201X版八年级数学上册 第三章 位置与坐标 3.3 轴对称与坐标变化学案(新版)北师大版
北师大八上-3-位置与坐标 预习学案
须先区分前后________所代表的意义,如表示座位时排和列使用的方式不同有序数对的书写就不同 3.1确定位置「引入课」平面直角坐标系的引入「概念课」有序数【平面直角坐标系的引入】.对学习目标理解有序数对的意义,会用有序数对描述物体的位置请.先.思考..引导问题....,再看视频....【有序数对】,然后完成引导问题下方的摘要填空.引导问题1什么是有序数对?(00:00-04:44)1.靠一前一后________的________来确定平面内一个位置所组成的数对就叫做有序数对.引导问题2如何理解有序数对?如何书写一个有序数对?(04:44-07:56)2.数对:表示一个二维平面内的位置需要用________来表示.3.有序:表示位置的数对要有________,________不同表示的位置就不同,例如,电影院里(4,2)表示的位置是4座2排,而(2,4)表示的位置是________________.4.书写一个有序数对时,需要把两个数字写在________内,中间用________隔开,书写前3.2平面直角坐标系「概念课」点的坐标学习目标☐理解点的坐标的意义以及平面内的点与有序实数对之间的一一对应关系☐会建立平面直角坐标系,会根据点的坐标描绘出点的位置,能通过点的位置写出点的坐标2.两垂直的数轴横着的那根叫________,也称x 轴,以向右为________;竖着的那根引导问题1什么是平面直角坐标系?如何确定坐标原点与坐标轴?1.两数轴在原点处________就组成了一个平面直角坐标系.叫________,也称y 轴,以向上为________.3.两坐标轴相交的点就是坐标原点,对应的坐标为________________________.5引导问题2如何看点找坐标,看坐标找点?4.坐标轴上的点与坐标是________对应的..图中哪个点对应的坐标是()3,6-?________.A 、AB 、BC 、C6.图中P 点对应的坐标是________.A 、()5,5-B 、()5,5--C 、()5,5-C 、()5,57.请在图中画出点()5,3M 、()5,3N --、()0,3S -.「概念课」什么是象限学习目标了解什么是象限,掌握每个象限与坐标特征被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,每个部分称为象限,右上部分叫做________,其他部分按逆时针依次叫做__________、__________、__________,如图所示.2.每个象限坐标的特征为:第一象引导问题1什么是象限?如何划分象限?每个象限都有什么特征?1.建立平面直角坐标系后,坐标平面就限0,0x y >>,第二象限_________,A 、()2,4____;B 、()2,4-____;C 、()0,1-____;D 、()0.1,1--____;E 、()4,1-____;F 、()0.1,0____第三象限__________,第四项限___________.3.请判断下列的点在哪个位置(把正确答案填写在点后面的横线上)..a、第一象限b、第二象限c、第三象限d、第四象限e、x 轴上f、y 轴上「概念课」点到坐标轴的距离学习目标☐理解点到坐标轴的距离的概念,会求点到坐标轴的距离☐理解象限角平分线的概念,掌握象限角平分线上点的特点1.点到x 轴的距离为该点________的绝对值,点到y 轴的距离为该点________的绝对值.2.点()1,5-到x 轴的距离为________,到y 轴的距离为________.3.点()0,2-到x 轴的距离为________,到y 轴的距离为________引导问题1如何确定点到坐标轴的距离?.4.每个象限都有一个直角,这个直角的________就是这个象限的象限角平分线,每个直引导问题2什么是象限角平分线?每个象限角平分线上的点有什么特点?角坐标系都有________条象限角平分线.5.所有象限角平分线上的点到两坐标轴的距离________,________和________的角平分线7.点(),P m n ()0m ≠在一、三象限的角平分线上,请问上的点横纵坐标相等,________和________的角平分线上的点的横纵坐标互为相反数.6.点X(a ,b )在二、四象限的角平分线上,请问a +b =________.nm =________.「概念课」给距离求坐标学习目标通过点到坐标的距离求坐标2引导问题1如何通过给出的点到坐标轴的距离求点的坐标?1.点P 的坐标为(2,b ),并且点P 到x 轴的距离是5,请问b =________..已知点(),P a b ,点P 到x 轴的距离为为2,到y 轴的距离为5,求P 点坐标是什么?代数法:由点P 到x 轴的距离为2,得________________.由点P 到y 轴的距离为5,得________________.所以,a =________,b =________.所以点P 的坐标为________________________________________.几何法:由点P 到x 轴的距离为2,画出两条平行线由点P 到y 轴的距离为5,画出两条平行线四条线产生四个交点,分别为:________、________、________、________.这四个点即为P 点的可能点.3.已知点(),5M m ,点M 到y 轴的距离为3,请求出点M 的坐标.「解题课」根据点的位置求字母能力目标将点的位置转化为方程、不等式拔高练习 2.若点()5,24A a a --在x 轴上,求a 的值及A 点的坐标1.若点P (b -3,-2b )在y 轴上,求点P 的坐标..():5,0,3A a A =在():5,3,0B a A =在():2,0,3C a A =在():2,3,0D a A =在3.已知坐标平面内点()2,2A n m +-在第四象限,(1)求m 和n 的取值范围;(2)点()3,3B m n -+在哪个象限?4.若坐标平面内点A 的坐标为(),1n n -,则点A 一定不在哪个象限?攻略点在y 轴上:横坐标为0攻略点在x 轴上:纵坐标为0攻略点在某象限上:横纵坐标与0的大小关系攻略点在某象限上:横纵坐标与0的大小关系「解题课」图形面积计算/割补法能力目标学会使用割补法求不规则图形的面积拔高练习2.如图中四边形ABCD ,各点坐标如坐标系中标注1.如图坐标系中,△ABC 三个顶点的坐标如图中标注,求三角形ABC 的面积.,求四边形ABCD 的面积.3.如图中,AOB △,各点坐标如坐标系中标注,求AOB △的面积.已知直角三角形ABC 的直角边为BC 4.和AC ,且()1,1B ,()1,0C ,1ABC S =△,求A 点的坐标.5.已知点()01A ,,()20B ,,1ABC S =△求点C 的整数坐标,请找出至少六种点C 可能的坐标.「解题课」先建系再计算能力目标建坐标系表示位置示意图拔高练习1.已知:○1从天安门向西走500米,再向南走300米可到达国家大剧院;○2从国家博物馆向北走300米,再向西走200米可到达天安门.请问:国家博物馆在国家大剧院的哪个方位?(画出位置示意图)2.右图为北京部分景点的大致方位图,假设每个小正方形的边长为单位长度,请你帮狗蛋选一个原点建立平面直角坐标系,并用坐标表示各个景点的位置.3.在明朝建立城墙的时候是按照长方形的设计建造的,已知其中城墙的东北角坐标为()8,11,城墙东南角坐标为()8,2-,城墙西南角坐标为()8,2--,请先画出坐标系然后标出城墙四个角的位置,并写出城墙西北角的坐标.4.右图为北京城墙的九个城门的位置示意图,已知其中正阳门坐标为()0,2-,请你在图中将平面直角坐标系补充完整并分别写出其他九座城门的坐标.3.3轴对称与坐标变化「概念课」点的平移学习目标☐掌握点的平移时坐标的改变规律☐会计算点平移后的坐标1.点的平移规律:左减右加横坐标,上加下减纵坐标引导问题1平移时点的坐标是如何变化的?;2.________;如果将点A 向上和向下平移4个单位后得到的点的坐标分别为________、________已知点A (4,5),向左和向右平移3个单位长度后得到的点的坐标分别为________、.3.将一个点向上平移1个单位,再向右平移4个单位所得点的坐标是(2,1),则平移前点的坐标是________.4.已知点P (2,3),请计算出经下列平移变换后得到的点的坐标:○1向左平移3个单位长度________,○2向右平移3个单位长度________;○3向上平移3个单位长度________,○4向下平移3个单位长度________;○5坐标系向左平移3个单位长度________,○6坐标系向右平移3个单位长度________;○7坐标系向上平移3个单位长度________,○8坐标系向下平移3个单位长度________.平移方向,长度()0a 引导问题2坐标系里面的线平移时坐标是如何变化的?>坐标变化上移a 个单位长度横坐标________,纵坐标________下移a 个单位长度横坐标________,纵坐标________左移a 个单位长度横坐标________,纵坐标________右移a 个单位长度横坐标________,纵坐标________5.把一条线段或者一个图形向某一个方向平移某一段距离,那么线段或图形上所有的点也都要朝________平移同一段距离,所以,只要知道了一条线段平移后的一对对应点的坐标,我们就可以找出线段上其他对应点平移后的坐标.6.右图坐标系中,已知线段AB ,坐标如图所标示,现将线段AB 朝某一方向平移,使得A 点平移至C 点,那么B 点平移后对应的D 点的坐标为________,并在图中画出平移后的线段CD .7.已知线段AB ,A 点坐标为()2,3-B 点坐标为()4,7.线段AB 向某一方向平移后得到A 点对应的C 点坐标为()0,0,8.则平移后B 点所对应的D 点的坐标为________.已知线段AB ,A 点坐标为(3,-1),B 点坐标为(5,3).先将线段AB 向上平移4个单位长度,再向左平移3个单位长度,求线段AB 平移后所得线段CD 的端点C 、D 的坐标.学习目标掌握点关于坐标轴对称的坐标的计算1.两个关于y 轴对称的点的横坐标________,而纵坐标________;两个关于x 轴对称的引导问题1关于坐标轴对称的点的坐标是如何变化的?点的横坐标________,而纵坐标________.2.点(),P a b 关于x 轴对称的点的坐标为________,关于y 轴对称的点的坐标为________.3.点()3,3A 和点B 关于y 轴对称,点C 和点B 关于x 轴对称,求B 、C 两点的坐标分别为________、________.4.已知点()1,2A -,点B 与点A 关于x 轴对称,而点C 与点B 关于y 轴对称,请求出点C 的坐标.5.已知点()2,P b ,点M 与点P 关于x 轴对称,点N 与点M 关于y 轴对称,而点N 的坐标为(),1a ,求a 、b 的值.学习目标掌握点关于原点对称的坐标的计算1.两个关于原点对称的点,横坐标________,纵坐标________.2.点()2,2关于原点对称的点的坐标为________.3.点()2,3-关于x 轴对称的点的坐标为________,关于y 轴对称的点的坐标为________引导问题1关于原点对称的点的坐标是如何变化的?,关于原点对称的点的坐标为________.4.已知点(),3P a -,点()2,M b 与点P 关于原点对称,求a 、b 的值.5.已知点()1,5A -,请分别求出它关于x 轴、y 轴和原点对称的点的坐标.「解题课」根据点的对称求字母能力目标用对称的特点求坐标中的未知数拔高练习1.已知点()11,5P a -和()22,1P b -:()1若点1P 和2P 关于x 轴对称,求a b +的值;()2若点1P 和2P 关于y 轴对称,求a b +的值;()3若点1P 和2P 关于原点对称,求a b +的值.2.已知点()2,5M a b +,()7,N b -关于y 轴对称,求ab 的值.3.已知点(),2A m n m --与点()4,B n -,如果点A 、B 关于原点对称,求m 、n 的值.攻略1.关于x 轴对称:(a ,b )↔(a ,-b )关于y 轴对称:(a ,b )↔(-a ,b )关于原点对称:(a ,b )↔(-a ,-b )2.坐标关系↓列出方程↓解未知数「解题课」中点公式及其应用能力目标☐求中点坐标☐利用中点条件得出坐标拔高练习1.已知任意两个实数a b 、,且a b <,则这两点在数轴上的中点对应的数是什么?2.求()22,、()13--,的中点坐标.3.已知A 、B 的中点为()4,6,且A 点坐标为()2,3-,求B 点坐标.4.已知A 、B 的中点为()1,1,且A 点坐标为()2,1-,求B 点坐标.攻略数轴上中点对应平均数:攻略坐标系上AB 及中点坐标满足22B A B Ax x x y y y =-⎧⎨=-⎩攻略坐标系上AB 及中点坐标满足22B A B Ax x x y y y =-⎧⎨=-⎩5.已知()2,8A -、()2,1B m +,若()5,2M n -是AB 的中点,求m 、n 的值.6.写出点()4,3关于()3,2-的对称点的坐标.攻略坐标系上AB 及中点坐标满足22B A B Ax x x y y y =-⎧⎨=-⎩满分必学「解题课」根据周长和面积求坐标能力目标把几何关系转化为代数表达拔高练习()0,5.1.如图,长方形OABC 中,O 为平面直角坐标系的原点,A 、C 两点的坐标分别为(3,0),(1)求点B 的坐标;(2)若过点C 的直线CD 交AB 于点D ,且把长方形OABC 的周长分为3:1两部分,求点D 的坐标.2.如图,平面直角坐标系中,()2,0A -,()3,0B ,()1,2C -.(1)在x 轴正半轴上存在一点M ,使12COM ABC S S =△△,求点M 的坐标;(2)在坐标轴的其他位置是否存在点M ,使12COM ABC S S =△△?若存在,请直接写出所有满足条件的点M的坐标.攻略几何条件转化代数表达「解题课」根据面积关系求坐标-上能力目标几何语言与代数语言的互相转化拔高练习()1若点P 在y 轴上且PAD POC S S =△△,求点P 的坐标1.如图,平面直角坐标系内有直角梯形AOCD ,已知AD =3,AO =8,OC =5.;()2若点P 在梯形内且PAD POC S S =△△,PAO PCD S S =△△,求点P的坐标.攻略设坐标↓表示面积列出方程↓解方程↓求出坐标「解题课」根据面积关系求坐标-下能力目标☐转化面积关系为方程☐创造“横平竖直”三角形拔高练习()0,1C 、()3,0D -,动点(),4P m m 在第三象限且满足PBC PAD S S =△△,求点P 的坐标1.在平面直角坐标系xOy 中,四边形ABCD 各个顶点坐标分别为A (0,-4)、B (2,0)、.攻略面积关系↓方程列出方程↓解方程↓求出坐标能力目标利用平行线基础图倒角拔高练习分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A 、B 的对应点C 1.如图,在平面直角坐标系中,点A 、B 的坐标分别为(-1,0),(3,0),现同时将点A 、B 、D ,连接AC 、BD 、CD .(1)求点C 、D 的坐标.(2)P 在直线BD 上运动,连接PC 、PO ,请直接写出CPO ∠、DCP ∠、BOP ∠这三个角的数量关系.2.如图,平面直角坐标系中,()2,0A -,()2,0B ,()2,2C .若过点B 作BD AC ∥交y 轴于D ,且AE ,DE 分别平分CAB ∠,ODB ∠,求AED ∠的度数.攻略找折线↓折点作辅助线↓倒角能力目标☐根据图象规律发现坐标规律☐求周期型点的坐标拔高练习1.如图所示,正方形的边长依次为2,4,6,8,···,其中()111A ,,()211A -,,()311A --,,()411A -,,()522A ,,()622A -,,()722A --,,()822A -,,()933A ,,()1033A -,,···按此类推下去,则2016A 的坐标为________.2.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位长度,得到()10,1A ,()21,1A ,()31,0A ,()42,0A ,···那么点2015A 的坐标为________.攻略脚标÷周期商余数↓↓第几个周期内周期排第几注意:周期内部和周期之间的规律3.如图,点()0,0O ,()0,1A 是正方形11OAA B 的两个顶点,以对角线1OA 为边作正方形122OA A B ,再以正方形的对角线2OA 作正方形233OA A B ···,依此规律,则点8A 的坐标是________.能力目标☐根据操作规律写点坐标☐发现坐标规律拔高练习对称点为1P ,1P 关于B 的对称点为2P ,2P 关于C 的对称点为3P ,按此规律继续以A 、B 1.在平面直角坐标系中有三个点,A (1,-1),B (-1,-1),C (0,-1),点P (0,2)关于A 的、C 为对称中心重复前面的操作,依此得到4P ,5P ,6P ,···,求点2015P 的坐标.2.在平面直角坐标系xOy 中,对于点(),P x y ,我们把点()'1,1P y x -++叫做点P 的伴随点,例如:点P 的坐标为()3,1,则点'P 的坐标为()0,4,···;已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,···,这样依次得到1A ,2A ,3A ,···,n A ,···,若1A 的坐标为(),a b ,求点2015A 的坐标.攻略脚标÷周期商余数↓↓第几个周期内周期排第几注意:周期内部和周期之间的规律能力目标借助三角形数解决三角形找规律拔高练习律探索可得,求第100个点的坐标和第1000个点的坐标1.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,根据这个规.能力目标借助正方形数解决正方形找规律拔高练习这个规律,求第1237个点的坐标1.如图,在平面直角坐标系中,有若干个坐标分别为整数的点,其顺序按图中所示,根据.2.把自然数按下图的次序排列字直角坐标系中,每个自然数对应着一个坐标.例如1的对应点是原点()0,0,3的对应点是()1,1,16的对应点是()1,2-.求2017的对应点的坐标.攻略1.找第2n 个点的规律2.找到离目标点最近的平方点。
北师大版八年级上册数学 3.3 轴对称与坐标变化 优秀教案
北师大版八年级上册数学 3.3 轴对称与坐标变化优秀教案北师大版八年级上册数学3.3轴对称与坐标变化优秀教案3.3轴对称性和坐标变化写出对称点的坐标.1.探索图形坐标变化的过程;(要点)2。
理解并掌握图形坐标变化与图形轴对称性之间的关系。
(难点)分别作点a,b,c关于x轴、y解析:轴的对称点就足够了解:如图所示.点A1(1,4)、B1(3,1)、A2(-1,-4)、B2(-3,-1)和C相对于x轴和y轴对称点的坐标保持不变方法总结:作对称图形应先确定关键点的对称点,再顺次连接各点即可作图.探索点3:探索平面直角坐标系中的规律如图,已知a1(1,0),a2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),。
,那么点a2022的坐标是___一、情境导入在我们的生活中,对称是一种非常普遍的现象。
将图中所示轴对称的黄鹤楼图形置于平面直角坐标系中,其对称轴为坐标轴。
那么,图形上的对称坐标之间的关系是什么?试试看二、合作探究探测点1:关于x轴和y轴对称的点的坐标点a(2a-3,b)与点a′(4,a+2)关于X轴对称,找到a,B解析:此题应根据关于x轴对称的两个点的坐标的特点:横坐标相同,纵坐标互为相反数,得2a-3与4相等,b与a+2互为相反数.解决方案:从点a(2a-3,b)和点a'(4,a+2)关于x轴的对称性,我们知道2a-3=4,a+2=-b.711所以a=,b=-.22方法概述:在平面直角坐标系中,关于坐标轴对称的点的坐标关系:若a(x,y)与b(m,n)关于x轴对称,则有x=m,y=-n;若a(x,y)与b(m,n)关于y轴对称,则有x=-m,y=n.探索点2:绘图-轴对称变换如下图所示,△abc三个顶点的坐标签分别是a(-1,4)、B(-3,1)和C(0,0)。
使…对称△ ABC关于x轴和y轴解析:从各点的位置可以发现a1(1,0),a2(1,1),a3(-1,1),a4(-1,-1),a5(2,-1),a6(2,2),a7(-2,2),a8(-2,-2),a9(3,-2),a10(3,3),a11(-3,3),a12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2021=503×4+3,所以点a2021在第二象限,纵坐标和横坐标互为相反数,所以a2021的坐标为(-504,504).故填(-504,504).方法小结:解决这类问题的常用方法是通过对几个特例的研究总结出一般规律,然后根据一般规律探索特例三、板书设计。
八年级数学上册3.3轴对称与坐标变化教学设计 (新版北师大版)
八年级数学上册3.3轴对称与坐标变化教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册3.3轴对称与坐标变化。
这部分内容是学生学习了平面直角坐标系、图形的轴对称变换等知识后进行的,是学生进一步学习函数、几何等知识的基础。
本节课主要让学生了解坐标与图形的轴对称变换之间的关系,学会如何运用坐标来表示图形的轴对称变换。
二. 学情分析学生在学习本节课之前,已经掌握了平面直角坐标系的知识,对图形的轴对称变换也有了一定的了解。
但是,学生可能对坐标与轴对称变换之间的关系理解不够深入,需要通过本节课的学习来进一步掌握。
三. 教学目标1.知识与技能:让学生掌握坐标与图形的轴对称变换之间的关系,能运用坐标来表示图形的轴对称变换。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生探索数学问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作交流的学习习惯。
四. 教学重难点1.重点:坐标与图形的轴对称变换之间的关系。
2.难点:如何运用坐标来表示图形的轴对称变换。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等教学方法,引导学生通过自主学习、探究学习、合作学习,掌握坐标与图形的轴对称变换之间的关系。
六. 教学准备1.教师准备:教材、课件、教学素材等。
2.学生准备:课本、练习本、文具等。
七. 教学过程1.导入(5分钟)教师通过一个简单的轴对称变换案例,引导学生回顾轴对称变换的定义,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示坐标与轴对称变换之间的关系,让学生观察、思考,引导学生发现坐标与轴对称变换之间的规律。
3.操练(10分钟)教师给出一些具体的轴对称变换问题,让学生独立解决,进一步巩固坐标与轴对称变换之间的关系。
4.巩固(10分钟)教师学生进行小组讨论,分享各自解决问题的方法,互相学习,共同提高。
5.拓展(10分钟)教师引导学生运用所学知识解决一些实际问题,让学生感受数学与生活的紧密联系。
【北师大版】八年级数学上册:第3章《位置与坐标》全章教学案(53页,含答案)
第三章位置与坐标1.认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.2.在实际问题中,能建立适当的直角坐标系,描述物体的位置,体会可以用直角坐标系画一个简单图形.3.能结合具体情境灵活运用多种方式确定物体的位置.4.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.经历探索图形位置变化与图形坐标变化之间关系的过程,进一步发展数形结合意识和应用意识,初步建立几何直观.从事对现实世界中确定位置的现象进行观察、分析、抽象和概括的活动,进一步发展空间观念.一、《标准》要求1.探索并理解平面直角坐标系及其应用.2.在研究确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观.3.结合实例进一步体会用有序数对表示物体的位置.4.理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标.5.在实际问题中,能建立适当的直角坐标系,描述物体的位置.6.对给定的正方形,会选择合适的直角坐标系,写出它的顶点坐标,体会用坐标刻画一个简单图形.7.在平面上,能用方位角和距离刻画两个物体的相对位置.8.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.二、教材分析“图形与坐标”是“图形与几何”领域的重要组成部分,它是发展学生空间观念的重要载体.作为第一、二学段“图形与位置”的发展,本章是第三学段“图形与坐标”的主体内容,将引领学生感受确定物体位置方法的多样性,抽象出平面直角坐标系的概念,进而利用平面直角坐标系确定物体的位置,并从坐标的角度描述学习过的轴对称图形,进一步认识轴对称.同时,平面直角坐标系是表示变量之间关系的重要工具,因此本章是以后学习“一次函数”的重要基础.本章首先结合学生的生活实际,选择了丰富多彩、形式多样的确定位置的现实背景,力图使学生感受平面上确定位置的共同特征:不管用什么方法确定位置,都需要两个数据.然后,通过实际背景认识确定位置的一个常用方法,引入平面直角坐标系,建立直角坐标系中的点与坐标之间的一一对应关系,学习根据坐标描出点的位置、由点的位置写出它的坐标,同时能建立适当的直角坐标系刻画图形上各点的位置.最后,在同一个直角坐标系里,探索图形的变化(轴对称)与坐标的变化之间的关系.【重点】1.确定物体位置的方法.2.认识和画出直角坐标系,在给定的直角坐标系中,能够根据坐标描出点的位置,由点的位置写出它的坐标.3.探索坐标变换与图形变换的关系.【难点】1.灵活运用各种方法确定物体的位置.2.认识图形与坐标的关系.3.正确确定坐标变换与图形变换的关系,进一步发展空间观念和审美意识.1.结合实际创造性地选用现实题材进行教学.教学中要立足于学生的生活经验和已有的数学活动经验,创造性地选用现实生活中的有关题材,丰富教学内容,生活中,确定位置的方法是多样的,有点定位、区域定位、极坐标定位、直角坐标定位等.教科书从学生熟悉的情境出发,选取了“电影院中找座位”“航海中找目标”“地图上确定城市的位置”等素材,教学中教师既可以利用教科书上已有的题材,也可以根据本地的生活实际和学生的认知实际,选取更为贴近学生的教学素材(如确定学校的位置、校园中旗杆的位置、学生在班级的位置等),鼓励学生用自己的方式来确定位置.2.恰当把握教学重点与要求.教学中应让学生充分经历确定物体位置的活动过程,在过程中体会到:不管用什么方法来确定一个物体在平面上的位置,都需要两个数据.要引导学生理解轴对称与坐标变化之间的联系,形成对图形变换的整体认识,进一步发展学生的数形结合意识、空间观念,建立几何直观.3.恰当运用多种教学手段.本章的教学需要大量的坐标纸、地图等材料,课前的准备是必需的.同时,建议有条件的地区使用计算机进行动态演示,以保证教学的效果.1确定位置1.要求学生在现实情境中感受物体定位的多种方法.2.初步学会根据实际情况找出具体的位置.3.能较灵活地运用不同的方式对物体定位.4.能了解在平面上确定物体位置的方法的统一性:都需要两个数据.1.通过现实事例,让学生了解到位置的重要性,引导学生进入新课.2.使学生置身情境中,研究物体的位置,对位置形成初步的认识.3.引导学生探索确定物体位置的方法.4.通过讨论交流等方式给学生讲解例题,掌握确定物体位置的方法.5.让学生经历探索、操作等过程,在实践中体会和掌握如何运用各种方法来确定物体的位置.6.通过课后练习、讨论交流等方式组织学生小结本课,回忆和巩固知识.1.通过现实生活中的有关题材,使学生体会生活中位置的确定离不开数据,数学与生活有着密切关系.2.使学生在合作与交流的过程中获得情感体验,培养学生的合作意识.【重点】1.使学生能在具体的情境中,根据行和列确定并描述物体的位置.2.能了解在平面上确定物体位置的方法:一般需要两个数据.【难点】能灵活运用不同方式准确确定物体的位置.【教师准备】教材情境图,带磁力的方格板和黑白棋.布置学生收集两张废旧电影票,准备学生尺、量角器.【学生准备】按教师的布置收集两张废旧电影票,准备学生尺、量角器.导入一:【问题】秦始皇兵马俑在什么位置呢?你能告诉我陕西省西安市的位置吗?[设计意图]通过上述图片,引导学生感受生活中常常需要确定位置.导入新课:怎样确定位置呢?导入二:【问题】在数轴上,确定一个点的位置需要几个数据呢?【答】一个,例如,若A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置.总结得出结论:在数轴上, 确定一个点的位置一般需要一个数据.一、探究(1)在电影院内如何找到电影票上所指的位置?(2)在电影票上,“3排6座”与“6排3座”中的“6”的含义有什么不同?(3)如果将“3排6座”记作(3,6),那么“6排3座”如何表示?(5,6)表示什么含义?[设计意图]较好地体现数学的现实性,有利于学生良好数学观的形成.(4)在只有一层的电影院内,确定一个座位一般需要几个数据?(5)在生活中,确定物体的位置还有其他的方法吗?与同伴进行交流.[设计意图]及时总结学生的经验,并要求学生自主寻找生活中的定位问题,进而可以选用学生所举的例子开展下面的教学活动,这样的课才是生动的,交互的.结论:生活中常常用“排数”和“座数”来确定位置.二、学有所用下表中是无序排列的汉字,小明拿到一张写有密码的字条,你能帮他破译吗?结论:生活中常常用“行数”和“列数”来确定位置.三、例题讲解下图是某次海战中敌我双方舰艇对峙示意图(图中1 cm表示20 n mile).对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距离我方潜艇20 n mile的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?[设计意图]本例用方位角和距离刻画两个物体的相对位置,实际上,这就是极坐标定位.当然,这里并不严格地介绍极坐标,而是意在渗透极坐标的思想.解:(1)对我方潜艇来说,北偏东40°的方向上有两个目标:敌舰B和小岛.要想确定敌舰B的位置,仅用北偏东40°的方向是不够的,还需要知道敌舰B距我方潜艇的距离.(2)距我方潜艇20 n mile的敌舰有两艘:敌舰A和敌舰C.(3)要确定每艘敌舰的位置,各需要两个数据:距离和方位角.例如,对我方潜艇来说,敌舰A在正南方向,距离为20 n mile处;敌舰B 在北偏东40°的方向,距离为28 n mile处;敌舰C在正东方向,距离为20 n mile处.结论:生活中常常用“方位角”和“距离”来确定位置.四、做一做(1)据新华社报道,2008年5月12日14:28,我国四川省发生里氏8.0级强烈地震,震中位于阿坝州汶川县境内,即北纬31°,东经103.4°.这是新中国成立以来破坏性最强、波及范围最大的一次地震.你能在图中找到震中的大致位置吗?[设计意图]这是根据经纬度来确定位置的.结论:生活中常常用“经度”和“纬度”来确定位置.(2)如图所示的是广州市地图简图的一部分,如何向同伴介绍“广州起义烈士陵园”所在的区域?“广州火车站”呢?[设计意图]这种确定位置的方法属于区域定位.生活中没有绝对的点,为了寻找点的方便,常将点框定在一定的区域内.结论:生活中常常用“区域定位”来确定位置.五、议一议(1)你能举出生活中需要确定位置的例子吗?与同伴进行交流.(2)在平面内,确定一个物体的位置一般需要几个数据?结论:在平面内,确定一个物体的位置一般需要2个数据.若设这两个数据分别为a和b,则:a表示:排数、行数、经度、方位……b表示:座数、列数、纬度、距离……[知识拓展]确定平面上的点的方法很多,不管采用哪种方法,平面内确定位置都需要两个量,特别是用一对数表示位置时,应该注意数是有顺序的.顺序不同表示点的位置就不同.不同方式确定物体的位置.2.在数轴上,确定一个点的位置一般需要一个数据.在平面内,确定一个物体的位置一般需要两个数据.若设这两个数据分别为a和b,则:a表示:排数、行数、经度、方位……b表示:座数、列数、纬度、距离……1.在平面内,下列数据不能确定物体位置的是()A.3楼5号B.北偏西40°C.解放路30号D.东经120°,北纬30°解析:在平面中,确定物体的位置一般需要两个数据,B选项只有一个数据,故不能确定物体的位置.故选B.2.海事救灾船前去救援某海域失火轮船,需要确定()A.方位角B.距离C.失火轮船的国籍D.方位角和距离解析:在海上确定物体的位置一般需要方位角和距离.故选D.沿着“日”字形的对角线走.(1)用坐标表示图中“象”的位置是;(2)写出“马”下一步可以到达的所有位置,并在图中标出.解析:(1)结合图形写出即可.(2)根据网格结构找出与“马”现在的位置成“日”字的点,然后写出即可.解:(1)(5,3)(2)如图所示,(1,1),(3,1),(4,2),(4,4),(1,5),(3,5).1确定位置1.在平面内,确定一个点的位置一般需要两个数据.2.生活中常见的几种确定位置的方式.(1)用“排数”和“座数”.(2)用“行数”和“列数”.(3)用“经度”和“纬度”.(4)用“方位”和“距离”.(5)用区域定位.一、教材作业【必做题】教材第56页随堂练习.【选做题】教材第57页习题3.1第3,4题.二、课后作业【基础巩固】1.下列说法:①数轴上的每一个点的位置都可以用一个数来确定;②平面内任何一个点的位置都可以用一个数来确定;③若用两个数表示平面内一个点的位置,则(2,3)和(3,2)表示的是同一个点的位置.其中正确的有()A.0个B.1个C.2个D.3个2.如图所示的是某学校的平面示意图,如果用(2,5)表示校门的位置,那么图书馆的位置如何表示?图中(10,5)表示哪个地点的位置?【能力提升】3.小明家在学校的北偏东30°方向,距学校1000 m处,则学校在小明家的什么位置?【拓展探究】4.如图所示,一只甲虫在10×10的网格(每一格边长为1)上沿着网格线运动,它从C处出发想去看望A,B,D,E处的其他甲虫,规定其行动为:向下向左走为正,向上向右走为负,如果从C到B记为:C→B(+5,+2)(第一个数表示左、右方向,第二个数表示上、下方向). (1)C→D(),C→A(),D→(+5,-6),E→D(,-4);(2)若这只甲虫的行走路线是C→A→B→D→E,请计算该甲虫走过的路程;(3)这只甲虫去P点处的行走路线为(-2,+2)→(+3,-4)→(-4,+2)→(+7,+3),请在图上标出P点的位置,想一想,有没有简便的计算方法? 【答案与解析】1.B(解析:只有①正确.)2.解:图书馆的位置表示为(2,9).图中(10,5)表示旗杆的位置.3.解:南偏西30°方向,距小明家1000 m处.4.解:(1)(+2,+4)(+7,-2) A +5(2)由题意可知:甲虫所走过的路程为7+2+4+2+2+3+4+5=29. (3)标点P的位置略.简便的计算方法为:左、右方向:(-2)+(+3)+(-4)+(+7)=4,上、下方向:(+2)+(-4)+(+2)+(+3)=3,由此可知自点C处出发,向左走4格,向下走3格就到P点处.本节内容与现实生活联系紧密,学生在生活中经常能遇到相关的知识,因此在教学时建议尽量让学生参与进来.学生在亲身体验中学习知识,加深印象,并培养认真的学习态度.在教学中要让学生有条理地思考和表达.在确定位置的活动中,学生不仅自己要明白物体的位置,而且要能有条理地向别人表述.这种表达可以反映学生的表达水平、有关知识的掌握程度和空间观念.在确定位置的方法中渗透了“极坐标”的思想,只要学生能直观地理解就行,不需要深入理解此概念.可以让学生多注意生活中需要确定位置的地方,发现身边的公共设施或广告中定位不清的问题.让他们在生活中学习,并明白知识源于生活的道理.随堂练习(教材第56页)1.解:答案不唯一.如:青年之家餐厅在A1区;水阁云天在B1区;工人疗养院在C2区.2.解:(1)按照图中的表示数字,“将”在第9行第5列,“帅”在第1行第5列. (2)第7行第4列.习题3.1(教材第57页)1.解:先确定北京等四个城市的位置,估计它们的经纬度.然后按照要求,在经度线或纬度线上寻找符合要求的城市.2.解:(1)“经五纬一”在广播大厦旁边的十字路口.(2)从“经七纬五”出发,经过“经六纬五”到达“经五纬一”的路线不唯一.例如,“经七纬五”“经六纬五”“经五纬五”“经五纬三”到达“经五纬一”或“经七纬五”“经六纬五”“经六纬三”“经六纬一”到达“经五纬一”. (3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近.平面内确定物体的位置时应注意:(1)用行列定位法表示平面内某点的位置必须有两个数据,缺一不可.(2)经纬定位法既适合在球面上定位,也适合在平面上定位,利用地理学上的经纬度来确定物体的位置的定位方法,指明一点的经度和纬度就可以确定物体在地球上的位置.(3)弄清区域定位法中字母及数字分别表示的含义,依照已知建筑物的表示方法表示建筑物的位置.(4)用直角坐标系定位法确定一个物体的位置也需要两个数据,一个是横坐标,另一个是纵坐标,两者缺一不可(下节课讲).(5)用一对数表示位置时要注意这对数是有顺序的,一般先写横格所表示的数,再写竖格所表示的数(简称“先横后纵”).如图所示,李老师家在2街与2巷的十字路口附近,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示李老师从家到学校上班的一条路径,请你用同样的方式写出由家到学校的另外一种路径.解:答案不唯一,如:(2,2)→(3,2)→(4,2)→(5,2)→(5,3)→(5,4).2平面直角坐标系1.理解平面直角坐标系的有关概念,并能正确画出平面直角坐标系.2.能建立适当的坐标系,描述物体的位置.3.在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标.1.通过两个找点、连线、观察、确定图形的大致形状的问题,使学生能在给定的直角坐标系中根据坐标描出点的位置,进一步掌握平面直角坐标系的基本内容.2.通过讨论交流的方式讲解例题.学生掌握根据已知条件建立适当的坐标系来描述物体位置的方法.1.培养学生发现问题和主动探索的能力.在与同伴的合作交流中,培养学生的责任心.2.培养学生细致、认真的学习习惯.3.通过教学,向学生渗透“数形结合”的数学思想,并培养学生将实际问题抽象为“数学模型”的能力.【重点】1.能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标找出点,由点求出坐标.【难点】1.理解平面内的点与有序数对之间的一一对应关系.2.在直角坐标系中,根据坐标找出点,由点求出坐标.第课时1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念.2.认识并能画出平面直角坐标系.3.能在给定的直角坐标系中,由点的位置写出它的坐标.1.从现实情境入手,感受建立平面直角坐标系的必要性,然后抽象出平面直角坐标系的相关概念.2.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识.由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实生活的密切联系,让学生认识数学与生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.【重点】学生能正确画出平面直角坐标系,并能在平面直角坐标系中,根据定义写出给定点的坐标,以及根据坐标描出点的位置.【难点】理解坐标和平面上的点的一一对应的关系,体会数形结合思想.【教师准备】多媒体课件,画图工具,教材图3 - 4,3 - 5,3 -6的情境图.【学生准备】画图工具,方格纸.导入一:同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,在科技大学的小亮如何给来访的朋友介绍该市的几个风景点的位置呢?尽可能给出简洁的表示方法,并与同伴交流.大成殿:;中心广场:;碑林:.[设计意图]试图通过介绍景点回顾前一节中确定位置的方法,体会不同的介绍方法中的共性——一般需要两个数据.导入二:你是怎样确定各个景点的位置的?[处理方式]学生口答完成,对于回答不完整的由学生补充改正!教师引导性地进行语言说明,在数轴上我们能够用一个数字来表示点的坐标,那么平面内能否用一个数来表示景点的具体的位置呢?既复习了旧知识,又为下面用类比的方法学习新知识做铺垫.此处学生回答的方法多种多样,只要合理即可,还有没有更好的方法,进而提出问题.一一感受建立平面直角坐标系的必要性.[设计意图]通过播放图片,调动学生的热情,既复习回顾了旧知识,又激发起进一步学习的兴趣,吸引学生的注意力,用类比的方法学习平面直角坐标系,为学习新知识进行铺垫.引导学生猜想、探索,鼓励学生积极思考,调动学习积极性,并在活动中培养学生的探究、合作、交流的能力.一、做一做(一)(1)小红在旅游示意图上画上了方格,标上数字,如图(1)所示,并用(0,0)表示科技大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置如何表示?(2,5)表示哪个地点的位置?(5,2)呢?(1)(2)按照小红的方法,(5,2)中的2表示,(2,5)中的2表示.(2)如果小亮和他的朋友在中心广场,并以中心广场为“原点”,做了如图(2)所示的标记,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?(通常将(0,0)点称为原点)如果城市比较大,地图还需要向右上方扩展,你能类似地表示右上部分其他点的位置吗?[设计意图]以方格纸为背景,可以方便地利用有序数对描述各景点的位置.生活中用两个距离表示位置时,一般不用负数,而直角坐标系中的坐标是可正可负的,为此,设计了本问题.二、相关概念思路一:给出定义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y轴统称坐标轴,它们的公共原点O称为直角坐标系的原点.如图所示,对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标.如图所示,在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限和第四象限.坐标轴上的点不在任何一个象限内.思路二:活动内容1:认识平面直角坐标系.(多媒体展示)问题1什么是平面直角坐标系?简称什么?两条数轴如何放置?如何称呼?方向如何确定?它们的交点叫什么?问题2坐标轴将平面分为哪几个部分?它们的名称分别是什么?坐标轴上的点属于哪个部分?问题3在方格纸上画出平面直角坐标系.问题4象限是怎样划分的?[处理方式]给学生5~8分钟的时间先结合自学提纲自学课本,然后根据自己的理解在方格纸上画出平面直角坐标系,并标出各部分名称.学生之间相互提问解答.最后找学生代表发言,教师要求学生尽量不看课本,对于问题1和问题2,学生根据课本内容回答应该问题不大,但是此处教师应该补充正方向的确定不是唯一的,我们为了习惯,通常取向右与向上的方向分别为两条数轴的正方向.对于数轴的名称,多找几位学生回答,最后教师强调画平面直角坐标系应注意:①两条数轴互相垂直;②原点重合;③标注两坐标轴名称;④单位长度一般取相同的.问题3直接要求学生在所画平面直角坐标系中标出各个象限的名称,并引导学生得出坐标轴上的点不在任何一个象限内.(多媒体出示,同时给学生1分钟时间改正反思,查找错误的原因)注意:坐标轴上的点不属于任何象限,原点既在横轴上又在纵轴上.在上图建立的平面直角坐标系中,两条坐标轴将坐标平面分成四个部分(按逆时针方向)分别叫第一象限、第二象限、第三象限、第四象限.[设计意图]平面直角坐标系的产生是法国数学家迪卡尔的伟大发现,里边涉及的概念很难引导学生自己得出,因此可以通过自学的方式让学生掌握这些知识,培养学生自学能力、合作交流能力,体现学生主动学习的理念,对学生进行数学文化方面的熏陶和理想教育.培养作图能力和对概念的进一步认识,强化理解.活动内容2:点的坐标的定义.(多媒体出示)问题1直角坐标系内,如何根据点的位置确定点的坐标?写出A点的坐标(如图(1)所示).问题2在平面直角坐标系内,如何根据点的坐标确定点的位置?找出坐标为(2,4)的C点(如图(2)所示).[处理方式]给学生3~4分钟的时间自学课本,然后根据自己的理解,写出A点的坐标,然后同桌比较写出的答案是否一样.找出不同的原因,然后再一次自学课本,小组内讨论得出正确答案:A(3,4).教师引导学生说明怎样得到点A的坐标,例如:①过点A分别向x轴和y 轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,。
八年级数学北师大版上册 第3章《3.3 轴对称与坐标变化》教学设计 教案
课题轴对称与坐标变化课型新课课时数 1 主备教师执教教师教学目标1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
教学重点难点教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
教学准备三角板、课件教学过程个性化修改一、引入新课1.什么叫轴对称图形?沿着某一直线对折,直线两旁的部分能够完全重合的图形就是轴对称图形;这条直线称为对称轴2.如何在平面直角坐标系中确定点P的位置?二、自学导航8分钟,完成教材68----69页的内容,并回答以下问题。
1、认真阅读例题,你可以做出怎样的总结?2、关于坐标轴对称的点的坐标有什么特点?3、完成课本P69页第2题。
三、精讲1、△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:①△ABC与△A1B1C1有怎样的位置关系?△ABC 与△A 1B 1C 1关于x 轴对称②关于x 轴对称的两点,它们的横坐标 ,纵坐标 ;2.如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.① 两面小旗之间有怎样的位置关系?关于y 轴成轴对称。
② 关于y 轴对称的两点,它们的横坐标 ,纵坐标 。
反过来,坐标具有这种关系的点有怎样的位置关系?四、课堂检测1.平面直角坐标系中,点P (2,3)关于x 轴对称的点的坐标为( ).2. 已知点A (a ,1)与点A 1(5,b )关于y 轴对称,则a= ,b= . 讨论:点P (2,-3)到x 轴、y 轴和坐标原点的距离分别多少? 点M (-3,4)到x 轴、y 轴和坐标原点的距离分别多少? 点P(a,b)与坐标原点的距离22b a3. 已知点M (m ,-5). ①点M 到x 轴的距离是____;②若点M 到y 轴的距离是4;那么 m 为____.4. 点P 到x 轴的距离是2.5;到y 轴的距离是4.5. 求点P 的坐标.五、拓展提升在x 轴上有一条河,现准备在河流边上建一个抽水站P ,使得抽。
北师大版-数学-八年级上册-3.3 轴对称与坐标变化 教学设计
轴对称与坐标变化教学目标:1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
3.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。
教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
教学方法:引导发现法教学过程设计引入新课我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。
如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。
1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。
两面小旗之间有怎样的位置关系?对应点A与A 1的坐标又有什么特点?其它对应的点也有这个特点吗?2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理。
3.如果关于x轴对称呢?在这个坐标系里作出小旗ABCD关于x轴的对称图形,它的各个顶点的坐标与原来的点的坐标有什么关系?4.关于x轴对称的两点,它们的横坐标,纵坐标;关于y轴对称的两点,它们的横坐标,纵坐标。
5.已知点P(2a-3,3),点A(-1,3b+2),(1)如果点P与点A关于x轴对称,那么a+b=;(2)如果点P与点A关于y轴对称,那么a+b=。
探究新知例1 在坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并做以下变化:(1)纵坐标保持不变,横坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解:先根据题意把变化前后的坐标作一对比。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。
本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。
二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。
但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。
三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。
2.能够运用坐标变化规律,解决实际问题。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。
2.教学难点:如何运用坐标变化规律解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。
六. 教学准备1.准备相关的多媒体教学课件和教学素材。
2.准备坐标纸、剪刀、胶水等实验材料。
3.设计好课堂练习题和课后作业。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。
引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。
引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。
3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。
要求学生用自己的语言描述坐标变化规律。
4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。
教师巡回指导,解答学生的疑问。
5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教案
北师大版八年级数学上册:3.3《轴对称与坐标变化》教案一. 教材分析《轴对称与坐标变化》这一节的内容,主要让学生了解轴对称的概念,以及如何利用坐标来表示轴对称图形。
通过学习,学生能理解轴对称图形的性质,并能够运用坐标变化来解决一些实际问题。
二. 学情分析八年级的学生已经学习了平面几何的基础知识,对图形的性质和坐标系有一定的了解。
但是,对于轴对称的概念和坐标变化的应用,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
三. 教学目标1.了解轴对称的概念,理解轴对称图形的性质。
2.学会利用坐标来表示轴对称图形,并能够运用坐标变化解决实际问题。
3.培养学生的观察能力、操作能力和思维能力。
四. 教学重难点1.轴对称的概念和性质。
2.坐标变化的应用。
五. 教学方法采用问题驱动的教学方法,引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
同时,运用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备一些轴对称的图形,如正方形、矩形、三角形等。
2.准备坐标纸,以便学生进行坐标操作。
3.准备一些实际问题,如寻找平面直角坐标系中的对称点等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些轴对称的图形,如剪刀、飞机等,引导学生观察这些图形的特点,引出轴对称的概念。
2.呈现(10分钟)让学生拿出准备好的轴对称图形,观察并描述它们的特点。
引导学生发现轴对称图形的性质,如对称轴两侧的图形完全相同,对称轴是图形的中心线等。
3.操练(10分钟)让学生在坐标纸上画出一些轴对称图形,并标出对称轴。
然后,让学生将对称轴沿坐标轴移动,观察图形的变化。
通过操作,让学生理解坐标变化对轴对称图形的影响。
4.巩固(10分钟)让学生解决一些实际问题,如寻找平面直角坐标系中的对称点等。
通过解决问题,巩固学生对轴对称和坐标变化的理解。
5.拓展(10分钟)让学生思考:轴对称图形在现实生活中的应用。
2024-2025学年北师版中学数学八年级上册第三章位置与坐标3.1确定位置教案
第三章位置与坐标1 确定位置教学目标教学反思1.理解在平面内确定一个物体的位置一般需要两个数据,灵活运用不同的方式确定物体的位置.2.经历在现实生活中确定物体位置的过程,感受确定物体位置的多种方法.3.体验生活中处处有确定位置,感受现实生活中确定位置的必要性.教学重难点重点:理解在平面内确定一个物体的位置一般需要两个数据.难点:灵活运用不同的方式确定物体的位置.教学过程导入新课提出问题:1.在数轴上,确定一个点的位置需要几个数据呢?学生:一个,例如A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置.2.在平面内,又如何确定一个点的位置呢?小明父子二人周末去电影院看电影,座位号分别是3排6座和6排3座.怎样才能既快又准地找到座位?设计意图:利用学生感兴趣的生活知识,贴近学生的生活,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,以愉快的心情开始一节课的学习,激发学习数学的积极性.探究新知一、预习新知让学生自主预习课本54~56页,并思考下面的问题:1.在电影院内如何找到电影票上指定的位置?2.在电影票上,“3排6座”与“6排3座”中的“6”的含义有什么不同?3.如果将“3排6座”简记作(3,6),那么“6排3座”如何表示?(5,6)表示什么含义呢?(教师巡视)学生独立思考,然后小组内讨论,最后学生代表发表各小组的见解.设计意图:这样能较好地体现数学的实践性,可以形成良好的数学观.二、合作探究在电影院内,确定一个位置一般需要几个数据?两个数据,排数和座位号数.教师总结:我们称这种方法为行列定位法.“3排6座”可以记作(3,6),“6排3座” 可以记作(6,3),它们的前后顺序可以交换吗?这两个数据各自表示的意义不同,不能交换前后顺序,我们把这样的这样的数据叫做有序实数对.(学生总结,教师点评)在平面内,确定一个物体的位置一般需要两个数据.根据有序实数对怎样确定教室里每个人的位置?我们把竖行叫做列,确定第几列一般从左往右数,引导学生按列报数,把横行叫做排,确定第几排一般从前往后数,引导学生按排报数.做游戏教学反思(1)第二列同学拍拍肩,第五排同学站起来,谁做了两次动作,请说说你的位置.(2)第四列同学举手,第三排同学拍拍手,谁做了两次动作,请说说你的位置.在生活中,确定物体的位置还有其他方法吗?与同伴交流.方向定位法、经纬度定位法、区域定位法.巩固练习电影院的3排6座表示为(3,6),如果某同学的座位号为(7,5),那么该同学所坐的位置是()A.5排7座B.7排5座C.5座7层D.7排5层答案:B典型例题【例1】观察如图所示象棋盘,回答问题:(1)请你说出“将”与“帅”的位置;(2)说出“马3 进4”(即第3 列的马前进到第4列)后的位置.【问题探索】只要把每个棋子所在的行和列表示清楚本题就解决了.【解】(1)(5,9),(5,1)(注:第一个数字是列数,第二个数字是行数);(2)(4,7).【总结】利用有序数对表示点的位置的“三步法”:(1)明确有序数对中行与列的表示顺序;(2)由已知点确定起始行与列;(3)用有序数对表示所求各点的位置.【例2】一家超市的位置如图,则学校在这家超市的什么位置?【问题探索】用方向定位法确定物体的位置时,一般先考虑什么?再确定什么?【解】学校在超市的南偏西60°方向,且距离超市500米处.【总结】确定位置的方法有多种,但都需要两个数据.方向定位法所需的两个数据:一是方向角;二是距离.要避免出现缺少其中一个数据的错解.课堂练习1.七(2)班有45人参加学校运动会的入场式,队伍共9排5列.如果用(2,4)表示第2排从左至右第4列的同学,那么在队伍最中间的同学应表示为()A.(15,4)B.(2,3)C.(3,0)D.(5,3)2.生态园位于县城东北方向5公里处,下列选项中表示准确的是()A BC D3.现规定向东、向北走为正.小林向东走5米,再向南走8米,记作(5,-8),那么,(-3,6)表示______.4.如图,棋子B在(2,1)处,用有序数对表示出图中另外六枚棋子的位置.参考答案1.D2.B3.向西走3米,再向北走6米4.解:A(0,0),C(3,3),D(1,2),E(4,1),F(2,4),G(5,4).课堂小结(学生总结,老师点评)在平面内,确定一个物体的位置一般需要两个数据,也就是有序实数对.确定位置的方法:行列定位法、方向定位法、经纬度定位法、区域定位法.布置作业随堂练习第1题,习题3.1第2题板书设计1 确定位置在平面内,确定一个物体的位置一般需要两个数据.教学反思。
八年级数学上册第三章位置与坐标3.3轴对称与坐标变化说课稿北师大版
《轴对称与坐标变化》说课稿我说课的内容是北师大版八年级上册第三章第三节《轴对称与坐标变化》。
教材分析:教材的地位与作用:这节课的内容体现了轴对称在平面直角坐标系中的应用,从数量关系的角度刻画轴对称的内容。
教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称的点的坐标的对应关系,并进一步探讨了如何利用这种关系在平面直角坐标系中作出一个图形关于x轴或y轴对称的图形。
二、学法指导1、教学方法:根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,这节课我主要采用了自主探究,发现式教学方法,体现教学方法的科学性和时效性.2、学法:根据学法指导自主性和差异性原则,让学生在“观察-—操作——概括——检验—-应用”的学习过程中,使学生掌握知识。
在教学过程中应注意:(1)注重学生的合作和交流活动,在活动中促进知识的学习,并进一步发展学生的合作交流意识。
(2)注重学生动手能力的培养,在动手的过程中体会轴对称变换,并且对上一节课的知识作进一步理解.结合教材及学生的情况,我制订了如下的教学目标:【知识目标】:1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。
【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
3.通过“坐标与轴对称",让学生体验数学活动充满着探索与创造。
教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
根据对教材内容的分析,根据八年级学生的认知规律和心理特点,我设计如下的教学过程。
1。
3.3《轴对称与坐标变化》北师大版八年级数学上册精品教案
第三章位置与坐标3 轴对称与坐标变化一、教学目标1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造.4.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动.二、教学重难点重点:在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.难点:经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习回顾】问题1:什么叫轴对称?教师活动:教师演示对应的课件,学生观看思考后回答.预设:如果两个平面图形沿一直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.问题2:如何在平面直角坐标系中确定点P的位置?预设:a称为点P的横坐标,b称为点P的纵学生回忆并积极回答.通过回忆已学知识,一方面加深记忆,另一方面为后面学习新知识坐标.做铺垫.环节二探究新知【探究】教师活动:通过问题1、2,引导学生探究两个点关于x、y轴对称的规律.探究过程由浅到深,循序渐进,符合学生的认知过程.情境1:问题1 如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.(1)两面小旗之间有怎样的位置关系?预设:关于y轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1、点D与D1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表、画图:对应点的横坐标互为相反数,对应点的纵观察两面小旗,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两面关于y轴对称的小旗,问题1引领学生思考关于y轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).情境2:△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:(1)△ABC与△A1B1C1有怎样的位置关系?预设:关于x轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表:对应点的横坐标相同,对应点的纵坐标互观察两个图形,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两个关于x轴对称的三角形问题2,进一步研究关于x轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).【议一议】通过以上学习,你知道关于x轴对称的两个点的坐标之间的关系吗?关于y轴对称的两个点的坐标之间的关系呢?预设:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,横坐标互为相反数,纵坐标相同.友情提醒:关于横轴对称的点,横坐标相同;关于纵轴对称的点,纵坐标相同.交流讨论,与教师一起归纳目的是引导学生讨论关于坐标轴对称的点的坐标之间的关系,也可以更全面地认识轴对称与坐标变化之间的关系.环节三应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0) ,(4,-2),(0,0),你得到了一个怎样的图案?(2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘-1,依次连接这些点,那么图形会怎么变化?分析:(1)坐标轴上依次描出各点,顺次连接即可;(2)找出变化后的对应顶点的坐标,再顺次连接所的图形与原图形进行对比.解:(1)它像一条鱼.(2)顶点坐标的变化两个图案关于y轴对称.教师动画演示两个图案关于y轴对称,达到强化巩固的目的.【做一做】明确例题的做法,尝试独立解答,并交流讨论通过解决例题与做一做,明确图形的变化实际上是图形上点的坐标变化.(1)在平面直角坐标系中依次连接下列各点:(5,2),(4,4),(6,3),(7,6),(8,3),(10,2),(7,1) ,(5,2),你又能得到了一个怎样的图案?(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分别乘-1,依次连接这些点,那么图形会怎么变化?解:(1)它像一片树叶.(2)顶点坐标的变化两个图案关于x轴对称.教师动画演示两个图案关于x轴对称,达到强化巩固的目的.【归纳】仿照例题的做法,尝试独立解答,并交流讨论(1)关于y轴对称的两个图形上点的坐标特征:横坐标互为相反数,纵坐标相同;(2)关于x轴对称的两个图形上点的坐标特征:横坐标相同,纵坐标互为相反数.与教师一起归纳总结总结归纳两个图形上点的坐标特征.环节四巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.平面直角坐标系中,点P(4,5)关于x轴对称的点的坐标为__________.2. 已知点A(a,2)与点A1(3,b)关于y轴对称,则a=__________,b=__________.3.如图,利用关于坐标轴对称的点的坐标的特点,请你试着分别作出△ABC关于x轴和y轴对称的图形.答案:1. (4,-5)2.-3,23.如下图:自主完成练习,然后进行集体交流、评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.红色图形是关于x轴对称的,绿色图形是关于y轴对称的.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第70页习题3.5 第1、3题.学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
八年级数学上册3.3轴对称与坐标变化说课稿 (新版北师大版)
八年级数学上册3.3轴对称与坐标变化说课稿(新版北师大版)一. 教材分析《八年级数学上册3.3轴对称与坐标变化》这一节的内容,主要介绍了轴对称的概念,以及如何利用坐标来表示轴对称的变换。
这部分内容是学生在学习了平面几何和坐标系的基础上,进一步深化对几何变换的理解,为后续学习函数、解析几何等内容打下基础。
教材通过具体的实例,引导学生认识轴对称,并学会用坐标来表示对称变换。
同时,通过练习题的设置,让学生在实际操作中掌握坐标变换的规律,提高解决问题的能力。
二. 学情分析学生在学习这一节内容时,已经有了一定的几何基础,对平面几何的概念和性质有所了解。
同时,学生也学习了坐标系,能够熟练地用坐标表示点的位置。
但是,学生对于轴对称的概念可能还比较陌生,对于如何利用坐标来表示轴对称的变换,可能还存在一定的困难。
三. 说教学目标1.知识与技能目标:学生能够理解轴对称的概念,掌握坐标变换的规律,能够用坐标来表示轴对称的变换。
2.过程与方法目标:通过实例的讲解和练习,培养学生解决问题的能力,提高学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:轴对称的概念,坐标变换的规律。
2.教学难点:如何用坐标来表示轴对称的变换。
五. 说教学方法与手段1.教学方法:采用讲解法、演示法、练习法等教学方法,引导学生通过观察、思考、操作等活动,掌握轴对称的概念和坐标变换的规律。
2.教学手段:利用多媒体课件,直观地展示轴对称的变换过程,帮助学生理解和掌握。
六. 说教学过程1.导入:通过一个具体的实例,引导学生认识轴对称,激发学生的兴趣。
2.新课讲解:讲解轴对称的概念,引导学生通过观察、思考,发现坐标变换的规律。
3.练习:让学生通过实际操作,运用坐标变换的规律解决问题。
4.总结:对本节课的内容进行总结,强调轴对称的概念和坐标变换的规律。
5.作业布置:布置一些有关轴对称和坐标变换的练习题,巩固所学内容。
北师大版数学八年级上册《3 轴对称与坐标变化》教学设计1
北师大版数学八年级上册《3 轴对称与坐标变化》教学设计1一. 教材分析北师大版数学八年级上册《3 轴对称与坐标变化》是学生在学习了平面直角坐标系、函数等知识的基础上进一步学习的。
本节课主要让学生了解轴对称的概念,理解坐标变化与轴对称之间的关系,学会利用坐标变化解决实际问题。
教材通过丰富的图片和实例,引导学生探究轴对称的性质,从而达到理解坐标变化的目的。
二. 学情分析八年级的学生已经具备了一定的数学基础,对平面直角坐标系和函数有一定的了解。
但学生在学习过程中,可能对轴对称的概念和坐标变化的理解存在一定的困难。
因此,在教学过程中,教师需要通过具体实例和直观的图形,帮助学生理解和掌握轴对称与坐标变化的关系。
三. 教学目标1.理解轴对称的概念,掌握坐标变化与轴对称之间的关系。
2.能够运用坐标变化解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.轴对称的概念。
2.坐标变化与轴对称之间的关系。
3.运用坐标变化解决实际问题。
五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生探究轴对称的性质。
2.问题驱动法:教师提出问题,引导学生思考和探究,激发学生的学习兴趣。
3.合作学习法:学生分组讨论和合作,共同解决问题,提高学生的团队协作能力。
六. 教学准备1.教学PPT:包括轴对称的定义、性质和坐标变化的例子。
2.实例图片:包括生活中的轴对称图形和坐标系中的轴对称图形。
3.练习题:包括基础题和拓展题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的轴对称图形,如剪纸、衣服等,引导学生观察和思考这些图形的共同特点。
学生回答后,教师总结轴对称的定义,并板书。
2.呈现(10分钟)教师展示一些坐标系中的轴对称图形,如正方形、圆形等,引导学生观察坐标系中点的变化。
学生回答后,教师讲解坐标变化与轴对称之间的关系,并板书。
3.操练(10分钟)学生分组讨论,每组选择一个实例,探究坐标变化与轴对称之间的关系。
3.3《轴对称与坐标变化》北师大版八年级数学上册教案
第三章位置与坐标3.3轴对称与坐标变化一、教学目标1.经历轴对称变化与点的坐标的变化之间关系的探索过程,发展数形结合意识,初步建立几何直观.2.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.二、教学重点及难点重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系.难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识.三、教学用具多媒体课件,直尺,三角板.四、相关资《复习平面直角坐标系》动画五、教学过程【复习导入】在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标.我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点.如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题.【探究新知】探索两个关于坐标轴对称的图形的坐标关系1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗.两面小旗之间有怎样的位置关系?对应点A与A1的坐标又有什么特点?其它对应的点也有这个特点吗?2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理.答:(1)关于y轴对称.对应点A与A1的横坐标互为相反数,纵坐标相同,其它对应的点也有这个特点.(2)做出的两个点的横坐标互为相反数,纵坐标相同.【典例精讲】例1 在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)你得到了一个怎样的图案?做以下变化:(1)纵坐标保持不变,横坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解析:先根据题意写出变化后的坐标,然后根据变化后的坐标,把变化后的图形在自己准备的方格纸上画出来.你们画出的图形与下面的图形相同吗?这个图形与原来的图形相比有什么变化呢?(1)所得的图案与原图案关于纵轴成轴对称.(2)所得的图案与原图案关于横轴成轴对称.议一议关于x轴对称的两个点的坐标之间有什么关系?关于y轴呢?学生思考,讨论,归纳得出结论:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数.关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数.【课堂练习】1.将平面直角坐标系内某个图形各个点的横坐标不变,纵坐标都乘以-1,所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.无法确定2.在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A’,则点A与点A’的关系是( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得A3.点(4,3)与点(4,-3)的关系是().A.关于原点对称B.关于x轴对称C.关于y轴对称D.不能构成对称关系4.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为()A.(3,2) B.(-2,-3) C.(-2,3) D.(2,-3)5.点M(1,2)关于y轴对称的点坐标为( )A.(-1,2) B.(1,-2) C.(2,-1) D.(-1,-2).6.点(m,-1)和点(2,n)关于x轴对称,则mn等于( )A.-2 B.2 C.1 D.-17.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有( )A.1个B.2个C.3个D.4个8.若P(a,3-b),Q(5,2)关于x轴对称,则a= ,b= .9.点A(2,-3)关于x轴对称的点的坐标是.10.点B(-2,1)关于y轴对称的点的坐标是.答案:1.A;2.B;3.B;4.D;5.A;6.B;7.B;8.5,5;9.(2,3);10.(2,1).六、课堂小结对称:1.纵坐标不变,横坐标分别乘-1,所得图形与原图形关于y轴对称;2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关于x轴对称;七、板书设计3.3轴对称与坐标变化1.纵坐标不变,横坐标分别乘-1,所得图形与原图形关于y轴对称2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关于x轴对称。
北师版八年级上册数学第3章 位置与坐标 轴对称与坐标变化
12.下列图形中,将图形上各点的纵坐标保持不变,横坐标分别 乘-1 后,图形一定不.发.生.变化的是( C ) ①圆心在原点的圆;
②两条对角线的交点在原点的正方形;
③以 y 轴为对称轴的等腰三角形;
④以 x 轴为对称轴的等腰三角形.
A.①②③④ B.①②③
C.①③
D.②④
13.如图,方格纸中的每个小方格都是边长为 1 个单位长度的正 方形,建立平面直角坐标系后△ABC 的顶点均在格点上.
(1)写出点 A,B,C 的坐标;
解:A(1,3),B(-1,2),C(2,0).
(2)写出△ABC 关于 x 轴对称的△A1B1C1 的顶点 A1,B1,C1 的坐 标,并画出△A1B1C1;
解:A1(1,-3),B1(-1,-2),C1(2,0). 画图略.
(3)求 S△ABC. 解:S△ABC=3×3-12×2×3-12×1×3-12×2×1=72.
解:如图,△A2B2C2即为所求.
(3)请写出 A1,A2 的坐标.
A1(2,3),A2(-2,-1).
15.如图,解答下列问题: (1)写出 A,B,C 三点的坐标.
解:A(3,4),B(1,2),C(5,1).
(2)若△ABC 各顶点的横坐标不变,纵坐标都乘-1,请你在 同一坐标系中描出对应的点 A′,B′,C′,并依次连接这 三个点,所得的△A′B′C′与△ABC 有怎样的位置关系?
解:画图略.
(2)在其他格点位置添加一颗棋子 P,使四颗棋子 A,O,B,P 成为轴对称图形,请直接写出棋子 P 所在位置的坐标(写出 2 个即可). 解:棋子 P 所在位置的坐标为(-1,-1)或(2,1).(答 案不唯一)
画图略.△A′B′C′与△ABC关于x轴对称.
北师大版数学八年级上册3《轴对称与坐标变化》教案1
北师大版数学八年级上册3《轴对称与坐标变化》教案1一. 教材分析《轴对称与坐标变化》是北师大版数学八年级上册第三章的内容。
本节课主要介绍轴对称的概念,以及如何在坐标系中进行对称变换。
教材通过丰富的实例,让学生体会轴对称的性质,培养学生的空间想象能力。
同时,本节课还引导学生利用坐标系解决实际问题,提高学生的数学应用能力。
二. 学情分析学生在七年级已经学习了平面几何的基本知识,对图形的性质有一定的了解。
但是,对于轴对称的概念,以及如何在坐标系中进行对称变换,可能还比较陌生。
因此,在教学过程中,需要注重引导学生理解轴对称的性质,以及如何利用坐标系进行对称变换。
三. 教学目标1.理解轴对称的概念,掌握轴对称的性质。
2.学会在坐标系中进行对称变换,解决实际问题。
3.培养学生的空间想象能力,提高数学应用能力。
四. 教学重难点1.轴对称的概念及其性质。
2.在坐标系中进行对称变换的方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究轴对称的性质。
2.利用直观教具,如图形、模型等,帮助学生理解轴对称的概念。
3.通过实例分析,让学生掌握在坐标系中进行对称变换的方法。
4.注重启发式教学,引导学生运用坐标系解决实际问题。
六. 教学准备1.准备相关的图形、模型等直观教具。
2.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、建筑等,引导学生关注轴对称的概念。
提问:什么是轴对称?学生在思考和讨论中初步理解轴对称的概念。
2.呈现(10分钟)教师展示一些轴对称的图形,如正方形、矩形等,引导学生观察和分析这些图形的性质。
提问:轴对称图形的性质有哪些?学生在思考和回答中进一步理解轴对称的性质。
3.操练(10分钟)教师引导学生利用坐标系进行对称变换。
示例:已知点A(2,3),求点A关于x 轴的对称点B的坐标。
学生独立完成,教师点评和讲解。
4.巩固(10分钟)教师给出一些实际问题,让学生运用坐标系进行解决。
北师大版八年级上册第三章第三节平面直角坐标系轴对称与坐标变化教案
第三章第三节平面直角坐标系轴对称与坐标变化教案一、教学目标1. 理解轴对称及其相关概念,掌握轴对称图形的性质和判定方法。
2. 理解坐标系的基本概念和运用,能够描述和操作平面直角坐标系中的对称。
3. 能够理解和应用坐标变换的概念和方法,掌握坐标变换的规律。
4. 培养学生的观察、归纳和抽象思维能力,发展学生的空间观念和数学思考能力。
二、教学重点和难点1. 教学重点:轴对称的概念和性质,坐标系的基本概念和运用,轴对称图形的判定方法,坐标变换的方法和规律。
2. 教学难点:理解轴对称的性质,掌握坐标变换的方法,理解平面图形绕轴旋转、翻折的变化规律。
三、教学过程1. 引入新知:通过展示一些轴对称图形和坐标变化的现象,引导学生进入本节课的主题,激发他们的学习兴趣。
2. 讲解新知:* 轴对称:通过图像和例子,帮助学生理解轴对称的概念和性质,掌握轴对称图形的判定方法。
* 坐标系:介绍坐标系的基本概念和运用,描述平面直角坐标系中的对称现象。
* 坐标变换:通过实例分析,帮助学生理解坐标变换的概念和方法,掌握坐标变换的规律。
3. 举例分析:举出一些实际生活中的例子,让学生运用所学知识进行分析和解释,加深学生对轴对称和坐标变化的理解。
4. 练习环节:让学生在教师指导下完成有一定难度的轴对称和坐标变化的题目,巩固所学知识。
5. 总结回顾:回顾本节课的重点和难点,对学生的学习成果进行展示和评价,同时对下节课的内容进行预告。
四、教学方法和手段1. 讲解法:通过讲解轴对称、坐标系和坐标变换的概念和性质,使学生理解和掌握相关知识。
2. 演示法:通过演示图像和动画,帮助学生理解轴对称和坐标变化的过程和规律。
3. 探究法:通过引导学生探究实例,培养他们的观察、归纳和抽象思维能力,发展他们的空间观念和数学思考能力。
4. 互动讨论法:组织学生进行小组讨论,促进相互交流和学习,加深学生对知识的理解和应用。
五、课堂练习、作业与评价方式1. 课堂练习:选择具有代表性的轴对称和坐标变化的题目,让学生在课堂上完成,检验学生对所学知识的掌握情况。
北师大版数学八年级上册第3章位置与坐标学案
3.1确定位置一、问题引入:1、在课室里你能用第几列第几行来确定你的座位吗?2、在电影票上,“3排6座”与“6排3座”中的“6”含义有什么不同?3、如果将“8排3号”简记作(8,3),那么“3排8号”记为,(5,6)表示。
4、在只有一层的电影院内,确定一个座位一般需要几个数据?如果电影院不止一层呢?5、①在直线上,确定一个点的位置一般需要__________数据;②在平面内,确定一个点的位置一般需要__________数据;③在空间内,确定一个点的位置一般需要__________数据。
二、基础训练:1、根据下列表述,能确定位置的是()A.北偏东40° B.某电影院5排C.东经92°,北纬45° D.距学校700米的某建筑物2、八年级(10)班的座位有7排8列,小强的座位在第2排第4列,简记(2,4),小明坐在第5排第3列的位置上,则小明的位置可记为()A.5 B.3 C.(5,3) D.(3,5)3、海事救灾船前去救援某海域失火轮船,需要确定()A.方位角 B.距离 C.失火轮船的国籍D.方位角和距离4、剧院的6排4号可以记作(6,4),那么10排5号可以记作__________,(3,5)表示的意义是____________________。
5、如果用(7,2)表示七(2)班,那么八(4)班可以表示成__________。
三、例题展示:例1、下图是某次海战中敌我双方舰艇对峙示意图(图中1厘米表示20海里),对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?想要确定敌舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌舰有几艘?(3)要确定每艘敌舰的位置,各需要几个数据?例2:如果用(0,0)表示点A的位置,用(2,1)表示点B的位置,(这里的数据有两个,一个表示水平方向与A点距离,另一个表示竖直方向上到A点的距离)那么(1)图①中五角星五个顶点的位置如何表示?(2)图②中五枚黑棋子的位置如何表示?(3)图②中(6,1),(10,8)位置上的棋子分别是哪一枚?标记出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019版八年级数学上册第三章位置与坐标 3.3 轴对称
与坐标变化学案(新版)北师大版
象限内各有一面小
旗。
也有这个特点
吗?
2019版八年级数学上册第三章位置与坐标3.3 轴对称与坐标变化学案
(新版)北师大版
课题内容 3.3轴对称与坐标变化
学习目标1、经历轴对称变化与点的坐标的变化之间的关系的探索过程,发展数形结合意识,初步建立几何直观。
2、在直角坐标系中,以坐标轴为对称轴,能写出一个
已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关
系。
学习重点经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
学习难点由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
学法指导
象限内各有一面小旗。
两面小旗之间有怎样的位置关系?对应点
A与A1的坐标又有什么特点?其它对应的点
也有这个特点吗?
2.在右边的坐标系内,任取一点,做出这个点关
于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理。
3.如果关于x轴对称呢?
在这个坐标系里作出小旗ABCD关于x轴的对
称图形,它的各个顶点的坐标与原来的点的坐
标有什么关系?
4.关于x轴对称的两点,它们的横坐标
,纵坐标
;
关于y轴对称的两点,它们的横坐标,纵坐标。
二、探究案
(1)在直角坐标系中描出以下各点:(0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)并用线段依次连接,看一看是什么图案.
(2)将图案各点纵坐标保持不变横坐标分别乘-1,顺次连接各点,你会得到什么样的图案?这两个图案有什么位置关系?
(3)将图案各点横坐标保持不变纵坐标分别乘-1,顺次连接各点,你会得到什么样的图案?这两个图案有什么位置关系?
(4)将图案各点的横纵坐标分别乘-1,顺次连接各点,你会得到什么样的图案?这两个图案有什么位置关系?
列出我的疑惑
总结:
1、关于y轴对称的两个图形上点的坐标特征:(x , y)——(- x , y)
2、关于x轴对称的两个图形上点的坐标特征:(x , y)——(x , - y)
3、关于原点对称的两个图形上点的坐标特征:(x , y)——(- x , -y)
我的知识网络图
三、训练案
1、(1).点P(a,b)关于x轴对称的点的坐标是;即关于x轴对称的点,其横坐标,纵坐标.
(2).点P(a,b)关于y轴对称的点的坐标是;即关于y轴对称的点,其纵坐标,横坐标.
(3).横坐标不变,纵坐标分别乘以-1,则所得图形与原图形关于对称.
纵坐标不变,横坐标分别乘以-1,则所得图形与原图形关于对称.
2、点A(-3 ,2)关于y 轴对称点的坐标是( )
A (-3 ,-2)
B (3 ,2)
C (-3 ,2)
D (2 ,-3)
3、点P 关于x 轴对称点P'的坐标为(4,-5),那么点 P 关于y 轴对称点 P" 的坐标为:
A (-4,5)
B (4,-5)
C (-4,-5)
D (-5,-4)
4、如图,△DEG与△ABC具有怎样的位置关系?它们相应顶点的坐标又有怎样的关系?△PMN 与△ABC呢?
5、已知点A的坐标为(2x+y-3,x-2y)。
它关于x轴对称的点A'的坐标为(x+3,y-4),求点A关于y轴对称的点的坐标。
6、(xx.湖南永州)在如右图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A.C的坐标分别为(-4,5),(-1,3)。
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出三角形ABC关于y轴对称的三角形A1B1C1;
A
(3)写出点B1的坐标。
C
B。