湖北省钟祥市2017-2018学年七年级下期末考试数学试卷(含解析)-推荐

合集下载

2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下学期数学期末考试数学(时间:120分钟满分:120分)一、选择题(本题有10小题,每小题3分,共30分) 1.27的立方根是( )A .3B .±3C .± 3D . 3 2.下列各点中,在第二象限的是( )A .(-1,3)B .(1,-3)C .(-1,-3)D .(1,3) 3.下列式子正确的是( )A .9=±3B .38=-2 C .(-3)2=-3 D .-25=54.要调查城区某所初中学校学生的平均体重,选取调查对象最合适的是( ) A .选该校100名男生 B .选该校100名女生;C .选该校七年级的两个班的学生D .在各年级随机选取100名学生。

5.如图,已知AE ∥BC ,AC ⊥AB ,若∠ACB =50°,则∠F AE 的度数是( ) A .50° B .60° C .40° D .30°6.若关于x 的不等式(2-m )x <1的解为x >12-m,则m 的取值范围是( ) A .m >0 B .m <0 C .m >2 D .m <27.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( ) A .36,8 B .28,6 C .28,8 D .13,38.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,梁湖风景区某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为( )A .120mB .130mC .140mD .150m9.一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第63秒时,这个点所在位置的坐标是( )A .(7,0)B .(0,7)C .(7,7)D .(6,0)10.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们共有( )种租住方案.BAFEC第5题图第8题图yx O1231 2 3 第9题图AA .4B .2C .3D .1二、填空题(共6小题,每小题3分,满分18分)11.计算:25+3-8=________;12.点M (2,-1)向上平移3个单位长度得到的点的坐标是________;13.在对45个数据进行整理的频数分布表中,各组的频数之和等于________;14.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打________折。

17-18第二学期期末测试七年级数学答案

17-18第二学期期末测试七年级数学答案

2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。

2017-2018年度七年级期末数学试题(含答案)

2017-2018年度七年级期末数学试题(含答案)

12017——2018学年度下学期七 年 级 数 学 期 末 试 题数学试题共6页,包括六道大题,共26道小题。

全卷满分120分。

考试时间为120分钟。

考试结束后,将本试题和答题卡一并交回。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在 条形码区域内。

2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题上答 题无效。

一、单项选择题(每小题2分,共12分)1.在数2,π,38-,0.3333…中,其中无理数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个 2.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A) 原点 (B) x 轴上 (C) y 轴上 (D) x 轴上或y 轴上 3.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )4.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题 (C)平移前后图形的形状和大小都没有发生改变 (D)“直角都相等”是一个假命题 5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已 知中学生被抽到的人数为150人,则应抽取的样本容量等于( )(A) 1500 (B) 1000 (C) 150 (D) 500 6.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( ) ①∠1=∠2 ②∠3=∠4 ③∠A=∠DCE ④∠D+∠ABD=180° (A) ①③④ (B) ①②③ (C) ①②④ (D) ②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 . 8.-364的绝对值等于 . 9.不等式组20210x x -≤⎧⎨->⎩的整数解是 .10.如图,a ∥b ,∠1=55°,∠2=40°,则∠3的度数是 °.11.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花 了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是 . 12.数学活动中,张明和王丽向老师说明他们的位置(单位:m ): 张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m .13.比较大小:215- 1(填“<”或“>”或“=” ). 14.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其 它10个小长方形高之和的41,且样本容量是60,则中间一组的频数是 . 学校 年 班 姓名: 考号:21 3 4 AB CDE (第6题)(第10题)2三、解答题(每小题5分,共20分) 15.计算:2393-+-.16.解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.解不等式11237x x--≤,并把它的解集表示在数轴上.18.已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.四、解答题(每小题7分,共28分)19.如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥ ( ) , 所以∠ =∠5 ( ) ,又因为∠3=∠4(已知),所以∠5=∠ (等量代换),所以BC ∥EF ( ) .20.对于x ,y 定义一种新运算“φ”,x φy =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值.21.已知一个正数..的平方根是m+3和2m-15. (1)求这个正数是多少?(2)5+m 的平方根又是多少?22.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售价至少定为多少,才能避免亏本?七年级数学试题 第3页 (共6页)七年级数学试题 第2页 (共6页) HGF E DC BA七年级数学试题 第4页 (共6页)七年级数学试题 第3页 (共6页)3五、解答题(每小题8分,共16分)23.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种 活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的 圆心角度数是 ______度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?24.在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0-3),请画出三角 形OAB 平移后得到的三角形O 1A 1B 1,并写出点O 1、A 1 、B 1的坐标.六、解答题(每小题10分,共20分)25.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种 纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于C 、D 两点,点P 在直线CD 上. (1)试写出图1中∠APB 、∠P AC 、∠PBD 之间的关系,并说明理由;(2)如果P 点在C 、D 之间运动时,∠APB ,∠P AC ,∠PBD 之间的关系会发生变化吗?答: .(填发生或不发生);(3)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2、图3),试分别写出∠APB ,∠P AC ,∠PBD 之间的关系,并说明理由.学校 年 班 姓名: 考号:七年级数学试题 第5页 (共6页)七年级数学试题 第6页 (共6页)xO 2 1 3 4 5 6 -1 -21-3 -4 12 3 4 -1 -2 -3Ay5 25. 解:(1)设小李生产1件A 产品需要x min, 生产1件B 产品需要y min. 依题意得⎩⎨⎧=+=+852335y x y x .……………………………2分 解得⎩⎨⎧==2015y x . ∴小李生产1件A 产品需要15min ,生产1件B 产品需要20min. ………………………4分(2)1556元 . ……………………………6分 1978.4元 . ……………………………8分 (3)-19.2x +1978.4 . ……………………………10分 26. 解:(1)① x …………1分 3(100-x ) …………2分 ②依题意得 2(100)16243(100)340x x x x +-≤⎧⎨+-≤⎩. ………………………4分解得 3840x ≤≤.∵x 是整数,∴x =38或39或40 .………………………6分 有三种生产方案:方案一:做竖式纸盒38个,做横式纸盒62个; 方案二:做竖式纸盒39个,做横式纸盒61个;方案三:做竖式纸盒40个,做横式纸盒60个.………………………7分 (2)设做横式纸盒m 个,则横式纸盒需长方形纸板3m 张,竖式纸盒需长方形纸板4(162-2m )张, 所以a =3m +4(162-2m ).∴290<3m +4(162-2m )<306 解得68.4<m <71.6∵m 是整数,∴m =69或70或71. ………………………9分 对应的a =303或298或293. ………………………10分。

2017-2018学年度人教版七年级下数学期末测评试卷有答案

2017-2018学年度人教版七年级下数学期末测评试卷有答案

期末测评( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( )4.下列各数1.414,√2,-13A.1.414B.√2D.0C.-135.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49. ( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11. ( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作.13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有人.14.若实数x满足等式( x+4 )3=-27,则x= .15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为.三、解答题( 共66分 )17. ( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x -1.5x 0.3+3x -2x4=6,x 2+x -13=24.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.20. ( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图22. ( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B 的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O1,B1的坐标.( 2 )三角形AOB的面积.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?24. ( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元.( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?期末测评答案解析( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( A )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( D )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( D )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( B )4.导学号14154138下列各数1.414,√2,-13A.1.414B.√2C.-1D.035.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( C )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( A )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( D )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( D ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49.导学号14154139( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( A )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( B )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11.导学号14154140( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为150°.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作( 21,-3 ).13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有400人.14.若实数x满足等式( x+4 )3=-27,则x=-7.15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是14.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为( 505,-504 ).三、解答题( 共66分 )17.导学号14154141( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.2a+1的平方根是±3,3a+2b-4的立方根是-2,∴2a+1=9,3a+2b-4=-8,解得a=4,b=-8,∴4a-5b+8=4×4-5×( -8 )+8=64,∴4a-5b+8的立方根是4.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x-1.5x0.3+3x-2x4=6, x2+x-13=24.{2x-17x=24,①3x+2x=146,②②×2-①×3,得55y=220,解得y=4.把y=4代入①,得2x-68=24,解得x=46,原方程组的解为{x =46,x =4.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.①,得x ≤135,解不等式②,得x ≥-47,∴不等式组的解集为-47≤x ≤135. ∴不等式组的整数解是0,1,2.20.导学号14154142( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.AB ∥DF ,∴∠D+∠BHD=180°, ∵∠D+∠B=180°, ∴∠B=∠DHB , ∴DE ∥BC.DE ∥BC ,∠AMD=75°,∴∠AGB=∠AMD=75°, ∴∠AGC=180°-∠AGB =180°-75° =105°.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表节目人数百分根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图解( 1 )2030( 2 )中国诗词大会的人数为20,补全条形统计图,如图所示学生最喜欢的节目人数条形统计图( 3 )根据题意,得1000×40%=400( 名 ),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.导学号14154143( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O 1,B 1的坐标.( 2 )三角形AOB 的面积.点O 1的横坐标为0+( 3-2 )=1;纵坐标为0+[-1-( -2 )]=1;点B 1的横坐标为-4+( 3-2 )=-3;纵坐标为2+[-1-( -2 )]=3;所以点O 1的坐标为( 1,1 ),点B 1的坐标为( -3,3 );( 1 )三角形AOB 的面积为12×1×2+12×1×2=2.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x 米,乙队每天铺设y 米. ( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?根据题意,得{x -x =100,5x =6x .( 2 ){x -x =100,5x =6x ,解得{x =600,x =500.答甲队每天铺设600米,乙队每天铺设500米.24.导学号14154144( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A ,B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7 800万元,改扩建3所A 类学校和1所B 类学校共需资金5 400万元. ( 1 )改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?( 2 )该县计划改扩建A ,B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A ,B 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?设改扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意,得{2x +3x =7800,3x +x =5400,解得{x =1200,x =1800.答改扩建一所A 类学校和一所B 类学校所需资金分别为1200万元和1800万元.( 2 )设今年改扩建A 类学校a 所,则改扩建B 类学校( 10-a )所,由题意,得{( 1200-300 )x +( 1800−500 )( 10−x )≤11800,300x +500( 10−x )≥4000,解得3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案方案一改扩建A类学校3所,B类学校7所;方案二改扩建A类学校4所,B类学校6所;方案三改扩建A类学校5所,B类学校5所.。

2017—2018学年度第二学期期末试卷含解析与答案2

2017—2018学年度第二学期期末试卷含解析与答案2

2017-2018学年度第二学期期末质量监测七年级数学试卷注意事项:1.本次考试试卷共6页,试卷总分120分,考试时间90分钟。

2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,务必在答题卡规定的地方填写自己的姓名、准考证号,并认真核对答题卡上所粘贴的条形码中姓名、准考证号和本人姓名、准考证号是否一致。

3.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号。

写在本试卷上无效。

一、精心选一选,慧眼识金(本大题共16个小题:每小题3分,共48分。

在每小题给出的四个选项中,只有一个是符合题目要求的) 1.计算23a a ⋅正确的是A.aB.5aC.6aD.9a2.某种细菌直径约为0.00000067mm ,若将0.00000067mm 用科学记数法表示为n 107.6⨯mm (n 为负整数),则n 的值为A.-5B.-6C.-7D.-8 3.下列三天线段不能构成三角形的三边的是A.3cm ,4cm ,5cmB.5cm ,6cm ,11cmC.5cm ,6cm ,10cmD.2cm ,3cm ,4cm 4.如图,直线a ,b 被直线c 所截,若a ∥b ,=∠︒=∠︒=∠3702401,则,A.70°B.100°C.110°D.120°5.当x <a <0时,2x 与ax 的大小关系是A.2x >ax B.2x ≥ax C.2x <ax D.2x ≤ax 6.不等式组⎩⎨⎧≤+x4-168-x 213x 4>的最小整数解是A.0B.-1C.1D.2 7.如图,下列能判定AB ∥EF 的条件有①︒=∠+∠180BFE B ②21∠=∠ ③43∠=∠ ④5∠=∠B A.1个 B.2个 C.3个 D.4个 8.当a ,b 互为相反数时,代数式2a +ab-4的值为 A.4 B.0 C.-3 D.-4 9.下列运算正确的是A.222b a b a +=+)( B.(-2ab 3)622b a 4-=C.3a 632a a 2-=D.a 3-a=a (a+1)(a-1)10.(-8)201320148-)(+能被下列整数除的是A.3B.5C.7D.9 11.若不等式组⎩⎨⎧-a x <<x 312的解集是x <2,则a 的取值范围是A.a <2B.a ≤2C.a ≥2D.无法确定 12.如图,是三个等边三角形(注:等边三角形的三个内角都相等) 随意摆放的图形,则321∠+∠+∠等于A.90°B.120°C.150°D.180° 13.把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面 为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S 1;若按图2摆放时, 阴影部分的面积为S 2,则S 1和S 2的大小关系是 A.S 1>S 2 B.S 1<S 2 C.S 1=S 2 D.无法确定14.已知的结果为,则计算:2m -m -m 01-m -m 342+= A.3 B.-3 C.5 D.-515.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙得速度的两倍,要保证在2小时以内相遇,则甲的速度A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h 16.如图,E 是△ABC 中BC 边上的一点,且BE=31BC ;点D 是AC 上一点,且AD=41AC ,S =-=∆∆∆AD F EF ABC S S ,则24A.1B.2C.3D.4第Ⅱ (非选择题,共72分)二、细心填一填,一锤定音(每小题3分,共12分) 17.分解因式:2-x 22= 。

2017-2018学年度第二学期期末考试七年级数学试题及答案

2017-2018学年度第二学期期末考试七年级数学试题及答案

火车站李庄2017—2018学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 得分 评卷人 C 1A 1ABB 1CD CB A D18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

七年级下学期数学期末试卷(含答案)

七年级下学期数学期末试卷(含答案)

七年级下学期数学期末试卷(含答案)2017-2018学年度下学期期末学业水平检测七年级数学试题一、单项选择题(每小题2分,共12分)1.在数2,π,3-8,0.3333.中,其中无理数有()A。

1个B。

2个C。

3个D。

4个2.已知:点P(x,y)且xy=0,则点P的位置在()A。

原点B。

x轴上C。

y轴上D。

x轴上或y轴上3.不等式组2x-1>1。

4-2x≤的解集在数轴上表示为()4.下列说法中,正确的是()A。

图形的平移是指把图形沿水平方向移动B。

“相等的角是对顶角”是一个真命题C。

平移前后图形的形状和大小都没有发生改变D。

“直角都相等”是一个假命题5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A。

1500B。

1000C。

150D。

5006.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()①∠1=∠2②∠3=∠4③∠A=∠XXX④∠D+∠ABD=180°A。

①③④B。

①②③C。

①②④D。

②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标。

8.-364的绝对值等于______。

9.不等式组{x-2≤x-1>的整数解是______。

10.如图,a∥b,∠1=55°,∠2=40°,则∠3的度数是______。

11.五女峰森林公园门票价格:成人票每张50元,学生票每张10元。

某旅游团买30张门票花了1250元,设其中有x 张成人票,y张学生票,根据题意列方程组是______。

12.数学活动中,XXX和XXX向老师说明他们的位置(单位:m): XXX:我这里的坐标是(-200,300);XXX:我这里的坐标是(300,300)。

则老师知道XXX与XXX之间的距离是______。

13.比较大小: 5-1/2______1(填“<”或“>”或“=”)。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

2017—2018 学年度第二学期期末考试 七 年 级 数 学 试 卷

2017—2018 学年度第二学期期末考试 七 年 级 数 学 试 卷

2017—2018 学年度第二学期期末考试七 年 级 数 学 试 卷注意事项:1.本卷共4页,共有25小题,满分120分,考试时限120分钟。

2.答题前,考生要将自己的姓名、考号、学校和班级写在答题卡指定的位置,并在答题卡所规定的方框内答题。

3.考生必须保持答题卡的整洁,考试结束后,只上交答题卡。

一、选择题(本题共 10 题,每小题 3 分,共 30 分)下列各题均有四个备选答案, 其中有且仅有个答案是正确的, 请用2B 铅笔在答题卡上将正确的答案代号涂黑.1.9的算术平方根是( )A .3±B .3C .3±D .32.如图,AB ∥CD ,那么( )A .∠1=∠4B .∠1=∠3C .∠2=∠3D .∠1=∠53.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( )A .30°B .35°C .45°D .50° 4.将点A (2,1)向左平移2个单位长度得到点A ′,则点A ′的坐标是( )A .(2,3)B .(2,-1)C .(4,1)D .(0,1)5.若代数式237x +的值是非负数,则x 的取值范围是( ) A .x ≥23 B .x ≥-32 C .x >23 D .x >-326.张老师对本班50名学生的血型作了统计,列出如下的统计表,则本班A 组别 A 型 B 型 AB 型 O 型频率 0.3 0.2 0.1 0.4A .20人B . 15人C .10人D .5人7.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?若设生产螺栓x 人,生产螺帽y 人,则列方程组( )A .901524x y x y +=⎧⎨=⎩B .901548x y x y +=⎧⎨=⎩C .903024x y x y +=⎧⎨=⎩D .902(15)24x y x y +=⎧⎨-=⎩ 8.二元一次方程组941611x y x y +=⎧⎨+=-⎩的解满足2x -ky =10,则k 的值等于( ) A .4 B .-4 C .8 D .-8(第3题图)(第2题图)9.如果不等式组213(23)x x x m ->-⎧⎨<⎩的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m ≥210.某种商品价格为33元/件,某人只带有2元和5元两种面值人民币足够多张数,买了一件这种商品,若不找零钱,则付款方式中两种面值人民币张数之和最少与张数之和最多的方式分别是( )A .8张和16张B .8张和15张C .9张和15张D .9张和16张二、填空题:(本题有6个小题,每小题3分,共18分)11.若x ,y 为实数,且|x +2|+2y -=0,则2x +y 的值为 .12.若xy >0,且x +y <0,则点M (x ,y )在第________象限.13.已知21x y =⎧⎨=-⎩是方程ax +5y =15的一个解,则a 的平方根为________. 14.已知:点A (m ,2)到y 轴的距离为3,则m =________.15.我们定义 a b ad bc c d =-.如⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4=-2.则不等式1<1 3 4x <3 的解集为__________.16.如图,所有正方形的中心均在坐标原点,且各边与坐标轴平行,从内到外,它们的边长依次为3,5,7,9,…,顶点依次为1A ,2A ,3A ,4A ,…,则顶点2018A 的坐标是__________.三、解答题(本题有9个小题,共72分)17.(本题满分6分) 计算:23|3|2716(2)---+--.18.(本题满分6分) 解方程组3262317x y x y -=⎧⎨+=⎩.(第16题图)19.(本题满分7分)有这样一道不等式的题目21532x x ++-≥□. 学生:老师,小明把这道题后面的部分擦掉了.老师:哦,如果我告诉你这道题的正确答案是x ≥7,且□是一个常数,你能把这个常数补上吗?学生:我知道了.根据以上信息,请你求出□中的数.20.(本题满分7分) 解不等式组4332(4)1372(2)5x x x -⎧--<-⎪⎨⎪-+<⎩ ,并把解集表示在数轴上.21.(本题满分8分) 如图,∠A =∠ADE ,∠C =∠E .(1)若∠EDC =3∠C ,求∠C 的度数;(2)求证:BE ∥CD .22.(本题满分8分)某中学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)若该中学有2400名学生,请估计其中有多少名学生能在1.5 h 内完成家庭作业?.(第22题图)(第21题图)(第20题图)23.(本题满分8分)为了更好地引导在校学生知善、行善、扬善、乐善,并逐步实现“日行一善”到“善行一生”,某校计划组织师生共368人参加“日行一善”活动.若租用7辆大型客车和5辆中型客车恰好全部坐满,已知每辆大型客车座位数比中型客车座位数多20个.(1)求每辆大型客车和每辆中型客车座位数;(2)由于参加活动的人数增加了50人,学校决定调整租车方案,在租用车辆总数不变的情况下,为了保证每一位参加活动的师生都有坐位,求租用中型客车的最大值.24.(本题满分10分)阅读材料:对x ,y 定义一种新运算“T ”,规定:T(x ,y )=2ax by x y-+(其中a ,b 均为非0常数,且x +y ≠0). 如T(1,0)=12010a b a -=+,若T(2,1)=43,T(1,-2)=-7. (1)求T(2,3)的值;(2)若关于c 的不等式组T(-3,5+3)T(,2)2c c m c c <⎧⎨-<⎩恰好有3个整数解,求实数m 的取值范围.25.(本题满分12分)在平面直角坐标系中,点A ,B 分别是x 轴,y 轴上的点,且OA =a ,OB =b ,其中a ,b 满足(a +b -32)2+16b a -+=0,将点B 向左平移18个单位长度得到点C .(1)求点A ,B ,C 的坐标.(2)点M ,N 分别为线段BC ,OA 上的两个动点,点M 从点B 以1个单位长度/秒的速度向左运动,同时点N 从点A 以2个单位长度/秒的速度向右运动,设运动时间为t 秒(0≤t ≤12).①当BM =ON 时,求t 的值;②是否存在一段时间,使得S四边形NACM <12S 四边形BOAC ?若存在,求出t 的取值范围;若不存在,请说明理由.(第25题图)。

七年级2017-2018学年度第二学期期末学业参考答案

七年级2017-2018学年度第二学期期末学业参考答案

2017-2018学年度第二学期期末学业质量监测试题七年级数学试题参考答案一、请把选择题答案填在下列表格中(每小题3分,满分36分)13.71.610-⨯ 14.75° 15.240° 16.-1 17.60° 18.8818x y -三、解答题(本大题共7小题,共66分.解答要写出必要的文字说明或演算步骤) 19. (本题满分12分,每小题4分)(1)481a - (2)994009 (3)5418x y 20. (本题满分12分,每小题4分)(1)()()1b c a -- (2)()()2y x y x y -- (3)()224(4)x y x y -+21.(本题满分7分)解:∵,CD AB EF AB ⊥⊥, ∴180CDF EFD ∠+∠=︒, ∴//CD EF ,………………2分 ∴2DCE ∠=∠,………………3分 又∵12∠=∠, ∴1DCE ∠=∠, ∴//DG BC ,………………5分∴AGD ACB ∠=∠.………………7分 22.(本题满分7分) 解:(1)1 6 15 20 15 6 1 ………………2分(2)()77652433425677213535217a b a a b a b a b a b a b ab b +=+++++++-----5分(3)5, 1………………7分 23.(本题满分8分)解:∵MF//AD ,FN//DC ,∴∠BMF=∠A=100°,∠BNF=∠C=70°,………………2分 ∵△BMN 沿MN 翻折得△FMN ,∴111005022BMN BMF ∠=∠=⨯︒=︒, 11703522BNM BNF ∠=∠=⨯︒=︒,………………6分在△BMN 中,∠B=180°-(∠BMN+∠BNM )=95°。

………………8分24. (本题满分10分)解:(1)∵a,b 满足()2460a b -+-= ∴()240a -=,60b -=解得4,6,a b ==∴点B 的坐标是(4,6);………………3分(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O →→→→的线路移动, ∴248⨯=, ∵OA=4,OC=6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8-6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度(或点P 在线段CB 的中点处),点P 的坐标是(2,6); ………………7分(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况:当点P 在OC 上时,点P 移动的时间是52 2.5÷=秒;第二种情况:当点P 在BA 上时,点P 移动的时间是()6412 5.5++÷=秒; 故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒. ………………10分 25.(本题满分10分) (1)解:如图①所示:∵DE//BC (已知) ∴∠A=∠1 ,∠B=∠2(两直线平行,内错角相等)又∵∠1+∠ACB+∠2=180°(平角的性质) ∴∠A+∠ACB+∠B=180°(等量代换) ∴△ABC 的内角之和等于180°…………3分 (2)解:∵∠AGF+∠EGF=180°(平角的性质) 又∵在△GEF 中∠EGF+∠GEF+∠F=180°(内角和性质) ∴∠AGF=∠GEF+∠F (等量代换)…………6分 (3)解:∵AB//CD ,∠CDE=119°(已知) ∴∠CDE+∠AED=180°(两直线平行,同旁内角互补) ∠CDE=∠BED=119°(两直线平行,内错角相等) ∴∠AED=61°-----------------------------------------------------------------------------------7分 ∵EF 平分∠DEB ∴∠DEF=∠FEB=59.5° ∠AEF=∠GED+∠DEF=120.5°----8分 ∵∠AGF=∠AEF+∠F (外角等于不相邻的两个内角和) ∠AGF=150° ∴∠F=∠AGF-∠AEF =29.5° ………………10分。

湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(二)

湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(二)

湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(二)一、选择题1.对于点M(0,﹣2)的位置,以下说法中正确的是()A.在x轴上B.在y轴上C.在第三象限内D.在第四象限内2.如图,在数轴上有M、N、P、Q四点,其中某一点表示无理数,这个点是()A.M B.N C.P D.Q3.若是关于x、y的方程x﹣ky=k的解,那么k的值是()A.﹣1 B.1 C.﹣2 D.不存在4.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有5.在下面的四个图形中,∠1与∠2一定相等的是()A.B.C.D.6.已知a>2a,那么对于a的判断正确的是()A.是正数B.是负数C.是非正数D.是非负数7.点P(2m﹣1,3+m)在第二象限,则所有满足条件的整数m有()A.5个B.3个C.1个D.没有8.关于x、y的方程组,那么y是()A.5 B.2a+5 C.a﹣5 D.2a9.体育委员对七(5)班的立定跳远成绩作全面调查,绘成如下统计图,如果把高于0.8米的成绩视为合格,再绘制一张扇形图,“不合格”部分对应的圆心角是()A.50°B.60°C.90°D.80°10.如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A.80°B.82°C.83°D.85°二、填空题11.已知x﹣y=7,当x=﹣4时,y= .12.一个关于x的不等式组的解集表示在数轴上如图.这个不等式组的解集是.13.已知5个运动员从小到大依次大1岁,他们的年龄和不超过100岁,最小的一个运动员一定不会超过岁.14.在正方形网格内有线段AB和点C,画线段CD,使CD∥AB,且D是格点.15.= .16.已知:x≤1,含x的代数式A=3﹣2x,那么A的值的范围是.17.一件商品进价120元,标价a元,要按标价打6折销售,利润不会少于10%,标价a要满足.18.如图,超市里的购物车,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的倍,∠2的度数是.三、解答题(本大题满分为66分)19.解下列方程组:(1)(2).20.解不等式或不等式组,并把解集在数轴上表示出来:(1)(2).21.如图,∠B=48°,∠A′AC=100°,A′A∥BC.(1)求∠CAB的度数;(2)将△ABC平移,使A到达A′,画出平移后的△A′B′C′,并直接写出∠C′CA 的度数.22.已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.23.生活经验:因为你在北半球,用走时准确的手表可以帮你辨别方向.将时针指向太阳所在方向,画它与12点夹角的平分线,这条平分线所指的方向就是南方,如图.题目:沙漠探险队员用手表定好方位,∠COB=48°,发现一处水源D在7点指的方向,如图.营地E在水源D的北偏东40°方向.(1)水源D在探险队员的偏度的方向(方位角);(2)在图中画出营地E所在的方向;(3)求∠EDO的度数.24.我市正在实施“引洈济新”工程,让市民喝上洈水水库的清洁水.为了让这泓清水得到永续利用,拟将水价作以下调整:月用水x (吨)0<x≤5 5<x≤10x>10元/吨 2 4 8(1)如果李华家每月用水4吨,应交水费元;张民家每月用水6.5吨,应交水费元;王星的家里某两个月共用水12吨,两个月的总水费w(元),w的范围是;用如图大小形状完全相同的长方形纸片在直角坐标系中摆成以下图案,已知A(﹣2,6).(1)求出长方形的长与宽;(2)写出B、C、D、E、F点的坐标;(3)要使点P(m,n)在长方形纸片拼成的图案阴影内(可以在边上),在下面的表中填写:m在哪一范围内取值时,n对应的范围是什么.范围顺序号m的范围n对应的范围1 23 4 5 6 7参考答案与试题解析一、选择题1.对于点M(0,﹣2)的位置,以下说法中正确的是()A.在x轴上B.在y轴上C.在第三象限内D.在第四象限内【考点】点的坐标.【分析】根据y轴上点的坐标特点,即可解答.【解答】解:点M(0,﹣2)在y轴上,故选:B.【点评】本题考查了点的坐标,解决本题的关键是熟记y轴上点的坐标特点.2.如图,在数轴上有M、N、P、Q四点,其中某一点表示无理数,这个点是()A.M B.N C.P D.Q【考点】实数与数轴;无理数.【分析】先估算出的取值范围,再找出符合条件的点即可.【解答】解:∵≈1.414,∴1.4<<1.5,∴无理数对应的点是P.故选C.【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.3.若是关于x、y的方程x﹣ky=k的解,那么k的值是()A.﹣1 B.1 C.﹣2 D.不存在【考点】二元一次方程的解.【专题】计算题;推理填空题.【分析】把代入关于x、y的方程x﹣ky=k,求出k的值是多少即可.【解答】解:∵是关于x、y的方程x﹣ky=k的解,∴﹣2﹣k=k,∴k=﹣1.故选:A.【点评】此题主要考查了二元一次方程的解,要熟练掌握,采用代入法即可.4.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有【考点】无理数.【分析】根据无理数的定义得到无理数有π,共两个.【解答】解:无理数有:π,故选:C【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.5.在下面的四个图形中,∠1与∠2一定相等的是()A.B.C.D.【考点】对顶角、邻补角.【分析】根据对顶角相等以及平行线的性质,以及余角的性质即可判断.【解答】解:A、∠1与∠2是邻补角,不一定相等,故本选项错误;B、∠1与∠2是对顶角,一定相等,故本选项正确;C、∠1与∠2互补,不一定相等,故本选项错误;D、∠1与∠2不是一组平行线被第三条直线所截,不一定相等,故本选项错误;故选:B.【点评】本题重点考查了对顶角相等以及平行线的性质,属于基础题,难度不大.6.已知a>2a,那么对于a的判断正确的是()A.是正数B.是负数C.是非正数D.是非负数【考点】不等式的性质.【专题】计算题;一元一次不等式(组)及应用.【分析】求出不等式的解集,即可作出判断.【解答】解:由a>2a,移项得:0>2a﹣a,合并得:a<0,则a是负数,故选B【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.7.点P(2m﹣1,3+m)在第二象限,则所有满足条件的整数m有()A.5个B.3个C.1个D.没有【考点】解一元一次不等式组;点的坐标.【专题】计算题.【分析】先根据第二象限点的坐标特征得到,然后解不等式组,再找出不等式的整数解即可.【解答】解:根据题意得,解得﹣3<m<,所以不等式的整数解为﹣2,﹣1,0.故选B.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分;解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.注意第二象限点的坐标特征.8.关于x、y的方程组,那么y是()A.5 B.2a+5 C.a﹣5 D.2a【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组中两方程相减消去x求出y的值即可.【解答】解:,②﹣①得:y=5,故选A【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.体育委员对七(5)班的立定跳远成绩作全面调查,绘成如下统计图,如果把高于0.8米的成绩视为合格,再绘制一张扇形图,“不合格”部分对应的圆心角是()A.50°B.60°C.90°D.80°【考点】扇形统计图;条形统计图.【分析】先求出不合格人数占总人数的百分比,进而可得出结论.【解答】解:∵ =,∴“不合格”部分对应的圆心角是×360°=90°.故选C.【点评】本题考查的是扇形统计图,熟知扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数是解答此题的关键.10.如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A.80°B.82°C.83°D.85°【考点】平行线的性质.【分析】由对顶角求得∠AEC=10°,由角平分线的定义求得∠2=85°,根据平行线的性质即可求得结果.【解答】解:∵∠3=10°,∴∠AEC=10°,∴∠BEC=180°﹣10°=170°,∵EN平分∠CEB,∴∠2=85°,∵FM∥AB,∴∠F=∠2=85°,故选D.【点评】本题主要考查了对顶角的定义,角平分线的性质,平行线的性质,熟练掌握平行线的性质是解决问题的关键.二、填空题11.已知x﹣y=7,当x=﹣4时,y= ﹣11 .【考点】解二元一次方程.【专题】计算题;一次方程(组)及应用.【分析】把x的值代入方程计算即可求出y的值.【解答】解:把x=﹣4代入方程得:﹣4﹣y=7,解得:y=﹣11,故答案为:﹣11【点评】此题考查了解二元一次方程,解题思路为:把x的值代入方程计算求出y的值.12.一个关于x的不等式组的解集表示在数轴上如图.这个不等式组的解集是﹣2≤x<3 .【考点】在数轴上表示不等式的解集.【分析】根据数轴上表示的不等式组的解集,可得不等式组.【解答】解:由数轴可得:﹣2≤x<3,故答案为:﹣2≤x<3.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.已知5个运动员从小到大依次大1岁,他们的年龄和不超过100岁,最小的一个运动员一定不会超过18 岁.【考点】一元一次不等式的应用.【专题】应用题.【分析】设最小的一个运动员为x岁,利用他们的年龄和不超过100岁得到x+x+1+x+2+x+3+x+4≤100,然后解不等式的最大解即可.【解答】解:设最小的一个运动员为x岁,根据题意得x+x+1+x+2+x+3+x+4≤100,解得x≤18,所以x的最大值为18,即最小的一个运动员一定不会超过18岁.故答案为18.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.14.在正方形网格内有线段AB和点C,画线段CD,使CD∥AB,且D是格点.【考点】作图—复杂作图.【专题】作图题.【分析】平移AB使它经过点C即可得到线段CD.【解答】解:如图,CD为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.15.= ﹣.【考点】立方根.【专题】计算题.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.已知:x≤1,含x的代数式A=3﹣2x,那么A的值的范围是A≥1 .【考点】不等式的性质.【分析】根据不等式的性质即可求解.【解答】解:∵x≤1,∴﹣2x≥﹣2,∴3﹣2x≥1,即A的值的范围是A≥1.故答案为A≥1.【点评】本题考查了不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.17.一件商品进价120元,标价a元,要按标价打6折销售,利润不会少于10%,标价a要满足240元.【考点】一元一次方程的应用.【分析】设商品的标价为每件x元,则售价为每件0.6a元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的标价a元,则售价为0.6a元,由题意,得0.6a﹣120=10%a,解得:a=240.故答案为:240元.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.18.如图,超市里的购物车,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的倍,∠2的度数是55°.【考点】平行线的性质.【分析】首先设∠2=x°,根据题意可得∠3=(x﹣10)°,∠1=x°,再根据两直线平行内错角相等可得关于x的方程x=x+x﹣10,解方程即可.【解答】解:设∠2=x°,则∠3=(x﹣10)°,∠1=x°,∵AB∥CD,∴∠1=∠2+∠3,∴x=x+x﹣10,解得:x=55,∴∠2=55°,故答案为:55°.【点评】此题主要考查了平行线的性质,关键是正确理解题意,掌握两直线平行内错角相等.三、解答题(本大题满分为66分)19.解下列方程组:(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),由②得:y=4x+9③,把③代入①得:x+20x+45=3,即21x=﹣42,解得:x=﹣2,把x=﹣2代入③得:y=1,则方程组的解为;(2),①+②得: x=11,解得:x=4.4,把x=4.4代入①得:y=6.6,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.解不等式或不等式组,并把解集在数轴上表示出来:(1)(2).【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)根据不等式的基本性质分别去分母、移项、合并同类项可得;(2)分别求出每个不等式的解集,根据“同大取大”即可得不等式组的解集.【解答】解:(1)去分母,得:2x﹣2≤x+1,移项,得:2x﹣x≤1+2,合并同类项,得:x≤3,将不等式解集表示在数轴上如下:(2)解不等式2x﹣5>1,得:x>3,解不等式2﹣x<0,得:x>2,∴不等式组的解集x>3,将不等式解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式和不等式组的能力,准确求出每个不等式的解集是解题关键.21.如图,∠B=48°,∠A′AC=100°,A′A∥BC.(1)求∠CAB的度数;(2)将△ABC平移,使A到达A′,画出平移后的△A′B′C′,并直接写出∠C′CA 的度数.【考点】作图﹣平移变换.【分析】(1)根据平行线的性质可得∠ACB=∠A′AC=100°,再根据三角形内角和定理可得计算出∠CAB的度数;(2)首先延长BC,截取BB′=AA′,CC′=AA′,再连接A′B′,C′B′,A′C′即可.【解答】解:(1)∵A′A∥BC,∴∠ACB=∠A′AC=100°,∵∠B=48°,∴∠CAB=180°﹣100°﹣48°=42°;(2)如图所示:∠C′CA=∠ACB=80°.【点评】此题主要考查了作图﹣﹣平移变换,以及平行线的性质,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22.已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.【考点】一元一次不等式组的整数解;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)求出每个不等式的解集,在数轴上表示出来,即可得出答案;(2)只要写出一个数,不等式组有解即可.【解答】解:(1)∵解不等式①得:x≥2,解不等式②得:x<﹣1,在数轴上表示不等式的解集为:从数轴可以看出:两不等式的解集没有公共部分,∴不等式组无解;(2)不等式组为:,不等式组的解集为2≤x≤4,不等式组的整数解为2,3,4.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式组的整数解的应用,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.23.生活经验:因为你在北半球,用走时准确的手表可以帮你辨别方向.将时针指向太阳所在方向,画它与12点夹角的平分线,这条平分线所指的方向就是南方,如图.题目:沙漠探险队员用手表定好方位,∠COB=48°,发现一处水源D在7点指的方向,如图.营地E在水源D的北偏东40°方向.(1)水源D在探险队员的西偏北72 度的方向(方位角);(2)在图中画出营地E所在的方向;(3)求∠EDO的度数.【考点】方向角.【分析】(1)过O作直线OF⊥OC,则OF为北,求出∠DOF=72°,则水源D在探险队员的西偏北72°的方向;(2)过点D画出四个方位,标出营地E所在的方向;(3)先求∠ODF=90°﹣72°=18°,再根据平角定义求出结论.【解答】解:(1)过O作直线OF⊥OC,则∠FOB=90°﹣48°=42°,∵OC平分∠AOB,∴∠AOB=2∠BOC=96°,∴∠DOB=180°﹣96°+30°=114°,∴∠DOF=114°﹣42°=72°,则水源D在探险队员的西偏北72°的方向,故答案为:西,北72;(2)如图所示,(3)在Rt△DOF中,∠ODF=90°﹣72°=18°,∴∠EDO=180°﹣40°﹣18°=122°.【点评】本题考查了方位角问题,这是数学中的一个难点,本题需要理解方位角的概念;解答此类题需要从运动的角度,正确画出四个方位:东、南、西、北,再结合三角形的内角和及角平分线和平角的关系求解.24.我市正在实施“引洈济新”工程,让市民喝上洈水水库的清洁水.为了让这泓清水得到永续利用,拟将水价作以下调整:月用水x (吨)0<x≤5 5<x≤10x>10元/吨 2 4 8(1)如果李华家每月用水4吨,应交水费8 元;张民家每月用水6.5吨,应交水费16 元;王星的家里某两个月共用水12吨,两个月的总水费w(元),w的范围是28≤w≤36 ;用如图大小形状完全相同的长方形纸片在直角坐标系中摆成以下图案,已知A(﹣2,6).(1)求出长方形的长与宽;(2)写出B、C、D、E、F点的坐标;(3)要使点P(m,n)在长方形纸片拼成的图案阴影内(可以在边上),在下面的表中填写:m在哪一范围内取值时,n对应的范围是什么.范围顺序号m的范围n对应的范围1 ﹣2≤m≤0 02 ﹣≤m<﹣2 0≤n≤63 ﹣≤m <﹣ 0≤n ≤4 ﹣≤m <﹣5 0<m ﹣≤n≤06<m ≤ ﹣6≤n ≤0 7 <m ≤ 0≤n ≤﹣【考点】坐标与图形性质.【分析】(1)设长方形的宽为x ,长为y ,根据点A 的坐标列方程求解可得;(2)由(1)中长方形的长、宽,结合各象限坐标符号特点即可得;(3)将阴影部分以x 的各节点划分7个范围,再在这七个范围内确定阴影部分的高即可完成表格.【解答】解:(1)设长方形的宽为x ,长为y ,根据题意,得:,解得:,∴长方形的长为,宽为;(2)点B坐标为(﹣,),点C坐标为(0,﹣),点D坐标为(,﹣),点E的坐标为(,﹣),点F的坐标为(,0);(3)完成表格如下:范围顺序号m的范围n对应的范围1 ﹣2≤m≤0 02 ﹣≤m<﹣2 0≤n≤63 ﹣≤m<﹣ 0≤n≤4 ﹣≤m<﹣0 50<m﹣≤n≤06 <m≤﹣6≤n≤07 <m≤ 0≤n≤﹣【点评】本题主要考查二元一次方程组的应用及图形与坐标的性质,根据点A的坐标列方程组求出长方形的长和宽是前提,根据横坐标将阴影部分划分出7个区域是解题的关键.第21页(共21页)。

湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(共三套)

湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(共三套)

湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(共三套)湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(一)一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是()A.B.C.D.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40° B.∠COE=130°C.∠EOD=40° D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°6.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3)C.(0,3)D.(3,﹣3)11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块D.12块、20块二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣=.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a与b平行,则∠1的度数必须是.15.已知关于x的不等式组的解集是x>4,则m的取值范围是.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.三、解答题(共8小题,满分72分)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.21.如图,已知∠ABC=180°﹣∠A ,BD ⊥CD 于D ,EF ⊥CD 于F .(1)求证:AD ∥BC ;(2)若∠1=36°,求∠2的度数.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?23.解决问题.学校要购买A ,B 两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A 型足球和3个B 型足球,则要花费370元,若买3个A 型足球和1个B 型足球,则要花费240元.(1)求A ,B 两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A ,B 两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?24.如图(1),在平面直角坐标系中,A (a ,0),C (b ,2),过C 作CB ⊥x 轴,且满足(a +b )2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于( )A .±2B .2C .﹣2D .4【分析】如果一个非负数x 的平方等于a ,那么x 是a 的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选B .【点评】本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是( )A .B .C .D .【分析】根据无理数的三种形式求解.【解答】解:=8, =4, =3, =2,无理数为. 故选D .【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x ﹣1≥1的解集是( )A .x ≥﹣1B .x ≤﹣1C .x ≤0D .x ≤1 【分析】先移项合并同类项,然后系数化为1求解.【解答】解:移项合并同类项得:﹣2x ≥2,系数化为1得:x ≤﹣1.故选B .【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40° B.∠COE=130°C.∠EOD=40° D.∠BOE=90°【分析】首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.【解答】解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.【点评】本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°【分析】首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【分析】本题的关键是先解不等式组,然后再在数轴上表示.【解答】解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.【点评】本题考查一元一次不等式组的解集及在数轴上的表示方法.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确;C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.【点评】本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:8﹣3a=7,解得:a=.故选C.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3)C.(0,3)D.(3,﹣3)【分析】首先根据左眼坐标可得右眼坐标,再根据平移方法可得平移后右眼B的坐标是(0+3,3).【解答】解:∵左眼A的坐标是(﹣2,3),∴右眼的坐标是(0,3),∴笑脸向右平移3个单位后,右眼B的坐标是(0+3,3),即(3,3),故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|【分析】先根据数轴确定a,b的范围,再进行逐一分析各选项,即可解答.【解答】解:由数轴可得:a<0<b,|a|<|b|,A、a<b,故错误;B、ab<0,故错误;C、a+b>0,正确;D、|a|<|b|,故错误;故选:C.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴确定a,b的范围.12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块D.12块、20块【分析】根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.【解答】解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣=﹣1.【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1﹣=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a与b平行,则∠1的度数必须是80°.【分析】先求出∠2的对顶角的度数,再根据同旁内角互补,两直线平行解答.【解答】解:如图,∵∠2=100°,∴∠3=∠2=100°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣100°=80°.故答案为:80°.【点评】本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键,15.已知关于x的不等式组的解集是x>4,则m的取值范围是m≤3.【分析】先求出不等式的解集,根据已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.【解答】解:∵不等式①的解集为x>4,不等式②的解集为x>m+1,,又∵不等式组的解集为x>4,∴m+1≤4,∴m≤3,故答案为:m≤3.【点评】本题考查了解一元一次不等式组,不等式组的解集的应用,能根据不等式的解集和已知不等式组的解集得出关于m的不等式是解此题的关键.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是(﹣505,505).【分析】根据每一个正方形有4个顶点可知每4个点为一个循环组依次循环,用2018除以4,根据商和余数判断出点A2018所在的正方形以及所在的象限,再利用正方形的性质即可求出顶点A2018的坐标.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A 2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A 2(﹣1,1),A 6(﹣2,2),A 10(﹣3,3),…,A 2018(﹣505,505). 故答案为(﹣505,505).【点评】本题是对点的坐标变化规律的考查,根据四个点为一个循环组求出点A 2018所在的正方形和所在的象限是解题的关键.三、解答题(共8小题,满分72分)17.计算:().【分析】先进行二次根式的除法运算,然后化简后合并即可.【解答】解:原式=×﹣×=﹣ =﹣. 【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×2+②×3得:13x=﹣1,即x=﹣, 把x=﹣代入①得:y=﹣,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式组,并把它的解集用数轴表示出来..【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x ≥﹣2,解不等式②得:x <,∴不等式组的解集为﹣2≤x <,在数轴上表示不等式组的解集为:. 【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.20.已知x 是的整数部分,y 是的小数部分,求x (﹣y )的值. 【分析】由于3<<4,由此可确定的整数部分x ,接着确定小数部分y ,然后代入所求代数式中计算出结果即可.【解答】解:∵3<<4, ∴的整数部分x=3,小数部分y=﹣3, ∴﹣y=3, ∴x (﹣y )=3×3=9.【点评】此题考查了二次根式的性质,估算无理数的大小;利用二次根式的性质确定x 、y 的值是解决问题的关键.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠3,根据垂直推出BD∥EF,根据平行线的性质即可求出∠2.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.【点评】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?【分析】(1)先求出该班学生的人数,再乘以乘车上学的百分比求解即可,(2)求出步行的人数,再补全条形统计图,(3)利用全面调查与抽样调查的区别来分析即可.【解答】解:(1)该班学生的人数为:15÷30%=50(人),该班乘车上学的人数为:50×(1﹣50%﹣30%)=10(人),(2)步行的人数为:50×50%=25(人),补全条形统计图,(3)不能由此估计出该校七年级学生骑自行车上学的人数.这是七(1)班数学老师要求每个学生就本班学生的上学方式进行一次全面调查,不是七年级学生上学方式的抽样调查,收集的数据对本校七年级学生的上学方式不具有代表性.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?【分析】(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B 型足球,则要花费240元列出方程组解答即可;(2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.【解答】解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得解得答:A,B两种型号足球的销售价格各是50元/个,90元/个.(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得,解得7.5≤x≤12.5∵x是整数,∴x=8、9、10、11、12,有5种购球方案:购买A型号足球8个,B型号足球12个;购买A型号足球9个,B型号足球11个;购买A型号足球10个,B型号足球10个;购买A型号足球11个,B型号足球9个;购买A型号足球12个,B型号足球8个.【点评】此题考查二元一次方程组与一元一次不等式组的实际运用,找出题目蕴含的等量关系与不等关系是解决问题的关键.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.【解答】解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC=S△APG+S△CPG=|t﹣1|2+|t﹣1|2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(二)一、选择题1.对于点M(0,﹣2)的位置,以下说法中正确的是()A.在x轴上B.在y轴上C.在第三象限内D.在第四象限内2.如图,在数轴上有M、N、P、Q四点,其中某一点表示无理数,这个点是()A.M B.N C.P D.Q3.若是关于x、y的方程x﹣ky=k的解,那么k的值是()A.﹣1 B.1 C.﹣2 D.不存在4.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有5.在下面的四个图形中,∠1与∠2一定相等的是()A.B.C.D.6.已知a>2a,那么对于a的判断正确的是()A.是正数B.是负数C.是非正数D.是非负数7.点P(2m﹣1,3+m)在第二象限,则所有满足条件的整数m有()A.5个B.3个C.1个D.没有8.关于x、y的方程组,那么y是()A.5 B.2a+5 C.a﹣5 D.2a9.体育委员对七(5)班的立定跳远成绩作全面调查,绘成如下统计图,如果把高于0.8米的成绩视为合格,再绘制一张扇形图,“不合格”部分对应的圆心角是()A.50°B.60°C.90°D.80°10.如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A.80°B.82°C.83°D.85°二、填空题11.已知x﹣y=7,当x=﹣4时,y= .12.一个关于x的不等式组的解集表示在数轴上如图.这个不等式组的解集是.13.已知5个运动员从小到大依次大1岁,他们的年龄和不超过100岁,最小的一个运动员一定不会超过岁.14.在正方形网格内有线段AB和点C,画线段CD,使CD∥AB,且D是格点.15.= .16.已知:x≤1,含x的代数式A=3﹣2x,那么A的值的范围是.17.一件商品进价120元,标价a元,要按标价打6折销售,利润不会少于10%,标价a要满足.18.如图,超市里的购物车,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的倍,∠2的度数是.三、解答题(本大题满分为66分)19.解下列方程组:(1)(2).20.解不等式或不等式组,并把解集在数轴上表示出来:(1)(2).21.如图,∠B=48°,∠A′AC=100°,A′A∥BC.(1)求∠CAB的度数;(2)将△ABC平移,使A到达A′,画出平移后的△A′B′C′,并直接写出∠C′CA 的度数.22.已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.23.生活经验:因为你在北半球,用走时准确的手表可以帮你辨别方向.将时针指向太阳所在方向,画它与12点夹角的平分线,这条平分线所指的方向就是南方,如图.题目:沙漠探险队员用手表定好方位,∠COB=48°,发现一处水源D 在7点指的方向,如图.营地E 在水源D 的北偏东40°方向.(1)水源D 在探险队员的 偏 度的方向(方位角);(2)在图中画出营地E 所在的方向;(3)求∠EDO 的度数.24.我市正在实施“引洈济新”工程,让市民喝上洈水水库的清洁水.为了让这泓清水得到永续利用,拟将水价作以下调整:(1)如果李华家每月用水4吨,应交水费 元;张民家每月用水6.5吨,应交水费 元;王星的家里某两个月共用水12吨,两个月的总水费w (元),w 的范围是 ;用如图大小形状完全相同的长方形纸片在直角坐标系中摆成以下图案,已知A (﹣2,6).(1)求出长方形的长与宽;(2)写出B 、C 、D 、E 、F 点的坐标;(3)要使点P (m ,n )在长方形纸片拼成的图案阴影内(可以在边上),在下面的表中填写:m 在哪一范围内取值时,n 对应的范围是什么.参考答案与试题解析一、选择题1.对于点M(0,﹣2)的位置,以下说法中正确的是()A.在x轴上B.在y轴上C.在第三象限内D.在第四象限内【考点】点的坐标.【分析】根据y轴上点的坐标特点,即可解答.【解答】解:点M(0,﹣2)在y轴上,故选:B.【点评】本题考查了点的坐标,解决本题的关键是熟记y轴上点的坐标特点.2.如图,在数轴上有M、N、P、Q四点,其中某一点表示无理数,这个点是()A.M B.N C.P D.Q【考点】实数与数轴;无理数.【分析】先估算出的取值范围,再找出符合条件的点即可.【解答】解:∵≈1.414,∴1.4<<1.5,∴无理数对应的点是P.故选C.【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.3.若是关于x、y的方程x﹣ky=k的解,那么k的值是()A.﹣1 B.1 C.﹣2 D.不存在【考点】二元一次方程的解.【专题】计算题;推理填空题.【分析】把代入关于x、y的方程x﹣ky=k,求出k的值是多少即可.【解答】解:∵是关于x、y的方程x﹣ky=k的解,∴﹣2﹣k=k,∴k=﹣1.故选:A.【点评】此题主要考查了二元一次方程的解,要熟练掌握,采用代入法即可.4.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有【考点】无理数.【分析】根据无理数的定义得到无理数有π,共两个.【解答】解:无理数有:π,故选:C【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.5.在下面的四个图形中,∠1与∠2一定相等的是()A.B.C.D.【考点】对顶角、邻补角.【分析】根据对顶角相等以及平行线的性质,以及余角的性质即可判断.【解答】解:A、∠1与∠2是邻补角,不一定相等,故本选项错误;B、∠1与∠2是对顶角,一定相等,故本选项正确;C、∠1与∠2互补,不一定相等,故本选项错误;D、∠1与∠2不是一组平行线被第三条直线所截,不一定相等,故本选项错误;故选:B.【点评】本题重点考查了对顶角相等以及平行线的性质,属于基础题,难度不大.6.已知a>2a,那么对于a的判断正确的是()A.是正数B.是负数C.是非正数D.是非负数【考点】不等式的性质.【专题】计算题;一元一次不等式(组)及应用.【分析】求出不等式的解集,即可作出判断.【解答】解:由a>2a,移项得:0>2a﹣a,合并得:a<0,则a是负数,故选B【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.7.点P(2m﹣1,3+m)在第二象限,则所有满足条件的整数m有()A.5个B.3个C.1个D.没有【考点】解一元一次不等式组;点的坐标.【专题】计算题.【分析】先根据第二象限点的坐标特征得到,然后解不等式组,再找出不等式的整数解即可.【解答】解:根据题意得,解得﹣3<m<,所以不等式的整数解为﹣2,﹣1,0.故选B.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分;解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.注意第二象限点的坐标特征.8.关于x、y的方程组,那么y是()A.5 B.2a+5 C.a﹣5 D.2a【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组中两方程相减消去x求出y的值即可.【解答】解:,②﹣①得:y=5,故选A【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.体育委员对七(5)班的立定跳远成绩作全面调查,绘成如下统计图,如果把高于0.8米的成绩视为合格,再绘制一张扇形图,“不合格”部分对应的圆心角是()A.50°B.60°C.90°D.80°【考点】扇形统计图;条形统计图.【分析】先求出不合格人数占总人数的百分比,进而可得出结论.【解答】解:∵ =,∴“不合格”部分对应的圆心角是×360°=90°.故选C.【点评】本题考查的是扇形统计图,熟知扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数是解答此题的关键.。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

2017-2018学年七年级下期末数学试卷(有答案)

2017-2018学年七年级下期末数学试卷(有答案)

2017-208学年七年级(下)期末数学试卷一、选择题(2分/题,共20分)1.(2分)下列四个实数中是无理数的是()A.πB.1.414 C.0 D.2.(2分)下列调查中,适用采用全面调查(普查)方式的是()A.对玉坎河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对为某类烟花爆竹燃放安全情况的调查3.(2分)如图,已知AB∥ED,∠ECF=65°,则∠BAF的度数为()A.115°B.65°C.60°D.25°4.(2分)点P(2m+6,m﹣1)在第三象限,则m的取值范围是()A.m<﹣3 B.m<1 C.m>﹣3 D.﹣3<m<15.(2分)下列说法中不正确的是()A.0是绝对值最小的实数B.=C.任意一个实数的立方根都是非负数D.±3是9的平方根6.(2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万7.(2分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为()A. B.C.D.8.(2分)如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.149.(2分)某商店销售“黄金一号”玉米种子,推出两种销售方案供采购者选择:方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.设购买的种子数量为x千克,若技术员小王选择了方案二比方案一更划算,则他购买种子数量x的范围是()A.x>9 B.x≥9 C.x<9 D.x≤910.(2分)已知关于x,y的方程组,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(3分/题,共24分)11.(3分)4是的算术平方根.12.(3分)点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为.13.(3分)如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为.14.(3分)某区对本区初中在校女生进行身高测量,身高在1.58~1.63m这一组的频数有300人,占全区女生人数的25%,则该区初中在校女生总共有人.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.(3分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m 的取值范围是.17.(3分)已知不等式(a+1)x>2的解集是x<﹣1,则a的取值是.18.(3分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.三、解答题(共56分)19.(6分)计算:﹣(1﹣)+|﹣|.20.(6分)解方程组.21.(6分)解不等式7+x≥2(2x﹣1),并把解集在如图的数轴上表示出来.22.(6分)某校数学兴趣小组成员刘明对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析(每个人的成绩各不相同),绘制成如下下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=,b=c=;(2)补全频数分布直方图;(3)如果要画该班上学期期末考试数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2820a4c 频率0.04b0.400.320.08123.(6分)如图,A、B两点的坐标分别是A (﹣1,),B (﹣3,0)(1)求出△ABO的面积为;(2)将△ABO向下平移个单位,再向右平移3个单位,得到△A1B1O1,请写出A1、B1、O1三个点的坐标以及△A1B1O1的面积.24.(8分)某地管理部门规划建造面积为4500平方米的集贸市场,市场内设独立商户和棚台交易摊位共90间,每间独立商户店面的平均面积为45平方米,月租费为1150元,每间棚台交易摊位的平均面积为31平方米,月租费为1000元,全部店面的建造面积不低于集贸市场总面积的80%(1)求建造独立商户店面至少多少间?(2)该地管理部门通过了解,独立商户店面的出租率为76%,棚台交易摊位的出租率为90%,为使店面的月租费最高,应建造独立商户店面多少间?此时,店面的月租费是多少?25.(8分)如图所示,已知射线CB∥OA,∠C=∠OAB=110°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,根据上述条件,解答下列问题:(1)证明:OC∥AB;(2)求∠EOB的度数;(3)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若不变,求出这个比值;若变化,请说明理由.26.(10分)为奖励在演讲比赛中获奖的同学,大队辅导员王老师负责为获奖同学买奖品,要求每人一件.王老师到文具店看了商品后,决定在钢笔和笔记本中选择.如果买3个笔记本和2支钢笔,则需84元;如果买4个笔记本和3支钢笔,则需118元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受7.5折优惠,①若买x(x>0)支钢笔需要花y1元,请你用含x的式子表示y1;②王老师决定买同一种奖品,并且数量超过10个,请你帮王老师判断买哪种奖品更省钱.参考答案与试题解析一、选择题(2分/题,共20分)1.(2分)下列四个实数中是无理数的是()A.πB.1.414 C.0 D.【解答】解:1.414,0,是有理数,π是无理数,故选:A.2.(2分)下列调查中,适用采用全面调查(普查)方式的是()A.对玉坎河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对为某类烟花爆竹燃放安全情况的调查【解答】解:A、对玉坎河水质情况的调查适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查无法进行全面调查,适合抽样调查,故B错误;C、某班50名同学体重情况适用于全面调查,故C正确;D、对于某类烟花爆竹燃放安全情况的调查,无法进行全面调查,故D错误;故选:C.3.(2分)如图,已知AB∥ED,∠ECF=65°,则∠BAF的度数为()A.115°B.65°C.60°D.25°【解答】解:∵AB∥ED,∴∠BAC=∠ECF=65°,∴∠BAF=180°﹣∠BAC=180°﹣65°=115°;故选:A.4.(2分)点P(2m+6,m﹣1)在第三象限,则m的取值范围是()A.m<﹣3 B.m<1 C.m>﹣3 D.﹣3<m<1【解答】解:根据题意,得:,解得:m<﹣3,故选:A.5.(2分)下列说法中不正确的是()A.0是绝对值最小的实数B.=C.任意一个实数的立方根都是非负数D.±3是9的平方根【解答】解:A、0是绝对值最小的有理数,故本选项错误;B、=,故本选项错误;C、正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零.故本选项正确;D、因为(±3)2=9,所以±3是9的平方根,故本选项错误;故选:C.6.(2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万【解答】解:∵为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,∴调查中的样本容量是3万.故选:D.7.(2分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为()A.B.C.D.【解答】解:,①+②得:2x=12k,即x=6k,把①﹣②得:2y=﹣2k,即y=﹣k,把x=6k,y=﹣k代入2x+3y=6得:12k﹣3k=6,解得:k=,故选:B.8.(2分)如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.14【解答】解:∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+2+2=12.故选:C.9.(2分)某商店销售“黄金一号”玉米种子,推出两种销售方案供采购者选择:方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.设购买的种子数量为x千克,若技术员小王选择了方案二比方案一更划算,则他购买种子数量x的范围是()A.x>9 B.x≥9 C.x<9 D.x≤9【解答】解:设购买的种子数量为x千克,根据题意列出不等式可得:4x>3×5+(x﹣3)×4×0.7,解得:x>9,故选:A.10.(2分)已知关于x,y的方程组,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③【解答】解:①当a=0时,原方程组为,解得,②把代入方程组的是方程组的解;③当a=﹣1时,原方程组为,解得,当时,代入方程组可求得a=2,把与a=﹣1代入方程2x﹣y=1﹣a得,方程的左右两边成立,综上可知正确的为①②③.故选:D.二、填空题(3分/题,共24分)11.(3分)4是16的算术平方根.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.(3分)点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为(﹣2,1).【解答】解:P到x轴的距离是1,到y轴的距离是2,得|y|=1,|x|=2.由点P在第二象限内,得P(﹣2,1),故答案为:(﹣2,1).13.(3分)如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为60°.【解答】解:∵CD平分∠ACB,∠1=30°,∴∠ACB=2∠1=60°.∵DE∥AC,∴∠DEB=∠ACB=60°.故答案为:60°.14.(3分)某区对本区初中在校女生进行身高测量,身高在1.58~1.63m这一组的频数有300人,占全区女生人数的25%,则该区初中在校女生总共有1200人.【解答】解:300÷25%=1200(人).故答案为:1200.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.16.(3分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m的取值范围是m≥﹣4.【解答】解:∵1⊕2=2,若(﹣2m﹣5)⊕3=3,∴﹣2m﹣5≤3,解得m≥﹣4.故答案为:m≥﹣4.17.(3分)已知不等式(a+1)x>2的解集是x<﹣1,则a的取值是﹣3.【解答】解:∵不等式(a+1)x>2的解集是x<﹣1,∴=﹣1,解得:a=﹣3,故答案为:﹣318.(3分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.【解答】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y﹣x)=400.那么列方程组.三、解答题(共56分)19.(6分)计算:﹣(1﹣)+|﹣|.【解答】解:﹣(1﹣)+|﹣|=﹣1+﹣=﹣120.(6分)解方程组.【解答】解:,①×2+②得:7x=21,解得:x=3,把x=3代入①得:y=﹣1,则方程组的解为.21.(6分)解不等式7+x≥2(2x﹣1),并把解集在如图的数轴上表示出来.【解答】解:去括号得,7+x≥4x﹣2,移项得,x﹣4x≥﹣7﹣2,合并同类项得,﹣3x≥﹣9,系数化为1得,x≤3,在数轴上表示如下:.22.(6分)某校数学兴趣小组成员刘明对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析(每个人的成绩各不相同),绘制成如下下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=16,b=0.16c=50;(2)补全频数分布直方图;(3)如果要画该班上学期期末考试数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是144°(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2820a4c 频率0.04b0.400.320.081【解答】解:(1)∵调查的总人数c=20÷0.4=50,∴a=50×0.32=16,b=8÷50=0.16,故答案为:16、0.16、50;(2)补全直方图如下:(3)分数在69.5﹣79.5之间的扇形圆心角的度数是360°×0.4=144°,故答案为:144°;(4)正确,由表可知,比79分高的人数占总人数的比例为0.32+0.08=0.4=,∴他的说法正确.23.(6分)如图,A、B两点的坐标分别是A (﹣1,),B (﹣3,0)(1)求出△ABO的面积为;(2)将△A BO向下平移个单位,再向右平移3个单位,得到△A1B1O1,请写出A1、B1、O1三个点的坐标以及△A1B1O1的面积.【解答】解:(1)∵B (﹣3,0),∴OB=3,∵A (﹣1,),∴点A到OB的距离为,∴△ABO的面积=×3×=;故答案为:;(2)A1(2,0)、B1(﹣1,﹣)、O1(3,﹣),△A1B1O1的面积=.24.(8分)某地管理部门规划建造面积为4500平方米的集贸市场,市场内设独立商户和棚台交易摊位共90间,每间独立商户店面的平均面积为45平方米,月租费为1150元,每间棚台交易摊位的平均面积为31平方米,月租费为1000元,全部店面的建造面积不低于集贸市场总面积的80%(1)求建造独立商户店面至少多少间?(2)该地管理部门通过了解,独立商户店面的出租率为76%,棚台交易摊位的出租率为90%,为使店面的月租费最高,应建造独立商户店面多少间?此时,店面的月租费是多少?【解答】解:(1)设独立商户店面的数量为x间,则棚台交易摊位的为(90﹣x)间,由题意得:4500×80%≤45x+31(90﹣x),即1920≤8x+1600,∴40≤x≤55,(2)设月租金收入为W元,则W=400x×75%+360(80﹣x)×90%=﹣24x+25920,∵40≤x≤55,∵﹣24<0∴W随x的增大而减小,当x=40时,Wmax=24960元,∴最高月租金为24960元.25.(8分)如图所示,已知射线CB∥OA,∠C=∠OAB=110°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,根据上述条件,解答下列问题:(1)证明:OC∥AB;(2)求∠EOB的度数;(3)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若不变,求出这个比值;若变化,请说明理由.【解答】解:(1)∵CB∥OA,∠C=∠OAB=110°,∴∠COA=180°﹣∠C=180°﹣110°=70°,∴∠COA+∠OAB=180°,∴OC∥AB;(2)∵∠FOB=∠AOB,∴OB平分∠AOF,又∵OE平分∠COF,∴∠EOB=∠EOF+∠FOB=∠COA=×70°=35°;(2)不变,∵CB∥OA,∴∠OBC=∠B OA,∠OFC=∠FOA,∴∠OBC:∠OFC=∠AOB:∠FOA,又∵∠FOA=∠FOB+∠AOB=2∠AOB,∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2.26.(10分)为奖励在演讲比赛中获奖的同学,大队辅导员王老师负责为获奖同学买奖品,要求每人一件.王老师到文具店看了商品后,决定在钢笔和笔记本中选择.如果买3个笔记本和2支钢笔,则需84元;如果买4个笔记本和3支钢笔,则需118元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受7.5折优惠,①若买x(x>0)支钢笔需要花y1元,请你用含x的式子表示y1;②王老师决定买同一种奖品,并且数量超过10个,请你帮王老师判断买哪种奖品更省钱.【解答】解:(1)设笔记本的单价为m元/本,钢笔的单价为n元/支,根据题意得:,解得:.答:笔记本的单价为16元/本,钢笔的单价为18元/个.(2)①当0<x≤10时,y1=18x;当x>10时,y1=18×10+18×(x﹣10)=13.5x+45.综上所述:y1=.②设获奖的学生有a个,购买奖品的总价为w,根据题意得:w钢笔=13.5a+45,w笔记本=16a.当w钢笔>w笔记本时,有13.5a+45>16a,解得:x<18;当w钢笔=w笔记本时,有13.5a+45=16a,解得:x=18;当w钢笔>w笔记本时,有13.5a+45<16a,解得:x>18.答:当获奖的学生多于10个少于18个时,购买笔记本省钱;当获奖的学生等于10个时,购买笔记本和购买钢笔所花钱数一样多;当获奖学生多于18个时,购买钢笔省钱.。

湖北省钟祥市2017-2018学年七年级下期末考试数学试卷(含解析)【精编】

湖北省钟祥市2017-2018学年七年级下期末考试数学试卷(含解析)【精编】

湖北省钟祥市2017-2018学年下学期期末考试七年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分每小题给出4个选项,有且只有一个答案是正确的)1.在平面直角坐标系中,点(3,﹣4)在()A.第一象限B.第二象限 C.第三象限 D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(3,-4)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)下列各点中,通过上下平移不能与点(2,﹣1)重合的是()A.(2,﹣2)B.(﹣2,﹣1)C.(2,0)D.(2,﹣3)【专题】常规题型.【分析】根据坐标变换即可求出答案.【解答】解:(A)(2,-2)往上平移1个单位即可与(2,-1)重合,故A可以;(C)(2,0)往下平移1个单位即可与(2,-1)重合,故C可以;(D)(2,-3)往上平移2个单位即可与(2,-1)重合,故D可以;故选:B.【点评】本题考查坐标变换,解题的关键是熟练运用坐标变换的规律,本题属于基础题型.4.(3分)正数a的两个平方根是方程3x+2y=2的一组解,则a=()A.1 B.2 C.9 D.4【专题】常规题型.【分析】根据一个正数的两个平方根互为相反数列式,然后求出x、y的值,再平方即可.【解答】解:∵x、y是正数a的平方根,∴x=-y,∴3(-y)+2y=2,解得y=-2,∴a=(-2)2=4.故选:D.【点评】本题考查了平方根的性质与一元一次方程的求解,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.(3分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【专题】实数.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出是解题关键,又利用了不等式的性质.6.(3分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100-30-24-10-8=28(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.7.(3分)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54° C.66° D.56°【分析】根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°-90°-34°=56°.故选:D.【点评】本题考查了平行线的性质,三角形的内角和,熟记平行线的性质定理是解题的关键.8.(3分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B.C.D.【专题】探究型.【分析】根据题意可以分别求出●与★的值,本题得以解决.【解答】∴将x=5代入2x-y=12,得y=-2,将x=5,y=-2代入2x+y得,2x+y=2×5+(-2)=8,∴●=8,★=-2,故选:D.【点评】本题考查二元一次方程组的解,解题的关键是明确题意,求出所求数的值.9.(3分)王老师揣着100元现金到新天地文体用品超市购买学生期末考试奖品,他看好了一种笔记本和一种钢笔,每本笔记本5元,每支钢笔7元,王老师计划购买这两种奖品共15份,王老师最少能买()本笔记本.A.5 B.4 C.3 D.2【专题】一元一次不等式(组)及应用.【分析】设王老师购买x本笔记本,则购买(15-x)支钢笔,根据总价=单价×数量结合总价不超过100元,即可得出关于x的一元一次不等式,解之取其中最小的整数即可得出结论.【解答】解:设王老师购买x本笔记本,则购买(15-x)支钢笔,根据题意得:5x+7(15-x)≤100,∴x为整数,∴x的最小值为3.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.10.(3分)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天 B.11天C.13天D.22天【分析】解法一:根据题意设有x天早晨下雨,这一段时间有y天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数-早晨下雨=早晨晴天;②总天数-晚上下雨=晚上晴天;列方程组解出即可.解法二:列三元一次方程组,解出即可.【解答】解:解法一:设有x天早晨下雨,这一段时间有y天,①+②得:2y=22y=11所以一共有11天,解法二:设一共有x天,早晨下雨的有y天,晚上下雨的有z天,所以一共有11天,故选:B.【点评】本题以天气为背景,考查了学生生活实际问题,恰当准确设未知数是本题的关键;根据生活实际可知,早晨和晚上要么下雨,要么晴天;本题也可以用算术方法求解:(9+6+7)÷2=11.11.(3分)已知关于x的不等式2x﹣a≤0的正整数解恰好为1,2,3,则a的取值范围是()A.a≥6 B.6≤a<8 C.6<a≤8 D.6≤a≤8【专题】常规题型.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式2x-a≤0,得:x≤∵不等式2x-a≤0的正整数解是1,2,3,∴3≤<4,解得:6≤a<8,故选:B.【点评】本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定的范围是解决本题的关键.解不等式时要用到不等式的基本性质.12.(3分)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么A2018的坐标为()A.(2018,0)B.(1008,1)C.(1009,1)D.(1009,0)【专题】规律型.【分析】根据图形可找出点A2、A6、A10、A14、…、的坐标,根据点的坐标的变化可找出变化规律“A4n+2(1+2n,1)(n为自然数)”,依此规律即可得出结论.【解答】解:观察图形可知:A2(1,1),A6(3,1),A10(5,1),A15(7,1),…,∴A4n+2(1+2n,1)(n为自然数).∵2018=504×4+2,∴n=504,∵1+2×504=1009,∴A2018(1009,1).故选:C.【点评】本题考查了规律型中点的坐标,根据点的变化找出变化规律“A4n+1(2n,1)(n 为自然数)”是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)已知实数a,b,c满足b﹣4=,c的平方根等于它本身,则a﹣的值为.【专题】数与式.【分析】根据二次根式的性质确定a、b的值,根据平方根的性质确定c的值即可解决问题;【点评】本题考查算术平方根、平方根等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,所以中考常考题型.14.(3分)在平面直角坐标系中,点E(﹣2,3)到y轴距离是.【分析】根据点到直线的距离的定义即可解答.【解答】解:点到y轴的距离即是点的横坐标的绝对值,则点E(-2,3)到y轴距离是2.故填2.【点评】本题主要考查点的坐标的几何意义,到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.15.(3分)如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOC,若∠BOE:∠AOC=4:5,则∠EOF为度.【专题】线段、角、相交线与平行线.【分析】依据∠AOC+∠BOE=90°,∠BOE:∠AOC=4:5,即可得出∠AOC=50°,根据OF平分∠AOC,可得∠COF=25°,进而得到∠EOF=∠COF+∠COE=115°.【解答】解:∵EO⊥CD,∴∠COE=90°,∴∠AOC+∠BOE=90°,又∵∠BOE:∠AOC=4:5,∴∠AOC=50°,又∵OF平分∠AOC,∴∠COF=25°,∴∠EOF=∠COF+∠COE=25°+90°=115°,故答案为:115.【点评】本题主要考查垂线的定义、角平分线的定义、对顶角的性质、邻补角的性质,关键在于熟练运用各性质定理,推出相关角的度数.16.(3分)若关于x,y的方程组的解满足x﹣y>10,则a的取值范围是.【专题】一次方程(组)及应用;一元一次不等式(组)及应用.【分析】利用加减消元法,解不等式组,求出x和y关于a的值,代入x-y>10,得到关于a的一元一次不等式,解之即可.【点评】本题考查解一元一次不等式和解二元一次方程组,正确掌握解一元一次不等式和解二元一次方程组的方法是解题的关键.17.(3分)若关于x的不等式组有解,则a的取值范围是.【专题】计算题;一元一次不等式(组)及应用.【分析】先解第一个不等式,然后有不等式组有解可得到关于a的不等式,从而可求得a 的取值范围.【解答】解:解不等式x+1>a,得:x>a-1,∵不等式组有解,∴a-1<2,解得:a<3,故答案为:a<3.【点评】本题主要考查的是不等式的解集,依据不等式组有解求得a的范围是解题的关键.三、解答题(本大题共7个小题,满分69分,解答应写出文字说明、证明过程或演算步骤)18.(8分)解方程组:(1)(2)【专题】常规题型.【分析】(1)将①代入②,消去未知数y,得到关于x的一元一次方程,求出x,再把x 的值代入①求出y即可;(2)先变形方程②,得出y=3x-5③,将③代入①,消去未知数y,得到关于x的一元一次方程,求出x,再把x的值代入③求出y即可.【解答】(2)由②得,y=3x-5③,将③代入①得,5x+2(3x-5)=1,解得x=1,把x=1代入③,得y=-2,所以原方程组的解为【点评】本题考查了解二元一次方程组,基本解法是代入法与加减法,用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y 的值用“{”联立起来,就是方程组的解.19.(9分)解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.则非负整数解是:0,1,2,3,4,5,6,7.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(10分)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,有关数据呈现如图:(1)求m、n的值,并补全条形统计图;(2)根据调查数据,请写出该市市民家庭处理过期药品最常见的方式:(3)家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点【专题】常规题型.【分析】(1)首先根据A类有80户,占8%,求出抽样调査的家庭总户数,再用D类户数除以总户数求出m,用E类户数除以总户数求出n;用总户数乘以C类所占的百分比得出C类户数,即可补全条形统计图;(2)根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;(3)用180万户乘以样本中送回收点的户数所占百分比即可.【解答】解:(1)∵抽样调査的家庭总户数为:80÷8%=1000(户),C类户数为:1000×10%=100,条形统计图补充如下:(2)根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;(3)180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体以及抽样调查的可靠性.21.(10分)已知关于x的方程a﹣3(x﹣1)=7﹣x的解为负分数,且关于x的不等式组的解集为x<﹣2,求符合条件的所有整数a的积.【专题】方程与不等式.【分析】把a看做已知数表示出不等式组的解,根据已知解集确定出a的范围,将a的整数解代入方程,检验方程解为负分数确定出所有a的值,即可求出积.【解答】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,把a=﹣3代入方程得:﹣3﹣3(x﹣1)=7﹣x,即x=﹣,符合题意;把a=﹣2代入方程得:﹣2﹣3(x﹣1)=7﹣x,即x=﹣3,不合题意;把a=﹣1代入方程得:﹣1﹣3(x﹣1)=7﹣x,即x=﹣,符合题意;把a=0代入方程得:﹣3(x﹣1)=7﹣x,即x=﹣2,不合题意;把a=1代入方程得:1﹣3(x﹣1)=7﹣x,即x=﹣,符合题意;把a=2代入方程得:2﹣3(x﹣1)=7﹣x,即x=﹣1,不合题意;把a=3代入方程得:3﹣3(x﹣1)=7﹣x,即x=﹣,符合题意.故符合条件的整数a取值为﹣3,﹣1,1,3,积为9.【点评】此题考查了解一元一次不等式组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.22.(10分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50-a)台,根据金额不多余7500元,列不等式求解;(3)根据A种型号电风扇的进价和售价、B种型号电风扇的进价和售价以及总利润=一台的利润×总台数,列出不等式,求出a的值,再根据a为整数,即可得出答案.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(30﹣a)≤7500,解得:a≤37.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,∵a≤37,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点评】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.23.(10分)如图1,已知AB∥CD,∠B=20°,∠D=110°.(1)若∠E=50°,请直接写出∠F的度数;(2)探索∠E与∠F之间满足的数量关系,并说明理由;(3)如图2,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.【专题】线段、角、相交线与平行线.【分析】(1)如图1,分别过点E,F作EM∥AB,FN∥AB,根据平行线的性质得到∠B=∠BEM=20°,∠MEF=∠EFN,∠D+∠DFN=180°,代入数据即可得到结论;(2)如图1,根据平行线的性质得到∠B=∠BEM=20°,∠MEF=∠EFN,由AB∥CD,AB∥FN,得到CD∥FN,根据平行线的性质得到∠D+∠DFN=180°,于是得到结论;(3)如图2,过点F作FH∥EP,设∠BEF=2x°,则∠EFD=(2x+50)°,根据角平分线的定义得到,根据平行线的性质得到∠PEF=∠EFH=x°,∠P=∠HFG,于是得到结论.【解答】解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN=70°,∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,∴∠EFD=∠MEF+70°∴∠EFD=∠BEF+50°=100°;故答案为:100°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=20°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN=70°,∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,∴∠EFD=∠MEF+70°,∴∠EFD=∠BEF+50°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+50°,设∠BEF=2x°,则∠EFD=(2x+50)°,∵EP平分∠BEF,GF平分∠EFD,∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG-∠EFH=25°,∴∠P=25°.【点评】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质定理是解题的关键.24.(12分)如图,在平面直角坐标系中,点A(a, a)在第三象限,点B(b,0)在x轴正半轴上,且a,b满足+|2a+b|=0,连接AB交y轴负半轴于点M.(1)求点A、B的坐标及三角形ABO的面积S三角形ABO;(2)求点M的坐标;(3)在y轴上是否存在点P,使得S三角形ABP=2S三角形ABO,若存在,求出点P的坐标:若不存在,请说明理由.【专题】几何综合题.【分析】(1)根据非负数的性质分别求出A、B的坐标,根据三角形的面积公式求出三角形ABO的面积;(2)利用待定系数法求出直线AB的解析式,根据一次函数图象上点的坐标特征计算即可;(3)设点P的坐标为(0,y),根据三角形的面积公式计算即可.解:(1)由题意得,a2﹣4=0,2a+b=0,a<0,解得,a=﹣2,b=4,a=﹣3,∴点A的坐标为(﹣2,﹣3),点B的坐标的坐标为(4,0),∴S△ABO=×4×3=6;(2)设直线AB的解析式为:y=kx+b,由题意得,,解得,,则直线AB的解析式为:y=x﹣2,∴点M的坐标为(0,﹣2);(3)假设存在点P,设点P的坐标为(0,y),由题意得,×|y+2|×2+×|y+2|×4=2×6,解得,y=2或﹣6,则点P的坐标为(0,2)或(0,﹣6)时,S三角形ABP=2S三角形ABO.【点评】本题考查的是三角形的面积计算、非负数的性质、待定系数法求一次函数的解析式,掌握算术平方根、绝对值的非负性,灵活运用分情况讨论思想是解题的关键.。

2017-2018年湖北省荆门市钟祥市七年级(下)期末数学试卷(解析版)

2017-2018年湖北省荆门市钟祥市七年级(下)期末数学试卷(解析版)

2017-2018学年湖北省荆门市钟祥市七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分每小题给出4个选项,有且只有一个答案是正确的)1.(3分)在平面直角坐标系中,点(3,﹣4)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查3.(3分)下列各点中,通过上下平移不能与点(2,﹣1)重合的是()A.(2,﹣2)B.(﹣2,﹣1)C.(2,0)D.(2,﹣3)4.(3分)正数a的两个平方根是方程3x+2y=2的一组解,则a=()A.1B.2C.9D.45.(3分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.(3分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280B.240C.300D.2607.(3分)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.66°D.56°8.(3分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B.C.D.9.(3分)王老师揣着100元现金到新天地文体用品超市购买学生期末考试奖品,他看好了一种笔记本和一种钢笔,每本笔记本5元,每支钢笔7元,王老师计划购买这两种奖品共15份,王老师最少能买()本笔记本.A.5B.4C.3D.210.(3分)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天11.(3分)已知关于x的不等式2x﹣a≤0的正整数解恰好为1,2,3,则a的取值范围是()A.a≥6B.6≤a<8C.6<a≤8D.6≤a≤8 12.(3分)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么A2018的坐标为()A.(2018,0)B.(1008,1)C.(1009,1)D.(1009,0)二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)已知实数a,b,c满足b﹣4=,c的平方根等于它本身,则a﹣的值为.14.(3分)在平面直角坐标系中,点E(﹣2,3)到y轴距离是.15.(3分)如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOC,若∠BOE:∠AOC=4:5,则∠EOF为度.16.(3分)若关于x,y的方程组的解满足x﹣y>10,则a的取值范围是.17.(3分)若关于x的不等式组有解,则a的取值范围是.三、解答题(本大题共7个小题,满分69分,解答应写出文字说明、证明过程或演算步骤)18.(8分)解方程组:(1)(2)19.(9分)解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.20.(10分)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查,本次抽样调查发现,接受调查的家庭都有过期药品,有关数据呈现如图:(1)求m、n的值,并补全条形统计图;(2)根据调查数据,请写出该市市民家庭处理过期药品最常见的方式:(3)家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点21.(10分)已知关于x的方程a﹣3(x﹣1)=7﹣x的解为负分数,且关于x的不等式组的解集为x<﹣2,求符合条件的所有整数a的积.22.(10分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.(10分)如图1,已知AB∥CD,∠B=20°,∠D=110°.(1)若∠E=50°,请直接写出∠F的度数;(2)探索∠E与∠F之间满足的数量关系,并说明理由;(3)如图2,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.24.(12分)如图,在平面直角坐标系中,点A(a,a)在第三象限,点B(b,0)在x 轴正半轴上,且a,b满足+|2a+b|=0,连接AB交y轴负半轴于点M.(1)求点A、B的坐标及三角形ABO的面积S三角形ABO;(2)求点M的坐标;(3)在y轴上是否存在点P,使得S三角形ABP=2S三角形ABO,若存在,求出点P的坐标:若不存在,请说明理由.2017-2018学年湖北省荆门市钟祥市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分每小题给出4个选项,有且只有一个答案是正确的)1.(3分)在平面直角坐标系中,点(3,﹣4)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(3,﹣4)在第四象限.故选:D.2.(3分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A 错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.3.(3分)下列各点中,通过上下平移不能与点(2,﹣1)重合的是()A.(2,﹣2)B.(﹣2,﹣1)C.(2,0)D.(2,﹣3)【解答】解:(A)(2,﹣2)往上平移1个单位即可与(2,﹣1)重合,故A可以;(C)(2,0)往下平移1个单位即可与(2,﹣1)重合,故C可以;(D)(2,﹣3)往上平移2个单位即可与(2,﹣1)重合,故D可以;故选:B.4.(3分)正数a的两个平方根是方程3x+2y=2的一组解,则a=()A.1B.2C.9D.4【解答】解:∵x、y是正数a的平方根,∴x=﹣y,∴3(﹣y)+2y=2,解得y=﹣2,∴a=(﹣2)2=4.故选:D.5.(3分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解答】解:∵3<<4,∴4<+1<5,故选:B.6.(3分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280B.240C.300D.260【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.7.(3分)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.66°D.56°【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选:D.8.(3分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B.C.D.【解答】解:∵方程组的解为,∴将x=5代入2x﹣y=12,得y=﹣2,将x=5,y=﹣2代入2x+y得,2x+y=2×5+(﹣2)=8,∴●=8,★=﹣2,故选:D.9.(3分)王老师揣着100元现金到新天地文体用品超市购买学生期末考试奖品,他看好了一种笔记本和一种钢笔,每本笔记本5元,每支钢笔7元,王老师计划购买这两种奖品共15份,王老师最少能买()本笔记本.A.5B.4C.3D.2【解答】解:设王老师购买x本笔记本,则购买(15﹣x)支钢笔,根据题意得:5x+7(15﹣x)≤100,解得:x≥,∴x为整数,∴x的最小值为3.故选:C.10.(3分)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天【解答】解:解法一:设有x天早晨下雨,这一段时间有y天,根据题意得:①+②得:2y=22y=11所以一共有11天,解法二:设一共有x天,早晨下雨的有y天,晚上下雨的有z天,根据题意得:,解得:,所以一共有11天,故选:B.11.(3分)已知关于x的不等式2x﹣a≤0的正整数解恰好为1,2,3,则a的取值范围是()A.a≥6B.6≤a<8C.6<a≤8D.6≤a≤8【解答】解:解不等式2x﹣a≤0,得:x≤a,∵不等式2x﹣a≤0的正整数解是1,2,3,∴3≤a<4,解得:6≤a<8,故选:B.12.(3分)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么A2018的坐标为()A.(2018,0)B.(1008,1)C.(1009,1)D.(1009,0)【解答】解:观察图形可知:A2(1,1),A6(3,1),A10(5,1),A15(7,1),…,∴A4n+2(1+2n,1)(n为自然数).∵2018=504×4+2,∴n=504,∵1+2×504=1009,∴A2018(1009,1).故选:C.二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)已知实数a,b,c满足b﹣4=,c的平方根等于它本身,则a﹣的值为1.【解答】解:∵b﹣4=,﹣(a﹣3)2≥0,∴a=3,b=4,∵c的平方根等于它本身,∴c=0,∴a﹣=3﹣=3﹣2=1,故答案为114.(3分)在平面直角坐标系中,点E(﹣2,3)到y轴距离是2.【解答】解:点到y轴的距离即是点的横坐标的绝对值,则点E(﹣2,3)到y轴距离是2.故填2.15.(3分)如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOC,若∠BOE:∠AOC=4:5,则∠EOF为115度.【解答】解:∵EO⊥CD,∴∠COE=90°,∴∠AOC+∠BOE=90°,又∵∠BOE:∠AOC=4:5,∴∠AOC=50°,又∵OF平分∠AOC,∴∠COF=25°,∴∠EOF=∠COF+∠COE=25°+90°=115°,故答案为:115.16.(3分)若关于x,y的方程组的解满足x﹣y>10,则a的取值范围是a.【解答】解:,解得:,把x=﹣a,y=3a代入不等式x﹣y>10得:﹣a﹣3a>10,解得:a,故答案为:a.17.(3分)若关于x的不等式组有解,则a的取值范围是a<3.【解答】解:解不等式x+1>a,得:x>a﹣1,∵不等式组有解,∴a﹣1<2,解得:a<3,故答案为:a<3.三、解答题(本大题共7个小题,满分69分,解答应写出文字说明、证明过程或演算步骤)18.(8分)解方程组:(1)(2)【解答】解:(1)将①代入②,得2(x+1)﹣=9,解得x=5,把x=5代入①,得y=3,所以原方程组的解为;(2)由②得,y=3x﹣5③,将③代入①得,5x+2(3x﹣5)=1,解得x=1,把x=1代入③,得y=﹣2,所以原方程组的解为.19.(9分)解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【解答】解:,解①得x≤7,解②得x>﹣.则,不等式组的解集是﹣<x≤7.则非负整数解是:0,1,2,3,4,5,6,7.20.(10分)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查,本次抽样调查发现,接受调查的家庭都有过期药品,有关数据呈现如图:(1)求m、n的值,并补全条形统计图;(2)根据调查数据,请写出该市市民家庭处理过期药品最常见的方式:(3)家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点【解答】解:(1)∵抽样调査的家庭总户数为:80÷8%=1000(户),∴m%==20%,m=20,n%==6%,n=6.C类户数为:1000×10%=100,条形统计图补充如下:(2)根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;(3)180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.21.(10分)已知关于x的方程a﹣3(x﹣1)=7﹣x的解为负分数,且关于x的不等式组的解集为x<﹣2,求符合条件的所有整数a的积.【解答】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,把a=﹣3代入方程得:﹣3﹣3(x﹣1)=7﹣x,即x=﹣,符合题意;把a=﹣2代入方程得:﹣2﹣3(x﹣1)=7﹣x,即x=﹣3,不合题意;把a=﹣1代入方程得:﹣1﹣3(x﹣1)=7﹣x,即x=﹣,符合题意;把a=0代入方程得:﹣3(x﹣1)=7﹣x,即x=﹣2,不合题意;把a=1代入方程得:1﹣3(x﹣1)=7﹣x,即x=﹣,符合题意;把a=2代入方程得:2﹣3(x﹣1)=7﹣x,即x=﹣1,不合题意;把a=3代入方程得:3﹣3(x﹣1)=7﹣x,即x=﹣,符合题意.故符合条件的整数a取值为﹣3,﹣1,1,3,积为9.22.(10分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(30﹣a)≤7500,解得:a≤37.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,∵a≤37,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.23.(10分)如图1,已知AB∥CD,∠B=20°,∠D=110°.(1)若∠E=50°,请直接写出∠F的度数;(2)探索∠E与∠F之间满足的数量关系,并说明理由;(3)如图2,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.【解答】解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=20°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN=70°,∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,∴∠EFD=∠MEF+70°∴∠EFD=∠BEF+50°=100°;故答案为:100°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=20°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN=70°,∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,∴∠EFD=∠MEF+70°,∴∠EFD=∠BEF+50°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+50°,设∠BEF=2x°,则∠EFD=(2x+50)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+25)°,∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG﹣∠EFH=25°,∴∠P=25°.24.(12分)如图,在平面直角坐标系中,点A(a,a)在第三象限,点B(b,0)在x 轴正半轴上,且a,b满足+|2a+b|=0,连接AB交y轴负半轴于点M.(1)求点A、B的坐标及三角形ABO的面积S三角形ABO;(2)求点M的坐标;(3)在y轴上是否存在点P,使得S三角形ABP=2S三角形ABO,若存在,求出点P的坐标:若不存在,请说明理由.【解答】解:(1)由题意得,a2﹣4=0,2a+b=0,a<0,解得,a=﹣2,b=4,a=﹣3,∴点A的坐标为(﹣2,﹣3),点B的坐标的坐标为(4,0),∴S△ABO=×4×3=6;(2)设直线AB的解析式为:y=kx+b,由题意得,,解得,,则直线AB的解析式为:y=x﹣2,∴点M的坐标为(0,﹣2);(3)假设存在点P,设点P的坐标为(0,y),由题意得,×|y+2|×2+×|y+2|×4=2×6,解得,y=2或﹣6,则点P的坐标为(0,2)或(0,﹣6)时,S三角形ABP=2S三角形ABO.。

【精品】湖北省钟祥市2017-2018学年七年级下期末考试数学试卷(含解析)

【精品】湖北省钟祥市2017-2018学年七年级下期末考试数学试卷(含解析)

湖北省钟祥市2017-2018学年下学期期末考试七年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分每小题给出4个选项,有且只有一个答案是正确的)1.在平面直角坐标系中,点(3,﹣4)在()A.第一象限B.第二象限 C.第三象限 D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(3,-4)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)下列各点中,通过上下平移不能与点(2,﹣1)重合的是()A.(2,﹣2)B.(﹣2,﹣1)C.(2,0)D.(2,﹣3)【专题】常规题型.【分析】根据坐标变换即可求出答案.【解答】解:(A)(2,-2)往上平移1个单位即可与(2,-1)重合,故A可以;(C)(2,0)往下平移1个单位即可与(2,-1)重合,故C可以;(D)(2,-3)往上平移2个单位即可与(2,-1)重合,故D可以;故选:B.【点评】本题考查坐标变换,解题的关键是熟练运用坐标变换的规律,本题属于基础题型.4.(3分)正数a的两个平方根是方程3x+2y=2的一组解,则a=()A.1 B.2 C.9 D.4【专题】常规题型.【分析】根据一个正数的两个平方根互为相反数列式,然后求出x、y的值,再平方即可.【解答】解:∵x、y是正数a的平方根,∴x=-y,∴3(-y)+2y=2,解得y=-2,∴a=(-2)2=4.故选:D.【点评】本题考查了平方根的性质与一元一次方程的求解,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.(3分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【专题】实数.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出是解题关键,又利用了不等式的性质.6.(3分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100-30-24-10-8=28(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.7.(3分)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54° C.66° D.56°【分析】根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°-90°-34°=56°.故选:D.【点评】本题考查了平行线的性质,三角形的内角和,熟记平行线的性质定理是解题的关键.8.(3分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B.C.D.【专题】探究型.【分析】根据题意可以分别求出●与★的值,本题得以解决.【解答】∴将x=5代入2x-y=12,得y=-2,将x=5,y=-2代入2x+y得,2x+y=2×5+(-2)=8,∴●=8,★=-2,故选:D.【点评】本题考查二元一次方程组的解,解题的关键是明确题意,求出所求数的值.9.(3分)王老师揣着100元现金到新天地文体用品超市购买学生期末考试奖品,他看好了一种笔记本和一种钢笔,每本笔记本5元,每支钢笔7元,王老师计划购买这两种奖品共15份,王老师最少能买()本笔记本.A.5 B.4 C.3 D.2【专题】一元一次不等式(组)及应用.【分析】设王老师购买x本笔记本,则购买(15-x)支钢笔,根据总价=单价×数量结合总价不超过100元,即可得出关于x的一元一次不等式,解之取其中最小的整数即可得出结论.【解答】解:设王老师购买x本笔记本,则购买(15-x)支钢笔,根据题意得:5x+7(15-x)≤100,∴x为整数,∴x的最小值为3.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.10.(3分)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天【分析】解法一:根据题意设有x天早晨下雨,这一段时间有y天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数-早晨下雨=早晨晴天;②总天数-晚上下雨=晚上晴天;列方程组解出即可.解法二:列三元一次方程组,解出即可.【解答】解:解法一:设有x天早晨下雨,这一段时间有y天,①+②得:2y=22y=11所以一共有11天,解法二:设一共有x天,早晨下雨的有y天,晚上下雨的有z天,所以一共有11天,故选:B.【点评】本题以天气为背景,考查了学生生活实际问题,恰当准确设未知数是本题的关键;根据生活实际可知,早晨和晚上要么下雨,要么晴天;本题也可以用算术方法求解:(9+6+7)÷2=11.11.(3分)已知关于x的不等式2x﹣a≤0的正整数解恰好为1,2,3,则a的取值范围是()A.a≥6 B.6≤a<8 C.6<a≤8 D.6≤a≤8【专题】常规题型.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式2x-a≤0,得:x≤∵不等式2x-a≤0的正整数解是1,2,3,∴3≤<4,解得:6≤a<8,故选:B.【点评】本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定的范围是解决本题的关键.解不等式时要用到不等式的基本性质.12.(3分)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么A2018的坐标为()A.(2018,0)B.(1008,1)C.(1009,1)D.(1009,0)【专题】规律型.【分析】根据图形可找出点A2、A6、A10、A14、…、的坐标,根据点的坐标的变化可找出变化规律“A4n+2(1+2n,1)(n为自然数)”,依此规律即可得出结论.【解答】解:观察图形可知:A2(1,1),A6(3,1),A10(5,1),A15(7,1),…,∴A4n+2(1+2n,1)(n为自然数).∵2018=504×4+2,∴n=504,∵1+2×504=1009,∴A2018(1009,1).故选:C.【点评】本题考查了规律型中点的坐标,根据点的变化找出变化规律“A4n+1(2n,1)(n为自然数)”是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)已知实数a,b,c满足b﹣4=,c的平方根等于它本身,则a﹣的值为.【专题】数与式.【分析】根据二次根式的性质确定a、b的值,根据平方根的性质确定c的值即可解决问题;【点评】本题考查算术平方根、平方根等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,所以中考常考题型.14.(3分)在平面直角坐标系中,点E(﹣2,3)到y轴距离是.【分析】根据点到直线的距离的定义即可解答.【解答】解:点到y轴的距离即是点的横坐标的绝对值,则点E(-2,3)到y轴距离是2.故填2.【点评】本题主要考查点的坐标的几何意义,到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.15.(3分)如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOC,若∠BOE:∠AOC=4:5,则∠EOF为度.【专题】线段、角、相交线与平行线.【分析】依据∠AOC+∠BOE=90°,∠BOE:∠AOC=4:5,即可得出∠AOC=50°,根据OF平分∠AOC,可得∠COF=25°,进而得到∠EOF=∠COF+∠COE=115°.【解答】解:∵EO⊥CD,∴∠COE=90°,∴∠AOC+∠BOE=90°,又∵∠BOE:∠AOC=4:5,∴∠AOC=50°,又∵OF平分∠AOC,∴∠COF=25°,∴∠EOF=∠COF+∠COE=25°+90°=115°,故答案为:115.【点评】本题主要考查垂线的定义、角平分线的定义、对顶角的性质、邻补角的性质,关键在于熟练运用各性质定理,推出相关角的度数.16.(3分)若关于x,y的方程组的解满足x﹣y>10,则a的取值范围是.【专题】一次方程(组)及应用;一元一次不等式(组)及应用.【分析】利用加减消元法,解不等式组,求出x和y关于a的值,代入x-y>10,得到关于a的一元一次不等式,解之即可.【点评】本题考查解一元一次不等式和解二元一次方程组,正确掌握解一元一次不等式和解二元一次方程组的方法是解题的关键.17.(3分)若关于x的不等式组有解,则a的取值范围是.【专题】计算题;一元一次不等式(组)及应用.【分析】先解第一个不等式,然后有不等式组有解可得到关于a的不等式,从而可求得a的取值范围.【解答】解:解不等式x+1>a,得:x>a-1,∵不等式组有解,∴a-1<2,解得:a<3,故答案为:a<3.【点评】本题主要考查的是不等式的解集,依据不等式组有解求得a的范围是解题的关键.三、解答题(本大题共7个小题,满分69分,解答应写出文字说明、证明过程或演算步骤)18.(8分)解方程组:(1)(2)【专题】常规题型.【分析】(1)将①代入②,消去未知数y,得到关于x的一元一次方程,求出x,再把x的值代入①求出y即可;(2)先变形方程②,得出y=3x-5③,将③代入①,消去未知数y,得到关于x的一元一次方程,求出x,再把x的值代入③求出y即可.【解答】(2)由②得,y=3x-5③,将③代入①得,5x+2(3x-5)=1,解得x=1,把x=1代入③,得y=-2,所以原方程组的解为【点评】本题考查了解二元一次方程组,基本解法是代入法与加减法,用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.19.(9分)解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.则非负整数解是:0,1,2,3,4,5,6,7.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(10分)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,有关数据呈现如图:(1)求m、n的值,并补全条形统计图;(2)根据调查数据,请写出该市市民家庭处理过期药品最常见的方式:(3)家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点【专题】常规题型.【分析】(1)首先根据A类有80户,占8%,求出抽样调査的家庭总户数,再用D类户数除以总户数求出m,用E类户数除以总户数求出n;用总户数乘以C类所占的百分比得出C类户数,即可补全条形统计图;(2)根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;(3)用180万户乘以样本中送回收点的户数所占百分比即可.【解答】解:(1)∵抽样调査的家庭总户数为:80÷8%=1000(户),C类户数为:1000×10%=100,条形统计图补充如下:(2)根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;(3)180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体以及抽样调查的可靠性.21.(10分)已知关于x的方程a﹣3(x﹣1)=7﹣x的解为负分数,且关于x的不等式组的解集为x<﹣2,求符合条件的所有整数a的积.【专题】方程与不等式.【分析】把a看做已知数表示出不等式组的解,根据已知解集确定出a的范围,将a的整数解代入方程,检验方程解为负分数确定出所有a的值,即可求出积.【解答】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,把a=﹣3代入方程得:﹣3﹣3(x﹣1)=7﹣x,即x=﹣,符合题意;把a=﹣2代入方程得:﹣2﹣3(x﹣1)=7﹣x,即x=﹣3,不合题意;把a=﹣1代入方程得:﹣1﹣3(x﹣1)=7﹣x,即x=﹣,符合题意;把a=0代入方程得:﹣3(x﹣1)=7﹣x,即x=﹣2,不合题意;把a=1代入方程得:1﹣3(x﹣1)=7﹣x,即x=﹣,符合题意;把a=2代入方程得:2﹣3(x﹣1)=7﹣x,即x=﹣1,不合题意;把a=3代入方程得:3﹣3(x﹣1)=7﹣x,即x=﹣,符合题意.故符合条件的整数a取值为﹣3,﹣1,1,3,积为9.【点评】此题考查了解一元一次不等式组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.22.(10分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50-a)台,根据金额不多余7500元,列不等式求解;(3)根据A种型号电风扇的进价和售价、B种型号电风扇的进价和售价以及总利润=一台的利润×总台数,列出不等式,求出a的值,再根据a为整数,即可得出答案.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(30﹣a)≤7500,解得:a≤37.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,∵a≤37,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点评】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.23.(10分)如图1,已知AB∥CD,∠B=20°,∠D=110°.(1)若∠E=50°,请直接写出∠F的度数;(2)探索∠E与∠F之间满足的数量关系,并说明理由;(3)如图2,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.【专题】线段、角、相交线与平行线.【分析】(1)如图1,分别过点E,F作EM∥AB,FN∥AB,根据平行线的性质得到∠B=∠BEM=20°,∠MEF=∠EFN,∠D+∠DFN=180°,代入数据即可得到结论;(2)如图1,根据平行线的性质得到∠B=∠BEM=20°,∠MEF=∠EFN,由AB∥CD,AB∥FN,得到CD∥FN,根据平行线的性质得到∠D+∠DFN=180°,于是得到结论;(3)如图2,过点F作FH∥EP,设∠BEF=2x°,则∠EFD=(2x+50)°,根据角平分线的定义得到,根据平行线的性质得到∠PEF=∠EFH=x°,∠P=∠HFG,于是得到结论.【解答】解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN=70°,∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,∴∠EFD=∠MEF+70°∴∠EFD=∠BEF+50°=100°;故答案为:100°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=20°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN=70°,∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,∴∠EFD=∠MEF+70°,∴∠EFD=∠BEF+50°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+50°,设∠BEF=2x°,则∠EFD=(2x+50)°,∵EP平分∠BEF,GF平分∠EFD,∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG-∠EFH=25°,∴∠P=25°.【点评】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质定理是解题的关键.24.(12分)如图,在平面直角坐标系中,点A(a, a)在第三象限,点B(b,0)在x轴正半轴上,且a,b满足+|2a+b|=0,连接AB交y轴负半轴于点M.(1)求点A、B的坐标及三角形ABO的面积S三角形ABO;(2)求点M的坐标;(3)在y轴上是否存在点P,使得S三角形ABP=2S三角形ABO,若存在,求出点P的坐标:若不存在,请说明理由.【专题】几何综合题.【分析】(1)根据非负数的性质分别求出A、B的坐标,根据三角形的面积公式求出三角形ABO的面积;(2)利用待定系数法求出直线AB的解析式,根据一次函数图象上点的坐标特征计算即可;(3)设点P的坐标为(0,y),根据三角形的面积公式计算即可.解:(1)由题意得,a2﹣4=0,2a+b=0,a<0,解得,a=﹣2,b=4,a=﹣3,∴点A的坐标为(﹣2,﹣3),点B的坐标的坐标为(4,0),∴S△ABO=×4×3=6;(2)设直线AB的解析式为:y=kx+b,由题意得,,解得,,则直线AB的解析式为:y=x﹣2,∴点M的坐标为(0,﹣2);(3)假设存在点P,设点P的坐标为(0,y),由题意得,×|y+2|×2+×|y+2|×4=2×6,解得,y=2或﹣6,则点P的坐标为(0,2)或(0,﹣6)时,S三角形ABP=2S三角形ABO.【点评】本题考查的是三角形的面积计算、非负数的性质、待定系数法求一次函数的解析式,掌握算术平方根、绝对值的非负性,灵活运用分情况讨论思想是解题的关键.。

湖北省钟祥市2017-2018学年七年级下期末考试数学试卷(含解析)

湖北省钟祥市2017-2018学年七年级下期末考试数学试卷(含解析)
A.(2,﹣2) B.(﹣2,﹣1) C.(2,0) D.(2,﹣3)
【专题】常规题型.
【分析】根据坐标变换即可求出答案. 【解答】解:(A)(2,-2)往上平移 1 个单位即可与(2,-1)重合,故 A 可以; (C)(2,0)往下平移 1 个单位即可与(2,-1)重合,故 C 可以; (D)(2,-3)往上平移 2 个单位即可与(2,-1)重合,故 D 可以; 故选:B. 【点评】本题考查坐标变换,解题的关键是熟练运用坐标变换的规律,本题属 于基础题型. 4.(3 分)正数 a 的两个平方根是方程 3x+2y=2 的一组解,则 a=( )
了一种笔记本和一种钢笔,每本笔记本 5 元,每支钢笔 7 元,王老师计划购买这两种奖品
共 15 份,王老师最少能买( )本笔记本. A.5 B.4 C.3 D.2
【 专 题 】 一 元 一 次 不 等 式 (组 )及 应 用 . 【分析】设王老师购买 x 本笔记本,则购买(15-x)支钢笔,根据总价=单价× 数量结合总价不超过 100 元,即可得出关于 x 的一元一次不等式,解之取其中 最小的整数即可得出结论. 【解答】解:设王老师购买 x 本笔记本,则购买(15-x)支钢笔, 根 据 题 意 得 : 5x+7( 15-x) ≤100,
①+② 得 : 2 y=22 y=11 所以一共有 11 天, 解法二:设一共有 x 天,早晨下雨的有 y 天,晚上下雨的有 z 天,
所以一共有 11 天, 故选:B.
【点评】本题以天气为背景,考查了学生生活实际问题,恰当准确设未知数是 本题的关键;根据生活实际可知,早晨和晚上要么下雨,要么晴天;本题也可 以 用 算 术 方 法 求 解 : ( 9+6+7) ÷2=11. 11.(3 分)已知关于 x 的不等式 2x﹣a≤0 的正整数解恰好为 1,2,3,则 a 的取值范围是 () A.a≥6 B.6≤a<8 C.6<a≤8 D.6≤a≤8 【专题】常规题型. 【分析】首先确定不等式组的解集,先利用含 a 的式子表示,根据整数解的个数就可以确 定有哪些整数解,根据解的情况可以得到关于 a 的不等式,从而求出 a 的范围. 【解答】解:解不等式 2x-a≤0,得:x≤ ∵不等式 2x-a≤0 的正整数解是 1,2,3, ∴3≤ <4,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省钟祥市2017-2018学年下学期期末考试七年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分每小题给出4个选项,有且只有一个答案是正确的)1.在平面直角坐标系中,点(3,﹣4)在()A.第一象限B.第二象限 C.第三象限 D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(3,-4)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)下列各点中,通过上下平移不能与点(2,﹣1)重合的是()A.(2,﹣2)B.(﹣2,﹣1)C.(2,0)D.(2,﹣3)【专题】常规题型.【分析】根据坐标变换即可求出答案.【解答】解:(A)(2,-2)往上平移1个单位即可与(2,-1)重合,故A可以;(C)(2,0)往下平移1个单位即可与(2,-1)重合,故C可以;(D)(2,-3)往上平移2个单位即可与(2,-1)重合,故D可以;故选:B.【点评】本题考查坐标变换,解题的关键是熟练运用坐标变换的规律,本题属于基础题型.4.(3分)正数a的两个平方根是方程3x+2y=2的一组解,则a=()A.1 B.2 C.9 D.4【专题】常规题型.【分析】根据一个正数的两个平方根互为相反数列式,然后求出x、y的值,再平方即可.【解答】解:∵x、y是正数a的平方根,∴x=-y,∴3(-y)+2y=2,解得y=-2,∴a=(-2)2=4.故选:D.【点评】本题考查了平方根的性质与一元一次方程的求解,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.(3分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【专题】实数.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出是解题关键,又利用了不等式的性质.6.(3分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100-30-24-10-8=28(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.7.(3分)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54° C.66° D.56°【分析】根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°-90°-34°=56°.故选:D.【点评】本题考查了平行线的性质,三角形的内角和,熟记平行线的性质定理是解题的关键.8.(3分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B.C.D.【专题】探究型.【分析】根据题意可以分别求出●与★的值,本题得以解决.【解答】∴将x=5代入2x-y=12,得y=-2,将x=5,y=-2代入2x+y得,2x+y=2×5+(-2)=8,∴●=8,★=-2,故选:D.【点评】本题考查二元一次方程组的解,解题的关键是明确题意,求出所求数的值.9.(3分)王老师揣着100元现金到新天地文体用品超市购买学生期末考试奖品,他看好了一种笔记本和一种钢笔,每本笔记本5元,每支钢笔7元,王老师计划购买这两种奖品共15份,王老师最少能买()本笔记本.A.5 B.4 C.3 D.2【专题】一元一次不等式(组)及应用.【分析】设王老师购买x本笔记本,则购买(15-x)支钢笔,根据总价=单价×数量结合总价不超过100元,即可得出关于x的一元一次不等式,解之取其中最小的整数即可得出结论.【解答】解:设王老师购买x本笔记本,则购买(15-x)支钢笔,根据题意得:5x+7(15-x)≤100,∴x为整数,∴x的最小值为3.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.10.(3分)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天 B.11天C.13天D.22天【分析】解法一:根据题意设有x天早晨下雨,这一段时间有y天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数-早晨下雨=早晨晴天;②总天数-晚上下雨=晚上晴天;列方程组解出即可.解法二:列三元一次方程组,解出即可.【解答】解:解法一:设有x天早晨下雨,这一段时间有y天,①+②得:2y=22y=11所以一共有11天,解法二:设一共有x天,早晨下雨的有y天,晚上下雨的有z天,所以一共有11天,故选:B.【点评】本题以天气为背景,考查了学生生活实际问题,恰当准确设未知数是本题的关键;根据生活实际可知,早晨和晚上要么下雨,要么晴天;本题也可以用算术方法求解:(9+6+7)÷2=11.11.(3分)已知关于x的不等式2x﹣a≤0的正整数解恰好为1,2,3,则a的取值范围是()A.a≥6 B.6≤a<8 C.6<a≤8 D.6≤a≤8【专题】常规题型.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式2x-a≤0,得:x≤∵不等式2x-a≤0的正整数解是1,2,3,∴3≤<4,解得:6≤a<8,故选:B.【点评】本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定的范围是解决本题的关键.解不等式时要用到不等式的基本性质.12.(3分)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么A2018的坐标为()A.(2018,0)B.(1008,1)C.(1009,1)D.(1009,0)【专题】规律型.【分析】根据图形可找出点A2、A6、A10、A14、…、的坐标,根据点的坐标的变化可找出变化规律“A4n+2(1+2n,1)(n为自然数)”,依此规律即可得出结论.【解答】解:观察图形可知:A2(1,1),A6(3,1),A10(5,1),A15(7,1),…,∴A4n+2(1+2n,1)(n为自然数).∵2018=504×4+2,∴n=504,∵1+2×504=1009,∴A2018(1009,1).故选:C.【点评】本题考查了规律型中点的坐标,根据点的变化找出变化规律“A4n+1(2n,1)(n 为自然数)”是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)已知实数a,b,c满足b﹣4=,c的平方根等于它本身,则a﹣的值为.【专题】数与式.【分析】根据二次根式的性质确定a、b的值,根据平方根的性质确定c的值即可解决问题;【点评】本题考查算术平方根、平方根等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,所以中考常考题型.14.(3分)在平面直角坐标系中,点E(﹣2,3)到y轴距离是.【分析】根据点到直线的距离的定义即可解答.【解答】解:点到y轴的距离即是点的横坐标的绝对值,则点E(-2,3)到y轴距离是2.故填2.【点评】本题主要考查点的坐标的几何意义,到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.15.(3分)如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOC,若∠BOE:∠AOC=4:5,则∠EOF为度.【专题】线段、角、相交线与平行线.【分析】依据∠AOC+∠BOE=90°,∠BOE:∠AOC=4:5,即可得出∠AOC=50°,根据OF平分∠AOC,可得∠COF=25°,进而得到∠EOF=∠COF+∠COE=115°.【解答】解:∵EO⊥CD,∴∠COE=90°,∴∠AOC+∠BOE=90°,又∵∠BOE:∠AOC=4:5,∴∠AOC=50°,又∵OF平分∠AOC,∴∠COF=25°,∴∠EOF=∠COF+∠COE=25°+90°=115°,故答案为:115.【点评】本题主要考查垂线的定义、角平分线的定义、对顶角的性质、邻补角的性质,关键在于熟练运用各性质定理,推出相关角的度数.16.(3分)若关于x,y的方程组的解满足x﹣y>10,则a的取值范围是.【专题】一次方程(组)及应用;一元一次不等式(组)及应用.【分析】利用加减消元法,解不等式组,求出x和y关于a的值,代入x-y>10,得到关于a的一元一次不等式,解之即可.【点评】本题考查解一元一次不等式和解二元一次方程组,正确掌握解一元一次不等式和解二元一次方程组的方法是解题的关键.17.(3分)若关于x的不等式组有解,则a的取值范围是.【专题】计算题;一元一次不等式(组)及应用.【分析】先解第一个不等式,然后有不等式组有解可得到关于a的不等式,从而可求得a 的取值范围.【解答】解:解不等式x+1>a,得:x>a-1,∵不等式组有解,∴a-1<2,解得:a<3,故答案为:a<3.【点评】本题主要考查的是不等式的解集,依据不等式组有解求得a的范围是解题的关键.三、解答题(本大题共7个小题,满分69分,解答应写出文字说明、证明过程或演算步骤)18.(8分)解方程组:(1)(2)【专题】常规题型.【分析】(1)将①代入②,消去未知数y,得到关于x的一元一次方程,求出x,再把x 的值代入①求出y即可;(2)先变形方程②,得出y=3x-5③,将③代入①,消去未知数y,得到关于x的一元一次方程,求出x,再把x的值代入③求出y即可.【解答】(2)由②得,y=3x-5③,将③代入①得,5x+2(3x-5)=1,解得x=1,把x=1代入③,得y=-2,所以原方程组的解为【点评】本题考查了解二元一次方程组,基本解法是代入法与加减法,用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y 的值用“{”联立起来,就是方程组的解.19.(9分)解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.则非负整数解是:0,1,2,3,4,5,6,7.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(10分)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,有关数据呈现如图:(1)求m、n的值,并补全条形统计图;(2)根据调查数据,请写出该市市民家庭处理过期药品最常见的方式:(3)家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点【专题】常规题型.【分析】(1)首先根据A类有80户,占8%,求出抽样调査的家庭总户数,再用D类户数除以总户数求出m,用E类户数除以总户数求出n;用总户数乘以C类所占的百分比得出C类户数,即可补全条形统计图;(2)根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;(3)用180万户乘以样本中送回收点的户数所占百分比即可.【解答】解:(1)∵抽样调査的家庭总户数为:80÷8%=1000(户),C类户数为:1000×10%=100,条形统计图补充如下:(2)根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;(3)180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体以及抽样调查的可靠性.21.(10分)已知关于x的方程a﹣3(x﹣1)=7﹣x的解为负分数,且关于x的不等式组的解集为x<﹣2,求符合条件的所有整数a的积.【专题】方程与不等式.【分析】把a看做已知数表示出不等式组的解,根据已知解集确定出a的范围,将a的整数解代入方程,检验方程解为负分数确定出所有a的值,即可求出积.【解答】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,把a=﹣3代入方程得:﹣3﹣3(x﹣1)=7﹣x,即x=﹣,符合题意;把a=﹣2代入方程得:﹣2﹣3(x﹣1)=7﹣x,即x=﹣3,不合题意;把a=﹣1代入方程得:﹣1﹣3(x﹣1)=7﹣x,即x=﹣,符合题意;把a=0代入方程得:﹣3(x﹣1)=7﹣x,即x=﹣2,不合题意;把a=1代入方程得:1﹣3(x﹣1)=7﹣x,即x=﹣,符合题意;把a=2代入方程得:2﹣3(x﹣1)=7﹣x,即x=﹣1,不合题意;把a=3代入方程得:3﹣3(x﹣1)=7﹣x,即x=﹣,符合题意.故符合条件的整数a取值为﹣3,﹣1,1,3,积为9.【点评】此题考查了解一元一次不等式组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.22.(10分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50-a)台,根据金额不多余7500元,列不等式求解;(3)根据A种型号电风扇的进价和售价、B种型号电风扇的进价和售价以及总利润=一台的利润×总台数,列出不等式,求出a的值,再根据a为整数,即可得出答案.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(30﹣a)≤7500,解得:a≤37.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,∵a≤37,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点评】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.23.(10分)如图1,已知AB∥CD,∠B=20°,∠D=110°.(1)若∠E=50°,请直接写出∠F的度数;(2)探索∠E与∠F之间满足的数量关系,并说明理由;(3)如图2,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.【专题】线段、角、相交线与平行线.【分析】(1)如图1,分别过点E,F作EM∥AB,FN∥AB,根据平行线的性质得到∠B=∠BEM=20°,∠MEF=∠EFN,∠D+∠DFN=180°,代入数据即可得到结论;(2)如图1,根据平行线的性质得到∠B=∠BEM=20°,∠MEF=∠EFN,由AB∥CD,AB∥FN,得到CD∥FN,根据平行线的性质得到∠D+∠DFN=180°,于是得到结论;(3)如图2,过点F作FH∥EP,设∠BEF=2x°,则∠EFD=(2x+50)°,根据角平分线的定义得到,根据平行线的性质得到∠PEF=∠EFH=x°,∠P=∠HFG,于是得到结论.【解答】解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN=70°,∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,∴∠EFD=∠MEF+70°∴∠EFD=∠BEF+50°=100°;故答案为:100°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=20°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN=70°,∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,∴∠EFD=∠MEF+70°,∴∠EFD=∠BEF+50°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+50°,设∠BEF=2x°,则∠EFD=(2x+50)°,∵EP平分∠BEF,GF平分∠EFD,∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG-∠EFH=25°,∴∠P=25°.【点评】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质定理是解题的关键.24.(12分)如图,在平面直角坐标系中,点A(a, a)在第三象限,点B(b,0)在x轴正半轴上,且a,b满足+|2a+b|=0,连接AB交y轴负半轴于点M.(1)求点A、B的坐标及三角形ABO的面积S三角形ABO;(2)求点M的坐标;(3)在y轴上是否存在点P,使得S三角形ABP=2S三角形ABO,若存在,求出点P的坐标:若不存在,请说明理由.【专题】几何综合题.【分析】(1)根据非负数的性质分别求出A、B的坐标,根据三角形的面积公式求出三角形ABO的面积;(2)利用待定系数法求出直线AB的解析式,根据一次函数图象上点的坐标特征计算即可;(3)设点P的坐标为(0,y),根据三角形的面积公式计算即可.解:(1)由题意得,a2﹣4=0,2a+b=0,a<0,解得,a=﹣2,b=4,a=﹣3,∴点A的坐标为(﹣2,﹣3),点B的坐标的坐标为(4,0),∴S△ABO=×4×3=6;(2)设直线AB的解析式为:y=kx+b,由题意得,,解得,,则直线AB的解析式为:y=x﹣2,∴点M的坐标为(0,﹣2);(3)假设存在点P,设点P的坐标为(0,y),由题意得,×|y+2|×2+×|y+2|×4=2×6,解得,y=2或﹣6,则点P的坐标为(0,2)或(0,﹣6)时,S三角形ABP=2S三角形ABO.【点评】本题考查的是三角形的面积计算、非负数的性质、待定系数法求一次函数的解析式,掌握算术平方根、绝对值的非负性,灵活运用分情况讨论思想是解题的关键.。

相关文档
最新文档