2019届人教版 牛顿第二定律的应用(用牛顿运动定律解决问题) 单元测试

合集下载

用牛顿运动定律解决问题应用篇

用牛顿运动定律解决问题应用篇

由运动学公式得
x
v0
t
1 2
at
2
解得,人受的阻力 F阻= 67.5N
探究与讨论
求解两类动力学问题的思路和方法是什么?
首先选取研究对象,分析物理情景,确定问题类型
类型一 从受力求运动 类型二 从运动求受力
受力分析,画出受力图
由牛顿第二定律 F=ma求 加速度a
由运动学公式求运动情况
运动分析,由运动学公式求 加速度a
例2. 蹦床是运动员在一张蹦紧的弹性网上蹦跳、翻滚并作各种空 中动 作的运动项目。一个质量为60kg的运动员,从离水平网面 3.2m高处自由落下,着网后沿竖直方向蹦回到离水平网面5.0m高 处。已知运动员与网接触的时间为1.2s,若把在这段时间内网对 运动员的作用力当作恒力处理,求此力的大小。( g取10m/s2 )
两类动力学问题
• 类型二:从运动求受力
一个滑雪的人,质量是75 kg,以v0=2 m/s的初速 度沿山坡匀加速滑下,山坡的倾角θ=30°,在t= 5 s的时间内滑下的路程x=60 m,求滑雪人受到的 阻力(包括摩擦和空气阻力) 。
两类动力学问题
• 类型二:从运动求受力
例题2:一个滑雪的人,质量是75 kg,以v0=2 m/s的初速度沿山坡匀加速滑下,山坡的倾角θ= 30°,在t=5 s的时间内滑下的路程x=60 m,求滑 雪人受到的阻力(包括摩擦和空气阻力) 。
拓展2:一个静止在水平地面上的物体,质量 是2 kg,在斜向上与水平方向成37°角 ,大小为 6.4 N的拉力作用下沿水平地面向右运动。物体与 地面间的摩擦力是4.2 N。求物体在4 s末的速度和 4 s内的位移。(cos 37°=0.8)
FN F2
a

牛顿定律的应用-两类动力学问题与超重、失重

牛顿定律的应用-两类动力学问题与超重、失重

运动情况
超重、失重
视重
a=0
不超重也不失重
F=mg
a的方向竖直向上
超重
F=m(g+a)
a的方向竖直向下
失重
F=m(g-a)
a=g ,a的方向竖直 向下
完全失重
F=0
名师支招:
判断物体超重或失重,仅分析加速度的方向即可,只要加速度的竖直分量向
上就是超重,加速度的竖直分量向下就是失重。
*体验应用*
2.(双项选择)游乐园中,游客乘坐能做加速或减速运动的升
(2)处理连接体问题时,整体法与隔离法往往交叉使用,一般 的思路是先用整体法求加速度,再用隔离法求物体间的作用力。
(3)利用牛顿第二定律可以处理匀变速直线运动问题,也可以 定性分析非匀变速直线运动的规律,它常和力学、电磁学等有关 知识结合起来考查一些综合问题。
*体验应用*
1.[2009年高考安徽理综卷]在2008年北京残奥会开幕式上, 运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残 疾运动员坚韧不拔的意志和自强不息的精神。为了探求上 升过程中运动员与绳索和吊椅间的作用,可将过程简化。 一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅, 另一端被坐在吊椅上的运动员拉住,如图3-2-1所示。设运 动员的质量为65 kg,吊椅的质量为15 kg,不计定滑轮与绳 子间的摩擦。重力加速度取g=10 m/s2。当运动员与吊椅一 起正以加速度a=1 m/s2上升时,试求: (1)运动员竖直向下拉绳的力; (2)运动员对吊椅的压力。
慢慢加速,再匀速运转。一顾客乘扶梯上楼,恰
好经历了这两个过程,如图3-2-8所示。那么下列
C 说法中正确的是(
)
A.顾客始终受到三个力的作用

牛顿运动定律的应用+++导学案 高一上学期物理人教版(2019)必修第一册

牛顿运动定律的应用+++导学案 高一上学期物理人教版(2019)必修第一册

4.5 牛顿运动定律的应用学习目标1.进一步学习分析物体的受力情况,并能结合物体的运动情况进行受力分析。

2. 通过对动力学的两类问题的分析,理解加速度是解决两类动力学问题的桥梁。

3.掌握解决动力学问题的基本思路和方法,会用牛顿运动定律和运动学公式解决有关问题。

情境:(据报载)某市区一路段发生了一起交通事故:一辆汽车在公路上匀速行驶,突然前面有一位老太太横穿马路,司机发现后立刻刹车,但老太太还是被撞倒了。

事故发生后交警测得刹车过程中车轮在路面上擦过的笔直的痕迹长9 m,从厂家的技术手册中查得该车轮胎和地面间的动摩擦因数是0.8。

据悉,交通部门规定该路段的速度不得超过36 km/h。

假如你就是这位交警,请你判断该车是否超速行驶。

(假定刹车后汽车做匀减速直线运动)例题1、运动员把冰壶沿水平冰面投出,让冰壶在冰面上自由滑行,在不与其他冰壶碰撞的情况下,最终停在远处的某个位置。

按比赛规则,投掷冰壶运动员的队友,可以用毛刷在冰壶滑行前方来回摩擦冰面,减小冰面的动摩擦因数以调节冰壶的运动。

(1)运动员以3.4 m/s 的速度投掷冰壶,若冰壶和冰面的动摩擦因数为0.02,冰壶能在冰面上滑行多远?g取10 m/s 2。

(2)若运动员仍以3.4 m/s的速度将冰壶投出,其队友在冰壶自由滑行10m后开始在其滑行前方摩擦冰面,冰壶和冰面的动摩擦因数变为原来的90%,冰壶多滑行了多少距离?练习1、民航客机都有紧急出口,发生意外情况的飞机紧急着陆后,打开紧急出口,狭长的气囊会自动充气,生成一条连接出口与地面的斜面,人员可沿斜面滑行到地面。

若机舱口下沿距地面3.2 m,气囊所构成的斜面长度为6.5 m,一个质量为60 kg的人沿气囊滑下时所受的阻力是240 N,那么,人滑至气囊底端时的速度是多少?g取10m/s 2。

已知物体的受力情况求解运动情况的一般思路是什么?例题2、一位滑雪者,人与装备的总质量为75kg ,以2m/s 的初速度沿山坡匀加速直线滑下,山坡倾角为30°,在5s 的时间内滑下的路程为60 m 。

15第3章 第2讲 应用牛顿第二定律处理“四类”问题

15第3章 第2讲  应用牛顿第二定律处理“四类”问题

第2讲应用牛顿第二定律处理“四类”问题一、瞬时问题1.牛顿第二定律的表达式为:F合=ma,加速度由物体所受决定,加速度的方向与物体所受的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的不能发生突变.2.轻绳、轻杆和轻弹簧(橡皮条)的区别:(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将.(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力.自测1如图1,A、B、C三个小球质量均为m,A、B之间用一根没有弹性的轻质细绳连在一起,B、C之间用轻弹簧拴接,整个系统用细线悬挂在天花板上并且处于静止状态.现将A上面的细线剪断,使A的上端失去拉力,则在剪断细线的瞬间,A、B、C三个小球的加速度分别是()图1A.1.5g,1.5g,0B.g,2g,0C.g,g,gD.g,g,0二、超重和失重1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力) 物体所受重力的现象.(2)产生条件:物体具有的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力) 物体所受重力的现象.(2)产生条件:物体具有的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力) 的现象称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.自测2关于超重和失重的下列说法中,正确的是()A.超重就是物体所受的重力增大了,失重就是物体所受的重力减小了B.物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用C.物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态D.物体处于超重或失重状态时,物体的重力始终存在且不发生变化三、动力学图象1.类型(1)已知图象分析运动和情况;(2)已知运动和受力情况分析图象的形状.2.用到的相关知识通常要先对物体受力分析求合力,再根据求加速度,然后结合运动学公式分析.自测3(2016·海南单科·5)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图2所示.已知物体与斜面之间的动摩擦因数为常数,在0~5 s,5~10 s,10~15 s内F的大小分别为F1、F2和F3,则()图2A.F1<F2B.F2>F3C.F1>F3D.F1=F3命题点一超重与失重现象1.对超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失.(3)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.(4)尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重现象.2.判断超重和失重的方法从受力的角度判断当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态从加速度的角度判断当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态从速度变化的角度判断①物体向上加速或向下减速时,超重②物体向下加速或向上减速时,失重例1(2018·四川省乐山市第二次调研)图3甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的O表示人的重心.图乙是根据传感器采集到的数据画出的F-t图线,两图中a~g各点均对应,其中有几个点在图甲中没有画出.取重力加速度g=10 m/s2,根据图象分析可知()图3A.人的重力为1 500 NB.c点位置人处于失重状态C.e点位置人处于超重状态D.d点的加速度小于f点的加速度变式1广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a-t 图象如图4所示.则下列相关说法正确的是()图4A.t=4.5 s时,电梯处于失重状态B.5~55 s时间内,绳索拉力最小C.t=59.5 s时,电梯处于超重状态D.t=60 s时,电梯速度恰好为零变式2(2018·广东省深圳市三校模拟)如图5,将金属块用压缩的轻弹簧卡在一个箱子中,上顶板和下底板装有压力传感器.当箱子随电梯以a=4.0 m/s2的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为4.0 N,下底板的传感器显示的压力为10.0 N.取g=10 m/s2,若下底板示数不变,上顶板示数是下底板示数的一半,则电梯的运动状态可能是()图5A.匀加速上升,a=5 m/s2 B.匀加速下降,a=5 m/s2C.匀速上升D.静止状态命题点二瞬时问题的两类模型1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.解题思路分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度3.两个易混问题(1)如图6甲、乙中小球m1、m2原来均静止,现如果均从图中A处剪断,则图甲中的轻质弹簧和图乙中的下段绳子的拉力将如何变化呢?(2)由(1)的分析可以得出什么结论?(2)绳的弹力可以突变而弹簧的弹力不能突变.图6例2(2019·河北省衡水中学第一次调研)如图7所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A小球,同时水平细线一端连着A球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A、B两小球分别连在另一根竖直弹簧两端.开始时A、B两球都静止不动,A、B两小球的质量相等,重力加速度为g,若不计弹簧质量,在水平细线被剪断瞬间,A、B两球的加速度分别为()图7A.a A=a B=g B.a A=2g,a B=0C.a A=3g,a B=0 D.a A=23g,a B=0例3(多选)如图8所示,倾角为θ的斜面静置于地面上,斜面上表面光滑,A、B、C三球的质量分别为m、2m、3m,轻质弹簧一端固定在斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接.弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态,现突然剪断细线.下列判断正确的是()图8A.细线被剪断的瞬间,A、B、C三个小球的加速度均为零B.细线被剪断的瞬间,A、B之间杆的弹力大小为零C.细线被剪断的瞬间,A、B球的加速度沿斜面向上,大小为g sin θD.细线被剪断的瞬间,A、B之间杆的弹力大小为4mg sin θ变式3(2018·山西省吕梁市第一次模拟)如图9所示,A球质量为B球质量的3倍,光滑固定斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有()图9A.图甲中A球的加速度为g sin θB.图甲中B球的加速度为2g sin θC.图乙中A、B两球的加速度均为g sin θD.图乙中轻杆的作用力一定不为零命题点三动力学图象问题1.常见的动力学图象v-t图象、a-t图象、F-t图象、F-a图象等.2.图象问题的类型(1)已知物体受的力随时间变化的图线,要求分析物体的运动情况.(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况.(3)由已知条件确定某物理量的变化图象.3.解题策略(1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等.(3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.例4(2018·广东省湛江市第二次模拟)如图10甲所示,在光滑水平面上,静止放置一质量为M的足够长木板,质量为m的小滑块(可视为质点)放在长木板上.长木板受到水平拉力F 与加速度的关系如图乙所示,重力加速度大小g取10 m/s2,下列说法正确的是()图10A.长木板的质量M=2 kgB.小滑块与长木板之间的动摩擦因数为0.4C.当F=14 N时,长木板的加速度大小为3 m/s2D.当F增大时,小滑块的加速度一定增大变式4(多选)(2019·福建省三明市质检)水平地面上质量为1 kg的物块受到水平拉力F1、F2的作用,F1、F2随时间的变化如图11所示,已知物块在前2 s内以4 m/s的速度做匀速直线运动,取g=10 m/s2,则(最大静摩擦力等于滑动摩擦力)()图11A.物块与地面的动摩擦因数为0.2B.3 s末物块受到的摩擦力大小为3 NC.4 s末物块受到的摩擦力大小为1 ND.5 s末物块的加速度大小为3 m/s2变式5(2018·安徽省池州市上学期期末)如图12所示为质量m=75 kg的滑雪运动员在倾角θ=37°的直滑道上由静止开始向下滑行的v-t图象,图中的OA直线是t=0时刻速度图线的切线,速度图线末段BC平行于时间轴,运动员与滑道间的动摩擦因数为μ,所受空气阻力与速度成正比,比例系数为k.设最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,则()图12A.滑雪运动员开始时做加速度增大的加速直线运动,最后做匀速运动B.t=0时刻运动员的加速度大小为2 m/s2C.动摩擦因数μ为0.25D.比例系数k为15 kg/s命题点四动力学中的连接体问题1.连接体的类型(1)弹簧连接体(2)物物叠放连接体(3)轻绳连接体(4)轻杆连接体2.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等.3.处理连接体问题的方法整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的外力,应用牛顿第二定律求出加速度或其他未知量隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”例5(多选)(2018·广东省湛江市第二次模拟)如图13所示,a、b、c 为三个质量均为m的物块,物块a、b通过水平轻绳相连后放在水平面上,物块c放在b上.现用水平拉力作用于a,使三个物块一起水平向右匀速运动.各接触面间的动摩擦因数均为μ,重力加速度大小为g.下列说法正确的是()图13A.该水平拉力大于轻绳的弹力B.物块c受到的摩擦力大小为μmgC.当该水平拉力增大为原来的1.5倍时,物块c受到的摩擦力大小为0.5μmgD.剪断轻绳后,在物块b向右运动的过程中,物块c受到的摩擦力大小为μmg变式6(多选)(2019·河南省郑州市质检)如图14所示,在粗糙的水平面上,质量分别为m 和M的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数均为μ,当用水平力F作用于B上且两物块共同向右以加速度a1匀加速运动时,弹簧的伸长量为x1;当用同样大小的恒力F沿着倾角为θ的光滑斜面方向作用于B上且两物块共同以加速度a2匀加速沿斜面向上运动时,弹簧的伸长量为x2,则下列说法中正确的是()图14A.若m>M,有x1=x2B.若m<M,有x1=x2C.若μ>sin θ,有x1>x2D.若μ<sin θ,有x1<x2变式7(多选)如图15所示,倾角为θ的斜面放在粗糙的水平地面上,现有一带固定支架的滑块m正沿斜面加速下滑.支架上用细线悬挂的小球达到稳定(与滑块相对静止)后,悬线的方向与竖直方向的夹角也为θ,斜面体始终保持静止,则下列说法正确的是()图15A.斜面光滑B.斜面粗糙C.达到稳定状态后,地面对斜面体的摩擦力水平向左D.达到稳定状态后,地面对斜面体的摩擦力水平向右1.(多选)一人乘电梯上楼,在竖直上升过程中加速度a随时间t变化的图线如图1所示,以竖直向上为a的正方向,则人对地板的压力()图1A.t=2 s时最大B.t=2 s时最小C.t=8.5 s时最大D.t=8.5 s时最小2.(2018·湖北省黄冈市质检)如图2所示,电视剧拍摄时,要制造雨中场景,剧组工作人员用消防水枪向天空喷出水龙,降落时就成了一场“雨”.若忽略空气阻力,以下分析正确的是()图2A.水枪喷出的水在上升时超重B.水枪喷出的水在下降时超重C.水枪喷出的水在最高点时,速度方向斜向下D.水滴在下落时,越接近地面,速度方向越接近竖直方向3.(2019·广东省东莞市调研)为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图3所示.当此车匀减速上坡时,乘客(仅考虑乘客与水平面之间的作用)( )图3A .处于超重状态B .不受摩擦力的作用C .受到向后(水平向左)的摩擦力作用D .所受合力竖直向上4.(2019·安徽省淮北市质检)如图4甲所示,在光滑的水平面上,物体A 在水平方向的外力F 作用下做直线运动,其v -t 图象如图乙所示,规定向右为正方向.下列判断正确的是( )图4A .在3 s 末,物体处于出发点右方B .在1~2 s 内,物体正向左运动,且速度大小在减小C .在1~3 s 内,物体的加速度方向先向右后向左D .在0~1 s 内,外力F 不断增大5.如图5所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量均为m,2、4质量均为m 0,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( )图5A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +m 0m 0g D .a 1=g ,a 2=m +m 0m 0g ,a 3=0,a 4=m +m 0m 0g6.(2018·福建省四地六校月考)如图6所示,A 、B 两物块质量均为m ,用一轻弹簧相连,将A 用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B 物块恰好与水平桌面接触,此时轻弹簧的伸长量为x ,现将悬绳剪断,则( )图6A .悬绳剪断瞬间A 物块的加速度大小为gB .悬绳剪断瞬间B 物块的加速度大小为gC .悬绳剪断后A 物块向下运动距离2x 时速度最大D .悬绳剪断后A 物块向下运动距离x 时加速度最小7.(多选)(2018·河北省张家口市上学期期末)质量为2m 的物块A 和质量为m 的物块B 相互接触放在水平地面上,如图7所示,若对A 施加水平推力F ,两物块沿水平方向做匀加速运动,关于A 对B 的作用力,下列说法中正确的是( )图7A .若水平地面光滑,物块A 对B 的作用力大小为FB .若水平地面光滑,物块A 对B 的作用力大小为F 3C .若物块A 与地面间无摩擦,B 与地面间的动摩擦因数为μ,则物块A 对B 的作用力大小为μmgD .若物块A 与地面间无摩擦,B 与地面间的动摩擦因数为μ,则物块A 对B 的作用力大小为F +2μmg 38.(2018·河南省鹤壁市第二次段考)如图8所示,表面光滑的斜面体固定在匀速上升的升降机上,质量相等的A 、B 两物体用一轻质弹簧连接着,B 的上端用一平行斜面的细线拴接在斜面上的固定装置上,斜面的倾角为30°,当升降机突然处于完全失重状态时,则此瞬间A 、B 两物体的瞬时加速度大小分别为(重力加速度为g )( )图8A.12g 、g B .g 、12g C.32g 、0 D.32g 、g 9.(2018·江西省临川二中第五次训练)如图9甲所示,用一水平外力F 推物体,使其静止在倾角为θ的光滑斜面上.逐渐增大F ,物体开始做变加速运动,其加速度a 随F 变化的图象如图乙所示.取g =10 m/s 2.根据图中所提供的信息不能计算出的是( )图9A .物体的质量B .斜面的倾角C .使物体静止在斜面上时水平外力F 的大小D .加速度为6 m/s 2时物体的速度10.(多选)(2018·内蒙古赤峰二中月考)如图10甲所示,物块的质量m =1 kg ,初速度v 0=10 m /s ,在一水平向左的恒力F 作用下从O 点沿粗糙的水平面向右运动,某时刻后恒力F 突然反向,整个过程中物块速度的平方随位置坐标变化的关系图象如图乙所示,g =10 m/s 2.下列选项中正确的是( )图10A .2秒末~3秒末内物块做匀减速运动B .在t =1 s 时刻,恒力F 反向C .物块与水平面间的动摩擦因数为0.3D .恒力F 大小为10 N11.(2018·广东省深圳市高级中学月考)如图11所示,A 、B 两滑环分别套在间距为1 m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1 m 的轻弹簧将两环相连,在A 环上作用一沿杆方向的、大小为20 N 的拉力F ,当两环都沿杆以相同的加速度a 1运动时,弹簧与杆夹角为53°,已知sin 53°=0.8,cos 53°=0.6,求:图11(1)弹簧的劲度系数为多少?(2)若突然撤去拉力F,在撤去拉力F的瞬间,A的加速度为a2,则a1∶a2为多少?12.(2018·四川省攀枝花市第二次统考)如图12所示,质量m1=500 g的木板A静止放在水平平台上,木板的右端放一质量m2=200 g的小物块B.轻质细线一端与长木板连接,另一端通过定滑轮与物块C连接,长木板与滑轮间的细线水平.现将物块C的质量由0逐渐增加,当C的质量增加到70 g时,A、B恰好开始一起匀速运动;当C的质量增加到400 g时,A、B 开始发生相对滑动.已知平台足够长、足够高,接触面间的最大静摩擦力等于滑动摩擦力,滑轮质量及摩擦不计.求木板与平台间、木板与物块B间的动摩擦因数.图12。

第四章+运动和力的关系复习巩固课件-2022-2023学年高一上学期物理人教版(2019)必修第一册

第四章+运动和力的关系复习巩固课件-2022-2023学年高一上学期物理人教版(2019)必修第一册
M的物块C连接,释放C,A和B一起以加速度a从静止开始运动
C
,已知A、B间动摩擦因数为μ1,则细线中的拉力大小为(
)
A.Mg
B.Mg+Ma
C.(m1+m2)a
D.m1a+μ1m1g
传送带模型
例1.如图,相距L=11.5 m的两平台位于同一水平面内,二者之间用传送带相
接.传送带向右匀速运动,其速度的大小v可以由驱动系统根据需要设定.质量
定在水平面上,另一端均与质量为m的小球相连接,
轻杆c一端固定在天花板上,另一端与小球拴接.弹
簧a、b和轻杆互成120°角,且弹簧a、b的弹力大小
均为mg,g为重力加速度,如果将轻杆突然撤去,则
撤去瞬间小球的加速度大小可能为( D )
A.a=0.5g
B.a=g
C.a=1.5g
D.a=2g
小试牛刀
3.细绳拴一个质量为m的小球,小球用固定在墙上的水平弹
C
,已知A、B间动摩擦因数为μ1,则细线中的拉力大小为(
)
A.Mg
B.Mg+Ma
C.(m1+m2)a
D.m1a+μ1m1g
小试牛刀
5.如图所示,在竖直平面内,一辆小车正在水平面上以加速
度a向右匀加速运动,大物块压在车厢竖直后壁上并与车厢
相对静止,小物块放在大物块上与大物块相对静止,大物块
刚好不下滑,小物块与大物块也刚好不发生相对滑动。重力
牛顿第二定律有
μmg=ma①
设载物箱滑上传送带后匀减速运动的距离为s1,由运动学公式有v2-v02=-2as1②
联立①②式,代入题给数据得s1=4.5 m③
因此,载物箱在到达右侧平台前,速度先减小到v,然后开始做匀速运动.设载物箱从滑上传送带到离开

牛顿第二定律的应用

牛顿第二定律的应用

牛顿第二定律的应用、超重与失重一、应用牛顿第二定律分析问题的基本思路:(1)已知力求物体的运动状态:先对物体进行受力分析,由分力确定合力;根据牛顿第二定律确定加速度,再由初始条件分析物体的运动状态,应用运动学规律求出物体的速度或位移。

(2)已知物体的运动状态求物体的受力情况:先由物体的运动状态(应用运动学规律)确定物体的加速度;根据牛顿第二定律确定合力,再根据合力与分力的关系求出某一个分力。

二、解题步骤:(1)根据题意,确定研究对象;(2)用隔离法或整体法分析研究对象的受力情况,画受力示意图;(3)分析物理过程是属于上述哪种类型的问题,应用牛顿第二定律分析问题的基本思路进行分析;(4)选择正交坐标系(或利用力的合成与分析)选定正方向,列动力学方程(或结合初始条件列运动学方程);(5)统一单位,代入数据,解方程,求出所需物理量;(6)思考结果的合理性,决定是否需要讨论。

三、例题分析:例1:如图所示,质量m=2kg的物体,受到拉力F=20N的作用,F与水平成37°角。

物体由静止开始沿水平面做直线运动,物体与水平面间的摩擦因数μ=0.1,2s末撤去力F,求:撤去力F 后物体还能运动多远?(sin37°=0.6,cos37°=0.8)例2:一个质量m=2kg的物体放在光滑的水平桌面上,受到三个与桌面平行的力作用,三个力大小相等F1=F2=F3=10N,方向互成120°,方向互成120°,则:(1)物体的加速度多大?(2)若突然撤去力F1,求物体的加速度?物体运动状况如何?(3)若将力F1的大小逐渐减小为零,然后再逐渐恢复至10N,物体的加速度如何变化?物体运动状况如何?例3:如图所示,停在水平地面的小车内,用轻绳AB、BC拴住一个小球。

绳BC呈水平状态,绳AB 的拉力为T1,绳BC的拉力为T2。

当小车从静止开始以加速度a水平向左做匀加速直线运动时,小球相对于小车的位置不发生变化;那么两绳的拉力的变化情况是:()A、T1变大,T2变大B、T1变大,T2变小C、T1不变,T2变小D、T1变大,T2不变例4:如图所示,物体A质量为2kg,物体B质量为3kg,A、B叠放在光滑的水平地面上,A、B间的最大静摩擦力为10N;一个水平力F作用在A物体上,为保证A、B间不发生滑动,力F的最大值为多少?如果力F作用在B上,仍保证A、B间不滑动,力F最大值为多少?四、超重和失重(1)重力:重力是地球对物体吸引而使物体受到的作用力,是引力,G=mg。

牛顿第二定律的应用

牛顿第二定律的应用

例题精析
分析(1)对物体进行受力分析后,根据牛顿第二定律可以求得冰壶滑行时的加速度,再结合冰壶
做匀减速直线运动的规律求得冰壶滑行的距离。
(2)冰壶在滑行10 m 后进入冰刷摩擦后的冰面,动摩擦因数变化了,所受的摩擦力发生了变
化,加速度也会变化。前一段滑行 10 m 的末速度等于后一段运动的初速度(图 4.5-2)。根据牛
4.5牛顿运动定律的应用
回顾: 一、牛顿三大运动定律
牛顿运动定律
牛顿第一定律
牛顿第二定律
牛顿第三定律
当物体不受外力
物体的加速度与合
两个物体间的作
或合外力为零时
力成正比,与物体
用力和反作用力
总保持静止或匀
的质量成反比。
大小相等,方向相
速直线运动状态F合 = ma反, Nhomakorabea用在同一直
线上F=-F'
二、三个关系
匀加速直线滑下,山坡倾角为 30°,在 5 s 的时间内滑下的路程为 60 m 。求
滑雪者对雪面的压力及滑雪者受到的阻力(包括摩擦和空气阻力),取 g =10
m/s2。
已知物体的运动情况,可以由运动学规律
求出物体的加速度,结合受力分析,再根据牛
顿第二定律求出力 。
图4.5-4
例题精析
分析
由于不知道动摩擦因数及空气阻力与速度的关系,不能直接求滑雪者受到的阻力。应根据匀
(2)若给小物体一个沿斜面向下的初速度,恰能沿斜面匀速下
m
滑,则小物体与斜面间的动摩擦因数μ是多少?
B
q=30 o
A
解:(1)、以小物体为研究对象,其受力情况如图所示.建立直
角坐标系.
y
把重力G沿x轴和y轴方向分解:

牛顿第二定律的应用(两类问题)

牛顿第二定律的应用(两类问题)
解题思路: 利用牛顿第二定律作为桥梁,求加速度
例题1 一个静止在水平面上的物体,质量 是2kg,在水平方向受到5.0N的拉力,物体跟 水平面的滑动摩擦力是2.0N。 1)求物体在4.0秒末的速度; 解:1)前4秒 根据牛顿第二定律F合=ma列方程: 水平方向 F-f=ma a=1.5(m/s2) 由vt=v0+at: vt=6(m/s)
2:已知运动情况求解受力情况
例题2: 一辆质量为1.0×103kg的小汽车,正以 10m/s的速度行驶,现在让它在12.5m的距离内匀 减速地停下来,求所需的阻力。 • 设小车运动的初速度方向为正方向,由运动学公 式
2aS v v
2 t
据牛顿第二定律F合=ma列方程: 竖直方面 N-mg=0 水平方面 f=ma=1.0×103×( - 4 ) N
2 0 v0 10 2 a m / s 2 4m / s 2 2 12.5 2S
2 o
可得
f = - 4.0×103N
• 例题3:
一辆质量为1.0×103kg的小汽车,正以 10mห้องสมุดไป่ตู้s的速度行驶,现在让它在12.5m的距离内匀 减速地停下来。
一木箱(m=2kg)沿一粗糙斜面匀加速下滑,初 速度为零,5s内下滑25m,斜面倾角300, 求(1)木箱与斜面间的动摩擦因数, (2)若以某初速沿斜面向上冲,要能冲上4m,则 初速至少多大?
例题1 一个静止在水平面上的物体,质量 是2kg,在水平方向受到5.0N的拉力,物体跟 水平面的滑动摩擦力是2.0N。 2)若在4秒末撤去拉力,求物体滑行时间。 解:2) 4秒后 竖直方向 FN-mg=0 水平方向f=ma′ a ′= 1.0(m/S2)
由△V=at t= △ v/a=6.0(s)

人教版2019高中物理4.5牛顿运动定律的应用(共34张PPT)

人教版2019高中物理4.5牛顿运动定律的应用(共34张PPT)

=2ax
牛顿第二定律F合=ma,确定了运动和力的关系,使我们能够把物
体的运动情况与受力情况联系起来。
重力 弹力 摩擦力
F合=ma 桥梁
v=v0+at
两类动力学问题
1.两类动力学问题 第一类:已知受力情况求运动情况。 第二类:已知运动情况求受力情况。 2. 解题关键 (1)两类分析——物体的受力分析和物体的运动分析; (2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相 互联系的桥梁.
01
从受力确定运动情况
知识要点
已知物体受力情况确定运动情况,指的是在受力情况已知的条件下, 要求判断出物体的运动状态或求出物体的速度、位移等。
处理这类问题的基本思路是: 先分析物体受力情况求合力, 据牛顿第二定律求加速度, 再用运动学公式求所求量(运动学量)。
【例题】:运动员把冰壶沿水平冰面投出,让冰壶在冰面上自由滑行,在不与其他冰 壶碰撞的情况下,最终停在远处的某个位置。按比赛规则,投掷冰壶运动员的队友, 可以用毛刷在冰壶滑行前方来回摩擦冰面,减小冰面的动摩擦因数以调节冰壶的运动。 (1)运动员以3.4 m/s的速度投掷冰壶,若冰壶和冰面的动摩擦因数为0.02,冰壶能 在冰面上滑行多远?g 取 10 m/s2。 (2)若运动员仍以3.4 m/s的速度将冰壶投出,其队友在冰壶自由滑行10m后开始在 其滑行前方摩擦冰面,冰壶和冰面的动摩擦因数变为原来的90%,冰壶多滑行了多少 距离?
F 370
θmFf g 【解析】物体受力分析如图所示 由牛顿第二定律,可得:
Fcosθ-µFN=ma
FN
FN+Fsinθ=mg
4s末的速度 4s内的位移
典例分析
汽车轮胎与公路路面之间必须要有足够大的动摩擦因数,才能保证汽车 安全行驶。为检测某公路路面与汽车轮胎之间的动摩擦因数,需要测试 刹车的车痕。测试汽车在该公路水平直道上以54 km/h的速度行驶时,突 然紧急刹车,车轮被抱死后在路面上滑动,直至停下来。量得车轮在公 路上摩擦的痕迹长度是17.2 m,则路面和轮胎之间的动摩擦因数是多少? 取 g=10 m/s2。

牛顿第二定律的应用(经典、全面、实用)

牛顿第二定律的应用(经典、全面、实用)

t2
1
FN
F阻
t
代入数据可得: F阻=67.5N
F阻 方向沿斜面向上
解:滑雪的人滑雪时受力如图,
将G分解得: F1= mgsinθ F 1-F 阻=m a
① ②
θ mg
2 m ( x - v 0 t)
FN
F1
θ
F阻 F2
由①②③得F阻=F1-m a = mgsinθ-
代入数据可得: F阻=67.5N
37 °
例4:如图所示,传送带与地面倾角为37 ° ,从A到B长度为16m,传送带以v= 20m/s,变:(v= 10m/s)的速率逆时针 转动.在传送带上端A无初速地放一个质量 为m=0.5kg的物体,它与传送带之间的动 摩擦因数为μ=0.5.求物体从A运动到B 所需时间是多少.(sin37°=0.6)
B.tl>t2>t3
C.tl<t2<t3
D.t3>tl>t2
练习 如图,底板光滑的小车上用两 个量程为20N,完全相同的弹簧甲和乙 系住一个质量为1Kg的物体,当小车在 水平路面上匀速运动时,两堂皇秤的读 数均为10N,当小车做匀加速运动时, 甲的读数是8N,则小车的加速度 是 ,方向向 。(左、 右)
A
B
变式训练2:如图所示,一平直的传送带以速度V =2m/s匀速运动,传送带把A处的工件运送到B处, A、B相距L=10m.从A处把工件无初速地放到传送 带上,经时间t=6s能传送到B处,欲用最短时间 把工件从A处传到B处,求传送带的运行速度至少 多大.
A
B
例题分析:
例2:如图所示,一水平方向足够长的传 送带以恒定的速度V=2m/s沿顺时针方向 匀速转动,传送带传送带右端有一与传 送带等高的光滑水平面,一物体以恒定的 速率V’=4m/s沿直线向左滑上传送带,求 物体的最终速度多大?

4.6用牛顿运动定律解决问题(一)

4.6用牛顿运动定律解决问题(一)

从受力确定运动
所求量
a
物 体 运 动 分 析
【练习1】质量为40kg的物体静止在水
平面上, 当在400N的水平拉力作用下由
静止开始经过16m时, 速度为16 m/s, 求
物体受到的阻力是多少?
【答案】80N
F
【练习2】用弹簧秤拉着一个物体在水平面
上做匀速运动, 弹簧秤的示数是0.40N. 然后
用弹簧秤拉着这个物体在水平面上做匀变
所需求的运动学量——任意时刻的位移和速度,以及运动轨
迹等。 返回
1.假设汽车紧急制动后,受到的阻力与汽车所受重力的大小
差不多。当汽车以20 m/s的速度行驶时,突然制动,它还
能继续滑行的距离约为 ) A.40 m B.20 m ( B
C.10 m D.5 m 解析:由题意可知关闭发动机后,汽车的加速度 a=g,所以
解题步骤
(1)确定研究对象,对研究对象进行受力分析和运动过程
分析,并画出受力图和运动草图。 (2)选择合适的运动学公式,求出物体的加速度。 (3)根据牛顿第二定律列方程,求物体所受的合外力。 (4)根据力的合成与分解的方法,由合力求出所需求的力。
返回
2.某司机遇到紧急情况急速刹车,使车在1.25 s内迅速停 下。若刹车前的车速为16 m/s,司机的质量为60 kg,刹车 过程中汽车其他部分对司机的阻力是司机体重的0.5倍,则 468 安全带对司机的作用为________N。(g=10 m/s2)
复习: 牛顿第二定律
1、内容: 物体的加速度跟所受合力
成正比,跟物体质量成反比;加速度方向 跟合力方向相同。
2、公式: F=ma 注意:(1)同时性
(2)同向性
运动学公式
速度公式 :v = vo+at 位移公式:x= vot +at2 /2

人教版(2019)高中物理必修第一册4.5牛顿运动定律的应用教学设计

人教版(2019)高中物理必修第一册4.5牛顿运动定律的应用教学设计

第5节牛顿运动定律的应用教材分析:《牛顿运动定律的应用》是《普通高中物理课程标准(2017年版)》必修课程必修1模块中“相互作用与运动定律”主题下的内容。

课程标准要求为:“理解牛顿运动定律,能用牛顿运动定律解释生产生活种的有关现象、解决有关问题。

”《普通高中物理课程标准(2017年版)解读》对课程标准的解读为:“理解牛顿第一定律、第二定律、第三定律,能用这三个定律分析解决现实情境中的有关问题。

在用牛顿运动定律解决问题的教学中,要重视让学生体会用牛顿运动定律解决问题的思路,逐步形成运动与相互作用观念,以牛顿运动定律为知识载体,提升物理素养水平。

”教材将牛顿运动定律的应用分为两种类型:一是从受力确定运动情况,即受力已知的条件下,判断出物体的运动状态或求出物体的速度或位移。

求解基本思路是:分析受力→求出合力→利用牛顿第二定律求加速度→利用运动学公式求出速度或位移。

二是从运动情况确定受力。

基本思路是:分析运动学情况→由运动学公式求出加速度→分析受力→利用牛顿第二定律列方程求解力。

加速度是联系运动和力的的桥梁和纽带,求解加速度是解决运动和力问题的基本思路,要对物体正确地进行受力分析和运动过程分析。

学情分析:学生学习了三个牛顿运动定律,在第二章对匀变速运动的规律有较为熟练的应用,对于各种力的规律都有了较深的认识,能够对物体进行受力分析,画出受力示意图,求解合力,这些都为本节利用牛顿运动定律,求解运动和力的问题打下知识基础。

学生的数学运算能力有了较大提高,学生能够更快、更熟练地进行定量计算。

学生通过本节两类典型问题的解决,形成基本的解决问题思路,能够更深刻的认识运动和力的关系,形成运动和相互作用观念。

教学目标:1.学生能用牛顿运动定律解决两类主要问题:已知物体的受力情况确定物体的运动情况、已知物体的运动情况确定物体的受力情况。

2.学生掌握应用牛顿运动定律解决问题的基本思路和方法,即首先对研究对象进行受力和运动情况分析,然后用牛顿运动定律把二者联系起来。

牛顿第二定律的应用

牛顿第二定律的应用

牛顿第二定律的应用、超重与失重内容讲解:一、应用牛顿第二定律分析问题的基本思路:(1)已知力求物体的运动状态:先对物体进行受力分析,由分力确定合力;根据牛顿第二定律确定加速度,再由初始条件分析物体的运动状态,应用运动学规律求出物体的速度或位移。

(2)已知物体的运动状态求物体的受力情况:先由物体的运动状态(应用运动学规律)确定物体的加速度;根据牛顿第二定律确定合力,再根据合力与分力的关系求出某一个分力。

二、解题步骤:(1)根据题意,确定研究对象;(2)用隔离法或整体法分析研究对象的受力情况,画受力示意图;(3)分析物理过程是属于上述哪种类型的问题,应用牛顿第二定律分析问题的基本思路进行分析;(4)选择正交坐标系(或利用力的合成与分析)选定正方向,列动力学方程(或结合初始条件列运动学方程);(5)统一单位,代入数据,解方程,求出所需物理量;(6)思考结果的合理性,决定是否需要讨论。

三、例题分析:例1:如图所示,质量m=2kg的物体,受到拉力F=20N的作用,F与水平成37°角。

物体由静止开始沿水平面做直线运动,物体与水平面间的摩擦因数μ=0.1,2s末撤去力F,求:撤去力F 后物体还能运动多远?(sin37°=0.6,cos37°=0.8)分析与解:物体受到重力mg,拉力F,支持力N1和摩擦力f1的作用,受力方向如图所示。

在竖直方向上,合外力为零;在水平方向上合外力不为零,由静止开始做匀加速直线运动。

根据牛顿第二定律:水平方向:Fcos37°-f1=ma1竖直方向:Fsin37°+N1-mg=0滑动摩擦力:f1=μN1得:a1=(Fcos37°+μFsin37°-μmg)/m=(20×0.8+0.1×20×0.6-0.1×2×9.8)/2=7.6m/s2根据运动学公式2s末物体瞬时速度:V2=a1×t=7.6×2=15.2m/s2s末撤去力F,物体受力情况发生变化,将做匀减速直线运动,受力如图所示:水平方向:f2=ma2竖直方向:N2-mg=0滑动摩擦力:f2=μN2得:a2=f2/m=μg=0.1×9.8=0.98m/s2根据运动学公式:V t2-V22=2a2S得:S=V22/2a=15.22/(2×0.98)=118.5m撤去力F后,物体物体还能运动118.2m。

4.6用牛顿运动定律解决问题(一)

4.6用牛顿运动定律解决问题(一)

刘玉兵课件集 ☆导学一:从受力情况确定运动情况
拓展:静止在粗糙水平地面上的物体,质量是2 kg,在 10 N的斜向上与水平方向成37°角拉力作用下,沿水平 地面向右运动,物体与地面间的动摩擦因数是0.2。求 物体在4s末的速度和4s内的位移。(已知sin37°=0.6, cos37°=0.8, g=10m/s2) a 解:F1 F sin 370 10 0.6 N 6 N F1 F N F2 F cos370 10 0.8 N 8 N 37 0 f
a 公 式 动情况
一、从受力确定运动情况
1、受力分析,求合外力F合
刘玉兵课件集
F合 2、根据牛顿第二定律求加速度:a m
3、再利用物体初速度、末速度、位移、时间中 的两个,求另两个.
v =v0 +at 1 2 x =v0 t+ at 2 2 2 v v0 2ax
刘玉兵课件集
F sin
N f F a
2x 2 8 a 2 2 m / s 2 1m / s 2 t 4
∴F合 ma 2 1N 2 N ∴f F F合 (6 2) N 4 N
由f mg得:
f 4 0.2 mg 2 10
G
答:物体与地面间的动摩擦因数为0.2
f mg 0.2 2 10 N 4 N
N
f F
F合 F f 10 4)N 6 N (
F合 6 2 2 a m / s 3m / s m 2
a
G
v at 3 2m / s 6m / s
1 2 1 x at 3 22 m 6m 2 2
揭示了力和运动的 定性关系

4.6用牛顿运动定律解决问题(一)

4.6用牛顿运动定律解决问题(一)
复习:
一、牛顿第二定律
1、内容:物体的加速度跟所受合力 成正比,跟物体质量成反比; 加速度方向跟合力方向相同。 2、公式:
F=ma
二、运动学公式
速度公式 :v = vo+at 位移公式:x= vot +at2 /2
导出公式:vt 2- vo 2 =2ax
力和运动关系的两类基本问题
1、已知物体的受力情况,确定物体的运动情况; 2、已知物体的运动情况,确定物体的受力情况。
由运动学公式: 4s末的速度 vt v0 at 0 1.1 4m / s 4.4m / s 4s内的位移
1 2 1 s v0t at 1.1 42 m 8.8m 2 2
二、从运动情况确定受力
已知物体运动情况确定受力情况,指 的是在运动情况(如物体的运动性质、速 度、加速度或位移)已知的条件下,要求 得出物体所受的力。 处理这类问题的基本思路是:首先分 析清楚物体的运动情况,根据运动学公式 求出物体的加速度,然后在分析物体受力 情况的基础上,利用牛顿第二定律列方程 求力。
FN

G1= G sin q
q30
o
G
G2= G cos q
G
更上一层:
上题中如果忽略空气阻力作用,求滑雪板与 (u=0.10) 雪面间动摩擦因数多大? 如果坡长只有60m,下端是水平雪面,滑 雪者在水平面上还能滑多远? 242m
如果下坡后立即滑上一个300的斜坡 。请问 27.97m 滑雪者最高能上升多高?
三、总结;
1、求解两类问题的基本思路: 牛顿第二定律反映的是---加速度、质量、以及 合外力的关系,而加速度又是运动的特征量, 所以说加速度是联结力和运动的纽带和桥梁,
是解决动力学问题的关键。

4.6牛顿运动定律的应用+教学设计2023-2024学年高一上学期物理教科版(2019)必修第一册

4.6牛顿运动定律的应用+教学设计2023-2024学年高一上学期物理教科版(2019)必修第一册

6.牛顿运动定律的应用★课标解析1.课标内容要求。

理解牛顿运动定律,能用牛顿运动定律解释生产生活中的有关现象、解决有关问题。

2.课标内容解析。

牛顿运动定律包括牛顿三大定律。

牛顿第一定律指出力不是维持物体运动状态的原因,而是改变物体运动状态的原因,一切物体都有惯性,且物体的质量是其惯性大小的量度,物体的惯性与物体的运动状态无关。

牛顿第二定律可用公式F=ma简洁表述,是运动学和静力学联系的桥梁与纽带,是动力学的基础。

牛顿第三定律阐述了物体间作用力与反作用力的关系。

牛顿运动定律是日常生活、自然规律的总结与提炼,日常生产生活中的现象与牛顿运动定律规律相符合。

培养学生用牛顿运动定律解释生产生活中的有关现象、解决有关问题的能力是培育物理学科核心素养的重要载体,也是物理教学的学科价值的体现。

★教学目标1.理解牛顿第二定律中的加速度、力、质量三者之间的关系,形成正确的物理观念。

2.了解力与运动是与我们日常生产、生活密不可分的两大物理内容。

3.会用牛顿运动定律来解释和解决遇到的相关问题。

4.体会用牛顿运动定律解决生产生活中的问题的过程是理论联系实际的过程。

5.在牛顿运动定律的应用过程中体会科学解决问题的思路与策略。

6.在用牛顿运动定律科学解决问题的过程中培养模型建构能力和科学推理能力。

7.体会日常生活中物理无处不在,均是物理规律在起作用,培养学生的科学态度与责任心。

★教学准备1.本节的教学用1课时。

2.多媒体使用。

PPT课件,电脑投影。

3.教学顺序。

(1)复习引入:牛顿第二定律表达式F=ma中含有加速度、力、质量三个方面关系;(2)问题导向:以教科书中的问题1为例,体会动力学测物体质量的方法;(3)交流讨论,提炼思路;(4)问题导向:以教科书中的问题2为例,体会从受力确定运动情况的过程;(5)问题导向:以教科书中的问题3为例,体会从运动情况确定受力的过程;(6)以理点悟、深化主题:请学生整理、提炼、领悟牛顿运动定律应用的思路与策略。

用牛顿运动定律解决问题(二) 说课稿 教案

用牛顿运动定律解决问题(二)   说课稿  教案

用牛顿运动定律解决问题(二)教材分析本节是牛顿运动定律应用的重点内容,分别从平衡和非平衡两个侧面进行,共点力的平衡问题是高中物理的最基本也是最常见的问题,它的解题方法多、技巧性强,超重失重既是一种现象,更是一种观念,两个应用都是后续课程的基础。

学情分析通过前面对“牛顿第二定律”的学习,学生已经知道了解应用类问题的大致思路和方法,本节要继续进行这方面的学习。

二力平衡问题初中已经学过,这节内容是它的延续和扩展,在解题类型和方法上可能存在困难。

学生很难从理论上自主地得到超重、失重现象的运动学特征。

学生在学习超重和失重现象时会受到一些前概念的影响,容易把生活中说的有些“超重”与物理学上的超重混为一谈,把物理学上的失重误认为是物体“失去重力”;容易把超重、失重现象的运动学特征与物体的运动方向相联系,通过实例多加体会。

设计思路从学生熟悉的事例出发,通过理论分析和实验验证得出平衡条件,再由例题加以体验,避免由教师直接陈述,提高学习效果。

对超重失重也采用类似方法,更突出学生实际体验,使物理学习由抽象的概念向实在的观念转变,突出新课程理念。

“高中物理课程应促进学生自主学习,让学生积极参与,乐于探索、勇于实验、勤于思考。

”设计更多的探究性实验不仅符合课标中提出的“通过实验认识超重和失重现象”,也符合学生的认知规律;从生活实际出发,设计贴近学生生活的实验,以此为基础,以探究为主线,让学生通过实验操作、观察来认识物理现象,认知物理过程,让学生用生活化的语言表述观察到的超、失重现象,探究物理规律,再引导学生将生活语言转化成科学规范的物理语言阐述物理规律。

通过实验让学生暴露错误的前概念,理解并掌握物理概念与规律。

经过构建从而获得物理知识,形成技能,同时培养学生创新精神与实践能力。

为避免学生对概念的混淆,教学中不提出“实重”“视重”。

三维目标知识与技能1.理解共点力作用下物体平衡状态的概念,能推导出共点力作用下物体的平衡条件;2.会用共点力平衡条件解决有关力的平衡问题;3.通过实验认识超重和失重现象,理解产生超重、失重现象的条件和实质;4.进一步熟练掌握应用牛顿运动定律解决问题的方法和步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届人教版牛顿第二定律的应用(用牛顿运动定律解决问题) 单元测试
1.(2018·徐州学测模拟)一兴趣小组制作了简易火箭,t=0时刻它由地面竖直向上发射,其v-t图象如图1所示,由图象可知()
图1
A.t1时刻火箭离地面最远
B.t2时刻火箭回到地面
C.t1~t2时间内火箭处于失重状态
D.在0~t1时间内火箭上升,在t1~t2时间内火箭下落
2.(2018·如皋学测模拟)物体P从曲面上的A点自由落下,如图2所示,通过水平静止的粗糙传送带后到达右端B点速度为v1.若传送带沿逆时针的方向转动起来,再把该物体放到同一位置释放,到达传送带右端B点速度为v2,则()
图2
A.v1=v2B.v1>v2
C.v1<v2D.无法判断
3.(2018·宿迁学测模拟)如图3所示,A、B两个物块叠放在光滑水平地面上,质量分别是2 kg 和4 kg,它们之间的动摩擦因数为0.2,设最大静摩擦力等于滑动摩擦力,取g=10 m/s2.现对A施加水平拉力F,要保持A、B相对静止,F不能超过()
图3
A.2 N B.4 N
C.6 N D.8 N
4.(2018·苏州学测模拟)如图4所示,在光滑的水平面上,有两个相互接触的物体.已知M>m,第一次用水平力F1由左向右推M,物体间的相互作用力为F N1;第二次用同样大小的水平力F2由右向左推m,物体间的相互作用力为F N2,则()
图4
A.F N1<F N2B.F N1=F N2
C.F N1>F N2D.无法确定
5.(2012·江苏学测)水平地面上的物体在水平恒力F的作用下由静止开始运动,一段时间后撤去F,其运动的v-t图象如图5所示.若物体与地面间的滑动摩擦力的大小为F f,则F的大小为()
图5
A.F=F f B.F=1.5F f
C.F=2F f D.F=3F f
6.(2016·南京学测模拟)如图6所示,小球从高处下落到竖直放置的轻弹簧上,那么小球从接触弹簧开始到将弹簧压缩到最短的过程中(弹簧一直保持竖直),下列说法中正确的是()
图6
A.小球的速度逐渐减小到零
B.小球的速度先减小后增大
C.小球的加速度先增大后减小
D.小球的加速度先减小后增大
7.(2017·扬州模拟)如图7所示物块以初速度v0沿光滑固定斜面向上滑行速度减为零后返回.取沿斜面向上为速度正方向,则下列关于物块运动的v-t图象正确的是()
图7
8.(2018·扬州模拟)放在水平地面上的一物块,受到方向不变的水平推力F的作用,F的大小与时间t的关系和物块速度v与时间t的关系如图8所示.取重力加速度g=10 m/s2.由此两图线可以求得物块的质量m和物块与地面之间的动摩擦因数μ分别为()
图8
A.m=0.5 kg,μ=0.4
B.m=1 kg,μ=0.4
C.m=0.5 kg,μ=0.2
D.m=1 kg,μ=0.2
9.(2018·苏州学测模拟)如图9所示,一个质量为3 kg的物体静止在光滑水平面上.现沿水平方向对物体施加30 N的拉力.求:
图9
(1)物体运动时加速度的大小;
(2)物体运动3 s时速度的大小;
(3)物体从开始运动到位移为20 m时经历的时间.
10.(2018·连云港学测模拟)如图10所示,滑雪运动员从斜面倾斜角为θ=37°的斜坡顶端由静止滑下,已知斜坡长为L=90 m,运动员滑到底端用时t=6 s,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8,求:
图10
(1)下滑加速度a的大小;
(2)滑到底端时速度v的大小;
(3)滑雪板与斜坡间的动摩擦因数μ.
11.(2018·宿迁模拟)航母上飞机起飞的水平跑道长度L=70 m,一架质量m=2.0×104 kg的飞机从跑道的始端匀加速直线运动到末端,飞机在运动中受到恒定的动力F=7.2×105 N,受到的平均阻力F f=2.0×104N.飞机可视为质点,飞机起飞过程中航母静止不动,飞机安全起飞的速度为v m=56 m/s.求:
(1)飞机的加速度a的大小;
(2)飞机到达跑道末端时的速度v的大小;
(3)为保证安全,飞机沿跑道加速运动的距离s至少是多大?
12.(2016·苏州学测模拟)如图11所示,质量M=8 kg的平板车静止放置在光滑的水平地面上,对平板车左端施加一大小F=8 N的水平推力,使之向右运动起来.当平板车的运动速度达到v0=1.5 m/s时,在其前端轻轻地放上一个大小不计、质量m=2 kg的滑块,滑块与平板车间的动摩擦因数μ=0.2.则:(取g=10 m/s2)
图11
(1)放上滑块后,滑块及平板车的加速度各为多大?
(2)平板车的长度至少多长,才能确保滑块不至于从车上滑落?
答案精析
1.C 2.A 3.C 4.A 5.C 6.D 7.A 8.A 9.见解析
解析 (1)根据牛顿第二定律得a =F
m ,
a =10 m/s 2.
(2)物体运动3 s 时速度的大小为v =at ,v =30 m/s. (3)由x =1
2at 2得t =2 s.
10.见解析
解析 (1)由L =12at 2得a =2L
t 2=5 m/s 2
(2)滑到底端时速度v =at =30 m/s
(3)由牛顿第二定律得mg sin θ-μmg cos θ=ma , 解得μ=0.125. 11.见解析
解析 (1)由牛顿第二定律F -F f =ma 得a =35 m/s 2 (2)由v 2=2aL 得v =70 m/s (3)由v m 2=2as 得s =44.8 m 12.见解析
解析 (1)对滑块,μmg =ma 1,a 1=μg =2 m/s 2. 对平板车,F -μmg =Ma 2, 解得a 2=F -μmg
M
=0.5 m/s 2.
(2)设经过时间t 滑块和平板车达到了相同速度,有 v 0+a 2t =a 1t ,解得t =1 s.
平板车的长度至少为Δs =v 0t +12a 2t 2-1
2a 1t 2,
解得Δs =0.75 m.。

相关文档
最新文档