗的概率为0.72. 答案 0.72三、解答题(本大题共3小题,每小题12分,共36分)13.(2019·湖南三湘名校二联)某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为k ,当k ≥85时,产品为一等品;当75≤k <85时,产品为二等品;当70≤k <75时,产品为三等品.现有甲、乙两条生产线,各生产了100件该产品,测量每件产品的质量指标值,得到下面的试验结果.(以下均视频率为概率)甲生产线生产的产品的质量指标值的频数分布表:乙生产线生产的产品的质量指标值的频数分布表:(1)若从乙生产线生产的产品中有放回地随机抽取3件,求至少抽到2件三等品的概率; (2)若该产品的利润率y 与质量指标值k 满足关系y =⎩⎪⎨⎪⎧t ,k ≥855t 2,75≤k <85t 2,70≤k <75,其中0<t <15,从长期来看,哪条生产线生产的产品的平均利润率更高?请说明理由.解析 (1)由题意知,从乙生产线生产的产品中随机抽取一次抽中三等品的概率为110,所以至少抽到2件三等品的概率P =C 23×⎝⎛⎭⎫1102×910+⎝⎛⎭⎫1103=7250.(2)甲生产线生产的产品的利润分布列为所以E (y 甲)=0.6t +2t 2,乙生产线生产的产品的利润分布列为所以 E (y 乙)=0.5t +2.1t 2, 因为0<t <15,所以E (y 乙)-E (y 甲)=0.1t 2-0.1t =0.1t (t -1)<0,所以从长期来看,甲生产线生产的产品平均利润率较大.14.(2019·佛山禅城区二调)研究机构培育一种新型水稻品种,首批培育幼苗2 000株,株长均介于185 mm ~235 mm ,从中随机抽取100株对株长进行统计分析,得到如下频率分布直方图(1)求样本平均株长x -和样本方差s 2(同一组数据用该区间的中点值代替);(2)假设幼苗的株长X 服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2近似为样本方差s 2,试估计2 000株幼苗的株长位于区间(201,219)的株数;(3)在第(2)问的条件下,选取株长在区间(201,219)内的幼苗进入育种试验阶段,若每株幼苗开花的概率为34,开花后结穗的概率为23,设最终结穗的幼苗株数为ξ,求ξ的数学期望.附:83≈9;若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.683; P (μ-2σ<X <μ+2σ)=0.954;P (μ-3σ<X <μ+3σ)=0.997解析 (1)x -=190×0.02+200×0.315+210×0.35+220×0.275+230×0.04=210, s 2=202×0.02+102×0.315+102×0.275+202×0.04=83.(2)由(1)知, μ=x -=210,σ=83≈9, ∴P (201<X <219)=P (210-9<X <210+9)=0.683, 2 000×0.683=1 366∴2 000株幼苗的株长位于区间(201,219)的株数大约是1 366.(3)由题意,进入育种试验阶段的幼苗数1 366,每株幼苗最终结穗的概率P =12,则ξ-B ⎝⎛⎭⎫1 366,12, 所以E (ξ)=1 366×12=683.15.(2019·河北示范高中联合体联考)某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:(1)其中每月完成合格产品的件数不少于3 200件的员工被评为“生产能手”.由以上统计数据填写下面的2×2列联表,并判断是否有95%的把握认为“生产能手”与性别有关?(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2 600件以内的,计件单价为1元;超出(0,200]件的部分,累进计件单价为1.2元;超出(200,400]件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段的频率视为相应的概率,在该厂男员工中随机选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3 100元的人数为Z ,求Z 的分布列和数学期望.附:K 2=(ad -bc )2(a +b )(c +d )(a +c )(b +d ),解析 (1)因为K 2的观测值k =100×(48×8-42×2)250×50×90×10=4>3.841,所以有95%的把握认为“生产能手”与性别有关. (2)当员工每月完成合格产品的件数为3 000件时, 得计件工资为2 600×1+200×1.2+200×1.3 =3 100元,由统计数据可知,男员工实得计件工资不少于3 100元的概率为p 1=25,女员工实得计件工资不少于3 100元的概率为p 2=12,设2名女员工中实得计件工资不少于3 100元的人数为X ,1名男员工中实得计件工资在3 100元以及以上的人数为Y ,则X ~B ⎝⎛⎭⎫2,12,Y ~B ⎝⎛⎭⎫1,25, Z 的所有可能取值为0,1,2,3,P (Z =0)=P (X =0,Y =0)=⎝⎛⎭⎫1-122⎝⎛⎭⎫1-25=320, P (Z =1)=P (X =1,Y =0)+P (X =0,Y =1) =C 12·12·⎝⎛⎭⎫1-12⎝⎛⎭⎫1-25+⎝⎛⎭⎫1-12225=25, P (Z =2)=P (X =2,Y =0)+P (X =1,Y =1) =C 22⎝⎛⎭⎫122⎝⎛⎭⎫1-25+C 1212⎝⎛⎭⎫1-1225=720, P (Z =3)=P (X =2,Y =1)=⎝⎛⎭⎫122×25=110, 所以Z 的分布列为故E (Z )=0×320+1×25+2×720+3×110=75.。
选考内容-2017年高考数学(理)考纲揭秘及预测含解析
选考内容(一)坐标系与参数方程1.坐标系(1)理解坐标系的作用。
(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。
(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义。
(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2。
参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.学%(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用。
(二)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1) a b a b +≤+ . (2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.(2)了解下列柯西不等式的几种不同形式,理解它们的几何意义, 并会证明.①柯西不等式的向量形式:||||||.⋅≥⋅αβαβ ②22222()(+)()a b c d ac bd +≥+。
③222222121223231313()()()()()()x x y y x x y y x x y y -+-+-+-≥-+-。
(此不等式通常称为平面三角不等式。
)3.会用参数配方法讨论柯西不等式的一般情形:4。
会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明 一些简单问题。
6.会用数学归纳法证明伯努利不等式:了解当n 为大于1的实数时伯努利不等式也成立。
2017高考数学文新课标版考前冲刺复习讲义:第2部分专
透视全国高考 揭秘命题规律(四)——立体几何(全国卷第19题)作图问题与相关度量[学生用书P44]如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. 【解】 (1)交线围成的正方形EHGF 如图所示.(2)如图,作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,AH =10,HB =6. 故S 四边形A 1EHA =12(4+10)×8=56,S 四边形EB 1BH =12(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97⎝⎛⎭⎫79也正确.1.作图问题作图问题有下列三种情况.(1)平行问题:首先考虑线段的中点,构造三角形中位线或平行四边形与平行公理. 再结合线面平行或面面平行的判定定理说明或证明(根据题意是否给出).(2)围成的平面图形(截面)根据要求的截面图形(例如矩形、正方形、三角形等),首先观察原几何体的几何特征(例如平行与垂直或长度等特殊关系),画出合情的截面的图形(封闭).再结合相关的几何条件说明或证明画的图形的合情性(根据题意是否给予说明). 2.相关度量根据作图的结果,利用相关的计算思想和方法求出某些几何量. 一般以求几何体的体积为主.翻叠性问题[学生用书P44](2016·高考全国卷甲)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F分别在AD ,CD 上,AE =CF ,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.【解】 (1)证明:由已知得AC ⊥BD ,AD =CD. 又由AE =CF 得AE AD =CFCD ,故AC ∥EF .由此得EF ⊥HD ,EF ⊥HD ′, 所以AC ⊥HD ′.(2)由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 所以OH =1,D ′H =DH =3.于是OD ′2+OH 2=(22)2+12=9=D ′H 2, 故OD ′⊥OH .由(1)知,AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面BHD ′,于是AC ⊥OD ′. 又由OD ′⊥OH ,AC ∩OH =O , 所以OD ′⊥平面ABC . 又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′ABCFE 的体积V =13×694×22=2322.解决平面图形翻折为空间图形问题的关键是看翻折前后线面位置关系的变化,根据翻折的过程理清翻折前后位置关系中没有变化的量是哪些,发生变化的量是哪些,这些不变的量和变化的量反映了翻折后的空间图形的结构特征,求解问题时要综合考虑翻折前后的图形.空间位置关系与体积[学生用书P45]满分展示(满分12分)(2016·高考全国卷丙)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.,[解题程序] 第一步:计算AM 的值.第二步:取PB 的中点T ,并证明NT12BC . 第三步:证明AMNT 为平行四边形,MN ∥AT . 第四步:证明MN ∥平面P AB.第五步:求点N 到平面ABCD 的距离.[联想破译] 联想因素:线面垂直、线线平行、中点、体积.联想线路:(1)取BP 的中点T ,先结合条件证明四边形AMNT 为平行四边形,从而得到MN ∥AT ,再结合线面平行的判定定理可证.(2)由条件可知四面体N -BCM 的高(即点N 到底面的距离)为棱P A 的一半,由此可顺利求得结果.[标准答案]第(1)问得分点说明: 求出AM 的长度,得1分;推出TN ∥BC ,且TN =12BC 得2分;证明MN ∥AT 得2分; 证明MN ∥平面P AB 得1分(1)证明:由已知得AM =23AD =2.(1分)取BP 的中点T ,连接AT ,TN ,由N 为PC 的中点知TN ∥BC , TN =12BC =2. (3分)又AD ∥BC ,故TN AM ,四边形AMNT 为平行四边形,于是MN ∥AT . (5分)因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .( 6分)(2)因为P A ⊥平面ABCD , N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .(8分)取BC 的中点E ,连接AE ,由AB =AC =3得AE ⊥BC , AE =AB 2-BE 2= 5.由AM ∥BC 得(M 到BC 的距离为5,(10分) 故S △BCM =12×4×5=2 5.(11分)所以四面体N -BCM 的体积V N BCM =13×S △BCM × P A 2=453.(12分)第(2)问得分点说明:求出点N 到平面ABCD 的距离得2分; 求出M 到BC 的距离得2分; 求出S △BCM 得1分;求出体积得1分\a\vs4\al ((12分) 第六步:求M 到BC 的距离. 第七步:求△BCM 的面积. 第八步:求四面体N -BCM 的体积. [满分心得] (1)写全得分步骤对于解题过程中是得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写全,如第(1)问中,MN ∥AT ,第(2)问中N 到平面ABCD 的距离为12P A .(2)写明得分关键对于解题过程中的关键点,有则给分,无则没分,所以在答题时一定要写清得分关键点,如第(1)问中一定要写出判断直线MN ∥平面P AB 过程中的两个条件,写不全不能得全分;第(2)问中求点N 到平面ABCD 的距离和M 到BC 的距离时,一定要写出推理过程,否则要扣分.。
2017年全国高考数学考前复习专题4.1立体几何和答案
【知识网络】【考点聚焦】对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C 表示).一.空间几何体的结构、三视图及表面积与体积1.【原题】(必修2第15页练习第4题)如图是一个几何体的三视图,想象它的几何结构特征,并说出它的名称.正视图侧视图【原题解读】(1)知识上;需要明确三视图的原则即;主俯长对正,主侧高对齐,俯侧宽相等。
(2)思路方法上;需要经历由三视图对原几何体的直观想象,操作确认(由三视图画出直观图),思辨论证(由所画的直观图,再看是否能获得对应的三视图)。
(3)考察空间想象能力及推理论证能力。
变式.【2014湖北高考】在如图所示的空间直角坐标系xyzO 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和②【答案】D【解析】设)2,2,2(2,0,0(DCBA,0,2,2(),),1,2,1(),在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.2. 【原题】(必修2第28页习题1.3第3题) 如图将一个长方体沿相邻三个面的对角线截出一个棱锥,求棱锥的体积与剩下的几何体体积的比。
【原题解读】本题以最为熟悉的几何体长方体为背景,进行截取并求体积。
可采用分解的思想,即求出长方体和三棱锥的体积,而剩下体积可减出。
从而求出体积比。
体现了基本运算能力、空间想象能力和分解与组合的思想。
变式.【2015高考新课标2】一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .81B .71C .61D .51【答案】D3.【原题】(必修2第29习题1.3 B组1)如图是一个奖杯的三视图,是根据奖杯的三视图计算它的表面积和体积(尺寸如图,单位:cm,π取3.14,结果分别精确到1cm²,1cm³,可用计算器)。
2017版高考数学一轮总复习第七章立体几何第一节空间
第一节空间几何体的构造及其三视图和直观图【最新考纲】 1. 认识柱、锥、台、球及其简单组合体的构造特点,并能运用这些特点描绘现实生活中简单物体的构造 .2. 能画出简单空间图形 ( 长方体、球、圆柱、圆锥、棱柱等的简略组合 ) 的三视图,能辨别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图 .3. 会用平行投影方法画出简单空间图形的三视图与直观图,认识空间图形的不一样表示形式.1.多面体的构造特点(1)棱柱的侧棱都相互平行,上下底面是全等的多边形.(2)棱锥的底面是随意多边形,侧面是有一个公共极点的三角形.(3)棱台可由平行于底面的平面截棱锥获得,其上下底面是相像多边形.2.旋转体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形任向来角边所在的直线圆台直角梯形垂直于底边的腰所在的直线球半圆直径所在的直线3.空间几何体的三视图(1)三视图的名称几何体的三视图包含:正视图、侧视图、俯视图.(2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的正视图、侧视图、俯视图分别是从几何体的正前面、正左方、正上方察看几何体的正投影图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是(1)原图形中 x 轴、y 轴、z 轴两两垂直,直观图中, x′轴,y′轴的夹角为 45°或 135°,z′轴与 x′轴和 y′轴所在平面垂直.(2) 原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x 轴和 z 轴的线段在直观图中保持原长度不变;平行于y 轴的线段在直观图中长度为本来的一半.1. ( 怀疑夯基 ) 判断以下结论的正误.( 正确的打“√”,错误的打“×”)(1) 有两个面平行,其他各面都是平行四边形的几何体是棱柱.( )(2) 有一个面是多边形,其他各面都是三角形的几何体是棱锥.( )(3) 用斜二测画法画水平搁置的∠A 时,若∠A 的两边分别平行于x 轴和 y 轴,且∠ A=90°,则在直观图中,∠A=45° .()(4) 正方体、球、圆锥各自的三视图中,三视图均同样.()答案: (1) ×(2) ×(3) ×(4) ×2.如图,长方体 ABCD A′ B′ C′ D′中被截去一部分,此中EH∥A′D′.剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.简单组合体分析:由几何体的构造特点,剩下的几何体为五棱柱.答案: C3.(2016 ·邯郸调研) 一几何体的直观图如下图,以下给出的四个俯视图中正确的选项是()分析:因为组合体的上部分( 五面体 ) 与下部分 ( 长方体 ) 有同样的底面,则几何体在下底面的投影为图形 B.答案: B4.(2015 ·课标全国Ⅱ卷) 一个正方体被一个平面截去一部分后,节余部分的三视图如以下图,则截去部分体积与节余部分体积的比值为()1 1 1 1A. 8B. 7C.6D. 5分析:如下图,由条件知,截去部分是正三棱锥D ABC.设正方体的棱长为a,则 V =a3 6 ,D ABC所以节余部分的体积V =5 3剩6a ,1故它们的体积之比为5.答案: D5.以边长为 1 的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于 ________.分析:由题意得圆柱的底面半径r =1,母线 l = 1.所以圆柱的侧面积S= 2πrl = 2π.答案: 2π一种思想棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后获得的,所以在解决棱台和圆台的有关问题时,常“还台为锥”,表现了转变的数学思想.两点注意1.注意空间几何体的不一样搁置对三视图的影响.2.画直观图注意平行性、长度两个因素.(1) 平行性不变; (2) 平行于 y 轴的线段长度减半,平行于x 轴、 z 轴的线段长度不变.三条规则——画三视图应按照的三条规则1.画法例则:“长对正,宽相等,高平齐”.2.摆放规则:侧视图在正视图的右边,俯视图在正视图的正下方.3.实虚线的画法例则:可见轮廓线和棱用实线画出,不行见线和棱用虚线画出.A 级基础稳固一、选择题1.(2014 ·福建卷 ) 某空间几何体的正视图是三角形,则该几何体不行能是() A.圆柱B.圆锥C.四周体D.三棱柱分析:由三视图知识知圆锥、四周体、三棱柱( 放倒看 ) 都能使其正视图为三角形,而圆柱的正视图不行能为三角形.答案: A2.一个锥体的正视图和侧视图如下图,下边选项中,不行能是该锥体的俯视图的是()分析:注意到在三视图中,俯视图的宽度应与侧视图的宽度相等,而在选项 C 中,其宽3,与题中所给的侧视图的宽度 1 不相等,所以选 C.度为2答案: C3.已知正方体的棱长为 1,其俯视图是一个面积为 1 的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.3B.1C.2+ 1D. 22 2分析:因为该正方体的俯视图是面积为 1 的正方形,侧视图是一个面积为2的矩形,所以该几何体的正视图是一个长为2,宽为 1 的矩形,其面积为 2.答案: D4.(2014 ·北京卷 ) 在空间直角坐标系O xyz 中,已知 A(2 ,0,0) ,B(2 ,2,0) ,C(0 ,2, 0) ,D(1 ,1,2) .若 S1,S2,S3分别是三棱锥D ABC在 xOy,yOz, zOx 坐标平面上的正投影图形的面积,则()A. S1= S2=S3B.S2=S1且S2≠ S3C. S3= S1且 S3≠ S2D.S3=S2且S3≠ S1分析:如右图所示。
2017高考数学理新课标版考前冲刺复习讲义:第2部分专
第3讲 空间向量与立体几何利用空间向量证明平行与垂直 共研典例 类题通法 设直线l 的方向向量为a =(a 1,b 1,c 1),平面α、β的法向量分别为μ=(a 2,b 2,c 2),υ=(a 3,b 3,c 3),则有:(1)线面平行l ∥α⇔a ⊥μ⇔a·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行α∥β⇔μ∥υ⇔μ=λυ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥υ⇔μ·υ=0⇔a 2a 3+b 2b 3+c 2c 3=0.如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD都是正方形且互相垂直,M 为AB 的中点,O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .【证明】 由题意,AB ,AD ,AE 两两垂直,以A 为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝⎛⎭⎫12,0,0,O ⎝⎛⎭⎫12,12,12.(1)OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0), 所以OM →·BA →=0,所以OM →⊥BA →. 因为棱柱ADE -BCF 是直三棱柱,所以AB ⊥平面BCF ,所以BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,所以OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).因为DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0), 由n 1·DF →=n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,解得⎩⎨⎧y 1=12x 1,z 1=-12x 1,令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12. 同理可得n 2=(0,1,1). 因为n 1·n 2=0,所以平面MDF ⊥平面EFCD .利用空间向量证明平行与垂直的步骤(1)建立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系.(2)建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素.(3)通过空间向量的运算研究平行、垂直关系. (4)根据运算结果解释相关问题. [跟踪训练]如图所示,已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .[证明] (1)如图建立空间直角坐标系A -xyz ,令AB =AA 1=4, 则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连接CN ,则N (2,0,0),C (0,4,0),D (2,0,2), 所以DE →=(-2,4,0),NC →=(-2,4,0), 所以DE →=NC →,所以DE ∥NC , 又因为NC ⊂平面ABC ,DE ⊄平面ABC . 故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0).B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.所以B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又因为AF ∩FE =F ,所以B 1F ⊥平面AEF .利用空间向量求空间角 高频考点 多维探明 设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),υ=(a 4,b 4,c 4)(以下相同).(1)线线夹角设l ,m 的夹角为θ⎝⎛⎭⎫0≤θ≤π2,则 cos θ=|a·b ||a||b|=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝⎛⎭⎫0≤θ≤π2, 则sin θ=|a·μ||a||μ|=|cos 〈a ,μ〉|.(3)面面夹角设平面α、β的夹角为θ⎝⎛⎭⎫0≤θ≤π2, 则|cos θ|=|μ·υ||μ||υ|=|cos 〈μ,υ〉|.利用空间向量求线线角、线面角(2016·高考全国卷丙)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值. 【解】 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB 2-⎝⎛⎭⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A -xyz .由题意知,P (0,0,4),M (0,2,0),C ()5,2,0,N ⎝⎛⎭⎫52,1,2,PM →=(0,2,-4),PN →=⎝⎛⎭⎫52,1,-2,AN →=⎝⎛⎭⎫52,1,2.设n =(x ,y ,z )为平面PMN 的法向量, 则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN 所成角的正弦值为8525.利用空间向量求二面角(2016·高考全国卷乙)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E -BC -A 的余弦值.【解】 (1)证明:由已知可得AF ⊥DF ,AF ⊥FE , 所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC . (2)过D 作DG ⊥EF ,垂足为G ,以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则DF =2,DG =3, 可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知,AB ∥EF ,所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°.从而可得C (-2,0,3).连接AC ,则EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.(1)运用空间向量求空间角的一般步骤①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求空间角的注意点①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. ②两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角. [题组通关]1.(2016·南昌第一次模拟测试)如图,四棱锥S ABCD 中,SD ⊥底面ABCD ,AB ∥DC ,AD ⊥DC ,AB =AD =1,DC =SD =2,E 为棱SB 上的一点,且SE =2EB .(2)求二面角A -DE -C 的大小.[解] 分别以DA ,DC ,DS 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系(如图),连接DB ,则A (1,0,0),B (1,1,0),C (0,2,0),S (0,0,2),DB →=(1,1,0),DS →=(0,0,2).(1)证明:因为SE =2EB ,所以DE →=23DB →+13DS →=23×(1,1,0)+13×(0,0,2)=⎝⎛⎭⎫23,23,23. 又BC →=(-1,1,0),BS →=(-1,-1,2),所以DE →·BC →=0,DE →·BS →=0,所以DE →⊥BC →,DE →⊥BS →.又BC ∩BS =B ,所以DE ⊥平面SBC . (2)由(1)知,DE ⊥平面SBC , 因为EC ⊂平面SBC ,所以DE ⊥EC .由SE =2EB ,知E ⎝⎛⎭⎫23,23,23,DE →=⎝⎛⎭⎫23,23,23,EC →=⎝⎛⎭⎫-23,43,-23, 取DE 中点F ,连接AF ,则F ⎝⎛⎭⎫13,13,13,F A →=⎝⎛⎭⎫23,-13,-13, 故F A →·DE →=0,由此得F A ⊥DE ,所以向量F A →与EC →的夹角等于二面角A -DE -C 的平面角. 又cos 〈F A →,EC →〉=F A →·EC →|F A →||EC →|=-12,所以二面角A -DE -C 的大小为120°.2.(2016·合肥第二次质检)如图,六面体ABCDHEFG 中,四边形ABCD 为菱形,AE ,BF ,CG ,DH 都垂直于平面ABCD .若DA =DH =DB =4,AE =CG =3.(1)求证:EG ⊥DF ;(2)求BE 与平面EFGH 所成角的正弦值.[解] (1)证明:连接AC ,由AE 綊CG 可知四边形AEGC 为平行四边形,所以EG ∥AC ,而AC ⊥BD ,AC ⊥BF ,所以EG ⊥BD ,EG ⊥BF ,因为BD ∩BF =B ,所以EG ⊥平面BDHF ,又DF ⊂平面BDHF ,所以EG ⊥DF . (2)设AC ∩BD =O ,EG ∩HF =P ,由已知可得:平面ADHE ∥平面BCGF ,所以EH ∥FG , 同理可得:EF ∥HG ,所以四边形EFGH 为平行四边形, 所以P 为EG 的中点,O 为AC 的中点, 所以OP 綊AE ,从而OP ⊥平面ABCD ,又OA ⊥OB ,所以OA ,OB ,OP 两两垂直,由平面几何知识,得BF =2. 如图,建立空间直角坐标系O xyz ,则B (0,2,0),E (23,0,3),F (0,2,2),P (0,0,3),所以BE →=(23,-2,3),PE →=(23,0,0),PF →=(0,2,-1).设平面EFGH 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧PE →·n =0PF →·n =0,可得⎩⎪⎨⎪⎧x =02y -z =0,令y =1,则z =2.所以n =(0,1,2). 设BE 与平面EFGH 所成角为θ, 则sin θ=|BE →·n ||BE →|·|n |=4525.利用空间向量解决探索性问题 共研典例 类题通法(2016·兰州诊断考试)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,P A =AB =AD =2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC =4,点M 为PC 的中点,点E 为BC 边上的动点,且BEEC=λ.(1)求证:平面ADM ⊥平面PBC ;(2)是否存在实数λ,使得二面角P -DE -B 的余弦值为22?若存在,试求出实数λ的值;若不存在,说明理由.【解】 (1)证明:取PB 的中点N ,连接MN 、AN , 因为M 是PC 的中点,所以MN ∥BC ,MN =12BC =2,又BC ∥AD ,所以MN ∥AD ,MN =AD ,所以四边形ADMN 为平行四边形,因为AP ⊥AD ,AB ⊥AD ,所以AD ⊥平面P AB , 所以AD ⊥AN ,所以AN ⊥MN ,因为AP =AB ,所以AN ⊥PB ,所以AN ⊥平面PBC , 因为AN ⊂平面ADM ,所以平面ADM ⊥平面PBC .(2)法一:存在实数λ=1,使得二面角P -DE -B 的余弦值为22. 因为λ=1,所以点E 为BC 边的中点, 所以DE ∥AB , 所以DE ⊥平面P AD ,所以∠PDA 为二面角P -DE -B 的一个平面角. 在等腰Rt △PDA 中,∠PDA =π4,所以二面角P -DE -B 的余弦值为22. 法二:存在符合条件的λ.以A 为原点,建立如图所示的空间直角坐标系A -xyz . 设E (2,t ,0),P (0,0,2),D (0,2,0),B (2,0,0), 从而PD →=(0,2,-2),DE →=(2,t -2,0), 设平面PDE 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·PD →=0n 1·DE →=0,即⎩⎪⎨⎪⎧2y -2z =02x +(t -2)y =0,令y =z =2,解得x =2-t , 所以n 1=(2-t ,2,2),又平面DEB 即为平面xAy ,故其一个法向量为n 2=(0,0,1), 则|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=2(2-t )2+4+4=22,解得t =2,可知λ=1.利用空间向量巧解探索性问题(1)空间向量最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.(2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.[跟踪训练](2016·昆明两区七校调研)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=1,E 为BC 中点.(1)求证:C 1D ⊥D 1E ;(2)在棱AA 1上是否存在一点M ,使得BM ∥平面AD 1E ?若存在,求AM AA 1的值,若不存在,说明理由; (3)若二面角B 1-AE -D 1的大小为90°,求AD 的长.[解] (1)证明:以D 为原点,建立如图所示的空间直角坐标系D -xyz ,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,1,0),B 1(a ,1,1),C 1(0,1,1),D 1(0,0,1),E ⎝⎛⎭⎫a2,1,0, 所以C 1D →=(0,-1,-1),D 1E →=⎝⎛⎭⎫a 2,1,-1, 所以C 1D →·D 1E →=0,所以C 1D ⊥D 1E . (2)设AMAA 1=h ,则M (a ,0,h ), 所以BM →=(0,-1,h ),AE →=⎝⎛⎭⎫-a 2,1,0,AD 1→=(-a ,0,1), 设平面AD 1E 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AE →·n =-a 2x +y =0AD 1→·n =-ax +z =0,所以平面AD 1E 的一个法向量为n =(2,a ,2a ),因为BM ∥平面AD 1E ,所以BM →⊥n ,即BM →·n =2ah -a =0,所以h =12.即在AA 1上存在点M ,使得BM ∥平面AD 1E ,此时AM AA 1=12.(3)连接AB 1,B 1E ,设平面B 1AE 的法向量为m =(x ′,y ′,z ′),AE →=⎝⎛⎭⎫-a 2,1,0,AB 1→=(0,1,1),则⎩⎪⎨⎪⎧AE →·m =-a 2x ′+y ′=0AB 1→·m =y ′+z ′=0,所以平面B 1AE 的一个法向量为m =(2,a ,-a ). 因为二面角B 1-AE -D 1的大小为90°, 所以m ⊥n ,所以m·n =4+a 2-2a 2=0,因为a >0,所以a =2,即AD =2.课时作业1.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为CD 和C 1C 的中点,则直线AE 与D 1F 所成角的余弦值为( )A.13 B.25 C.35D.37B [解析] 以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系(图略).若棱长为2,则A (2,0,0)、E (0,1,0)、D 1(0,0,2)、F (0,2,1).所以EA →=(2,-1,0),D 1F →=(0,2,-1), cos 〈EA →,D 1F →〉=EA →·D 1F →|EA →||D 1F →|=-25·5=-25.则直线AE 与D 1F 所成角的余弦值为25.2.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22B [解析] 以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1, 则A1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), 所以A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧y -z =0,1-12z =0,所以⎩⎪⎨⎪⎧y =2,z =2.所以n 1=(1,2,2).因为平面ABCD 的一个法向量为n 2=(0,0,1), 所以cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.3.正方体ABCD A 1B 1C 1D 1的棱长为1,若动点P 在线段BD 1上运动,则DC →·AP →的取值范围是________.[解析] 依题意,设BP →=λBD 1→,其中λ∈[0,1],DC →·AP →=AB →·(AB →+BP →)=AB →·(AB →+λBD 1→)=AB →2+λAB →·BD 1→=1+3λ·⎝⎛⎭⎫-33=1-λ∈[0,1],因此DC →·AP →的取值范围是[0,1].[答案] [0,1]4.如图,矩形ABCD 中,AB =2,BC =4,将△ABD 沿对角线BD 折起到△A ′BD 的位置,使点A ′在平面BCD 内的射影点O 恰好落在BC 边上,则异面直线A ′B 与CD 所成角的大小为________.[解析] 过O 作OE ∥CD 交BD 于点E ,由题意知,A ′O ⊥OC ,A ′O ⊥OE ,OE ⊥OC ,故以O 为原点,OC →,OE →,OA ′→分别为x ,y ,z 轴正方向建立空间直角坐标系,则A ′(0,0,3),B (-1,0,0),C (3,0,0),D (3,2,0),所以A ′B →=(-1,0,-3),CD →=(0,2,0),A ′B →·CD→=0,所以A ′B →⊥CD →,故异面直线A ′B 与CD 所成角的大小为90°.[答案] 90°5.如图,在正方体ABCD -A 1B 1C 1D 1中,其棱长为2,E 为棱DD 1的中点,F 为对角线DB 的中点.(1)求证:平面CFB 1⊥平面EFB 1;(2)求异面直线EF 与B 1C 所成角的余弦值;(3)求直线FC 1与平面B 1CA 所成角的正弦值.[解] (1)证明:因为F 为DB 的中点,则CF ⊥BD ,又CF ⊥D 1D ,BD ∩D 1D =D ,所以CF ⊥平面BB 1D 1D ,因为CF ⊂平面CFB 1,所以平面CFB 1⊥平面EFB 1.(2)以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则D (0,0,0),E (0,0,1),F (1,1,0),B 1(2,2,2),C (0,2,0),C 1(0,2,2).所以EF →=(1,1,-1),B 1C →=(-2,0,-2).所以异面直线EF 与B 1C 所成角的余弦值为|cos 〈B 1C →,EF →〉|=⎪⎪⎪⎪⎪⎪2-23×(-2)2+(-2)2=0.(3)由(1)知CF ⊥EF ,由(2)知EF ⊥B 1C ,又B 1C ∩CF =C ,B 1C ,CF ⊂平面B 1CA ,所以EF ⊥平面B 1CA .所以EF →是平面B 1CA 的法向量.因为FC 1→=(-1,1,2),所以cos 〈FC 1→,EF →〉=EF →·FC 1→|EF →||FC 1→|=-23, 所以直线FC 1与平面B 1CA 所成角的正弦值为23. 6.(2016·兰州市实战考试)如图,在四棱锥P -ABCD 中,侧面P AB ⊥底面ABCD ,底面ABCD 为矩形,P A =PB ,O 为AB 的中点,OD ⊥PC .(1)求证:OC ⊥PD ;(2)若PD 与平面P AB 所成的角为30°,求二面角D -PC -B 的余弦值.[解] (1)证明:连接OP ,因为P A =PB ,O 为AB 的中点,所以OP ⊥AB .因为侧面P AB ⊥底面ABCD ,所以OP ⊥平面ABCD ,所以OP ⊥OD ,OP ⊥OC .因为OD ⊥PC ,所以OD ⊥平面OPC ,所以OD ⊥OC ,又OP ⊥OC ,所以OC ⊥平面OPD ,所以OC ⊥PD .(2)法一:在矩形ABCD 中,由(1)得OD ⊥OC ,所以AB =2AD ,不妨设AD =1,则AB =2.因为侧面P AB ⊥底面ABCD ,底面ABCD 为矩形,所以DA ⊥平面P AB ,CB ⊥平面P AB ,△DP A ≌△CPB ,所以∠DP A 为直线PD 与平面P AB 所成的角,所以∠DP A =30°,∠CPB =30°,P A =PB =3,所以DP =CP =2,所以△PDC 为等边三角形.设PC 的中点为M ,连接DM ,则DM ⊥PC .在Rt △CBP 中,过M 作NM ⊥PC ,交PB 于点N ,连接ND ,则∠DMN 为二面角D -PC -B 的一个平面角.由于∠CPB =30°,PM =1,故在Rt △PMN 中,MN =33, PN =233. 因为cos ∠APB =3+3-42×3×3=13, 所以AN 2=⎝⎛⎭⎫2332+3-2×233×3×13=3, 所以ND 2=3+1=4,所以cos ∠DMN =⎝⎛⎭⎫332+3-42×33×3=-13, 即二面角D -PC -B 的余弦值为-13. 法二:取CD 的中点E ,以O 为原点,OE ,OB ,OP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系O -xyz .在矩形ABCD 中,由(1)得OD ⊥OC ,所以AB =2AD ,不妨设AD =1,则AB =2.因为侧面P AB ⊥底面ABCD ,底面ABCD 为矩形,所以DA ⊥平面P AB ,CB ⊥平面P AB ,△DP A ≌△CPB ,所以∠DP A 为直线PD 与平面P AB 所成的角,所以∠DP A =30°,∠CPB =30°,P A =PB =3,所以B (0,1,0),C (1,1,0),D (1,-1,0),P (0,0,2),从而PC →=(1,1,-2),CD →=(0,-2,0).设平面PCD 的法向量为n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧PC →·n 1=0CD →·n 1=0得,⎩⎨⎧x 1+y 1-2z 1=0-2y 1=0, 可取n 1=(2,0,1).同理,可取平面PCB 的一个法向量为n 2=(0,-2,-1).于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-13, 所以二面角D -PC -B 的余弦值为-13.7.(2016·西安第一次质量检测)在如图所示的空间几何体中,平面ACD ⊥平面ABC ,△ACD 与△ACB 是边长为2的等边三角形,BE =2,BE 和平面ABC 所成的角为60°,且点E 在平面ABC 上的射影落在∠ABC 的平分线上.(1)求证:DE ∥平面ABC ;(2)求二面角E -BC -A 的余弦值.[解] (1)证明:由题意知,△ABC ,△ACD 都是边长为2的等边三角形,取AC 的中点O ,连接BO ,DO ,则BO ⊥AC ,DO ⊥AC .又平面ACD ⊥平面ABC ,所以DO ⊥平面ABC ,作EF ⊥平面ABC ,那么EF ∥DO ,根据题意,点F 落在BO 上,因为BE 和平面ABC 所成的角为60°,所以∠EBF =60°,因为BE =2,所以EF =DO =3,所以四边形DEFO 是平行四边形,所以DE ∥OF .因为DE ⊄平面ABC ,OF ⊂平面ABC ,所以DE ∥平面ABC .(2)建立如图所示的空间直角坐标系O -xyz ,则B (0,3,0),C (-1,0,0),E (0,3-1,3),所以BC →=(-1,-3,0),BE →=(0,-1,3),平面ABC 的一个法向量为n 1=(0,0,1),设平面BCE 的法向量为n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧n 2·BC →=0n 2·BE →=0, 所以⎩⎨⎧-x -3y =0-y +3z =0, 取z =1,所以n 2=(-3,3,1).所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=1313,又由图知,所求二面角的平面角是锐角,所以二面角E -BC -A 的余弦值为1313. 8.(2016·福建省毕业班质量检测)如图,三棱柱ABC -A 1B 1C 1中,底面ABC 为等腰直角三角形,AB =AC =1,BB 1=2,∠ABB 1=60°.(1)证明:AB ⊥B 1C ;(2)若B 1C =2,求AC 1与平面BCB 1所成角的正弦值.[解] (1)证明:连接AB 1,在△ABB 1中,AB =1, BB 1=2,∠ABB 1=60°,由余弦定理得,AB 21=AB 2+BB 21-2AB ·BB 1·cos ∠ABB 1=3, 所以AB 1=3,所以BB 21=AB 2+AB 21,所以AB 1⊥AB .又△ABC 为等腰直角三角形,且AB =AC , 所以AC ⊥AB ,因为AC ∩AB 1=A ,所以AB ⊥平面AB 1C .又B 1C ⊂平面AB 1C ,所以AB ⊥B 1C .(2)因为AB 1=3,AB =AC =1,B 1C =2,所以B 1C 2=AB 21+AC 2,所以AB 1⊥AC .如图,以A 为原点,以AB →,AC →,AB 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (0,0,0),B 1(0,0,3),B (1,0,0),C (0,1,0),所以BB 1→=(-1,0,3),BC →=(-1,1,0). 设平面BCB 1的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧BB 1→·n =0BC →·n =0,得 ⎩⎨⎧-x +3z =0-x +y =0,令z =1,得x =y =3, 所以平面BCB 1的一个法向量为n =(3,3,1).因为AC 1→=AC →+CC 1→=AC →+BB 1→=(0,1,0)+(-1,0,3)=(-1,1,3),所以cos 〈AC 1→,n 〉=AC 1→·n |AC 1→||n |=35×7=10535, 所以AC 1与平面BCB 1所成角的正弦值为10535.。
热点14空间几何体2017年高考数学二轮核心考点总动员(附解析)
2017届高考数学考点总动员【二轮精品】第一篇热点14 空间几何体【热点考法】本热点的题型为选择填空题,主要考查由三视图求原几何体的表面积、体积、文科求体积占多数,理科则求面积居多,考查空间想象能力、运算求解能力,难度为中档或以下试题,分值为5分.【热点考向】考向一空间几何体的三视图【解决法宝】在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.在处理三视图问题时,要根据“长对正,宽相等、高平齐”的原则由三视图确定对应几何体中的量,或由几何体确定三视图中的量.例1【辽宁省沈阳市2016届高三教学质量监测(一)】“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如下左图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是()【分析】先由三视图确定主视图和侧视图完全相同时,再根据几何体确定俯视图.【解析】俯视图是正方形,曲线在其上面的投影恰为正方形的对角线,故选B.考向二几何体的表面积【解决法宝】利用三视图求解几何体的表面积,关键是确定几何体的形状和相关数据,计算出各个面的面积,再求和即为表面积,掌握应用三视图的“长对正、高平齐、宽相等”.例2【重庆八中2017届高三上学期二调,9】某几何体的三视图如图所示,则该几何体的表面积为()A.50 B.50.5 C.51.5 D.60【分析】由三视图知,对应的几何体是底面是直角边为3和4的直角三角形的直三棱柱消去一个同底的三棱锥且三棱锥的高为3,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算,在求各面面积之和即可.考向三几何体的体积【解决法宝】1.求简单几何体的体积,要选择适当的底面和高,然后应用公式进行计算. 2.求几何体的体积的常用方法有割补法和等积变换法.(1)割补法:求一个几何体的体积可以将这个几何体分割成几个柱体、椎体等,分别求出柱体、椎体等的体积,从而得出几何体的体积.(2)等体积转化法:利用三棱锥的每一个面可做底面.①求体积时,可选择容易计算的方式来求解;②利用“等积性”可求“点到面的距离”.3.利用三视图为载体求解几何体的体积,关键是是根据三视图想象原几何体的形状构成,并从三视图图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.例3【河北衡水中学2017届上学期一调,3】如图,网格纸上小正方形的边长为1,粗线或虚线画出某几何体的三视图,该几何体的体积为()A .8B .12C .18D .24【分析】由三视图知,该几何体是一个三棱锥与三棱柱的组合体,可以确定其相关数据,即可计算其体积.考向四 球的切接问题【解决法宝】①涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解,球内接正棱锥、正棱柱、圆柱、圆锥的球心在高上,球的截面性质是求解此类问题重要工具.②若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则22224c b a R ++=,把有关元素“补形”为一个球内接长方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.例4.【江西南昌市2017届摸底考试,9】已知一个几何体的三视图如图所示,若该几何体外接球的表面积为8π,则h =( )A .1BCD .2【分析】由三视图知,对应的几何体为一个三棱锥,侧棱垂直底面,底面为一等腰直角三角形,高为1,底为2,将三棱锥补成一个长方体,由球的表面积求出球的半径,由长方体的对角线性质即可列出关于h 的方程,即可解出h 。
2017高考数学(理)(新课标版)考前冲刺复习讲义:透视全国高考揭秘命题规律(五)含答案
透视全国高考揭秘命题规律(五)——解析几何(全国卷第20题)圆锥曲线中的特性问题圆锥曲线除一些基本的几何性质外,其内含很多精彩优美的几何特性,这些深藏不露的优美特性的证明(或作为隐含的条件)是如今高考试题的主打题型之一,必须引起高度关注.(1)(2015·高考全国卷Ⅱ节选)已知椭圆C:9x2+y2=m2(m〉0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【证明】设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2,得(k2+9)x2+2kbx+b2-m2=0,故x M=错误!=错误!,y M=kx M+b=错误!.于是直线OM的斜率k OM=错误!=-错误!,即k OM·k=-9。
所以直线OM的斜率与l的斜率的乘积为定值.说明:①本题所证明的两直线斜率的乘积为定值是椭圆众多特性之一,该问题还可以用“点差法”证明.②该特性还可以推广到双曲线,用“点差法”证明如下.设AB是双曲线x2a2-错误!=1(a〉0,b〉0)不过中心和与坐标轴不平行的弦,M为AB的中点.求证k AB·k OM=错误!。
证明:设A(x1,y1),B(x2,y2),M(x0,y0),则错误!-错误!=1,①错误!-错误!=1, ②且x1+x2=2x0,y1+y2=2y0,①-②得错误!-错误!=0,即错误!=错误!所以y1-y2x1-x2·错误!=错误!.即k AB·k OM=错误!。
(2)(2016·高考全国卷丙节选)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.若F在线段AB上,R是PQ的中点,证明AR∥FQ。
【证明】由题知F错误!.设l1:y=a,l2:y=b,则ab≠0,且A错误!,B错误!,P错误!,Q错误!,R错误!。
【精品】2017高考数学(理)(新课标版)考前冲刺复习:第2部分专题4第3讲空间向量与立体几何含答案
课时作业1.在正方体ABCD A 1B 1C 1D 1中,E ,F 分别为CD 和C 1C 的中点,则直线AE 与D 1F 所成角的余弦值为( )A.13B.25C.35D.37B [解析] 以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系(图略).若棱长为2,则A (2,0,0)、E (0,1,0)、D 1(0,0,2)、F (0,2,1).所以EA →=(2,-1,0),D 1F →=(0,2,-1),cos 〈EA →,D 1F →〉=EA →·D 1F →|EA →||D 1F →|=-25·5=-25. 则直线AE 与D 1F 所成角的余弦值为25. 2.在正方体ABCD A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22B [解析] 以A 为原点建立如图所示的空间直角坐标系A xyz ,设棱长为1,则A1(0,0,1),E ⎝⎛⎭⎪⎫1,0,12,D (0,1,0), 所以A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎪⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0,所以⎩⎪⎨⎪⎧y =2,z =2.所以n 1=(1,2,2). 因为平面ABCD 的一个法向量为n 2=(0,0,1),所以cos 〈n 1,n 2〉=23×1=23. 即所成的锐二面角的余弦值为23.3.正方体ABCD A 1B 1C 1D 1的棱长为1,若动点P 在线段BD 1上运动,则DC →·AP →的取值范围是________.[解析] 依题意,设BP →=λBD 1→,其中λ∈[0,1],DC →·AP →=AB →·(AB →+BP →)=AB →·(AB →+λBD 1→)=AB →2+λAB →·BD 1→=1+3λ·⎝ ⎛⎭⎪⎫-33=1-λ∈[0,1],因此DC →·AP →的取值范围是[0,1].[答案] [0,1]4.如图,矩形ABCD 中,AB =2,BC =4,将△ABD 沿对角线BD 折起到△A ′BD 的位置,使点A ′在平面BCD 内的射影点O 恰好落在BC 边上,则异面直线A ′B 与CD 所成角的大小为________.[解析] 过O 作OE ∥CD 交BD 于点E ,由题意知,A ′O ⊥OC ,A ′O ⊥OE ,OE ⊥OC ,故以O 为原点,OC →,OE →,OA ′→分别为x ,y ,z 轴正方向建立空间直角坐标系,则A ′(0,0,3),B (-1,0,0),C (3,0,0),D (3,2,0),所以A ′B →=(-1,0,-3),CD →=(0,2,0),A ′B →·CD →=0,所以A ′B →⊥CD →,故异面直线A ′B 与CD 所成角的大小为90°.[答案] 90°5.如图,在正方体ABCD A 1B 1C 1D 1中,其棱长为2,E 为棱DD 1的中点,F 为对角线DB 的中点.(1)求证:平面CFB 1⊥平面EFB 1;(2)求异面直线EF 与B 1C 所成角的余弦值;(3)求直线FC 1与平面B 1CA 所成角的正弦值.[解] (1)证明:因为F 为DB 的中点,则CF ⊥BD ,又CF ⊥D 1D ,BD ∩D 1D =D ,所以CF ⊥平面BB 1D 1D ,因为CF ⊂平面CFB 1,所以平面CFB 1⊥平面EFB 1.(2)以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则D (0,0,0),E (0,0,1),F (1,1,0),B 1(2,2,2),C (0,2,0),C 1(0,2,2).所以EF →=(1,1,-1),B 1C →=(-2,0,-2).所以异面直线EF 与B 1C 所成角的余弦值为|cos 〈B 1C →,EF →〉|=⎪⎪⎪⎪⎪⎪2-23×(-2)2+(-2)2=0. (3)由(1)知CF ⊥EF ,由(2)知EF ⊥B 1C ,又B 1C ∩CF =C ,B 1C ,CF ⊂平面B 1CA ,所以EF ⊥平面B 1CA .所以EF →是平面B 1CA 的法向量.因为FC 1→=(-1,1,2),所以cos 〈FC 1→,EF →〉=EF →·FC 1→|EF →||FC 1→|=-23, 所以直线FC 1与平面B 1CA 所成角的正弦值为23. 6.(2016·兰州市实战考试)如图,在四棱锥P -ABCD 中,侧面PAB ⊥底面ABCD ,底面ABCD 为矩形,PA =PB ,O 为AB 的中点,OD ⊥PC .(1)求证:OC ⊥PD ;(2)若PD 与平面PAB 所成的角为30°,求二面角D -PC -B 的余弦值.[解] (1)证明:连接OP ,因为PA =PB ,O 为AB 的中点,所以OP ⊥AB .因为侧面PAB ⊥底面ABCD ,所以OP ⊥平面ABCD ,所以OP ⊥OD ,OP ⊥OC .因为OD ⊥PC ,所以OD ⊥平面OPC ,所以OD ⊥OC ,又OP ⊥OC ,所以OC ⊥平面OPD ,所以OC ⊥PD .(2)法一:在矩形ABCD 中,由(1)得OD ⊥OC ,所以AB =2AD ,不妨设AD =1,则AB =2.因为侧面PAB ⊥底面ABCD ,底面ABCD 为矩形,所以DA ⊥平面PAB ,CB ⊥平面PAB ,△DPA ≌△CPB ,所以∠DPA 为直线PD 与平面PAB 所成的角,所以∠DPA =30°,∠CPB =30°,PA =PB =3,所以DP =CP =2,所以△PDC 为等边三角形.设PC 的中点为M ,连接DM ,则DM ⊥PC .在Rt△CBP 中,过M 作NM ⊥PC ,交PB 于点N ,连接ND ,则∠DMN 为二面角D -PC -B 的一个平面角.由于∠CPB =30°,PM =1,故在Rt△PMN 中,MN =33, PN =233. 因为cos∠APB =3+3-42×3×3=13, 所以AN 2=⎝ ⎛⎭⎪⎫2332+3-2×233×3×13=3, 所以ND 2=3+1=4, 所以cos∠DMN =⎝ ⎛⎭⎪⎫332+3-42×33×3=-13, 即二面角D -PC -B 的余弦值为-13. 法二:取CD 的中点E ,以O 为原点,OE ,OB ,OP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系O -xyz .在矩形ABCD 中,由(1)得OD ⊥OC ,所以AB =2AD ,不妨设AD =1,则AB =2.因为侧面PAB ⊥底面ABCD ,底面ABCD 为矩形,所以DA ⊥平面PAB ,CB ⊥平面PAB ,△DPA ≌△CPB ,所以∠DPA 为直线PD 与平面PAB 所成的角,所以∠DPA =30°,∠CPB =30°,PA =PB =3,所以B (0,1,0),C (1,1,0),D (1,-1,0),P (0,0,2),从而PC →=(1,1,-2),CD →=(0,-2,0).设平面PCD 的法向量为n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧PC →·n 1=0CD →·n 1=0得,⎩⎨⎧x 1+y 1-2z 1=0-2y 1=0, 可取n 1=(2,0,1).同理,可取平面PCB 的一个法向量为n 2=(0,-2,-1).于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-13,所以二面角D -PC -B 的余弦值为-13.7.(2016·西安第一次质量检测)在如图所示的空间几何体中,平面ACD ⊥平面ABC ,△ACD 与△ACB 是边长为2的等边三角形,BE =2,BE 和平面ABC 所成的角为60°,且点E 在平面ABC 上的射影落在∠ABC的平分线上.(1)求证:DE ∥平面ABC ;(2)求二面角E -BC -A 的余弦值.[解] (1)证明:由题意知,△ABC ,△ACD 都是边长为2的等边三角形,取AC 的中点O ,连接BO ,DO ,则BO ⊥AC ,DO ⊥AC .又平面ACD ⊥平面ABC ,所以DO ⊥平面ABC ,作EF ⊥平面ABC ,那么EF ∥DO ,根据题意,点F 落在BO 上,因为BE 和平面ABC 所成的角为60°,所以∠EBF =60°,因为BE =2,所以EF =DO =3,所以四边形DEFO 是平行四边形,所以DE ∥OF .因为DE ⊄平面ABC ,OF ⊂平面ABC ,所以DE ∥平面ABC .(2)建立如图所示的空间直角坐标系O -xyz ,则B (0,3,0),C (-1,0,0),E (0,3-1,3),所以BC →=(-1,-3,0),BE →=(0,-1,3),平面ABC 的一个法向量为n 1=(0,0,1),设平面BCE 的法向量为n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧n 2·BC →=0n 2·BE →=0, 所以⎩⎨⎧-x -3y =0-y +3z =0, 取z =1,所以n 2=(-3,3,1).所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=1313,又由图知,所求二面角的平面角是锐角,所以二面角E -BC -A 的余弦值为1313. 8.(2016·福建省毕业班质量检测)如图,三棱柱ABC -A 1B 1C 1中,底面ABC 为等腰直角三角形,AB =AC =1,BB 1=2,∠ABB 1=60°.(1)证明:AB ⊥B 1C ;(2)若B 1C =2,求AC 1与平面BCB 1所成角的正弦值.[解] (1)证明:连接AB 1,在△ABB 1中,AB =1, BB 1=2,∠ABB 1=60°,由余弦定理得,AB 21=AB 2+BB 21-2AB ·BB 1·cos∠ABB 1=3,所以AB 1=3,所以BB 21=AB 2+AB 21,所以AB 1⊥AB .又△ABC 为等腰直角三角形,且AB =AC ,所以AC ⊥AB ,因为AC ∩AB 1=A ,所以AB ⊥平面AB 1C .又B 1C ⊂平面AB 1C ,所以AB ⊥B 1C .(2)因为AB 1=3,AB =AC =1,B 1C =2,所以B 1C 2=AB 21+AC 2,所以AB 1⊥AC .如图,以A 为原点,以AB →,AC →,AB 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (0,0,0),B 1(0,0,3),B (1,0,0),C (0,1,0),所以BB 1→=(-1,0,3),BC →=(-1,1,0).设平面BCB 1的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧BB 1→·n =0BC →·n =0,得 ⎩⎨⎧-x +3z =0-x +y =0,令z =1,得x =y =3, 所以平面BCB 1的一个法向量为n =(3,3,1).因为AC 1→=AC →+CC 1→=AC →+BB 1→=(0,1,0)+(-1,0,3)=(-1,1,3),所以cos 〈AC 1→,n 〉=AC 1→·n |AC 1→||n |=35×7=10535,所以AC 1与平面BCB 1所成角的正弦值为10535.。
2017高考数学(理)(新课标版)考前冲刺复习:第2部分专题4第2讲空间点、线、面的位置关系含答案
课时作业1.(2016·河南省八市重点高中质量检测)设平面α与平面β相交于直线m,直线a 在平面α内,直线b在平面β内,且b⊥m,则“a⊥b”是“α⊥β”的( ) A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件B [解析] 因为α⊥β,b⊥m,所以b⊥α,又直线a在平面α内,所以a⊥b;但直线a,m不一定相交,所以“a⊥b”是“α⊥β”的必要不充分条件,故选B.2.已知两个不同的平面α,β和两条不重合的直线m,n,则下列四个命题中不正确的是( )A.若m∥n,m⊥α,则n⊥αB.若m⊥α,m⊥β,则α∥βC.若m⊥α,m∥n,n⊂β,则α⊥βD.若m∥α,α∩β=n,则m∥nD [解析] 由线面平行、垂直之间的转化知A、B正确;对于C,因为m⊥α,m∥n,所以n⊥α,又n⊂β,所以β⊥α,即C正确;对于D,m∥α,α∩β=n,则m∥n,或m与n是异面直线,故D项不正确.3.(2016·贵阳市监测考试)如图,在三棱锥PABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBCB [解析] A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A可以证明;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C可以证明;D中,由A知D可以证明;B中条件不能判断出AP⊥BC,故选B.4.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是( )A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BCC [解析] A中,若AC与BD共面,则A,B,C,D四点共面,则AD与BC共面;B中,若AC 与BD 是异面直线,则A ,B ,C ,D 四点不共面,则AD 与BC 是异面直线;C 中,若AB =AC ,DB =DC ,AD 不一定等于BC ;D 中,若AB =AC ,DB =DC ,可以证明AD ⊥BC .5.(2016·广州市五校联考)已知a ,b 是空间中两条不同的直线,α,β是空间中两个不同的平面,下列命题中正确的是( )A .若直线a ∥b ,b ⊂α,则a ∥αB .若平面α⊥β,a ⊥α,则a ∥βC .若平面α∥β,a ⊂α,b ⊂β,则a ∥bD .若a ⊥α,b ⊥β,a ∥b ,则α∥βD [解析] 构造长方体ABCD A 1B 1C 1D 1.对于A ,若AB ∥CD ,CD ⊂平面ABCD ,但AB ⊂平面ABCD ,A 错;对于B ,平面ABB 1A 1⊥平面ABCD ,AD ⊥平面ABB 1A 1,但AD ⊂平面ABCD ,B 错;对于C ,若平面A 1B 1C 1D 1∥平面ABCD ,B 1C 1⊂平面A 1B 1C 1D 1,AB ⊂平面ABCD ,但B 1C 1不平行于AB ,C 错;对于D ,若A 1B 1⊥平面BCC 1B 1,AB ⊥平面ADD 1A 1,AB ∥A 1B 1,则平面BCC 1B 1∥平面ADD 1A 1,D 正确.故选D.6.如图,在正方体ABCD A1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C与PM 相交;④NC 与PM 异面.其中不正确的结论是( )A .①B .②C .③D .④B [解析] 作出过M ,N ,P ,Q 四点的截面交C 1D 1于点S ,交AB 于点R ,如图中的六边形MNSPQR ,显然点A 1,C 分别位于这个平面的两侧,故A 1C 与平面MNPQ 一定相交,不可能平行,故结论②不正确.7.如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AMMB =AN ND ,则直线MN 与平面BDC 的位置关系是________.[解析] 由AM MB =AN ND ,得MN ∥BD .而BD ⊂平面BDC ,MN ⊄平面BDC ,所以MN ∥平面BDC .[答案] 平行8.已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的________条件.[解析] 若E ,F ,G ,H 四点不共面,则直线EF 和GH 肯定不相交,但直线EF 和GH 不相交,E ,F ,G ,H 四点可以共面,例如EF ∥GH .[答案] 充分不必要9.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是________.[解析] 对于①,因为PA⊥平面ABC,所以PA⊥BC.因为AB为⊙O的直径,所以BC⊥AC,所以BC⊥平面PAC,又PC⊂平面PAC,所以BC⊥PC;对于②,因为点M为线段PB的中点,所以OM∥PA,因为PA⊂平面PAC,所以OM∥平面PAC;对于③,由①知BC⊥平面PAC,所以线段BC的长即是点B到平面PAC的距离,故①②③都正确.[答案] ①②③10.α、β是两个平面,AB、CD是两条线段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一个条件,就能得出BD⊥EF.现有下列条件:①AC⊥β;②AC与α、β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的序号是________.[解析] 由题意得,AB∥CD,所以A,B,C,D四点共面,①:因为AC⊥β,EF⊂β,所以AC⊥EF,又因为AB⊥α,EF⊂α,所以AB⊥EF,因为AB∩AC=A,所以EF⊥平面ABCD,又因为BD⊂平面ABCD,所以BD⊥EF,故①正确;②不能得到BD⊥EF,故②错误;③:由AC与CD在β内的射影在同一条直线上可知平面ABCD⊥β,又AB⊥α,AB⊂平面ABCD,所以平面ABCD⊥α.因为平面ABCD⊥α,平面ABCD⊥β,α∩β=EF,所以EF⊥平面ABCD,又BD⊂平面ABCD,所以BD⊥EF,故③正确;④:由①知,若BD⊥EF,则EF⊥平面ABCD,则EF⊥AC,故④错误,故填①③.[答案] ①③11.(2016·云南省第一次统一检测)如图,在三棱锥ABCD中,CD⊥BD,AB=AD,E为BC的中点.(1)求证:AE⊥BD;(2)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求三棱锥DABC的体积.[解] (1)证明:设BD的中点为O,连接AO,EO,因为AB=AD,所以AO⊥BD.又E为BC的中点,所以EO∥CD.因为CD⊥BD,所以EO⊥BD.又OA∩OE=O,所以BD ⊥平面AOE .又AE ⊂平面AOE ,所以AE ⊥BD .(2)由已知得三棱锥D ABC 与C ABD 的体积相等.因为CD ⊥BD ,平面ABD ⊥平面BCD ,所以CD ⊥平面ABD ,BD =BC 2-CD 2=2 3.由已知得S △ABD =12×BD ×AD 2-BD 24= 3.所以三棱锥C ABD 的体积V C ABD =13×CD ×S △ABD =233. 所以三棱锥D ABC 的体积为233. 12.(2016·河南省八市重点高中质量检测)如图,过底面是矩形的四棱锥F ABCD 的顶点F 作EF ∥AB ,使AB =2EF ,且平面ABFE ⊥平面ABCD ,若点G 在CD 上且满足DG =GC .(1)求证:FG ∥平面AED ;(2)求证:平面DAF ⊥平面BAF .[证明] (1)因为DG =GC ,AB =CD =2EF ,AB ∥EF ∥CD ,所以EF ∥DG ,EF =DG .所以四边形DEFG 为平行四边形,所以FG ∥ED .又因为FG ⊄平面AED ,ED ⊂平面AED ,所以FG ∥平面AED .(2)因为平面ABFE ⊥平面ABCD ,平面ABFE ∩平面ABCD =AB ,AD ⊥AB ,AD ⊂平面ABCD ,所以AD ⊥平面BAF ,又AD ⊂平面DAF ,所以平面DAF ⊥平面BAF .13.(2016·昆明市两区七校调研)一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN ∥平面BDH ;(3)过点M ,N ,H 的平面将正方体分割为两部分,求这两部分的体积比.[解] (1)点F ,G ,H 的位置如图所示.(2)证明:连接BD ,设O 为BD 的中点,连接OM ,OH ,AC ,BH ,MN .因为M ,N 分别是BC ,GH 的中点,所以OM ∥CD ,且OM =12CD , NH ∥CD ,且NH =12CD ,所以OM ∥NH ,OM =NH ,则四边形MNHO 是平行四边形,所以MN ∥OH ,又因为MN ⊄平面BDH ,OH ⊂平面BDH ,所以MN ∥平面BDH .(3)由(2)知OM ∥NH ,OM =NH ,连接GM ,MH ,过点M ,N ,H 的平面就是平面GMH ,它将正方体分割为两个同高的棱柱,高都是GH ,底面分别是四边形BMGF 和三角形MGC ,体积比等于底面积之比,即3∶1.14.(2016·长春市质量检测(二))在四棱锥P ABCD 中,底面ABCD是菱形,PD ⊥平面ABCD ,点D 1为棱PD 的中点,过D 1作与平面ABCD 平行的平面与棱PA ,PB ,PC 相交于点A 1,B 1,C 1,∠BAD =60°.(1)证明:B 1为PB 的中点;(2)已知棱锥的高为3,且AB =2,AC ,BD 的交点为O ,连接B 1O .求三棱锥B 1ABO 外接球的体积.[解] (1)证明:连接B 1D 1.⎭⎪⎬⎪⎫平面ABCD ∥平面A 1B 1C 1D 1平面PBD ∩平面ABCD =BD 平面PBD ∩平面A 1B 1C 1D 1=B 1D 1⇒BD ∥B 1D 1, 即B 1D 1为△PBD 的中位线, 即B 1为PB 的中点. (2)由(1)可得,OB 1=32,AO =3,BO =1,且OA ⊥OB ,OA ⊥OB 1,OB ⊥OB 1,即三棱锥B 1ABO 的外接球为以OA ,OB ,OB 1为长,宽,高的长方体的外接球,则该长方体的体对角线长d =12+(3)2+⎝⎛⎭⎪⎫322=52,即外接球半径R =54.4 3πR3=43×π×⎝⎛⎭⎪⎫543=125π48.则三棱锥B1ABO外接球的体积V=。
【精品】2017高考数学(理)(新课标版)考前冲刺复习:第2部分专题4第1讲空间几何体含答案
课时作业1.如图所示是一个物体的三视图,则此三视图所描述物体的直观图是( )D [解析] 先观察俯视图,由俯视图可知选项B和D中的一个正确,由正视图和侧视图可知选项D正确,故选D.2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为( )A.长方形B.直角三角形C.圆D.椭圆C [解析] 当俯视图为圆时,由三视图可知为圆柱,此时正视图和侧视图应该相同,所以俯视图不可能是圆,故选C.3.(2016·贵阳市监测考试)甲、乙两个几何体的正视图和侧视图相同,俯视图不同,如图所示,记甲的体积为V甲,乙的体积为V乙,则( )A.V甲<V乙B.V甲=V乙C.V甲>V乙D.V甲、V乙大小不能确定C [解析] 由三视图知,甲几何体是一个以俯视图为底面的四棱锥,乙几何体是在甲几何体的基础上去掉一个角,即去掉一个三个面是直角三角形的三棱锥后得到的一个三棱锥,所以V甲>V乙,故选C.4.(2016·云南省第一次统一检测)如图是底面半径为1,高为2的圆柱被削掉一部分后剩下的几何体的三视图(注:正视图也称主视图,侧视图也称左视图),则被削掉的那部分的体积为( )A.π+23 B.5π-23C.5π3-2 D .2π-23B [解析] 由三视图可知,剩下部分的几何体由半个圆锥和一个三棱锥组成,其体积V =13×12×π×12×2+13×12×2×1×2=π3+23,所以被削掉的那部分的体积为π×12×2-⎝ ⎛⎭⎪⎫π3+23=5π-23. 5.(2016·高考山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π C [解析] 由三视图可知,四棱锥的底面是边长为1的正方形,高为1,其体积V 1=13×12×1=13.设半球的半径为R ,则2R =2,即R=22,所以半球的体积V 2=12×4π3R 3=12×4π3×⎝ ⎛⎭⎪⎫223=26π.故该几何体的体积V =V 1+V 2=13+26π.故选C.6.(2016·高考全国卷乙)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28πA [解析] 由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r ,故78×43πr 3=283π,所以r =2,表面积S =78×4πr 2+34πr 2=17π,选A.7.(2016·长春市质量检测(二))某几何体的三视图如图所示,则该几何体的体积为( )A.323 B .16-2π3C.403D .16-8π3C [解析] 该几何体可视为长方体挖去一个四棱锥所得,所以其体积为2×2×4-13×2×2×2=403.故选C.8.(2016·湖北省七市(州)协作体联考)《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底圆周长约为( )A .1丈3尺B .5丈4尺C .9丈2尺D .48丈6尺B [解析] 设圆柱底面圆的半径为r ,若以尺为单位,则 2 000×1.62=3r 2⎝⎛⎭⎪⎫10+3+13,解得r =9(尺),所以底面圆周长约为2×3×9=54(尺),换算单位后为5丈4尺,故选B.9.(2016·兰州市诊断考试)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱长等于( )A.34B.41C.5 2 D.215C [解析] 由正视图、侧视图、俯视图的形状,可判断该几何体为三棱锥,形状如图,其中SC⊥平面ABC,AC⊥AB,所以最长的棱长为SB=5 2.10.(2016·东北四市联考(二))如图,在正方体ABCDA1B1C1D1中,P是线段CD的中点,则三棱锥PA1B1A的侧视图为( )D [解析] 如图,画出原正方体的侧视图,显然对于三棱锥PA1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为D.11.(2016·兰州市实战考试)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为( )A.32π B.32C .3πD .3A [解析] 由题意得,该几何体为四棱锥,且该四棱锥的外接球即为棱长为1的正方体的外接球,其半径为32,故体积为43π⎝ ⎛⎭⎪⎫323=32π,故选A.12.(2016·广州市综合测试(一))一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20πB.205π3 C .5π D.55π6D [解析] 由题意知六棱柱的底面正六边形的外接圆半径r =1,其高h =1,所以球半径为R = r 2+⎝ ⎛⎭⎪⎫h 22=1+14=54,所以该球的体积V =43πR 3=43×5454π=55π6. 13.(2016·唐山市统一考试)三棱锥P ABC 中,PA ⊥平面ABC 且PA =2,△ABC 是边长为 3 的等边三角形,则该三棱锥外接球的表面积为( )A.4π3B .4πC .8πD .20πC [解析] 由题意得,此三棱锥外接球即为以△ABC 为底面、以PA 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π,故选C.14.(2016·福建省毕业班质量检测)在空间直角坐标系O xyz 中,A (0,0,2),B (0,2,0),C (2,2,2),则三棱锥O ABC 外接球的表面积为( )A .3πB .43πC .12πD .48πC [解析] 设三棱锥O ABC 的外接球的半径为R ,画出空间直角坐标系O xyz 与点A ,B ,C 的位置,易知三棱锥O ABC 的四个顶点均落在棱长为2的正方体的顶点上,所以该正方体的体对角线长即为三棱锥O ABC 的外接球的直径,所以R =12 22+22+22=3,所以三棱锥O ABC 的外接球的表面积S =4πR 2=12π,故选C.15.已知某组合体的正视图与侧视图相同(其中AB =AC ,四边形BCDE 为矩形),则该组合体的俯视图可以是________(把正确的图的序号都填上).[解析] 几何体由四棱锥与四棱柱组成时,得①正确;几何体由四棱锥与圆柱组成时,得②正确;几何体由圆锥与圆柱组成时,得③正确;几何体由圆锥与四棱柱组成时,得④正确.[答案] ①②③④16.(2016·高考北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为________.[解析] 通过俯视图可知该四棱柱的底面为等腰梯形,则四棱柱的底面积S =(1+2)×12=32,通过侧(左)视图可知四棱柱的高h =1,所以该四棱柱的体积V =Sh =32. [答案] 3217.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.[解析] 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32.由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,则h 1h 2=23,所以V 1V 2=πr 21h 1πr 22h 2=32. [答案] 3218.如图,正方体ABCD A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1EDF 的体积为________.[解析] 因为B 1C ∥平面ADD 1A 1,所以F 到平面ADD 1A 1的距离d 为定值1,△D 1DE 的面积为12D 1D ·AD =12,所以VD 1EDF =VF D 1DE =13S △D 1DE ·d =13×12×1=16.[答案] 1619.已知棱长均为a 的正三棱柱ABC A 1B 1C 1的六个顶点都在半径为216的球面上,则a 的值为________.[解析] 设O 是球心,D 是等边三角形A 1B 1C 1的中心,则OA 1=216,因为正三棱柱ABC A 1B 1C 1的所有棱长均为a ,所以A 1D =32a ×23=33a ,OD =a 2,故A 1D 2+OD 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫a 22=⎝ ⎛⎭⎪⎫2162,得712a 2=2136,即a 2=1,得a =1. [答案] 120.(2016·东北四市联考(二))已知底面为正三角形的三棱柱内接于半径为1的球,则此三棱柱的体积的最大值为________.[解析] 如图,设球心为O ,三棱柱的上、下底面的中心分别为O 1,O 2,底面正三角形的边长为a ,则AO 1=23×32a =33a .由已知得O 1O 2⊥底面,在Rt△OAO 1中,由勾股定理得OO 1=12-⎝ ⎛⎭⎪⎫33a 2=3·3-a 23,所以V 三棱柱=34a 2×2×3·3-a 23=3a 4-a62,令f (a )=3a 4-a 6(0<a <2),则f ′(a )=12a 3-6a 5=-6a 3(a 2-2),令f ′(a )=0,解得a = 2.因为当a ∈(0,2)时,f ′(a )>0;当a ∈(2,2)时,f ′(a )<0,所以函数f (a )在(0,2)上单调递增,在(2,2)上单调递减.所以f (a )在a = 2 处取得极大值.因为函数f (a )在区间(0,2)上有唯一的极值点, 所以a = 2 也是最大值点. 所以(V 三棱柱)max =3×4-82=1. [答案] 1。
2017高考数学(理)(新课标版)考前冲刺复习讲义:透视全国高考揭秘命题规律(二)含答案
透视全国高考 揭秘命题规律(二)—-平面几何与解三角形(方程思想的应用)(2015·高考全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 的面积是△ADC 面积的2倍.(1)求错误!;(2)若AD =1,DC =错误!,求BD 和AC 的长.【解】 (1)S △ABD =错误!AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD . 因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC 。
由正弦定理可得错误!=错误!=错误!.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD =错误!。
在△ABD 和△ADC 中,由余弦定理知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB ,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC 。
故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6。
由(1)知AB =2AC ,所以AC =1.第一步:作出示意图、并适当标注已知元素.第二步:将条件和结论相结合进行对照,视其关系选择相关定理列式.(要特别关注两三角形公共边(角)或邻角(邻补角)的关系,列方程(组)求解)第三步:求解过程中应注意三角形所固有的性质(例如:内角和定理,边角大小对应关系,两边之和(差)与第三边的关系等).附:三角形中四个可引用定理公式1.射影定理:a cos B+b cos A=c,a cos C+c cos A=b,b cos C+c cos B=a.2.内角平分线定理:△ABC内角A的平分线交BC于D,则错误!=BDDC。
3.中线长公式:△ABC三内角A,B,C的对边分别为a,b,c,则BC边上的中线长M a=错误!错误!.4.海伦面积公式:△ABC三内角A、B、C的对边分别为a,b,c,则S△=错误!错误!。
专题04 立体几何-2017年高考数学【理】考纲揭秘及预测
(三)立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). (5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.•公理1 :如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.•公理2:过不在同一条直线上的三点,有且只有一个平面.•公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.•公理4:平行于同一条直线的两条直线互相平行.•定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.学*科(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.•如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.•如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.•如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.•如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.•如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.•如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.•垂直于同一个平面的两条直线平行.•如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(十六)空间向量与立体几何1.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.与2016年考纲相比没什么变化,而且这部分内容作为高考的必考内容,在2017年的高考中预计仍会以“一小一大或两小一大”的格局呈现,在选择题或填空题中,考查空间几何体三视图的识别,空间几何体的体积或表面积的计算,空间线面位置关系的判定等,难度中等;在解答题中主要考查空间线面位置关系中的平行或垂直的证明,空间几何体表面积或体积的计算,空间角或空间距离的计算等,难度中等.1.已知某几何体的三视图如图所示,则该几何体的表面积为A .1)πB .1)2π+C .1)4π+D .34π+2.已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则 A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n3.如图,已知三棱锥A BCD -中, 4AB AC AD ===,则当△△△ABC ABD ACD S S S ++取得最大值时(其中,,△△△ABC ABD ACD S S S 分别为,,△△△ABC ABD ACD 的面积),三棱锥A BCD -的外接球体积为A. B. C. D.4.如图,AB 是圆O 的直径,C 是圆O 上异于,A B 的一点,DC BC ^,DC EB ∥,AC CE ⊥,1DC EB ==,4AB =.(1)求证:DE ACD ^平面;(2)若AC BC =,求平面AED 与平面ABE 所成的锐二面角的余弦值.1.C 【解析】由三视图可知,该几何体是两个同顶点的圆锥的一半,底面半圆的半径为1,对应每2112(1122⨯π⨯⨯π⨯122)2+⨯⨯=1)4π+.故选C.2.C 【解析】由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .4.【解析】(1)DC EB ∥,DC EB =,∴四边形BCDE 是平行四边形.又因为AB 是圆O 的直径,C 是圆O 上异于,A B 的一点,∴AC BC ^. 又因为AC CE ⊥,AC ∴⊥平面CBED ,所以AC DE ⊥, 又因为DC BC ^,所以DC DE ^,又ACDC C =,所以DE ^平面ACD .(2)由(1)可得AC ⊥平面CBED ,∴AC CD ⊥.又因为DC BC ^,所以CD ^平面ABC , 如图,以C为原点建立空间直角坐标系,则A,(0,0,1),D B E ,(22,0,1),(0,2AD DE =-=,(AB =-,(0,0,1)BE =.设1(,,)x y z n =为平面ADE 的法向量,则1120220AD z DE n n ì?-+=ïíï?=î,令1x =,得1(1n =.设2111(,,)x y z n =为平面ABE的法向量,则21121200AB BE z n n ì?-+=ïíï?=î,令11,x =得2=(1,1,0)n.所以121212cos ,||||6n n n n n n ×==×, ∴平面AED 与平面ABE 所成的锐二面角的余弦值为6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业1.如图所示是一个物体的三视图,则此三视图所描述物体的直观图是( )D [解析] 先观察俯视图,由俯视图可知选项B和D中的一个正确,由正视图和侧视图可知选项D正确,故选D.2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为( )A.长方形B.直角三角形C.圆D.椭圆C [解析] 当俯视图为圆时,由三视图可知为圆柱,此时正视图和侧视图应该相同,所以俯视图不可能是圆,故选C.3.(2016·贵阳市监测考试)甲、乙两个几何体的正视图和侧视图相同,俯视图不同,如图所示,记甲的体积为V甲,乙的体积为V乙,则( )A.V甲<V乙B.V甲=V乙C.V甲>V乙D.V甲、V乙大小不能确定C [解析] 由三视图知,甲几何体是一个以俯视图为底面的四棱锥,乙几何体是在甲几何体的基础上去掉一个角,即去掉一个三个面是直角三角形的三棱锥后得到的一个三棱锥,所以V甲>V乙,故选C.4.(2016·云南省第一次统一检测)如图是底面半径为1,高为2的圆柱被削掉一部分后剩下的几何体的三视图(注:正视图也称主视图,侧视图也称左视图),则被削掉的那部分的体积为( )A.π+23 B.5π-23C.5π3-2 D .2π-23B [解析] 由三视图可知,剩下部分的几何体由半个圆锥和一个三棱锥组成,其体积V =13×12×π×12×2+13×12×2×1×2=π3+23,所以被削掉的那部分的体积为π×12×2-⎝ ⎛⎭⎪⎫π3+23=5π-23. 5.(2016·高考山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π C [解析] 由三视图可知,四棱锥的底面是边长为1的正方形,高为1,其体积V 1=13×12×1=13.设半球的半径为R ,则2R =2,即R =22,所以半球的体积V 2=12×4π3R 3=12×4π3×⎝ ⎛⎭⎪⎫223=26π.故该几何体的体积V =V 1+V 2=13+26π.故选C.6.(2016·高考全国卷乙)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28πA [解析] 由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r ,故78×43πr 3=283π,所以r =2,表面积S =78×4πr 2+34πr 2=17π,选A.7.(2016·长春市质量检测(二))某几何体的三视图如图所示,则该几何体的体积为( )A.323 B .16-2π3C.403D .16-8π3C [解析] 该几何体可视为长方体挖去一个四棱锥所得,所以其体积为2×2×4-13×2×2×2=403.故选C.8.(2016·湖北省七市(州)协作体联考)《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底圆周长约为( )A .1丈3尺B .5丈4尺C .9丈2尺D .48丈6尺B [解析] 设圆柱底面圆的半径为r ,若以尺为单位,则 2 000×1.62=3r 2⎝ ⎛⎭⎪⎫10+3+13,解得r =9(尺),所以底面圆周长约为2×3×9=54(尺),换算单位后为5丈4尺,故选B.9.(2016·兰州市诊断考试)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱长等于( )A.34B.41C.5 2 D.215C [解析] 由正视图、侧视图、俯视图的形状,可判断该几何体为三棱锥,形状如图,其中SC⊥平面ABC,AC⊥AB,所以最长的棱长为SB=5 2.10.(2016·东北四市联考(二))如图,在正方体ABCDA1B1C1D1中,P是线段CD的中点,则三棱锥PA1B1A的侧视图为( )D [解析] 如图,画出原正方体的侧视图,显然对于三棱锥PA1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为D.11.(2016·兰州市实战考试)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为( )A.32π B.32C .3πD .3A [解析] 由题意得,该几何体为四棱锥,且该四棱锥的外接球即为棱长为1的正方体的外接球,其半径为32,故体积为43π⎝ ⎛⎭⎪⎫323=32π,故选A.12.(2016·广州市综合测试(一))一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20πB.205π3 C .5π D.55π6D [解析] 由题意知六棱柱的底面正六边形的外接圆半径r =1,其高h =1,所以球半径为R = r 2+⎝ ⎛⎭⎪⎫h 22=1+14=54,所以该球的体积V =43πR 3=43×5454π=55π6. 13.(2016·唐山市统一考试)三棱锥P ABC 中,PA ⊥平面ABC 且PA =2,△ABC 是边长为 3 的等边三角形,则该三棱锥外接球的表面积为( )A.4π3B .4πC .8πD .20πC [解析] 由题意得,此三棱锥外接球即为以△ABC 为底面、以PA 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π,故选C.14.(2016·福建省毕业班质量检测)在空间直角坐标系O xyz 中,A (0,0,2),B (0,2,0),C (2,2,2),则三棱锥O ABC 外接球的表面积为( )A .3πB .43πC .12πD .48πC [解析] 设三棱锥O ABC 的外接球的半径为R ,画出空间直角坐标系O xyz 与点A ,B ,C 的位置,易知三棱锥O ABC 的四个顶点均落在棱长为2的正方体的顶点上,所以该正方体的体对角线长即为三棱锥O ABC 的外接球的直径,所以R =12 22+22+22=3,所以三棱锥O ABC 的外接球的表面积S =4πR 2=12π,故选C.15.已知某组合体的正视图与侧视图相同(其中AB =AC ,四边形BCDE 为矩形),则该组合体的俯视图可以是________(把正确的图的序号都填上).[解析] 几何体由四棱锥与四棱柱组成时,得①正确;几何体由四棱锥与圆柱组成时,得②正确;几何体由圆锥与圆柱组成时,得③正确;几何体由圆锥与四棱柱组成时,得④正确.[答案] ①②③④16.(2016·高考北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为________.[解析] 通过俯视图可知该四棱柱的底面为等腰梯形,则四棱柱的底面积S =(1+2)×12=32,通过侧(左)视图可知四棱柱的高h =1,所以该四棱柱的体积V =Sh =32. [答案] 3217.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.[解析] 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32.由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,则h 1h 2=23,所以V 1V 2=πr 21h 1πr 22h 2=32. [答案] 3218.如图,正方体ABCD A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1EDF 的体积为________.[解析] 因为B 1C ∥平面ADD 1A 1,所以F 到平面ADD 1A 1的距离d 为定值1,△D 1DE 的面积为12D 1D ·AD =12,所以VD 1EDF =VF D 1DE =13S △D 1DE ·d =13×12×1=16.[答案] 1619.已知棱长均为a 的正三棱柱ABC A 1B 1C 1的六个顶点都在半径为216的球面上,则a 的值为________.[解析] 设O 是球心,D 是等边三角形A 1B 1C 1的中心,则OA 1=216,因为正三棱柱ABC A 1B 1C 1的所有棱长均为a ,所以A 1D =32a ×23=33a ,OD =a 2,故A 1D 2+OD 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫a 22=⎝ ⎛⎭⎪⎫2162,得712a 2=2136,即a 2=1,得a =1. [答案] 120.(2016·东北四市联考(二))已知底面为正三角形的三棱柱内接于半径为1的球,则此三棱柱的体积的最大值为________.[解析] 如图,设球心为O ,三棱柱的上、下底面的中心分别为O 1,O 2,底面正三角形的边长为a ,则AO 1=23×32a =33a .由已知得O 1O 2⊥底面,在Rt△OAO 1中,由勾股定理得OO 1=12-⎝ ⎛⎭⎪⎫33a 2=3·3-a 23,所以V 三棱柱=34a 2×2×3·3-a 23=3a 4-a62,令f (a )=3a 4-a 6(0<a <2),则f ′(a )=12a 3-6a 5=-6a 3(a 2-2),令f ′(a )=0,解得a = 2.因为当a ∈(0,2)时,f ′(a )>0;当a ∈(2,2)时,f ′(a )<0,所以函数f (a )在(0,2)上单调递增,在(2,2)上单调递减.所以f (a )在a = 2 处取得极大值.因为函数f (a )在区间(0,2)上有唯一的极值点, 所以a = 2 也是最大值点. 所以(V 三棱柱)max =3×4-82=1. [答案] 1。