《中考复习专题之历年热点试题》—_图形与证明
中考数学专题复习----几何证明题
2017年中考数学专题复习几何证明题一选择题:1.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.2.如图是一个由4个相同的长方体组成的立体图形,它的主视图是()A.B.C.D.3.由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示,则构成这个几何体的小正方体有()个.A.5B.6C.7D.84.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.5.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来6.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD7.如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠78.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85°B.60°C.50°D.35°9.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()A.∠EMB=∠END B.∠BMN=∠MNC C.∠CNH=∠BPG D.∠DNG=∠AME10.如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°11.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm212.如图,从①∠1=∠2②∠C=∠D③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.313.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°14.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°15.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°16.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°17.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.18.足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点E19.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6B.5C.4D.320.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()21.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.322.如图,□ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO周长是()A.10B.14C.20D.2223.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A.B.C.D.24.如图,已知a∥b,直角三角板的直角顶角在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60°B.∠3=60°C.∠4=120°D.∠5=40°25.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4B.4C.6D.426.如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6B.6C.6D.1227.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°28.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)29.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC 的距离是()A.8B.6C.4D.230.如图,□ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13B.17C.20D.2631.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°32.如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小33.将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A.73°B.56°C.68°D.146°34.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°35.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.436.如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2B.12cm2C.9cm2D.3cm237.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B.C.D.138.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF 分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.39.图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE40.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.841.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个B.3个C.2个D.1个42.如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC 于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A.=B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH=S△CEG43.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为()A .B .C .D .44.把边长为3的正方形ABCD 绕点A 顺时针旋转45°得到正方形AB′C′D′,边BC 与D′C′交于点O ,则四边形ABOD′的周长是()A .B .6C .D .45.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是()A .4个B .3个C .2个D .1个46.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB=6,EF=2,则BC 长为()A .8B .10C .12D .1447.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是()A .15B .30C .45D .6048.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°49.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM 的平分线于点F,则线段DF的长为()A.7B.8C.9D.1050.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对51.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)52.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cmB.18cmC.20cmD.21cm53.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF54.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8B.5C.6D.7.255.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6B.6C.2D.356.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)57.如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=,则小正方形的周长为()A.B.C.D.58.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15B.10C.D.559.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25B.33C.34D.5060.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.561.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9B.5:3C.:D.5:362.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m63.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)64.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2B.C.D.365.如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4B.3C.2D.2+66.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3B.4C.5D.667.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,=4S△ADF.其中正确的有()∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABCA.1个B.2个C.3个D.4个68.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1B.2C.3D.469.如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A 恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积②tan∠AED=2;③S△AGD是6+4,其中正确的结论个数为()A.2B.3C.4D.570.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB 边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.B.2C.3D.271.如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6B.3C.2.5D.272.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2C.D.73.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A.1:2B.1:3C.1:4D.1:174.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()=2S△BGE.①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFGA.4B.3C.2D.175.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论::S四边形CEFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,①AC=FG;②S△FAB其中正确的结论的个数是()A.1B.2C.3D.476.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:=13S△DHC,其中结论正确的有①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH()A.1个B.2个C.3个D.4个77.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2C.2:3D.4:978.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S379.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5B.y=x+10C.y=﹣x+5D.y=﹣x+10二填空题:80.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是.81.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.82.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.83.如图,AB∥CD,AE交CD于点C,DE⊥AE于点E,若∠A=42°,则∠D=.84.如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3=.85.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为.86.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为cm2.87.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为.88.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=.89.如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为.90.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.91.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF 的周长为18,则OF的长为.92.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=.93.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.94.如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.95.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是.96.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF= cm.97.如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是.98.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=.99.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.100.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.101.如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为.102.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.103.如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论①△ABE≌△ACF;②BC=DF;③S△ABC是.(填写所有正确结论的序号)104.如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的平行四边形ADCE 中,DE的最小值是.105.如图,在▱ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为.106.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.107.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周长为cm.108.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.109.如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=.110.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.111.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为.112.如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为.113.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.114.已知平行四边形ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2,若点A的坐标为(a,b),则点D的坐标为.115.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.116.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.117.如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=.118.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.119.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为.120.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.121.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.122.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为.123.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.124.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为.125.如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是.126.如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=.127.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)128.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.129.如图,AB∥CD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于度.130.如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是.131.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=度.132.如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为.133.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.134.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=.135.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.136.如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是.137.如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.138.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=.139.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.140.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.141.如图,把一个菱形绕着它的对角线的交点旋转90°,旋转前后的两个菱形构成一个“星形”(阴影部分),若菱形的一个内角为60°,边长为2,则该“星形”的面积是.142.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.143.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.144.如图,矩形ABCD中,AB=,BC=,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则=.145.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.146.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是cm.147.如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.148.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.149.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:=S△FGH;④AG+DF=FG.①∠EBG=45°;②△DEF∽△ABG;③S△ABG其中正确的是.(把所有正确结论的序号都选上)150.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BD E 沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.151.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为.152.由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是米.(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是米.153.如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与(1)EF=OE;(2)S四边形OEBF△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.154.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CM P沿直线MP翻折后,点C落在直线PE 上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.155.已知:如图,四边形ABCD是平行四边形,延长BA至点E,使AE+CD=AD.连结CE,求证:CE平分∠BCD.156.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.157.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.158.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.159.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.160.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.161.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.162.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.163.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.164.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.165.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.166.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.167.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF (1)根据题意,补全原形;(2)求证:BE=DF.168.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.169.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.170.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB.求证:AE=CE.171.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.172.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.173.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点0.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什幺特殊四边形?请说明理由.174.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.175.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)176.如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.177.如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.178.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B,C,E 在同一直线上,若BC=2,求AF的长.179.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.180.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.181.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA 的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.182.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.183.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.184.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA 的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.185.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.186.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.187.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.188.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.189.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.。
近6年全国各地中考数学真题压轴题训练——几何图形的证明(100题)(解析版)
近6年全国各地中考数学真题压轴题训练——几何图形的证明(100题)(解析版) 1.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.【答案】解:.证法1:连结,四边形,都是正方形..由题意知,又.,.证法2:连结.四边形,都是正方形,.由题意知....【解析】试题分析:要证明HG与HB是否相等,可以把线段放在两个三角形中证明这两个三角形全等,或放在一个三角形中证明这个三角形是等腰三角形,而图中没有这样的三角形,因此需要作辅助线,构造三角形.试题解析:HG=HB,证法1:连接AH,∵四边形ABCD,AEFG都是正方形,∴∠B=∠G=90°,由题意知AG=AB,又AH=AH,∴Rt AGH≌Rt ABH(HL),∴HG=HB.证法2:连接GB,∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°,由题意知AB=AG,∴∠AGB=∠ABG,∴∠HGB=∠HBG,∴HG=HB.考点;1.正方形的性质;2.全等三角形的判定.2.(13分)如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.(1)求证:ADP≌△ECP;(2)若BP=n•PK,试求出n的值;(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明MON是等腰三角形,并直接写出∠MON的度数.【答案】(1)证明见试题解析;(2)3;(3)证明见试题解析,120°.【解析】试题分析:(1)由菱形的性质得到AD∥BC,根据由平行线的性质得到∠DAP=∠CEP,∠ADP=∠ECP,根据全等三角形的判定定理证明结论;(2)作PI∥CE交DE于I,由点P是CD的中点证明CE=2PI,BE=4PI,根据相似三角形的性质证明结论;(3)作OG⊥AE于G,由平行线等分线段定理得到MG=NG,又OG⊥MN,可证明MON是等腰三角形,由直角三角形的性质和锐角三角函数求出∠MON的度数.试题解析:(1)∵四边形ABCD为菱形,∴AD∥BC,∴∠DAP=∠CEP,∠ADP=∠ECP,在ADP和ECP中,∵∠DAP=∠CEP,∠ADP=∠ECP,DP=CP,∴△ADP≌△ECP;(2)如图1,作PI∥CE交DE于I,则,又点P是CD的中点,∴,∵△ADP≌△ECP,∴AD=CE,∴,∴BP=3PK,∴n=3;(3)如图2,作OG⊥AE于G,∵BM丄AE于,KN丄AE,∴BM∥OG∥KN,∵点O是线段BK的中点,∴MG=NG,又OG⊥MN,∴OM=ON,即MON是等腰三角形,由题意得,BPC,AMB,ABP为直角三角形,设BC=2,则CP=1,由勾股定理得,BP=,则AP=,根据三角形面积公式,BM=,由(2)得,PB=3PO,∴OG=BM=,MG=MP=,tan∠MOG=,∴∠MOG=60°,∴∠MON的度数为120°.考点:1.四边形综合题;2.压轴题.3.如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.4.如图,平行四边形ABCD 中,AB=3cm ,BC=5cm ,∠B=60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF .(1)求证:四边形CEDF 是平行四边形;(2)①当AE= cm 时,四边形CEDF 是矩形;②当AE= cm 时,四边形CEDF 是菱形;(直接写出答案,不需要说明理由)【答案】(1)证明见解析;(2)① 当AE =3.5cm 时,四边形CEDF 是矩形.② 当AE =2cm 时,四边形CEDF 是菱形.【解析】【详解】(1)∵ 四边形ABCD 是平行四边形, ∴ CF ∥ED , ∴ ∠FCG =∠EDG ,∵ G 是CD 的中点,∴ CG =DG ,在 FCG和 EDG 中,{FCG EDGCG DG CGF DGE∠=∠=∠=∠,∴ FCG ≌△EDG (ASA ),∴ FG =EG ,∵ CG =DG ,∴ 四边形CEDF 是平行四边形;(2)①当AE=3.5时,平行四边形CEDF 是矩形,理由是:过A 作AM ⊥BC 于M ,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD 是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM ,在 MBA 和 EDC 中,BM DE B CDA AB CD =⎧⎪∠=∠⎨⎪=⎩∴ MBA ≌ EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF 是平行四边形,∴四边形CEDF 是矩形,故答案为:3.5;②当AE=2时,四边形CEDF 是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴ CDE 是等边三角形,∴CE=DE ,∵四边形CEDF 是平行四边形,∴四边形CEDF 是菱形,故答案为: 2.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.矩形的判定;4.菱形的判定.5.在ABCD 中,BE 平分ABC ∠交AD 于点E .(1)如图1,若30D ︒∠=,AB =,求ABE ∆的面积;(2)如图2,过点A 作AF DC ⊥,交DC 的延长线于点F ,分别交BE ,BC 于点G ,H ,且 AB AF =.求证:ED AG FC -=.【答案】(1)32;(2)证明见解析. 【解析】【分析】(1)作BO AD ⊥于O ,由平行四边形的性质得出30BAO D ︒∠=∠=,由直角三角形的性质得出12BQ AB ==,证出ABE AEB ∠=∠,得出AE AB == (2)作AQ BE ⊥交DF 的延长线于P ,垂足为Q ,连接PB 、PE ,证明ABG AFP ∆≅∆得出AG FP =,再证明BPC PED ∆≅∆得出PC ED =,即可得出结论.【详解】(1)解:作BO AD ⊥于O ,如图1所示:∵四边形ABCD 是平行四边形,∴AD BC ∥,AB CD ∥,AB CD =,30ABC D ︒∠=∠=,∴AEB CBE ∠=∠,30BAO D ︒∠=∠=,∴12BQ AB ==, ∵BE 平分ABC ∠,∴ABE CBE ∠=∠,∴ABE AEB ∠=∠,∴AE AB ==∴ABE ∆的面积1132222AE BO =⨯=⨯=;(2)证明:作AQ BE ⊥交DF 的延长线于P ,垂足为Q ,连接PB 、PE ,如图2所示:∵AB AE =,AQ BE ⊥,∴ABE AEB ∠=∠,BQ EQ =,∴PB PE =,∴PBE PEB ∠=∠,∴ABP AEP ∠=∠,∵AB CD ∥,AF CD ⊥,∴AF AB ⊥,∴90BAF ︒∠=,∵AQ BE ⊥,∴ABG FAP ∠=∠,在ABG ∆和FAP ∆中,90ABG FAP AB AF BAG AFP ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩,∴(ASA)ABG AFP ∆≅∆,∴AG FP =,∵AB CD ∥,AD BC ∥,∴180ABP BPC ︒∠+∠=,BCP D ∠=∠,∵180AEP PED ︒∠+∠=,∴BPC PED ∠=∠,在BPC ∆和PED ∆中,BCP D BPC PED PB PE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴(AAS)BPC PED ∆≅∆,∴PC ED =,∴---ED AG PC AG PC FP FC ===.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、线段垂直平分线的性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.6.如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC ≌ DEF ;(2)若∠A=55°,∠B=88°,求∠F 的度数.【答案】(1)证明见解析;(2)37°【解析】分析:(1)先证明AC=DF ,再运用SSS 证明 ABC ≌△DEF ;(2)根据三角形内角和定理可求∠ACB=37°,由(1)知∠F=∠ACB ,从而可得结论.解析:(1)∵AC=AD+DC , DF=DC+CF ,且AD=CF∴AC=DF在 ABC 和 DEF 中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴ ABC ≌△DEF (SSS )(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88° ∴∠ACB=180°-(∠A+∠B )=180°-(55°+88°)=37° ∴∠F=∠ACB=37°点睛:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,点D 在△ABC 的AB 边上,且∠ACD=∠A.(1)作△BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).【答案】(1)作图见解析;(2)DE∥AC.【解析】【分析】(1)、根据角平分线的画法画出角平分线;(2)、根据角平分线的性质和三角形外角的性质得出DE和AC平行. 【详解】解:(1)、如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=12∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=12∠BDC,∴∠A=∠BDE,∴DE∥AC.(2)、DE∥AC.考点:(1)、角平分线的画法;(2)、角平分线的性质.8.如图,分别以Rt ABC的直角边AC及斜边AB向外作等边ACD,等边ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【答案】证明见解析.【解析】【分析】(1)一方面Rt ABC中,由∠BAC=30°可以得到AB=2BC,另一方面ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.(2)根据(1)知道EF=AC,而ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【详解】证明:(1)∵Rt ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt AFE和Rt BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四边形ADFE是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.9.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:ABC与DEC 全等.【答案】证明过程见解析【解析】【分析】由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.【详解】∵∠BAE=∠BCE=∠ACD=90°,∴∠5+∠4=∠4+∠3,∴∠5=∠3,且∠B+∠CEA=180°,又∠7+∠CEA=180°,∴∠B=∠7,在△ABC 和△DEC 中537BC CE B ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEC(ASA ).10.如图, ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证: ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.【答案】(1)证明见解析;(2)75.【解析】【分析】(1)根据等边对等角可得∠B=∠ACF ,然后利用SAS 证明 ABE ≌△ACF 即可;(2)根据 ABE ≌△ACF ,可得∠CAF=∠BAE=30°,再根据AD=AC ,利用等腰三角形的性质即可求得∠ADC 的度数.【详解】(1)∵AB=AC ,∴∠B=∠ACF ,在 ABE 和 ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE=30°,∴∠CAF=∠BAE=30°, ∵AD=AC ,∴∠ADC=∠ACD ,∴∠ADC=280013︒-︒=75°, 故答案为75.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质,熟练掌握相关性质与定理是解题的关键.11.如图, ABC 中,∠ACB >∠ABC .(1)用直尺和圆规在∠ACB 的内部作射线CM ,使∠ACM =∠ABC (不要求写作法,保留作图痕迹); (2)若(1)中的射线CM 交AB 于点D ,AB =9,AC =6,求AD 的长.【答案】(1)作图见解析;(2)4.【解析】试题分析:(1)根据尺规作图的方法,以AC 为一边,在∠ACB 的内部作∠ACM =∠ABC 即可;(2)根据 ACD 与 ABC 相似,运用相似三角形的对应边成比例进行计算即可.试题解析:解:(1)如图所示,射线CM 即为所求;(2)∵∠ACD =∠ABC ,∠CAD =∠BAC ,∴△ACD ∽△ABC ,∴AD AC AC AB =,即669AD =,∴AD =4. 点睛:本题主要考查了基本作图以及相似三角形的判定与性质的运用,解题时注意:两角对应相等的两个三角形相似;相似三角形的对应边成比例.12.已知:如图,点A 、D 、C 、B 在同一条直线上,AD=BC ,AE=BF ,CE=DF ,求证:AE ∥BF .【答案】证明见解析.【解析】分析:可证明 ACE ≌△BDF ,得出∠A=∠B ,即可得出AE ∥BF ;详证明:∵AD=BC ,∴AC=BD ,在 ACE 和 BDF 中,AC BD AE BF CE DF ⎧⎪⎨⎪⎩===,∴△ACE ≌△BDF (SSS )∴∠A=∠B ,∴AE ∥BF ;点睛:本题考查了全等三角形的判定及性质以及平行线的判定问题,关键是用SSS 证明 ACE ≌△BDF . 13.如图,AD 平分∠BAC ,AD ⊥BD ,垂足为点D ,DE ∥AC .求证:△BDE 是等腰三角形.【答案】证明见解析.【解析】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE ,即可得出答案.试题解析:∵DE ∥AC ,∴∠1=∠3,∵AD 平分∠BAC ,∴∠1=∠2,∴∠2=∠3,∵AD ⊥BD ,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE ,∴△BDE 是等腰三角形.考点:等腰三角形的判定;平行线的性质.14.在Rt ABC中,∠ABC=90°,∠BAC=30°,将ABC绕点A顺时针旋转一定的角度α得到AED,点B、C 的对应点分别是E、D.(1)如图1,当点E恰好在AC上时,求∠CDE的度数;(2)如图2,若α=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.【答案】(1)15°;(2)证明见解析.【解析】【分析】(1)如图1,利用旋转的性质得CA=DA,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,再根据等腰三角形的性质求出∠ADC,从而计算出∠CDE的度数;(2)如图2,利用直角三角形斜边上的中线性质得到BF=12AC,利用含30度的直角三角形三边的关系得到BC=12AC,则BF=BC,再根据旋转的性质得到∠BAE=∠CAD=60°,AB=AE,AC=AD ,DE=BC,从而得到DE=BF,ACD和BAE为等边三角形,接着由AFD≌△CBA得到DF=BA,然后根据平行四边形的判定方法得到结论.【详解】解:(1)如图1,∵△ABC绕点A顺时针旋转α得到AED,点E恰好在AC上,∴CA=CD,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,∵CA=DA,∴∠ACD=∠ADC=12(180°−30°)=75°,∠ADE=90°-30°=60°,∴∠CDE=75°−60°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=12 AC,∵∠BAC=30°,∴BC=12 AC,∴BF=BC,∵△ABC绕点A顺时针旋转60°得到AED,∴∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,∴DE=BF,ACD和BAE为等边三角形,∴BE=AB,∵点F为ACD的边AC的中点,∴DF⊥AC,易证得AFD≌△CBA,∴DF=BA,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.15.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB ,∴AD=AE .∵四边形ABCD 是矩形,∴AD ∥BC . ∴EM EB DM AB=.(依据1) ∵BE=AB ,∴1EM DM =.∴EM=DM . 即AM 是 ADE 的DE 边上的中线,又∵AD=AE ,∴AM ⊥DE .(依据2)∴AM 垂直平分DE .反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)①直接得出结论;②借助问题情景即可得出结论;(2)先判断出∠BCE+∠BEC=90°,进而判断出∠BEC=∠BCG ,得出 GHC ≌△CBE ,判断出AD=BC ,进而判断出HC=BH ,即可得出结论;(3)先判断出四边形BENM 为矩形,进而得出∠1+∠2=90°,再判断出∠1=∠3,得出 ENF ≌△EBC ,即可得出结论.【详解】(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点A在线段GF的垂直平分线上.理由:由问题情景知,AM⊥DE,∵四边形DEFG是正方形,∴DE∥FG,∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H,∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°,∴∠BCE+∠BCG=90°.∴∠2BEC=∠BCG.∴△GHC≌△CBE.∴HC=BE,∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,∴四边形BENM为矩形.∴BM=EN,∠BEN=90°.∴∠1+∠2=90°.∵四边形CEFG为正方形,∴EF=EC,∠CEF=90°.∴∠2+∠3=90°.∴∠1=∠3.∵∠CBE=∠ENF=90°,∴△ENF≌△EBC.∴NE=BE.∴BM=BE.∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,AB=BE.∴BC=2BM.∴BM=MC.∴FM垂直平分BC.∴点F在BC边的垂直平分线上.【点睛】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质,构造全等三角形是解本题的关键.16.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【答案】(1)详见解析;(2)80°.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解析】【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【详解】证明:(1)∵AC=AD ,∴∠ACD=∠ADC ,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE ,在 ABC 和 AED 中,BC ED ACB ADE AC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△AED (SAS );解:(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE 中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点睛】考点:全等三角形的判定与性质.17.如图,在▱ABCD 中,E ,F 分别是AD ,BC 上的点,且DE=BF ,AC⊥EF.求证:四边形AECF 是菱形.【答案】见解析.【解析】【分析】根据对角线互相垂直的平行四边形是菱形即可证明【详解】 证明:四边形ABCD 是平行四边形,AD BC ∴=,//AD BC ,DE BF =,AE CF ∴=,//AE CF ,∴四边形AECF 是平行四边形,AC EF ⊥,∴四边形AECF 是菱形.【点睛】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.【答案】证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE得出∠ACB=∠DCE,结合已知条件利用SAS判定ABC和DEC全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC≌△DEC ∴∠A=∠D考点:三角形全等的证明19.如图,在∆ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【答案】见解析【解析】试题分析:根据等腰三角形的性质得出∠ADC=∠BEC=90°,再根据∠C为公共角即可得∠CBE=∠CAD.试题解析:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,又∵BE⊥AC,∴∠ADC=∠BEC=90°,∴∠CBE+∠C=∠CAD+∠C=90°,∴∠CBE=∠CAD.20.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.【答案】(1)证明见解析;(2)∠ADO==36°.【解析】【分析】(1)先判断四边形ABCD是平行四边形,继而根据已知条件推导出AC=BD,然后根据对角线相等的平行四边形是矩形即可;(2)设∠AOB=4x,∠ODC=3x,则∠OCD=∠ODC=3x.,在ODC中,利用三角形内角和定理求出x的值,继而求得∠ODC的度数,由此即可求得答案.【详解】(1)∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,又∵∠AOB=2∠OAD,∠AOB是AOD的外角,∴∠AOB=∠OAD+∠ADO.∴∠OAD=∠ADO.∴AO=OD.又∵AC=AO+OC=2AO,BD=BO+OD=2OD,∴AC=BD.∴四边形ABCD是矩形.(2)设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x,在ODC中,∠DOC+∠OCD+∠CDO=180°∴4x+3x+3x=180°,解得x=18°,∴∠ODC=3×18°=54°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO=∠ADC-∠ODC=90°-54°=36°.【点睛】本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键.21.如图,在□ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:≌. (2)若DEB=90,求证四边形DEBF 是矩形.【答案】(1)利用SAS 证明;(2)证明见解析.【解析】试题分析:此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD 是平行四边形是关键.(1)由在□ABCD 中,AE=CF ,可利用SAS 判定 ADE ≌△CBF .(2)由在▱ABCD 中,且AE=CF ,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF 是平行四边形,又由∠DEB=90°,可证得四边形DEBF 是矩形.试题解析:(1)∵四边形ABCD 是平行四边形,∴AD=CB ,∠A=∠C ,在 ADE 和 CBF 中,,∴ ADE ≌△CBF (SAS ).(2)∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∵AE=CF ,∴BE=DF ,∴四边形ABCD 是平行四边形,∵∠DEB=90°,∴四边形DEBF 是矩形.故答案为(1)利用SAS 证明;(2)证明见解析.考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.22.如图,ABC ∆中,90C =∠,4AC =,8BC =.(1)用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC 于点D ,求BD 的长.【答案】(1)详见解析;(2)5BD =.【解析】【分析】(1)分别以A ,B 为圆心,大于12AB 为半径画弧,两弧交于点M ,N ,作直线MN 即可. (2)设AD BD x ==,在Rt ACD ∆中,利用勾股定理构建方程即可解决问题.【详解】(1)如图直线MN 即为所求.(2)∵MN 垂直平分线段AB ,∴DA DB =,设DA DB x ==,在Rt ACD ∆中,∵222AD AC CD =+,∴()22248x x =+-,解得5x =,∴5BD =.【点睛】本题考查作图﹣基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 23.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,求线段BC 扫过的面积(结果保留π).【答案】(1)作图见解析;(2)作图见解析;(3)2π.【解析】【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC 扫过的面积=22OCC OBB S S -扇形扇形,由此计算即可;【详解】(1) ABC 关于x 轴对称的 A 1B 1C 1如图所示;(2) ABC 绕点O 逆时针旋转90°后的 A 2B 2C 2如图所示;(3)BC 扫过的面积=22OCC OBB S S -扇形扇形=2290?90?360360ππ-=2π.【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.如图,AC 和BD 相交于点0,OA=OC, OB=OD .求证:DC//AB【答案】证明见解析【解析】试题分析:根据SAS 可知 AOB ≌△COD ,从而得出∠A=∠C ,根据内错角相等两直线增选2的判定可得结论.. 试题解析:∵OA=OC ,∠AOB=∠COD ,OB=OD ,∴△AOB ≌△COD (SAS ).∴∠A=∠C.∴AB ∥CD.考点:1.全等三角形的的判定和性质;2.平行的判定.25.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .【答案】证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE =试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴=考点:三角形全等的判定.26.如图, ABC 中,∠BAC=90°,AB=AC ,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E.在 ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC .(1)求证:BE=CF ;(2)在AB 上取一点M ,使BM=2DE ,连接MC ,交AD 于点N ,连接ME.求证:①ME ⊥BC ;②DE=DN.【答案】(1)证明见解析;(2)①证明见解析;②证明见解析.【解析】试题分析:(1)通过角的转换和等腰直角三角形的性质,得到∠BAE=∠CAF 和∠B=∠FCA ,从而ASA 证明 ABF ≌△ACF ,根据全等三角形对应边相等得到结论.(2)①过E 点作EG ⊥AB 于点G ,通过证明EG 是BM 的垂直平分线就易得出结论.②通过证明Rt AMC ≌Rt EMC 和 ADE ≌△CDN 来证明结论.试题解析:(1)如图,∵∠BAC=90°,FA ⊥AE ,∴∠1+∠EAC=90°,∠2+∠EAC=90°. ∴∠1=∠2.又∵AB=AC ,∴∠B=∠ACB=45°.∵FC ⊥BC ,∴∠FCA=90°-∠ACB=45°.∴∠B=∠FCA.∴△ABF ≌△ACF (ASA ).∴BE=CF.(2)①如图,过E 点作EG ⊥AB 于点G ,∵∠B=45°,∴△CBE 是等腰直角三角形.∴BG=EG ,∠3=45°. ∵BM=2DE ,∴BM=2BG ,即点G 是BM 的中点.∴EG 是BM 的垂直平分线.∴∠4=∠3=45°.∴∠MEB=∠4+∠3=90°.∴ME ⊥BC.②∵AD ⊥BC ,∴ME ∥AD.∴∠5=∠6.∵∠1=∠5,∴∠1=∠6.∴AM=EM.∵MC=MC ,∴Rt AMC ≌Rt EMC (HL ).∴∠7=∠8.∵∠BAC=90°,,AB=AC ,∴∠ACB=45°,∠BAD=∠CAD=45°. ∴∠5=∠7=22.5°,AD=CD.∵∠ADE=∠CDN=90°,∴△ADE ≌△CDN (ASA ).∴DE=DN.考点:1.等腰直角三角形的判定和性质;2.全等三角形的判定和性质;3.线段垂直平分线的判定和性质.27.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.【答案】(1)证明见解析;(2)78°.【解析】【分析】(1)因为CAF BAE ∠=∠,所以有BAC EAF ∠=∠,又因为AE AB AC AF ==,,所以有()BAC EAF SAS △≌△,得到EF BC =;(2)利用等腰三角形ABE 内角和定理,求得∠BAE=50°,即∠FAG=50°,又因为第一问证的三角形全等,得到28F C ∠=∠=︒,从而算出∠FGC【详解】(1)CAF BAE ∠=∠BAC EAF∴∠=∠ AE AB AC AF==, ()B A C E A FS A S ∴△≌△ EF BC ∴=(2)65AB AE ABC =∠=︒,18065250BAE ∴∠=︒-︒⨯=︒ 50FAG ∴∠=︒BAC EAF△≌△ 28F C ∴∠=∠=︒502878FGC ∴∠=︒+︒=︒ 【点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键 28.已知:如图,AB∥CD,E 是AB 的中点,CE=DE .求证:(1)∠AEC=∠BED;(2)AC=BD .【答案】见解析【解析】(1)根据CE=DE 得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS 证明△AEC 与△BED 全等,再利用全等三角形的性质证明即可.证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,AE=BE,∠AEC=∠BED,EC=ED,∴△AEC≌△BED(SAS),∴AC=BD.29.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.【答案】(1)见解析;(2)4.9【解析】【详解】试题分析:(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由ABM∽△EFA得出比例式,求出AE,即可得出DE的长.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=90°,AB=12,BM=5,∴=13,AD=12,∵F是AM的中点,∴AF=12AM=6.5, ∵△ABM ∽△EFA , ∴BM AM AF AE =, 即5136.5AE=, ∴AE=16.9,∴DE=AE-AD=4.9.考点:1.相似三角形的判定与性质;2.正方形的性质.30.如图,在ABC ∆中,AB AC =,AD BC ⊥于点D .(1)若42C ︒∠=,求BAD ∠的度数;(2)若点E 在边AB 上,EF AC 交AD 的延长线于点F .求证:AE FE =.【答案】(1)48°;(2)证明见解析.【解析】【分析】(1)根据等腰三角形的性质得到BAD CAD ∠=∠,根据三角形的内角和即可得到904248BAD CAD ︒︒︒∠=∠=-=;(2)根据等腰三角形的性质得到BAD CAD ∠=∠根据平行线的性质得到F CAD ∠=∠,等量代换得到BAD F ∠=∠,于是得到结论.【详解】解:(1)∵AB AC =,AD BC ⊥于点D ,∴BAD CAD ∠=∠,90ADC ︒∠=,又42C ︒∠=,∴904248BAD CAD ︒︒︒∠=∠=-=;(2)∵AB AC =,AD BC ⊥于点D ,∴BAD CAD ∠=∠,∵EF AC,∴F CAD∠=∠,∴BAD F∠=∠,∴AE FE=.【点睛】本题考查了等腰三角形的性质,平行线的性质,正确的识别图形是解题的关键.31.已知,在ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【答案】(1)证明见解析;(2)BE=AF,证明见解析.【解析】分析:(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.详(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=12BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在BDE和ADF中,EBD FAD BD ADBDE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BDE ≌△ADF (ASA ),∴BE=AF ;(2)BE=AF ,证明如下:连接AD ,如图②所示.∵∠ABD=∠BAD=45°, ∴∠EBD=∠FAD=135°. ∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°, ∴∠EDB=∠FDA .在 EDB 和 FDA 中,EBD FAD BD ADEDB FDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△EDB ≌△FDA (ASA ),∴BE=AF .点睛:本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA 证出 BDE ≌△ADF ;(2)根据全等三角形的判定定理ASA 证出 EDB ≌△FDA .32.如图,D 是AB 上一点,DF 交AC 于点E ,DE=FE ,FC ∥AB ,求证:ADE CFE ∆≅【答案】见解析.【解析】【分析】利用AAS 证明:△ADE ≌CFE .【详解】证明:∵FC ∥AB∴∠A=∠FCE ,∠ADE=∠F所以在△ADE 与△CFE 中:A FCE ADE F DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CFE.【点睛】本题考查了三角形全等的判定,熟练掌握是解题的关键.33.如图,已知点A 、F 、E 、C 在同一直线上,AB ∥CD ,∠ABE=∠CDF ,AF=CE .(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【答案】(1) ABE ≌△CDF , AFD ≌△CEB(2)略【解析】试题分析:(1)根据题目所给条件可分析出 ABE ≌△CDF , AFD ≌△CEB ;(2)根据已知条件易得∠ACD=∠CAB ,AE=FC ,再由∠ABE=∠CDF ,根据AAS 可判定 ABE ≌△CDF .试题解析:解:(1) ABE ≌△CDF , AFD ≌△CEB ;(2)∵AB ∥CD ,∴∠ACD=∠CAB ,∵AF=CE ,∴AF+EF=CE+EF ,即AE=FC ,在 ABE 和 CDF 中,,∴△ABE ≌△CDF (AAS ).考点:全等三角形的判定.34.在 ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作 ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.【答案】90°【解析】【分析】(1)可以证明 BAD ≌△CAE ,得到∠B =∠ACE ,证明∠ACB =45°,即可解决问题;(2)①证明 BAD ≌△CAE ,得到∠B =∠ACE ,β=∠B +∠ACB ,即可解决问题;②证明 BAD ≌△CAE ,得到∠ABD =∠ACE ,借助三角形外角性质即可解决问题.【详解】(1)90︒;(2)①αβ180+=︒.理由:∵BAC DAE ∠∠=,∴BAC DAC DAE DAC ∠∠∠∠-=-.即BAD CAE ∠∠=.又AB AC AD AE ==,,∴ABD ACE ≌.∴B ACE ∠∠=.∴B ACB ACE ACB ∠∠∠∠+=+.∴B ACB β∠∠+=.∵αB ACB 180∠∠++=︒,∴αβ180+=︒.②当点D 在射线BC 上时,αβ180+=︒.当点D 在射线BC 的反向延长线上时,αβ=.【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点.35.已知:如图,ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【答案】证明见解析【解析】分析:过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.详解:如图,过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.点睛:本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.36.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】答案见解析【解析】【分析】由BE=CF可得BF=CE,再结合AB=DC,∠B=∠C可证得ABF≌△DCE,问题得证.【详解】。
中考24题图形的证明专项训练题及答案DOC
中考24题图形的证明专项训练一.选择题(共1小题)1.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()2.如图,设△ABC的面积是1,D是边BC上一点,且,若在边AC上取一点,使四边形ABDE的面积为,则的值为_________.3.如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A 的对应点A1恰落在∠BCD的平分线上时,则CA1的长为_________.三.解答题(共27小题)考点:沿中点将线段延长一倍.4.如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.(1)若EF⊥AF,AF=4,AB=6,求AE的长.(2)若点F是CD的中点,求证:CE=BE﹣AD.5.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC于G,BH⊥DC于H,CH=DH,点E在AB 上,点F在BC上,并且EF∥DC.(1)若AD=3,CG=2,求CD;(2)若CF=AD+BF,求证:EF=CD.6.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.7.如图,正方形ABCD中,M为AD边上的一点,连接BM,过点C作CN∥BM,交AD的延长线于点N,在CN上截取CE=BC,连接BE交CD于F,(1)若∠AMB=60°,CE=,求DF的长度;(2)求证:BM=DN+CF.8.如图,E为正方形ABCD的CD边上一点,连接BE,过点A作AF∥BE,交CD的延长线于点F,∠ABE 的平分线分别交AF、AD于点G、H.(1)若∠CBE=30°,AG=,求DH的长度;(2)证明:BE=AH+DF.9.如图正方形ABCD中,E为AD边上的中点,过A作AF⊥BE,交CD边于F,M是AD边上一点,且有BM=DM+CD.(1)求证:点F是CD边的中点;(2)求证:∠MBC=2∠ABE.10.如图,矩形ABCD中,点E为矩形的边CD上任意一点,点P为线段AE中点,连接BP并延长交边AD于点F,点M为边CD上一点,连接FM,且∠1=∠2.(1)若AD=2,DE=1,求AP的长;(2)求证:PB=PF+FM.11.已知正方形ABCD,点P、Q分别是边AD、BC上的两动点,将四边形ABQP沿PQ翻折得到四边形EFQP,点E在线段CD上,EF交BC于G,连接AE.求证:(1)EA平分∠DEF;(2)EC+EG+GC=2AB.12.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.13.如图,已知点E是矩形ABCD的边CB延长线上一点,且CE=CA,连接AE,过点C作CF⊥AE,垂足为点F,连接BF、FD.(1)求证:△FBC≌△FAD;(2)连接BD,若cos∠FBD=,且BD=10,求FC的值.14.如图,点E为矩形ABCD外一点,DE⊥BD于点D,DE=CE,BD的垂直平分线交AD于点F,交BD于点G.连接EF交BD于点H.(1)若∠CDE=∠DEH=∠HEC,求∠ABG的度数;(2)求证:H是EF的中点.考点:以菱形为背景.15.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.16.如图1,菱形ABCD中,点E、F分别为AB、AD的中点,连接CE、CF.(1)求证:CE=CF;(2)如图2,若H为AB上一点,连接CH,使∠CHB=2∠ECB,求证:CH=AH+AB.17.如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.18.已知:如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在DE上且DF=DC,DG⊥CF于G.DH平分∠ADE交CF于点H,连接BH.(1)若DG=2,求DH的长;(2)求证:BH+DH=CH.19.如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥AE于F,直线PF分别交AB、CD于G、H,(1)求证:DH=AG+BE;(2)若BE=1,AB=3,求PE的长.20.在正方形ABCD中,O是对角线AC的中点,P是对角线AC上的一动点,过点P作PF⊥CD于点F,如图(1),当点P与点O重合时,显然有DF=CF.如图(2),若点P在线段AO上(不与点A、O重合),PE⊥PB 且PE交CD于点E,(1)求证:DF=EF;(2)求证:.21.如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF 的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.22.如图,正方形ABCD中,E是AD的中点,F是AB边上的一点,连接FE并延长与CD的延长线相交于点G,作EH⊥FG交BC的延长线于点H.(1)若BC=8,BF=5,求线段FG的长;(2)求证:EH=2EG.23.已知点E是正方形ABCD中的CD的中点,F是边AD上一点,连接FE并延长交BC延长线于点G,AB=6.(1)求证:CG=DF;(2)连接BF,若BF>GF,试求AF的范围.24.如图,在菱形ABCD中,E是BC延长线上一点,连接AE,使得∠E=∠B,过D作DH⊥AE于H.(1)若AB=10,DH=6,求HE的长;(2)求证:AH=CE+EH.25.如图,点E是正方形ABCD的边BC上的一点,∠DAE的平分线AF交BC的延长线于点F,交CD于点G (1)若AB=8,BF=16,求CE的长;(2)求证:AE=BE+DG.26.如图,E是正方形ABCD的边DC上的一点,过A作AF⊥AE,交CB延长线于点F.AE的延长线交BC的延长线于点G.(1)求证:AE=AF.(2)若AF=7,DE=2,求EG的长.27.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF 于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)若正方形ABCD的边长为4,求△ACP的面积;(2)求证:CP=BM+2FN.28.如图,△AGB中,以边AG、AB为边分别作正方形AEFG、正方形ABCD,线段EB和GD相交于点H,tan∠AGB=,点G、A、C在同一条直线上.(1)求证:EB⊥GD;(2)若∠ABE=15°,AG=,求BE的长.29.如图,正方形ABCD的对角线交于点O,点E是线段0D上一点,连接EC,作BF⊥CE于点F,交0C于点G.(1)求证:BG=CE;(2)若AB=4,BF是∠DBC的角平分线,求OG的长.30.如图,AC为正方形ABCD的一条对角线,点E为DA边延长线上的一点,连接BE,在BE上取一点F,使BF=BC,过点B作BK⊥BE于B,交AC于点K,连接CF,交AB于点H,交BK于点G.(1)求证:BH=BG;(2)求证:BE=BG+AE.中考24题图形的证明专项训练参考答案与试题解析一.选择题(共1小题)1.(2011•阜新)如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF 的周长最小时,则DF的长为()=,即=二.填空题(共2小题)2.如图,设△ABC的面积是1,D是边BC上一点,且,若在边AC上取一点,使四边形ABDE的面积为,则的值为.上的高相同,,由面积公式得:=,,的面积为,,==故答案为:3.(2014•鄞州区模拟)如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰落在∠BCD的平分线上时,则CA1的长为2±1.±,±三.解答题(共27小题)4.如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.(1)若EF⊥AF,AF=4,AB=6,求AE的长.(2)若点F是CD的中点,求证:CE=BE﹣AD.×=55.(2014•南充模拟)如图,在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC于G,BH⊥DC于H,CH=DH,点E在AB上,点F在BC上,并且EF∥DC.(1)若AD=3,CG=2,求CD;(2)若CF=AD+BF,求证:EF=CD.==4==2EF=6.(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.7.如图,正方形ABCD中,M为AD边上的一点,连接BM,过点C作CN∥BM,交AD的延长线于点N,在CN上截取CE=BC,连接BE交CD于F,(1)若∠AMB=60°,CE=,求DF的长度;(2)求证:BM=DN+CF.,由勾股定理,得,﹣﹣8.如图,E为正方形ABCD的CD边上一点,连接BE,过点A作AF∥BE,交CD的延长线于点F,∠ABE 的平分线分别交AF、AD于点G、H.(1)若∠CBE=30°,AG=,求DH的长度;(2)证明:BE=AH+DF.,AB=1﹣9.如图正方形ABCD中,E为AD边上的中点,过A作AF⊥BE,交CD边于F,M是AD边上一点,且有BM=DM+CD.(1)求证:点F是CD边的中点;(2)求证:∠MBC=2∠ABE.10.如图,矩形ABCD中,点E为矩形的边CD上任意一点,点P为线段AE中点,连接BP并延长交边AD于点F,点M为边CD上一点,连接FM,且∠1=∠2.(1)若AD=2,DE=1,求AP的长;(2)求证:PB=PF+FM.=AP=AE=11.已知正方形ABCD,点P、Q分别是边AD、BC上的两动点,将四边形ABQP沿PQ翻折得到四边形EFQP,点E在线段CD上,EF交BC于G,连接AE.求证:(1)EA平分∠DEF;(2)EC+EG+GC=2AB.12.(2008•常州)已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.13.如图,已知点E是矩形ABCD的边CB延长线上一点,且CE=CA,连接AE,过点C作CF⊥AE,垂足为点F,连接BF、FD.(1)求证:△FBC≌△FAD;(2)连接BD,若cos∠FBD=,且BD=10,求FC的值.=FBD=,==814.如图,点E为矩形ABCD外一点,DE⊥BD于点D,DE=CE,BD的垂直平分线交AD于点F,交BD于点G.连接EF交BD于点H.(1)若∠CDE=∠DEH=∠HEC,求∠ABG的度数;(2)求证:H是EF的中点.DEH=15.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD 于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.BF=CF=16.如图1,菱形ABCD中,点E、F分别为AB、AD的中点,连接CE、CF.(1)求证:CE=CF;(2)如图2,若H为AB上一点,连接CH,使∠CHB=2∠ECB,求证:CH=AH+AB.BE=17.(2011•重庆)如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.=2BC=的长是18.已知:如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在DE上且DF=DC,DG⊥CF于G.DH 平分∠ADE交CF于点H,连接BH.(1)若DG=2,求DH的长;(2)求证:BH+DH=CH.DH=DG=2CH BH+DH=MH= FDG=FDH=FDH=(∠;MH=,CH BH+DH=19.如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥AE于F,直线PF分别交AB、CD于G、H,(1)求证:DH=AG+BE;(2)若BE=1,AB=3,求PE的长.=PE==20.在正方形ABCD中,O是对角线AC的中点,P是对角线AC上的一动点,过点P作PF⊥CD于点F,如图(1),当点P与点O重合时,显然有DF=CF.如图(2),若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD于点E,(1)求证:DF=EF;(2)求证:.PH=EFPC=(CE21.(2013•北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.EF=PA EF PC=PH=(舍去)2+2,(﹣)﹣+4(﹣2×22.如图,正方形ABCD中,E是AD的中点,F是AB边上的一点,连接FE并延长与CD的延长线相交于点G,作EH⊥FG交BC的延长线于点H.(1)若BC=8,BF=5,求线段FG的长;(2)求证:EH=2EG.中:23.(2013•海陵区模拟)已知点E是正方形ABCD中的CD的中点,F是边AD上一点,连接FE并延长交BC延长线于点G,AB=6.(1)求证:CG=DF;(2)连接BF,若BF>GF,试求AF的范围.中,24.如图,在菱形ABCD中,E是BC延长线上一点,连接AE,使得∠E=∠B,过D作DH⊥AE于H.(1)若AB=10,DH=6,求HE的长;(2)求证:AH=CE+EH.=25.如图,点E是正方形ABCD的边BC上的一点,∠DAE的平分线AF交BC的延长线于点F,交CD于点G (1)若AB=8,BF=16,求CE的长;(2)求证:AE=BE+DG.26.(2013•福田区一模)如图,E是正方形ABCD的边DC上的一点,过A作AF⊥AE,交CB延长线于点F.AE 的延长线交BC的延长线于点G.(1)求证:AE=AF.(2)若AF=7,DE=2,求EG的长.=3,DE=3=27.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)若正方形ABCD的边长为4,求△ACP的面积;(2)求证:CP=BM+2FN.AB=4,CD=×4=828.如图,△AGB中,以边AG、AB为边分别作正方形AEFG、正方形ABCD,线段EB和GD相交于点H,tan∠AGB=,点G、A、C在同一条直线上.(1)求证:EB⊥GD;(2)若∠ABE=15°,AG=,求BE的长.根据3x=求出GD=5,OD=OB=3OG=4,,.29.如图,正方形ABCD的对角线交于点O,点E是线段0D上一点,连接EC,作BF⊥CE于点F,交0C于点G.(1)求证:BG=CE;(2)若AB=4,BF是∠DBC的角平分线,求OG的长.BO=22中,2230.如图,AC为正方形ABCD的一条对角线,点E为DA边延长线上的一点,连接BE,在BE上取一点F,使BF=BC,过点B作BK⊥BE于B,交AC于点K,连接CF,交AB于点H,交BK于点G.(1)求证:BH=BG;(2)求证:BE=BG+AE.。
历年中考数学图形证明题讲解.
C
【思路分析】本题和前面略有不同的地方就是通过线段的具体长度来计算和证明。欲证EF是切线,则需证OD垂直于EF,但是本题中并未给OD和其他线角之间的关系,所以就需要多做一条辅助线连接CD,利用直径的圆周角是90°,并且△ABC是以AC,CB为腰的等腰三角形,从而得出D是中点。成功转化为前面的中点问题,继而求解。第二问利用第一问的结果,转移已知角度,借助勾股定理,在相似的RT三角形当中构造代数关系,通过解方程的形式求解,也考察了考生对于解三角形的功夫。
BAD ∠=,∴ 2AD =.
由勾股定理,得AB = ∴
sin 4∠=
.(通过三角函数的转换来扩大已知条件)∵ BC是⊙O直径,
∴ 90BAC ∠=︒. ∴ 290C ∠+∠=︒.又∵ 4190∠+∠=︒, 21∠=∠,
∴ 4C ∠=∠.(这一步也可以用三角形相似直接推出BD/AB=AB/AC=sin∠BAD)在Rt △ABC中,sin AB BC C ==sin 4
C
从而将未知条件用比例关系与已知条件联系起来。近年来中考范围压缩,圆幂定理等纲外内容已经基本不做要求,所以更多的都是利用相似三角形中借助比例来计算,希望大家认真掌握。
【解析】
(1)证明:连接OB .
∵, OA AB OA OB ==,
∴OA AB OB ==. ∴ABO ∆是等边三角形.
∴160BAO ∠=∠=︒. ∵AB AD =,
(1)求证:DA为O的切线;(2)若1BD =,1
tan 2
BAD ∠=
,求O的半径.
F
C
【思路分析】本题是一道典型的用角来证切线的题目。题目中除垂直关系给定以外,就只给了一条BA平分∠CBF。看到这种条件,就需要大家意识到应该通过角度来证平行。用角度来证平行无外乎也就内错角同位角相等,同旁内角互补这么几种。本题中,连OA之后发现∠ABD=∠ABC,而OAB构成一个等腰三角形从而∠ABO=∠BAO,自然想到传递这几个角之间的关系,从而得证。第二问依然是要用角的传递,将已知角∠BAD通过等量关系放在△ABC中,从而达到计算直径或半径的目的。
初三数学图形与证明试题答案及解析
初三数学图形与证明试题答案及解析1.(本小题满分10分)学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义,解下列问题:(1)sad 的值为()A.B.1C.D.2(2)对于,∠A的正对值sad A的取值范围是 .(3)已知,其中为锐角,试求sad的值.【答案】(1)B;………………………2分(2);………………………3分(3) 如图,在△ABC中,∠ACB=,sin∠A.在AB上取点D,使AD=AC,作DH⊥AC,H为垂足,令BC =3k,AB =5k,则AD= AC==4k,………………………2分又在△ADH中,∠AHD=,sin∠A.∴,.则在△CDH中,,.……………2分于是在△ACD中,AD= AC=4k,.由正对定义可得:sadA=,即sad………………………1分【解析】略2.下列正多边形的组合中,能够铺满地面的是()A.正六边形和正方形B.正五边形和正八边形C.正六边形和正三角形D.正十边形和正三角形【答案】C【解析】能够铺满地面的图形,即是能够凑成360°的图形组合.解:A、正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;B、正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;C、正六边形的每个内角为120°,正三角形的每个内角为60°,一个正六边形和一个正三角形刚好能铺满地面;D、正三角形每个内角为60度,正十边形每个内角为144度,60m+144n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满.故选C.掌握好平铺的条件,算出每个图形内角和即可.3.在中,点、、分别在、、上,且,,则下列三种说法:①如果,那么四边形是矩形;②如果平分,那么四边形是菱形;③如果且,那么四边形是菱形.其中正确的有………………………………………()A.3个;B.2个;C.1个;D.0个.【答案】A【解析】根据平行四边形、矩形、菱形的判定方法进行解答.解:①若∠BAC=90°,则平行四边形AEDF是矩形;故①正确;②若AD平分∠BAC,则DE=DF;所以平行四边形是菱形;故②正确;③若AD⊥BC,AB=AC;根据等腰三角形三线合一的性质知:DA平分∠BAC;由③知:此时平行四边形AEDF是菱形;故③正确;所以正确的结论是①②③答案选A .此题主要考查了平行四边形、菱形、矩形的判定方法:两组对边分别平行的四边形是平行四边形;有一个角是直角的平行四边形是矩形;一组邻边相等的平行四边形是菱形.4.(本题满分10分)如图,把△EFP按图所示的方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上.已知EP=FP=,EF=,∠BAD=60°,且AB.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【答案】(1)∠EPF=120°;(2)AE+AF=;(3)AP的最大值为8,AP的最小值为4.【解析】(1)过点P作PG⊥EF,垂足为G,在RtFPG中,利用锐角三角函数求得∠FPG=60°,即可得∠EPF的度数.(2)作PM⊥AB,PN⊥ND,垂足分别为M、N,可证RtPME≌RtPNF,可得FN=EM;在RtPMA中,利用锐角三角函数求得AM的长,同样的方法求得AN的长,根据AE+AF=(AM-EM)+(AN+NF)=AM+AN即可求得AE+AF的值.(3)当PE⊥AB,PF⊥AD时,AP的值最大为8,当点A与点E(或点F)重合时,PA的值最小为4.试题解析:解:(1)过点P作PG⊥EF,垂足为G,∵PE=PF,PG⊥EF,∴FG=EG=,∠FPG=∠EPG=∠EPF.在RtFPG中,,∴∠FPG=60°∴∠EPF=2∠FPG=120°.作PM⊥AB,PN⊥ND,垂足分别为M、N,在菱形ABCD中,∵AD=AB,,DC=BC,AC=AC,∴△ABC≌△ADC,∴∠DAC=∠BAC∴点P到AB、CD两边的距离相等,即PM=PN.在RtPME和RtPNF中,∵PM=PN,PE=PF,∴RtPME≌RtPNF∴FN=EM在RtPMA中,∠PMA=90°,∠PAM=∠DAB=30°,∴AM=同理,AN=∴AE+AF=(AM-EM)+(AN+NF)=AM+AN=.(3)AP的最大值为8,AP的最小值为4.【考点】菱形的性质;角平分线的性质;全等三角形的判定及性质.5.如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1,60)【答案】13.5km.【解析】设B处距离码头Oxkm,分别在Rt△CAO和Rt△DBO中,根据三角函数求得CO和DO,再利用DC=DO﹣CO,得出x的值即可.试题解析:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=,∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=,∴DO=BO•tan∠DBO=x•tan58°,∵DC=DO﹣CO,∴36×0.1=x•tan58°﹣(4.5+x),∴x=.因此,B处距离码头O大约13.5km.【考点】解直角三角形的应用.6.如图所示的半圆中,是直径,且,,则的值是.【答案】【解析】因为是直径,所以∠ACD=90°,又∠B=∠D,所以.【考点】1.圆周角定理及其推论;2.锐角三角函数.7.下列四个图形中是正方体的平面展开图的是()A.B.C.D.【答案】B.【解析】A.不是正方体的平面展开图;B.是正方体的平面展开图;C.不是正方体的平面展开图;D.不是正方体的平面展开图.故选B.【考点】几何体的展开图.8.如图,将三角形纸板的直角顶点放在直尺的一边上,,则等于()A.B.C.D.【答案】C【解析】由图可知∠2=∠1+∠3,∵∠1=20°,∠2=40°,∴∠3=20°;故选C.【考点】1.平行线的性质;2.三角形外角的性质.9.(本小题满分8分)如图,在⊙中,为直径,,弦与交于点,过点分别作⊙的切线交于点,且GD与的延长线交于点.(1)求证:;(2)已知:,⊙的半径为,求的长.【答案】(1)详见解析;(2).【解析】(1)连结根据切线的性质得,又OC⊥OB,然后根据同角(或等角)的余角相等可证∠1=∠2;(2)由(1)中∠1=∠2可得EF=ED,设DE=x,在Rt△ODE中,由勾股定理求得x=4,由为⊙的切线可得到,在中,设,则,再由勾股定理求得t值,即可得AG的长.试题解析:(1)证明:连结,如图,∵为⊙的切线,为半径,∴.∴,即.∵,∴.∴.而,∴∴.∵,∴.(2)解:∵,⊙的半径为,∴.∵,∴.在中,,设,则,.∵,∴,解得.∴,.∵为⊙的切线,为半径,为⊙的切线,∴,.∴.在中,设,则.∵.∴,解得,.∴.【考点】切线的性质定理;切线的判定定理;勾股定理.10.如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是().A.AB∥DC B.OA=OC C.AC⊥BD D.AC=BD【答案】D.【解析】根据菱形的性质可知,AB∥DC,OA=OC,AC⊥BD都是正确的,而AC=BD不一定正确.故选:D.【考点】菱形的性质.11.在平面几何中,下列命题为真命题的是()A.四边相等的四边形是正方形B.四个角相等的四边形是矩形C.对角线相等的四边形是菱形D.对角线互相垂直的四边形是平行四边形【答案】B【解析】本题考查了特殊四边形的判定.A.四边相等的四边形是菱形,所以A错误;B.四个角相等的四边形是矩形,根据四边形的内角和等于3600,可得四边形的四个内角均为900.所以B正确;C.对角线相等的四边形很多,比如矩形,还有一些不规则的四边形对角线相等,所以C错误;D.存在对角线互相垂直且相等的梯形,所以D错误.故选B【考点】命题与定理..12.如图,已知在ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°【答案】C.【解析】根据平行四边形的性质可得∠ADC=∠ABC=60°,在Rt△ABE中,可求得∠EAB=30°;由旋转的性质可得∠EAB=∠BA′E′=30°;在四边形AEA′D中,根据四边形的内角和为360°可求得∠DA′B=130°,所以∠DA′E′=∠DA′B+∠BA′E′=130°+30°=160°,故答案选C.【考点】平行四边形的性质;旋转的性质;据四边形的内角和为360°.13.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)请判断直线BC与⊙O的位置关系,并说明理由;(2)已知AD=5,CD=4,求BC的长.【答案】(1)BC与相切;理由见解析;(2)BC=6【解析】(1)BC与相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB为直径可得∠ADB=90°,从而可得∠CBO=90°,继而可得BC与相切(2)由AB为直径可得∠ADB=90°,从而可得∠BDC=90°,由BC与相切,可得∠CBO=90°,从而可得∠BDC=∠CBO,可得,所以得,得,由可得AC=9,从而可得BC=6(BC="-6" 舍去)试题解析:(1)BC与相切;∵,∴∠BAD=∠BED ,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴点B在上,∴BC与相切(2)∵AB为直径,∴∠ADB=90°,∴∠BDC=90°,∵BC与相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴,∴,∴,∵,∴AC=9,∴,∴BC=6(BC="-6" 舍去)【考点】1.切线的判定与性质;2.相似三角形的判定与性质;3.勾股定理.14.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,如果∠1=50°,则∠2的度数是()A.50° B.65° C.60° D.45°【答案】B【解析】由AB∥CD,根据两直线平行,同旁内角互补,即可求得∠BEF的度数,又由EG平分∠BEF,根据角平分线的定义,即可求得度数,又由两直线平行,内错角相等,即可求得∠2的度数.解:∵AB∥CD,∴,∵,∴,∵EG平分∠BEF,∴,∴.故选答案B【考点】平行线的性质.15.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BOC=2∠BAD,则⊙O的直径为.【答案】10【解析】连结OD,先根据三角形外角性质得,而,所以,根据等腰三角形的性质得,则根据垂径定理得到CE=CD=4,设⊙O的半径为R,则OE=AE﹣OA=8﹣R,在中,根据勾股定理得,解得R=5.直径2R=10.解:连结OD,如图,∵OA=OD,∴,∴,∵,∴,而OC=OD,∴OB⊥CD,∴CE=DE=CD=×8=4,设⊙O的半径为R,则OE=AE﹣OA=8﹣R,在中,∵,∴,解得R=5,直径2R=10.即设⊙O的直径为10.【考点】垂径定理;勾股定理;圆周角定理.16.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE等于()A.45° B.54° C.40°【答案】C【解析】在△ABC中,∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,又∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【考点】1.平行线的性质;2.角的计算;3.三角形的内角和.17.如图,在半径为6cm的⊙O中,A点是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6m;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④【答案】B.【解析】分别根据垂径定理、菱形的判定、锐角三角函数的定义对各项进行判断即可.试题解析:如图:∵点A是劣弧的中点,OA过圆心∴OA⊥BC,故①正确;∵∠D=30°∴∠ABC=∠D=30°∴∠AOB=60°∵点A是劣弧的中点,∴BC=2CE∵OA=OB∴OA=OB=AB=6cm∴BE=AB·cos30°=cm∴BC=2BE=cm,故②正确;∵∠AOB=60°∴sin∠AOB=sin60°=,故③正确;∵∠AOB=60°∴AB=OB∵点A是劣弧的中点,∴AC=AB∴AB=OB=OC=CA∴四边形ABOC是菱形故④正确;故选B.【考点】1.垂径定理;2.菱形的判定;3.圆周角定理;4.解直角三角形.18.如图,在△ABC中,D为AB边上一点,F为AC的中点,连接DF并延长至E,使得EF=DF,连接AE和EC.(1)求证:四边形ADCE为平行四边形;(2)如果DF=,∠FCD=30°,∠AED=45°,求DC的长.【答案】(1)证明见解析;(2).【解析】(1)首先证明△DAF≌△ECF,则AD=CE,然后根据一组对边平行且相等的四边形是平行四边形即可证得;(2)作FH⊥DC于点H,在Rt△DFH中利用三角函数求得FH的长,在Rt△CFH中利用勾股定理即可求解.试题解析:(1)证明:∵F为AC的中点,∴AF=FC.又∵EF=DF,∴四边形ADCE为平行四边形.(2)解:如图,过点F作FG⊥DC与G.∵四边形ADCE为平行四边形,∴AE∥CD.∴∠FDG=∠AED=45°,在Rt△FDG中,∠FGD=90°,∠FDG=45°,DF=,∵cos∠FDG=,∴DG=GF===2.在Rt△FCG中,∠FGC=90°,∠FCG=30°,GF=2,∵tan∠FCG=,∴∴DC=DG+GC=【考点】1.解直角三角形;2.平行四边形的判定与性质;3.全等三角形的判定与性质.19.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)求证:DC为⊙O切线;(2)若DC=1,AC=,①求⊙O半径长;②求EB的长.【答案】(1)证明见解析;(2)⊙O半径长为;BE=.【解析】(1)连结OC,如图,由AC平分∠EAB得到∠1=∠2,加上∠2=∠3,则∠1=∠3,于是可判断OC∥AD,由于CD⊥AD,所以OC⊥CD,则根据切线的判定定理得到DC为⊙O切线;(2)①连结BC,如图,在Rt△ACD中利用勾股定理计算出AD=2,再Rt△ACD∽Rt△ABC,利用相似比计算出AB=,从而得到⊙O半径长为;②证明△EOC∽△EAD,然后利用相似比可计算出BE的长.试题解析:1)证明:连结OC,如图,∵AC平分∠EAB,∴∠1=∠2,∵OA=OC,∴∠2=∠3,∴∠1=∠3,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∴DC为⊙O切线;(2)解:①连结BC,如图,在Rt△ACD中,∵CD=1,AC=,∴AD=,∵AB为直径,∴∠ACB=90°,∵∠1=∠2,∴Rt△ACD∽Rt△ABC,∴AC:AB=AD:AC,即:AB=2:,∴AB=,∴⊙O半径长为;②∵OC∥AD,∴△EOC∽△EAD,∴,即,∴BE=.【考点】1.切线的判定;2.相似三角形的判定与性质.20.(12分)(2015•本溪)如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB为直径作⊙O,分别交边AC、BC于点E、点F(1)求证:AD是⊙O的切线;(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.【答案】(1)详见解析;(2).【解析】(1)已知△ABC为等边三角形,可得AC=BC,又因AC=CD,所以AC=BC=CD,即可判定△ABD为直角三角形,再根据切线的判定推出结论;(2)连接OE,分别求出△AOE、△AOC,扇形OEG的面积,根据S阴影=S△AOC﹣S等边△AOE﹣S扇形EOG即可求得S.试题解析:(1)证明:∵△ABC为等边三角形,∴AC=BC,又∵AC=CD,∴AC=BC=CD,∴△ABD为直角三角形,∴AB⊥AD,∵AB为直径,∴AD 是⊙O 的切线;(2)解:连接OE , ∵OA=OE ,∠BAC=60°, ∴△OAE 是等边三角形, ∴∠AOE=60°,∵CB=BA ,OA=OB , ∴CO ⊥AB , ∴∠AOC=90°, ∴∠EOC=30°,∵△ABC 是边长为4的等边三角形, ∴AO=2,由勾股定理得:OC=, 同理等边三角形AOE 边AO 上高是,S 阴影=S △AOC ﹣S 等边△AOE ﹣S 扇形EOG =.【考点】切线的判定;等边三角形的判定与性质;扇形面积的计算.21. 如图,正方形ABCD 的四个顶点分别在⊙O 上,点P 在上不同于点C 的任意一点,则∠BPC 的度数是( )A .45°B .60°C .75°D .90°【答案】A .【解析】 首先连接OB ,OC ,由正方形ABCD 的四个顶点分别在⊙O 上,可得∠BOC=90°,然后由圆周角定理,即可求得∠BPC 的度数.试题解析:连接OB ,OC ,∵正方形ABCD 的四个顶点分别在⊙O 上, ∴∠BOC=90°, ∴∠BPC=∠BOC=45°.故选A .【考点】圆周角定理.22. (12分)如图,在正方形ABCD 中,点P 在AD 上,且不与A 、D 重合,BP 的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.【答案】(1)证明见试题解析;(2).【解析】(1)由EQ⊥BO,EH⊥AB得到∠EQN=∠BHM=90°,由∠EMQ=∠BMH得到△EMQ∽△BMH,故∠QEM=∠HBM.由ASA定理得到△APB≌△HFE,故可得出结论;(2)根据勾股定理求出BP的长,由EF是BP的垂直平分线可知BQ=BP,再由锐角三角函数的定义得出QF=BQ的长,由(1)知,△APB≌△HFE,故EF=BP=,再由EQ=EF﹣QF 即可得出结论.试题解析:(1)∵EQ⊥BO,EH⊥AB,∴∠EQN=∠BHM=90°,∵∠EMQ=∠BMH,∴△EMQ∽△BMH,∴∠QEM=∠HBM,在Rt△APB与Rt△HFE中,∵∠QEM=∠HBM,∠PAB=∠FHE,AB=EH,∴△APB≌△HFE,∴HF=AP;(2)由勾股定理得,BP===4,∵EF是BP的垂直平分线,∴BQ=BP=,∴QF=BQ•tan∠FBQ=BQ•tan∠ABP==,由(1)知,△APB≌△HFE,∴EF=BP=,∴EQ=EF﹣QF==.【考点】1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理;4.综合题.23.如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为.【答案】【解析】作直径BE,连接CE,作CF⊥BE于点F,则在直角△BCE中可以利用勾股定理求得EC的长,然后证明∠EBC=∠ECF=∠ACD,求得tan∠EBC即可.试题解析:作直径BE,连接CE,作CF⊥BE于点F.∵CF⊥BE,CD⊥AB又∵∠A=∠E,∴∠ECF=∠ACD.∵BE是直径,CF⊥BE,∴∠BCE=90°,∠EBC=∠ECF=∠ACD,∴EC=∴tan∠EBC=.∴tan∠ACD=tan∠EBC=.【考点】1.圆周角定理,2.勾股定理,3.锐角三角函数的定义24.(3分)如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是()A.B.C.D.【答案】D.【解析】(1)如图1,,当点N在AD上运动时,s=AM•AN÷2=t•3t÷2=.(2)如图2,,当点N在CD上运动时,s=AM•AD÷2=t×1÷2=0.5t.(3)如图3,,当点N在BC上运动时,s=AM•BN÷2=t×(3﹣3t)÷2=,综上,可得能大致反映s与t的函数关系的图象是选项D中的图象.故选D.【考点】动点问题的函数图象.25.(3分)如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,,.若S=3,则的值为()A .24B .12C .6D .3【答案】B .【解析】过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,∴四边形PQCD 与四边形APQB 都为平行四边形,∴△PDC ≌△CQP ,△ABP ≌△QPB ,∴S △PDC =S △CQP ,S △ABP =S △QPB ,∵EF 为△PCB 的中位线,∴EF ∥BC ,EF=BC ,∴△PEF ∽△PBC ,且相似比为1:2,∴S △PEF :S △PBC =1:4,S △PEF =3,∴S △PBC =S △CQP +S △QPB =S △PDC +S △ABP ==12.故选B .【考点】1.平行四边形的性质;2.三角形中位线定理.26. 图1和图2,半圆O 的直径AB=2,点P (不与点A ,B 重合)为半圆上一点,将图形延BP 折叠,分别得到点A ,O 的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C ∥AB ,如图1,判断A′C 与半圆O 的位置关系,并说明理由. (2)如图2,当α= °时,BA′与半圆O 相切.当α= °时,点O′落在上. (3)当线段BO′与半圆O 只有一个公共点B 时,求α的取值范围.【答案】(1)A′C 与半圆O 相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°. 【解析】(1)过O 作OD ⊥A′C 于点D ,交A′B 于点E ,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA ,可判定A′C 与半圆相切;(2)当BA′与半圆相切时,可知OB ⊥A′B ,则可知α=45°,当O′在上时,连接AO′,则可知B O′=AB ,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B 与圆交于O′,当α=45°时交于点B ,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O 作OD 过O 作OD ⊥A′C 于点D ,交A′B 于点E ,∵α=15°,A′C ∥AB , ∴∠ABA′=∠CA′B=30°, ∴DE=A′E ,OE=BE ,∴DO=DE+OE=(A′E+BE )=AB=OA , ∴A′C 与半圆O 相切;(2)当BA′与半圆O 相切时,则OB ⊥BA′,∴∠OBA′=2α=90°, ∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB ,∴∠O′AB=30°, ∴∠ABO′=60°, ∴α=30°,(3)∵点P ,A 不重合,∴α>0, 由(2)可知当α增大到30°时,点O′在半圆上, ∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B ; 当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B . 当α继续增大时,点P 逐渐靠近点B ,但是点P ,B 不重合, ∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B . 综上所述0°<α<30°或45°≤α<90°. 【考点】圆的综合题.27. (10分)如图1,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD=.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线; (2)若∠BAC=60°,DE=,求图中阴影部分的面积; (3)若,DF+BF=8,如图2,求BF 的长.【答案】(1)证明见试题解析;(2);(3)3.【解析】(1)连结OD ,如图1,由已知得到∠BAD=∠CAD ,得到,再由垂径定理得OD ⊥BC ,由于BC ∥EF ,则OD ⊥DF ,于是可得结论;(2)连结OB ,OD 交BC 于P ,作BH ⊥DF 于H ,如图1,先证明△OBD 为等边三角形得到∠ODB=60°,OB=BD=,得到∠BDF=∠DBP=30°,在Rt △DBP 中得到PD=,PB=3,在Rt △DEP 中利用勾股定理可算出PE=2,由于OP ⊥BC ,则BP=CP=3,得到CE=1,由△BDE ∽△ACE ,得到AE 的长,再证明△ABE ∽△AFD ,可得DF=12,最后利用S 阴影部分=S △BDF ﹣S 弓形BD =S △BDF ﹣(S 扇形BOD ﹣S △BOD )进行计算; (3)连结CD ,如图2,由可设AB=4x ,AC=3x ,设BF=y ,由得到CD=BD=,由△BFD ∽△CDA ,得到xy=4,再由△FDB ∽△FAD ,得到16﹣4y=xy ,则16﹣4y=4,然后解方程即可得到BF=3.试题解析:(1)连结OD ,如图1,∵AD 平分∠BAC 交⊙O 于D ,∴∠BAD=∠CAD ,∴,∴OD ⊥BC ,∵BC ∥EF ,∴OD ⊥DF ,∴DF 为⊙O 的切线;(2)连结OB ,连结OD 交BC 于P ,作BH ⊥DF 于H ,如图1,∵∠BAC=60°,AD 平分∠BAC ,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,OB=BD=,∴∠BDF=30°,∵BC ∥DF ,∴∠DBP=30°,在Rt △DBP 中,PD=BD=,PB=PD=3,在Rt △DEP 中,∵PD=,DE=,∴PE==2,∵OP ⊥BC ,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=1:,∴AE=,∵BE ∥DF ,∴△ABE ∽△AFD ,∴,即,解得DF=12,在Rt △BDH 中,BH=BD=,∴S 阴影部分=S △BDF ﹣S 弓形BD =S △BDF ﹣(S 扇形BOD ﹣S △BOD )==;(3)连结CD ,如图2,由可设AB=4x ,AC=3x ,设BF=y ,∵,∴CD=BD=,∵∠F=∠ABC=∠ADC ,∵∠FDB=∠DBC=∠DAC ,∴△BFD ∽△CDA ,∴,即,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD ,而∠DFB=∠AFD ,∴△FDB ∽△FAD ,∴,即,整理得16﹣4y=xy ,∴16﹣4y=4,解得y=3,即BF 的长为3.【考点】1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.28. 一个多边形的每个外角都等于60°,这个多边形的内角和为 . 【答案】720°.【解析】设多边形的边数为n , ∵多边形的每个外角都等于60°, ∴n==6,∴这个多边形的内角和=(6-2)×180°=720°. 【考点】多边形内角与外角.29. 如图,AB=12,C 为AB 的中点,点D 在线段AC 上,且AD :CB=1:3,则DB 的长度为( )A .4B .6C .8D .10【答案】D .【解析】∵C 为AB 的中点,∴AC=BC=AB=×12=6, ∵AD :CB=1:3,∴AD=2, ∴DB=AB-AD=12-2=10(cm ). 故选D .【考点】两点间的距离.30.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0)B.(,0)C.(,0)D.(,0)【答案】C.【解析】由题意得,AC=,故可得AM=,BM=AM-AB=-3,又∵点B的坐标为(2,0),∴点M的坐标为(-1,0).故选C.【考点】1.勾股定理;2.实数与数轴;3.矩形的性质.31.如图,已知a∥b,将一块三角尺放在这两条直线之间,使直角顶点在直线a上,较小的锐角的顶点在直线b上.若∠1=25°,则∠2的度数为()A.25°B.35°C.55°D.65°【答案】B.【解析】∵∠1=25°,∴∠ABE=90°+25°=115°.∵a∥b,∴∠BCD=180°-115°=65°,∵∠ACB=30°,∴∠2=65°-30°=35°.故选B.【考点】平行线的性质.32.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC中点,若DE=2,则AB的长为.【答案】4.【解析】∵在△ABC中,AD⊥BC,垂足为D,∴△ADC是直角三角形;∵E是AC的中点.∴DE= AC(直角三角形的斜边上的中线是斜边的一半);又∵DE=2,AB=AC,∴AB=4.【考点】1.等腰三角形的性质;2.直角三角形斜边上的中线.33.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是 .【答案】.【解析】如图,连接BD .∵四边形ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°,∴△DAB 是等边三角形, ∵AB=2,∴△ABD 的高为,∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H , 在△ABG 和△DBH 中,,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积, ∴图中阴影部分的面积是:S 扇形EBF -S △ABD =.【考点】1.扇形面积的计算;2.全等三角形的判定与性质;3.菱形的性质.34. 如果CD 平分含30°三角板的∠ACB ,则∠1等于( )A .110°B .105°C .100°D .95°【答案】B .【解析】∵CD 平分∠ACB , ∴∠ACD=×90°=45°,在△ACD 中,∵∠1+∠A+∠ACD=180°, ∴∠1=180°-30°-45°=105°. 故选B .【考点】三角形内角和定理.35. 如图,A ,B 两点的坐标分别是A (1,),B (,0),则△ABO 的面积是.【答案】.【解析】据题意可得:三角形OAB的面积=.【考点】1.坐标与图形性质;2.三角形的面积.36.(10分)如图,分别延长平行四边形ABCD的边CD、AB到E、F,使DE=BF=CD,连接EF,分别交AD,BC于G,H,连接CG,AH(1)求证:四边形AGCH为平行四边形;(2)求△DEG和△CGH的面积比.【答案】(1)详见解析;(2).【解析】(1)根据已知条件,利用ASA易证△DEG≌△BFH,根据全等三角形的对应边相等可得得DG=BH,从而证得AG=CH,根据一组对边平行且相等的四边形是平行四边形即可判定四边形AGCH是平行四边形;(2)根据等高三角形面积的比等于底的比,相似三角形面积的比等于对应边比的平方即可求出结果.试题解析:解:∵四边形ABCD是平行四边形,∴AB∥CD,∠ADC=∠ABC,∴∠E=∠F,∠EDG=∠FBH,在△DEG与△BFH中,,∴△DEG≌△BFH(ASA),∴DG=BH,∴AD﹣DG=BC﹣BH,即CH=AG,又∵AG∥CH,∴四边形AGCH为平行四边形;(2)∵DE=CD,∴DE=CE,,∵DG∥BC,∴,∴.【考点】全等三角形的判定及性质;平行四边形的判定及性质;相似三角形的判定及性质.37.△ABC中,∠A、∠B均为锐角,且,则△ABC的形状是.【答案】等边三角形.【解析】由题意得,tanB﹣=0,2sinA﹣=0.∴tanB=,∠B=60°;sinA=,∠A=60°.∴∠C=60°∴△ABC的形状是等边三角形.【考点】1.特殊角的三角函数值;2.非负数的性质;3.三角形的内角和定理.38.如图,3个全等的菱形按如图方式拼合在一起,恰好得到一个边长相等的六边形,则菱形较长的对角线与较短的对角线之比是().A.B.C.2D.【答案】A.【解析】如图:首先设第一个菱形的另一个顶点为M,连接AC,BM,交于点O,根据题意得:AB=AF=2BM,又由四边形ABCM是菱形,菱形的对角线互相垂直且平分,可得AC⊥BM,BM=2OB,AC=2OA,∴AB=2BM=40B,∴OA==OB,∴AC=2OA=2OB,BM=2OB,∴AC:BM=2OB:2OB=,即菱形较长的对角线与较短的对角线之比是:.故选A.【考点】1.菱形的性质;2.勾股定理.39.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为()A.9:4B.3:2C.4:3D.16:9【答案】D.【解析】试题解析:设BF=x,则CF=3-x,B'F=x,又点B′为CD的中点,∴B′C=1,在Rt△B′CF中,B'F2=B′C2+CF2,即x2=1+(3-x)2,解得:x=,即可得CF=3-=,∵∠DB′G+∠DGB'=90°,∠DB′G+∠CB′F=90°,∴∠DGB′=∠CB′F,∴Rt △DB′G ∽Rt △CFB′,根据面积比等于相似比的平方可得:.故选D .【考点】翻折变换(折叠问题)40. 如图,在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 沿边AB 向点B 以1cm/s 的速度移动;同时,点Q 从点B 沿边BC 向点C 以2cm/s 的速度移动,有一点到终点运动即停止.问:(1)几秒钟后△PBQ 的面积等于8cm 2?(2)几秒钟后PQ ⊥DQ ?(3)是否存在这样的时刻,使S △PDQ =8cm 2,试说明理由.【答案】(1)2秒或4秒;(2)或6;(3)不存在.【解析】(1)表示出PB ,QB 的长,利用△PBQ 的面积等于8cm 2列式求值即可;(2)如果PQ ⊥DQ ,则∠DQP 为直角,得出△BPQ ∽△CQD ,即可得出,再设AP=x ,QB=2x ,得出,求出x 即可; (3)设出发秒x 时△DPQ 的面积等于8平方厘米,根据三角形的面积公式列出方程,再根据根的判别式判断方程是否有解即可.试题解析:(1)设x 秒后△PBQ 的面积等于8cm 2.则AP=x ,QB=2x .∴PB=6-x .∴×(6-x )2x=8,解得x 1=2,x 2=4,答:2秒或4秒后△PBQ 的面积等于8cm 2;(2)设x 秒后PQ ⊥DQ 时,则∠DQP 为直角,∴△BPQ ∽△CQD ,∴, 设AP=x ,QB=2x .∴, ∴2x 2-15x+18=0,解得:x=或6,答:秒或6秒钟后PQ ⊥DQ ;(3)设出发秒x 时△DPQ 的面积等于8cm 2.∵S 矩形ABCD -S △APD -S △BPQ -S △CDQ =S △DPQ∴12×6-×12x-×2x(6-x)-×6×(12-2x)=8,化简整理得 x2-6x+28=0,∵△=36-4×28=-76<0,∴原方程无解,∴不存在这样的时刻,使S=8cm2.△PDQ【考点】1.矩形的性质;2.勾股定理.41.已知平行四边形ABCD的周长为28,过顶点D作直线AB、BC的垂线,垂足分别为E、F,若DE=3,DF=4,则BE+BF=___________.【答案】【解析】本题主要考查平行四边形的性质,勾股定理,合并同类二次根式等知识点,关键在于根据∠A为锐角或∠D为锐角分情况进行讨论,根据平行四边形的面积公式和周长定理正确的列出方程组,并认真的求解,推出AB和BC的长度,熟练运用数形结合的思想进行求解.根据∠A为锐角或∠D为锐角分情况进行讨论,由▱ABCD的周长为28cm,DE⊥直线BC,DF⊥直线AB,垂足分别为E、F,且DE=3cm,DF=4cm,构造方程求解即可求得答案.解:对于平行四边形ABCD有两种情况:(1)当∠A为锐角时,如图1,设BC=a,AB=b,∵平行四边形ABCD,DE⊥AB,DF⊥BC,∴AB×DE=BC×DF,AB=CD,BC=DA,又∵DE=3,DF=4,∴3a=4b,∵平行四边形ABCD的周长为28,∴2(a+b)=28,∴a+b=14,解方程组,∴由②得:a=14-b③,∴把③代入①得:b=6,∴a=8,∴BC=8,AB=6,∴AB=CD=6,AD=BC=8,∴在Rt△ADE中,CE=3,∴BE=BC-CE=8-3,∴在Rt△ADF中,AF=4,∵F点在AB的延长线上,∴BF=AF-AB=4-6,∴BE+BF=(8-3)+(4-6)=2+,(2)当∠D为锐角时,如图2,设BC=a,AB=b,∵平行四边形ABCD,DE⊥AB,DF⊥BC,∴AB×DE=BC×DF,AB=CD,BC=DA,又∵DE=3,DF=4,∴3a=4b,∵平行四边形ABCD的周长为28,∴2(a+b)=28,∴a+b=14,解方程组,∴由②得:a=14-b③,∴把③代入①得:b=6,∴a=8,∴BC=8,AB=6,∴AB=CD=6,AD=BC=8,∴在Rt△ADE中,CE=3,∴BE=BC+CE=8+3,∴在Rt△ADF中,AF=4,∵F点在AB的延长线上,∴BF=AF+AB=4+6,∴BE+BF=(8+3)+(4+6)=14+7,故答案为:14+7或2+.【考点】1.平行四边形的性质;2.勾股定理.42.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB="AC"B.∠BAE=∠CAD C.BE="DC"D.AD=DE【答案】D【解析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,由△ABE≌△ACD,∠1=∠2,∠B=∠C,可知AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【考点】全等三角形的性质43.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP =EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD= EC.其中正确结论的序号是.【答案】①②④⑤.【解析】①正确,连接PC,易证PC=EF,PC=PA,所以AP=EF;②正确;延长AP,交EF于点N,则∠EPN=∠BAP=∠PCE=∠PFE,可得AP⊥EF;③错误,由于P是动点,所以△APD一定是等腰三角形错误;④正确;∠PFE=∠PCE=∠BAP;⑤正确;PD=PF=CE;所以正确的有①②④⑤.【考点】正方形的性质;矩形的性质.44.已知△ABC的面积为100,它的内切圆半径为5,则△ABC的周长为.【答案】40.【解析】如图,⊙O是△ABC的内切圆,切点分别为D,E,F.连OA,OB,OC,OD,OE,OF.则OD⊥AB,OE⊥BC,OF⊥AC,且OE=OF=OD=2,S△ABC =S△AOB+S△OBC+S△OAC=×5×AB+×5×BC+×5×AC=100,∴AB+AC+BC=40.故答案为:40.【考点】三角形的内切圆与内心.45.若四边形ABCD是圆内接四边形,且∠BAC=120°,则∠BDC=_ °.【答案】60°【解析】因为四边形ABCD是圆内接四边形,所以∠BAC+∠BDC=180°,因为∠BAC=120°,所以∠BDC=190°-120°=60°.【考点】圆内接四边形的性质.46.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)根据平行四边形的性质、等腰三角形的性质,利用全等三角形的判定定理SAS可以证得△ADC≌△ECD;(2)利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证得四边形ADCE是平行四边形,所以有一个角是直角的平行四边形是矩形.试题解析:证明:(1)∵四边形ABDE是平行四边形,∴AB∥DE,AB=DE;∴∠B=∠EDC;又∵AB=AC,∴AC=DE,∠B=∠ACB,∴∠EDC=∠ACD;∵在△ADC和△ECD中,,∴△ADC≌△ECD(SAS);(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD;又∵BD=CD,∴AE=CD,∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC中,AB=AC,BD=CD,。
中考复习初中数学几何证明经典试题(含答案)
初中几何证明题经典题(一)1、已知:如图,0是半圆的圆心,C、E是圆上的两点,CD丄AB , EF丄AB , EG丄CO. 求证:CD = GF .(初二).如下图做GH丄AB,连接EO。
由于GOFE四点共圆,所以/ GFH =Z OEG, 即厶GHFOGE,可得EO = GO = CO,又CO=EO,所以CD=GF 得证。
GF GH CD2、已知:如图,P是正方形ABCD内点,/ PAD =Z PDA = 15°. 求证:△ PBC是正三角形.(初二)3、如图,已知四边形ABCD、A i B i C i D i都是正方形,A2、B2、C2、D2分别是AA i、BB i、CC i、DD i的中点.及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP = AQ .(初二)3、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN P 、Q .4、 1、求证:四边形 A 2B 2C 2D 2是正方形.(初二)已知: 求证: 如图,在四边形 的延长线交 / DEN = Z△ ABC 中, MN F .ABCD 中,AD = BC , M 、N 分别是 AB 、CD 的中点,AD 、BC 于E 、F .经典题(二)已知: (1) 求证:AH = 20M ;(2) 若/ BAC = 60°,求证:H 为垂心 (各边高线的交点),0为外心,且 0M 丄BC 于M . AH = A0 .(初二)2、设MN 是圆O 外一直线,过O 作OA 丄MN 于A ,自A 引圆的两条直线,交圆于DCGN求证:AP = AQ .(初二)ECAM NP4、如图,分别以厶 ABC 的AC 和BC 为一边,在△ ABC 的外侧作正方形 ACDE 和正方形 CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于 AB 的一半.(初二)经典题(二)1、如图,四边形 ABCD 为正方形, 求证:CE = CF .(初二)2、如图,四边形 ABCD 为正方形,DE // AC ,且CE = CA ,直线EC 交DA 延长线于F . 求证:AE = AF .(初二)DE // AC , AE = AC , AE 与 CD 相交于 F .FEAD1、设P 是边长为1的正△ ABC 内任一点,4、如图,PC 切圆0于C , AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于3、设ABCD 为圆内接凸四边形,求证: AB • CD + AD • BC = AC • BD .(初三)B 、D .求证: AB = DC , BC = AD .(初三)1、已知:△ ABC 是正三角形,P 是三角形内一点 求:/ APB 的度数.(初二)2、设P 是平行四边形 ABCD 内部的一点,且/求证:/ PAB = Z PCB .(初二)4、平行四边形 ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE = CF .求证:/ DPA =Z DPC .(初二)AO DB EFC求证:4、如图,△ ABC 中,/ ABC =Z ACB = 80°, D、E 分别是AB、AC 上的点,/ DCA = 30°, / EBA = 20°,求/ BED 的度数. LiB C经典题(一)1•如下图做GH丄AB,连接E0。
中考数学图形与证明热点专题
热点专题六 图形与证明【考点聚焦】图形与证明是空间与图形的核心内容之一,它贯穿在整个几何知识的学习及运用之中. 内容主要有:了解定义、命题、定理、互逆命题、反证法的含义;掌握平行线的性质定理和判定定理、全等三角形的性质定理和判定定理、直角三角形全等的判定定理;掌握三角形的内角和定理和推论、角平分线和垂直平分线性质定理及逆定理、三角形中位线定理;掌握等腰三角形、等边三角形、直角三角形性质与判定定理;掌握平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理.【热点透视】热点1:把握三角形全等的性质,考查线段相等的证明.例1 (2008郴州)如图1,菱形ABCD 中,E F ,分别为BC 、CD 上的点,且CE CF =.求证:AE AF =.分析:本题中灵活运用菱形的性质:四边相等,两组对角分别相等.找到全等三角形的对应元素是解本题的关键.证明:∵四边形ABCD 是菱形,∴AB BC CD AD ===,B D ∠=∠.∵CE CF =,∴BE DF =.在ABE △与ADF △中,AB AD =,B D ∠=∠,BE DF =.∴ABE ADF △≌△,∴AE AF =.点评:掌握全等三角形的概念和性质,还要能准确辨认全等三角形中的对应元素,通过证明全等来证明线段相等或者角相等.热点2:紧扣三角形全等的判定,考查三角形全等的开放型问题.例2 (2008湘潭)如图2,在正五边形ABCDE 中,连结对角线AC 、AD 和CE ,AD 交CE 于F .(1)请列出图中两对全等三角形_________________(不另外添加辅助线);(2)请选择所列举的一对全等三角形加以证明.分析:由正多边形的性质可知:正多边形的各边相等,各角相等.这是一类结论不惟一的试题.解决此类问题的关键是依据图形,通过准确辨认全等三角形的对应元素,证明三角形全等.解:(1)△ABC ≌△AED ,△ABC ≌△EDC ;(2)证明:在正五边形ABCDE 中,AB BC CD DE EA ====,∠EAB =∠B =∠BCD =∠CDE =∠DEA ,故在△ABC 与△AED 中,AB =AE ,∠B =∠DEA ,BC =DE ,∴△ABC ≌△AED , 在△ABC 与△EDC 中,AB =ED ,∠B =∠CDE ,BC =DC ,∴△ABC ≌△EDC .点评:本考题题干简单清晰,但考点的内容与正多边形的知识相结合,需要具有分解基本图形的能力和基本的探究能力,才能顺利解题.热点3:合理添加辅助线,构造全等三角形解决相关问题.例3 (2008常德)如图3,已知AB AC =,(1)若CE BD =,求证:GE GD =;(2)若C E m B D =(m 为正数),试猜想GE 与GD 有何关系(只写结论,不证明).分析:证明在不同三角形中的两条线段和两个角相等的常用方法就是证明两个三角形全等,要证明线段GE 和GD 相等,在辨认三角形全等对应元素时,发现图中没有三角形全等,需要通过合理添加辅助线构造三角形全等.(1)证明:过D 作DF ∥CE ,交BC 于F ,∠E =∠GDF ,∵AB =AC ,DF ∥CE ,∴∠DFB =∠ACB =∠ABC ,∴DF =DB =EC .又∠DGF =∠EGC ,∴△GDF ≌△GEC .∴GE =GD .(2)GE m GD =.点评:在证明三角形全等时,可以通过翻折法、旋转法、平移法找到对应元素,或者合理添加辅助线构造全等三角形的对应元素.热点4:定义、命题、定理、互逆命题的考查.例4 (2008永州)下列命题是假命题的是( )(A)四个角相等的四边形是矩形(B)对角线互相平分的四边形是平行四边形(C)四条边相等的四边形是菱形(D)对角线互相垂直且相等的四边形是正方形分析:掌握平行四边形、矩形、菱形、正方形的判定方法是解决本题的关键. 解:选(D ).点评:本题考查同学们对平行四边形及特殊的平行四边形的判定方法的把握,遇到这种题,同学们可利用数形结合的思想将其中的文字语言转化为图形语言,便能迅速作出准确判断.热点5:平行四边形、矩形、菱形、正方形、等腰梯形的性质与判定的考查.例5 (2008娄底)如图5,已知点D 在ABC △的BC △边上,DE AC ∥交AB 于E ,DF AB ∥交AC 于F .(1)求证:AE DF =;(2)若AD 平分BAC ∠,试判断四边形AEDF 的形状,并说明理由.分析:本题主要考查同学们对平行四边形及特殊的平行四边形的判定方法的把握.证明:(1)∵DE AC ∥,∴ADE DAF ∠=∠,同理DAE FDA ∠=∠.∵AD DA =,∴ADE DAF △≌△,∴AE DF =.(2)若AD 平分BAC ∠,四边形AEDF 是菱形.证明:∵DE AC ∥,DF AB ∥,∴四边形AEDF 是平行四边形,∵FAD EAD ∠=∠,∴AF DF =,∴平行四边形AEDF 为菱形.点评:三角形全等及平行四边形的性质都可以证明两线段相等,此类题起点低,注重基础知识及基本技能的考查,考查了同学们最基本的几何推理证明能力.热点6:圆的有关概念及性质的考查例6 (2008益阳)如图6,AB 是O 的直径,C 是O 上一点,过圆心O 作OD AC ⊥,D 为垂足,E 是BC 上一点,G 是DE 的中点,OG 的延长线交BC 于F .(1)图中线段OD 、BC 所在直线有怎样的位置关系?写出你的结论,并给出证明过程;(2)猜想线段BE EF FC ,,三者之间有怎样的数量关系?写出你的结论,并给出证明过程.分析:平面内两直线的位置关系只有平行和相交两种,先通过观察图形可猜想OD ∥BC ,再利用圆的有关概念及性质得证.解:(1)结论:OD BC ∥.证明:∵AB 是O 的直径,C 是O 上一点,∴90ACB ∠=,即BC ⊥AC .又OD ⊥AC ,∴OD ∥BC .(2)结论:EF BE FC =+.证明:∵OD ⊥AC ,∴AD =DC .又O 为AB 的中点,∴OD 是△ABC 的中位线.∴BC =2OD .在△ODG 与△EFG 中,∵DG =EG ,∠GOD =∠GFE ,∠ODG =∠FEG ,∴ODG FEG △≌△.∴OD =EF .∴22BE EF FC BC OD EF ++===.∴EF BE FC =+.点评:为了使同学们对推理论证的必要性有更深刻的理解,新课程中的逻辑推理常在探究、猜想的前提下进行.本题就采用了这种方式.该题主要考查了直径与圆周角、垂直于弦的直径等概念之间的联系.【考题预测】1.下列命题中真命题的个数是( )①两个相似多边形面积之比等于相似比的平方;②两个相似三角形的对应高之比等于它们的相似比;③在ABC △与A B C '''△中,AB AC A B A C ='''',A A '∠=∠,那么ABC A B C '''△∽△; ④已知ABC △及位似中心O ,能够作一个且只能作一个三角形,使位似比为0.5. (A)1个 (B)2个 (C)3个 (D)4个2.已知如图7,在四边形ABCD 中,对角线AC ,BD 交于点E ,且AC 平分∠DAB ,AB =AE ,AC =AD .下四个结论:①AC ⊥BD ;②CB =DE ;③12D B C D A B ∠=∠;④△ABE 是等边三角形.请写出正确的结论序号____________(把你认为正确的结论序号填上,并证明其中一个).3.如图8,菱形ABCD 中,E 、F 分别为CB 、CD 延长线上的点,且CE CF =.求证:AE AF =.4.如图9,在Rt △ABC 中,90ACB ∠=,2AB AC =,DE 垂直平分BC ,垂足为D ,交AB 于点E .又点F 在DE 的延长线上,且2EF DE =.求证:四边形ACEF 是菱形.5.如图10,D 是ABC △边AB 上一点,DE 交AC 于点E ,DE EF =,FC AB ∥.求证:AE CE =.6.如图11,已知AC 切O 于A ,CB 顺次交O 于D B ,两点,6AC =,5BD =,连结AD ,AB .(1)求证:CAD CBA △∽△;(2)求线段DC 的长.7.如图12,ABC △是O 的内接三角形,AC BC =,D 为O 中上一点,延长DA至点E ,使CE CD =.(1)求证:AE BD =;(2)若AC BC ⊥,求证:AD BD CD +=.8.如图13,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连结AE 并延长交BD 于点F ,直线CF 交AB 的延长线于点G .(1)求证:点F 是BD 中点;(2)求证:CG 是O 的切线;(3)若2FB FE ==,求O 的半径.。
学年度新人教版初中数学九年级下册中考专项总复习考点-图形的认识和证明及答案-精品试卷
九年级数学总复习第四部分图形的认识和证明Ⅰ、三角形和相似形一、考点分析及难点提示1.熟练掌握线段的垂直平分线和角平分线的性质、判定及作图方法.2.熟练掌握三角形的中位线定理.3.三角形全等的证题思路4.等腰三角形的性质与判定提示:“三线合一”的应用是等腰三角形的重点,在证明过程中,常常要做辅助线�底边上的高,以便使用这个性质证明线段相等、垂直或角相等.5.Rt△知识注意问题(1)勾股定理常要用到:两条直角边的平方和等于斜边的平方.(2)直角三角形中线定理也是常用到的.如图,由∠C=90°,D为AB中点,得 .6.相似三角形三角形相似的判定:两角对应相等;三边对应成比例;两边对应成比例且夹角相等.相似比问题:线段比等于相似比;面积比等于相似比的平方.相似三角形中常见的基本图形如图:注意:在判断相似三角形的有关问题时,不要忽视公共角和对顶角,另外,很多题目的结论是等积式,只要把等积式化成比例式,就能找到解决问题的途径.7.相似三角形的应用(1)位似图形.(2)平行投影在太阳光下同一时刻的物高与影长成比例.即8.黄金分割(1)定义:点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割,点C叫黄金分割点,叫黄金比.(2)比值: .(3)主要是应用于计算和作图(黄金分割点的几种作法,作黄金矩形).9.几何证明中辅助线的特殊作法1.平移法:平行移动线段到相关位置.2.对称法:利用轴对称和中心对称判断相关线段的关系.3.旋转法:利用旋转作图的性质判断相关线段和角的关系.二、三角形部分典型题1.已知A、B两点,以A、B为其中两个顶点,作等腰直角三角形,一共可作个.2.如图,平面镜A与B之间的夹角为110°,光线经过平面镜A反射到平面镜B上,再反射出去,若∠1=∠2,则∠1的度数为.3.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转45°.某一指令规定,机器人先向正前方行走1米,再左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,一共走了米.4.如图,OA=OB=OC,∠B=40°,∠C=25°,则∠BOC的度数为5.在△ABC中,∠A=50°,AB=AC,AB的垂直平分线交AC于D,则∠DBC的度数为.6.如图,△ABC中,AB=AC,D是BC上的一点,要使△ABD与△ACD全等,只需再添上一个条件,这个条件可以是.7.已知三角形的三边是方程的两根,那么它的周长是8.如图,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需要在它的内部添加一些钢管EF、FG、GH……,添加的钢管的长度都与OE相等,那么最多能添加这样的钢管根.9.折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与对角线B 重合,得折痕DG,如图,若AB=2,BC=1,求AG的长.10.如图是一三角形的纸片ABC,∠A=65°,∠B=75°,将纸片的一角C沿D 折叠,使点C落在△ABC内,若∠1=20°,求∠2的度数.11.如图,在△ABC中,延长BC到D,延长AC到E,AD与BE相交于F,∠ABC=45°试将下列设定中的两个作为题设,另一个作为结论,组成一个正确命题,并证明这个命题.①AD⊥BD;②AE⊥BF;③AC=BF.12.如图,在3×3方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫格点三角形.请画出三个面积为3的格点三角形.要求:①与例图不同;②不重复(两个全等图形视为重复);③在提供的3张图纸上各画一个.三、实战练习(一)填空题1.直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积是_________ 2.如果一个角的余角是35度,那么这个角的补角是_________度.3.如图,D是ΔABC的AB边上的一点,过点D作DE//BC,交AC于E.已知AD∶DB=1∶3,那么SΔADE∶SΔABC=_________.(二)解答题1.如图,F、C是线段BE上的两点,BF=CE,AB=DE,∠B=∠E,QR//BE.求证ΔPQR是等腰三角形.2.已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,求证:ΔADQ∽ΔQCP.3.已知:如图,正方形DEFG内接于RtΔABC,EF在斜边BC上,EH⊥AB于H.求证:(1)ΔADG∽ΔHED;(2)EF2=BE·FC.四、相似形部分典型题1.如图,把菱形ABCD沿着对角线的AC方向移动到菱形A′B′C′D′的位置若,且,则菱形移动的距离AA′是.2.上午10时,校园内的旗杆影长为15米,与此同时,高为1.5米的测杆影长为2.5米,则旗杆的高是.3.已知,如图,矩形EFGH的顶点在△ABC的三边上,AD⊥BC,若BC=10cm,AP=16cm 矩形的周长为24cm,则△ABC的面积是.4.已知,1,,2三个数,请你再添上一个数,写出一个比例式5.某学生想利用树影测量校园内的树高,他在某一时刻测得小树高为1.5米时其影长为1.2米,当他测量教学楼旁的一棵大树影长时,因为大树靠近教学楼,有一部分影子在墙上,经过测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高为米.6.在矩形ABCD中,DH⊥AC于点H,若AH=6,CH=2,则S矩形ABCD=7.已知:如图,正方形ABCD中,DC=12,E是CD上的一点,DE=5,AE的中垂线分别交AD、BC于M、N,垂足为P,则PM:PN= .8.在梯形ABCD中,AD∥BC,两条对角线相交于点O,若AD:BC=2:3,那么S△AO S△ACD= .9.已知△ABC、△DEF均为正三角形,D、E分别在AB、BC上,请你找出一个与△DEF相似的三角形,并加以证明.10.一块直角三角形木板的一条直角边长AB为1.5米,面积为1.5平方米,要把它加工成一个面积最大的正方形桌面,甲、乙二位同学的加工方法如图,请你用学过的知识,说明谁的加工方法符合要求.11.如图,ABCD是平行四边形,P是BD上的任意一点,过P的直线分别交AB DC于E、F,交DA、BC的延长线于G、H.求证:(1)PE·PG=PF·PH;(2)当过P点的直线绕点P旋转到F、H、C重合时,请判断PE、PC、PG的关系,并给出证明.12.点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数.13.已知直线L是线段AB的垂直平分线,垂足为D,点P为L上的一个动点(点P与D不重合),连结AP、BP,作AE⊥BP于点E,交L于点C,连结BC.试问当点P在L上运动且与点D的距离变大时,S△PAB·S△CAB的值变小、变大、还是不变?提出你的猜想并加以证明.14.点E是四边形ABCD的对角线BD上的一点,且∠BAC=∠BDC=∠DAE.(1)求证:BE·AD=CD·AE;(2)根据图形的特点,猜想可能等于哪两条线段的比(只需写出图中已有的线段中的一组即可),并证明你的猜想.Ⅰ、三角形与相似形参考答案二、三角形部分典型题1.6 2.35°3.8 4.130°5.15°6.略7.5 8.7 9.10.40°11.略12.略三、实战练习(一)1.30cm22.125 3.1:16(二)1.证△ABC≌△DEF2.略3.略.证△CFG≌△BED四、相似形部分典型题1.2.9m 3.100cm24.略5.9.4 6.7.5:19 8.2:59.△GAD;△ECH;△GFH;证明略10. ;11.略.PC2=12.CD2=AC·DB;120°13,不变.证△ACD≌△PAD;14,证△ABE∽△ACD;Ⅱ、四边形一、考点分析四边形一部分,是三角形内容的应用和深化.这部分中考试题所考查的知识点主要有:1.根据多边形的内、外角和公式确定多边形的边数.2.会借助平行四边形的性质定理解决线段、角相等和求值等问题.3.能借助定义及判定定理判断四边形中的特殊四边形.4.会根据平行四边形的性质定理确定特殊四边形具有的性质,并结合其定义和判定定理判断与四边形有关的真假命题.5. 明确轴对称图形、中心对称图形的特性及其规律,并能结合实际图形予以辨认.6. 利用特殊四边形的面积公式(菱形、梯形面积等)解决与面积有关的几何问题(包括应用问题),并会解答折痕问题.二、难点提示1.四边形一章是平行线和三角形知识的应用和深化,因此通常需要添加辅助线把四边形转化为三角形,把梯形转化成平行四边形和三角形,把多边形转化为三角形或特殊四边形.2.矩形、菱形、正方形的性质都是在平行四边形的基础上扩展的,而平行四边形的有关性质和定理通常是证明线段相等,两个角相等,两条直线平行或垂直的依据.3.连接平行四边形和特殊平行四边形的对角线是常添辅助线,它可将四边形问题转化为三角形问题解决.4.另一个容易出问题的地方,是梯形辅助线的作法,常见的辅助线总结如下(1)过上底一端点,作一腰的平行线,如图(1).(2)过上底两端点,作下底的垂线,如图(2).(3)过上底的一端点作一对角线的平行线如图(3).(4)连结上底一端点和一腰中点的直线与下底延长线相交,通过构造全等三角形进行证明和计算如图(4).(5)延长梯形的两腰,如图(5).(6)作梯形的中位线,如图(6).5.菱形的面积公式(a, b为菱形对角线的长度).S菱形=ch (c, h分别为菱形边长和边上的高) .6.折痕问题的关键(1)解决折痕问题的基本原理是轴对称性质.(2)解决折痕问题的基本途径是借助勾股定理构建方程.三、四边形部分典型题1.在梯形ABCD中,AD∥BC,AD=2,BC=8,对角线AC=6,BD=8,则面积是.2.已知菱形的两条对角线长分别是4cm和10cm,则它的边长是3.已知:平行四边形ABCD中,M是对角线AC上的一点,连结BM、DM,则图中面积相等的三角形有对.4.在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成三角形和梯形的是( )5.在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线AC折叠点D落在△ABC所在平面内的点E处,如果AE过BC的中点,那么平行四边形ABCD的面积是.6.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中三个分别是三角形,正四边形, 正六边形,那么另外一个是正形.7.如图,在菱形ABCD中, ∠BAD=80°,AB的垂直平分线交对角线AC于点F,E 为垂足,连结DF,则∠CDF等于.8.A、B、C、D在同一平面内,从⑴AB∥CD;⑵AB=CD;⑶BC∥AD;⑷BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有种.9.如图,把一个正方形三次对折后,沿虚线剪下,则所得的图形是( )10.有一腰长为5cm,底为4cm的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形,用这两个直角三角形纸片拼成的平面图形中有个不同的四边形.11.把一块正六边形硬纸片作成一个底面仍为正六边形且高相等的无盖纸盒,需在每一个顶点处剪去一个四边形,那么剪去的四边形中最小的角是度.12.一个画家把12个边长是1cm的正方体在地面上摆成三层,最上层一块,第二层四块,然后,他把露出的表面都涂上颜色,那么被涂上颜色的总面积是.13.若将四根木条钉成的矩形木框变形为平行四边形的形状,使其面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.在矩形ABCD中,AB=3,BC=2,E为BC的中点,F在AB上,且BF=2AF,则四边形AFEC的面积为.15.如图,用一条宽相等的足够长的纸带,打一个结,然后轻轻拉紧,压平,就可以得到一个正五边形ABCDE,其中∠BAC=度.16. 如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判断方法是.17.如图,正方形硬纸片的边长是4,点E、F分别是AB、BC的中点,若沿虚线剪开,拼成的图中的阴影部分面积是.18.如图,平行四边形ABCD中,AE、CF分别是∠BAD和∠BCD的角平分线,根据图形,添加一个条件,使四边形AECF是菱形,则添加的一个条件可能是.19.如图,边长是3的正方形ABCD绕点C按顺时针方向旋转300后得到正方形EFCG,EF交AD于点H,那么DH的长是.20.等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC于E,AE=BE,BF⊥AE于F,线段BF与图中的哪一条线段相等?先写出你的猜想,再加以证明.21.把两个全等的等腰直角三角板ABC和EFG(直角边长为4)叠放在一起,且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现在将三角板EFG绕点O顺时针旋转一个锐角,四边形CHGK是旋转过程中两块三角板的重叠部分.(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(2)连结HK,在上述旋转过程中,设BH=x,△GHK的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围.四、实战练习(一)选择题1.在正方形ABCD中,E、F两点分别是BC、CD边上的点,若ΔAEF是边长为的等边三角形,则正方形ABCD的边长为()A. B. C. D.22.已知下列图形:(1)矩形;(2)菱形;(3)等腰梯形;(4)等腰三角形其中是轴对称图形,而不是中心对称图形的序号是()A.(1)(2)B.(2)(3)C.(1)(3)D.(3)(4)3.以不在同一直线上的三个点为顶点作平行四边形,最多能作()A.4个B.3个C.2个D.1个(二)解答题1.已知:如图,□ABCD中,E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.2.如图,将□ABCD沿AC折叠,点B落在B′处,AB′交DC于点M.求证:折叠后重合的部分(即ΔMAC)是等腰三角形.3.已知在梯形ABCD中,AD//BC,AD<BC,且AD=5,AB=DC=2.(1)如图,P为AD上的一点,满足∠BPC=∠A.①求证:ΔABP∽Δ在DPC;②求AP的长;(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q,那么①当点Q在线段DC的延长线上时,设AP=x, CQ=y,求y关于x的函数解析式,并写出函数y的取值范围;②当CE=1时,求出AP的长.Ⅱ、四边形参考答案三、四边形部分典型题1.24 2.3.三4.D 5.6.四边7.60°8.四9.C 10四11.60 12.33cm213.30 14.2 15.36 16.略17.4 18.AE=CE 19.20.BF=DE 21.BH=CK;不变;S=4;;0<x<4四、实战练习(一)1.A 2.D 3.B(二)1.证△AEF≌△DEC2.证∠BAC=∠MAC=∠ACM3.⑴①略②1、4 ⑵①;1<x<4 ②AP=4Ⅲ、解直角三角形一、考点分析及难点提示1.特殊角的三角函数值,可利用特殊的直角三角形三边的比进行记忆2.解直角三角形(1)直角三角形角的关系:∠A+∠B=90°.(2)直角三角形边的关系:a2+b2=c2 .(3)直角三角形的边角关系:, , , .在直角三角形中,除直角外的其余五个元素中,已知其中两个(至少有一个是边),即可求出其余三个.3.应用问题直角三角形边角关系的应用类型主要归结为:求解距离、测量物体高度、度量角度、计算面积等解直角三角形的数学问题.步骤为:画出示意图,把实际问题抽象成数学问题;找出直角三角形或通过作辅助线构造直角三角形;利用直角三角形边角关系求解.(1)仰角、俯角的概念如图1所示,在测量时,视线与水平线所成的角中,视线在水平线上方的叫仰角,在水平线下方的叫俯角.(2)坡度(坡比)、坡角的概念如图2所示,我们通常把坡面的铅直高度h和水平宽度L的比叫做坡度(或叫坡比),用字母i表示,即.这里,α是坡面与水平面的夹角,这个角叫坡角.(3)方向角如图3所示,视线(视点与目标的连线)与指北(南)线的夹角.(4)直角三角形应用题的常用图形二、解直角三角形部分典型题1.在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,,则AD的长是.2.如图,测量人员在山脚A处测得山顶B的仰角为45°,沿着坡角为30°的山坡前进1000米,到达D处,在D处测得山顶B的仰角为60°,则山高BC大约是(精确到0.01米).3.升国旗时,某同学站在离旗杆24米处行注目礼,他的视线的仰角是30°,若双眼离地面1.5米,则旗杆的高度是.4.直角三角形的周长是,斜边上的中线是1,则它的面积是5.如图,在高为2米,倾斜角为30°的楼梯表面铺地毯,地毯的长度至少需要米.(精确到0.1米)6.如图,矩形ABCD中,AC和BD相交于点O,AE⊥BD于点E,若OE:OD=1:2,则DE= cm.7.如图,是一条山坡路的横截面,CM是一段平路,它高出水平地面24米,从A到B,从B到C是两段不同坡角的山坡路,山坡路AB的路面长100米,它的坡角∠BAE=5°,山坡路BC的坡角∠CBH=12°,为了方便交通,政府决定把山坡路BC 的坡角降到与AB的坡角相同,使得∠DBI=5°.(1)求山坡路AB的高度BE;(精确到0.01米)(2)降低坡度后,整个山坡的路面加长了多少米?(精确到0.01米)(参考数据sin5°=0.0872,cos5°=0.9962,sin12°=0.2079,cos12°=0.97818.如图,甲乙两只捕捞船同时从A港出海捕鱼,甲船以每小时千米的速度沿北偏西60°的方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C处,此时甲船发现渔具忘在乙船上,于是甲船快速沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是多少?9.如图,某货船以每小时20海里的速度把一批重要物质由A处运往正西方向的B处,经过16小时的航行到达,到达后立即卸货,此时接到气象部门的通知,一台风中心正以每小时40海里的速度由A向北偏西60°的方向移动,距离台风中心200海里的圆形区域(包括边界)都会受到影响.(1) 问B处是否会受到影响?请说明理由;(2) 为了避免受到台风的影响,该货船应在多少小时内卸完货物?10.如图,已知测速站P到公路l的距离PO为40米,一辆汽车在公路l上行驶,测得此车从点A行驶到点B所用的时间为2秒,并测得∠APO=60°,∠BPO=30°计算此车从A到B的平均速度是多少?(结果保留四个有效数字)并判断此车是否超过了每秒22米的限制速度.11.在一次实践活动中,某课题小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案,①在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;②量出测点到旗杆底部的水平距离AN=m;③量出测倾器的高度AC=h.根据上述测量数据,即可求出旗杆的高度MN.如果测量工具不变,请仿照上述过程,设计一个测量某小山高度MN的方案.要求:(1)在图中,画出你测量小山高度的示意图,并标出适当的字母;(2)写出你的设计方案.三、实战练习(一)填空或选择1.在△ABC中,若sinA=1,tanB=,则∠C=度.2.在△ABC中,若∠C=90°,∠A=45°,那么tanA+ sinB= ,△AB 为对称图形(只填轴或中心).3.在△ABC中,∠C=90°,∠A=30°,sinA+cosB的值等于()A. B.1 C. D.4.菱形ABCD的边长为5,AC、BD相交于点O,AC=6,若∠ABD=α则下列式子正确的是()A. B. C. D.5.计算:= .6.计算:= .7. 计算:=_____.(二)证明与解答1.如图,△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,.求:(1)DC的长;(2)sinB的值.2.如图,在△ABC中,AD是BC边上的高,∠B = 30°,∠C = 45°,BD=10,求AC.3.如图,在△ABC中,AB=5,AC=7,∠B =60°。
初中数学总复习图形与证明
(23)图形与证明(1)了解证明的含义〖考试内容〗定义、命题、逆命题、定理.定理的证明.反证法.〖考试要求〗:①理解证明的必要性.②通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设)和结论.③结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立.④理解反例的作用,知道利用反例可以证明一个命题是错误的.⑤通过实例,体会反证法的含义.⑥掌握用综合法证明的格式,体会证明的过程要求步步有据.(2)掌握证明的依据〖考试内容〗一条直线截两条平行直线所得的同位角相等.两条直线被第三条直线所截,若同位角相等,那么这两条直线平行.若两个三角形的两边及其夹角分别相等,则这两个三角形全等.两个三角形的两角及其夹边分别相等,则这两个三角形全等.两个三角形的三边分别相等,则这两个三角形全等.全等三角形的对应边、对应角分别相等.〖考试要求〗运用以上6条“基本事实”作为证明的依据.(3)利用(2)中的基本事实证明下列命题〖考试内容〗平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行).三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角).直角三角形全等的判定定理.角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心).垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交干一点(外心).三角形中位线定理.等腰三角形、等边三角形、直角三角形的性质和判定定理.平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理.〖考试要求〗①会利用(2)中的基本事实证明上述命题.②会利用上述定理证明新的命题.③练习和考试中与证明有关的题目难度,应与上述所列的命题的论证难度相当.④通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值.A〖考点复习〗D [例1]如图,已知AD∥BC,AD=CB,求证:△DAC≌△BCA.(说明:证明过程中要求写出每步的证明依据)B C图3AB CD[例2]已知:如图,∠1=∠2,BD=BC.求证:∠3=∠4.ADCB 3 41 2[例3]如图,四边形ABCD 中,AC 垂直平分BD 于O ,(1)图中有多少对全等的三角形?请把它们写出来。
初三数学图形与证明试题
初三数学图形与证明试题1.若用半径为9,圆心角为的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是().A.1.5B.2C.3D.6【答案】C【解析】等弧长计算,半径为9,圆心角为的弧长=即这个圆锥的底面周长=6,即2r=6,故选C2.赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙。
如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米.【答案】25.【解析】根据垂径定理,得AD=AB=20米.设圆的半径是R,根据勾股定理,得R2=202+(R﹣10)2,解得R=25米.【考点】垂径定理的应用;勾股定理.3.如图,AB是⊙O的直径,AB=8,点M在⊙O上,,N是弧MB的中点,P是直径AB上的一动点,若MN=1,则周长的最小值为()A.4B.5C.6D.7【答案】B.【解析】本题考查的是轴对称﹣最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.作N关于AB的对称点N′,连接MN′,NN′,ON′,ON,由两点之间线段最短可知MN′与AB的交点P′即为△PMN周长的最小时的点,根据N是弧MB的中点可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论.作N关于AB的对称点N′,连接MN′,NN′,ON′,ON.∵N关于AB的对称点N′,∴MN′与AB的交点P′即为△PMN周长的最小时的点,∵N是弧MB的中点,∴∠A=∠NOB=∠MON=20°,∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4,∴△PMN周长的最小值为4+1=5.故选B.【考点】轴对称-最短路线问题;圆周角定理.4.观光塔是潍坊市的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是 m.【答案】135【解析】根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD= m,所以在Rt△ACD中,CD= AD=×=135m.【考点】解直角三角形的应用.5.长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.【答案】70.【解析】应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.试题解析:∵矩形的长和宽分别为a,b,周长为14,面积为10,∴a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.【考点】因式分解的应用.6.如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1B.2C.3D.4【答案】C.【解析】∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选C.【考点】平行四边形的性质.7.在3×3的方格中,A、B、C、D、E、F分别位于如图所示的小正方形的顶点上,从C、D、E、F四点中任意取一点,以所取得一点及点A、B为顶点画三角形,则所画三角形为等腰三角形的概率是.【答案】.【解析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,只有选取C、F点时,所画三角形是等腰三角形,即可得出答案;试题解析:根据从C、D、E、F四个点中任意取一点,一共有4种可能,只有选取C、D,F点时,所画三角形是等腰三角形,=.故P(所画三角形是等腰三角形)【考点】1.概率公式;2.等腰三角形的判定.8.如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ的面积为ycm2,y与x的函数图象如图②,则线段EF所在的直线对应的函数关系式为.【答案】y=-3x+18.【解析】根据从图②可以看出当Q点到B点时的面积为9,求出正方形的边长,再利用三角形的面积公式得出EF所在的直线对应的函数关系式.试题解析:∵点P沿边DA从点D开始向点A以1cm/s的速度移动;点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.∴当Q到达B点,P在AD的中点时,△PAQ的面积最大是9cm2,设正方形的边长为acm,∴×a×a=9,解得a=6,即正方形的边长为6,当Q点在BC上时,AP=6-x,△APQ的高为AB,∴y=(6-x)×6,即y=-3x+18.【考点】动点问题的函数图象.9.(3分)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为 cm.(结果保留π)【答案】.【解析】如图所示,∵无弹性的丝带从A至C,∴展开后AB=2πcm,BC=3cm,由勾股定理得:AC==cm.故答案为:.【考点】1.平面展开-最短路径问题;2.最值问题.10.(12分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB 于点E ,交CA 的延长线于点F .(1)求证:FE ⊥AB ;(2)当EF=6,时,求DE 的长.【答案】(1)证明见试题解析;(2)9.【解析】(1)连接AD 、OD ,由直径所对的圆周角是直角得出∠ADC=90°,由等腰三角形的性质可得到D 是BC 的中点,从而OD 是△ABC 的中位线,根据切线的性质证明结论;(2)由平行线分线段成比例定理,列出比例式计算得到答案.试题解析:(1)连接AD 、OD ,∵AC 为⊙O 的直径,∴∠ADC=90°,又∵AB=AC ,∴CD=DB ,又CO=AO ,∴OD ∥AB ,∵FD 是⊙O 的切线,∴OD ⊥EF ,∴FE ⊥AB ;(2)∵,∴,∵OD ∥AB ,∴,又EF=6,∴DE=9.【考点】1.切线的性质;2.相似三角形的判定与性质;3.综合题.11. (3分)如图,▱ABCD 的对角线AC 、BD 相交于点O ,EF 、GH 过点O ,且点E 、H 在边AB 上,点G 、F 在边CD 上,向▱ABCD 内部投掷飞镖(每次均落在▱ABCD 内,且落在▱ABCD 内任何一点的机会均等)恰好落在阴影区域的概率为( )A .B .C .D .【答案】C .【解析】∵四边形ABCD 为平行四边形,∴△OEH 和△OFG 关于点O 中心对称,∴S △OEH =S △OFG ,∴S 阴影部分=S △AOB =S 平行四边形ABCD ,∴飞镖(每次均落在▱ABCD 内,且落在▱ABCD 内任何一点的机会均等)恰好落在阴影区域的概率==.故选C . 【考点】1.几何概率;2.平行四边形的性质.12. 如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A ,B 两点,且与BC 边交于点E ,D 为BE 的下半圆弧的中点,连接AD 交BC 于F ,AC=FC .(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【答案】(1)见解析;(2)【解析】连结OA、OD,如图,根据垂径定理的推理,由D为BE的下半圆弧的中点得到OD⊥BE,则∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根据对顶角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC是⊙O的切线;由于圆的半径R=5,EF=3,则OF=2,然后在Rt△ODF中利用勾股定理计算DF的长.[来试题解析:(1)证明:连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF=.【考点】切线的判定13.(3分)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°【答案】B.【解析】∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=∠EFD=×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故选B.【考点】平行线的性质.14.(3分)如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()A.创B.教C.强D.市【答案】C.【解析】∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“建”与“强”是相对面.故选C.【考点】专题:正方体相对两个面上的文字.15.在面积为60的▱ABCD中,过点A作AE⊥直线BC于点E,作AF⊥直线CD于点F,若AB=10,BC=12,则CE+CF的值为()A.22+11B.22-11C.22+11或22-11D.22+11或2+【答案】D.【解析】分两种情况:①由平行四边形ABCD的面积求出AE=5,AF=6,再根据勾股定理求出BE、DF,求出CE、CF,即可得出结果;②CE=10-5,CF=6-10,即可得出结果.试题解析:分两种情况:①如图1所示:∠A为锐角时;∵平行四边形ABCD的面积=BC•AE=AB•AF=60,AB=10,BC=12,∴AE=5,AF=6,∵AE⊥直线BC于点E,作AF⊥直线CD于F,∴∠AEB=∠AFD=90°,∴BE=,DF=,∴CE=12+5,CF=10+6∴CE+CF=22+11;②如图2所示:∠A为钝角时;由①得:CE=10-5,CF=6-10,∴CE+CF=2+;故选D.【考点】平行四边形的性质.16.如图,在▱ABCD中,过A、C、D三点的⊙O交AB于点E,连接DE、CE,∠CDE=∠BCE.(1)求证:AD=CE;(2)判断直线BC与⊙O的位置关系,并说明理由;(3)若BC=3,DE=6,求BE的长.【答案】(1)证明见解析;(2)直线BC与⊙O相切,理由见解析;(3).【解析】(1)由平行四边形的性质得出∠AED=∠EDC,证出,即可得出AD=CE;(2)作直径CF,连接EF,则∠EFC=∠EDC,证出∠EFC=∠BCE,再由CF是⊙O的直径,得出∠FEC=90°,得出∠BCF=90°,即可得出结论;(3)证明△BCE∽△EDC,得出对应边成比例,即可得出结果.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AED=∠EDC.∴,∴AD=CE;(2)解:直线BC与⊙O相切,理由如下:如图所示:作直径CF,连接EF.则∠EFC=∠EDC,∵∠BCE=∠CDE,∴∠EFC=∠BCE.∵CF是⊙O的直径,∴∠FEC=90°,∴∠EFC+∠FCE=90°,∴∠BCE+∠FCE=90°∴∠BCF=90°.∴OC⊥CB.∴直线BC与⊙O相切;(3)解:∵四边形ABCD是平行四边形,∴AD=BC,AB∥CD,由(1)得:AD=CE,∴BC=CE,∵AB∥CD,∴∠BEC=∠DCE.又∵∠BCE=∠CDE,∴△BCE∽△EDC,∴,∵BC=3∴CE=3,即,解得,BE=.【考点】1.切线的判定;2.平行四边形的性质;3.相似三角形的判定与性质.17.(3分)如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°【答案】A.【解析】∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=(360°﹣∠BAD)=(360°﹣60°)=150°.故选A.【考点】1.等腰三角形的性质;2.平行线的性质;3.多边形内角与外角.18.如图,在Rt△ABC中,∠C=90°,现将△ABC进行翻折,点C恰落在边AB上的点D处,折痕为EF,此时恰有∠DEF=∠A,则AD与BD的大小关系是 .【答案】AD=BD【解析】如图,连接CD由题意得:∠EDF=∠ECF,∴∠EDF+∠ECF=180°,∴D、E、C、F四点共圆,∴∠DEF=∠DCF;而∠DEF=∠A,∴∠DCF=∠A(设为α),DA=DC;∵∠B+α=∠BCD+α=90°,∴∠B=∠BCD,∴DB=DC,DA=DB,【考点】翻折变换(折叠问题).19.如图,PA、PB与⊙O相切,切点分别为A、B,PA=3,∠P=60°,若BC为⊙O的直径,则图中阴影部分的面积为.【答案】π.【解析】如图,连接OP,∵PA、PB与⊙O相切,∴PA=PB,∠PAO=∠PBO=90°∵∠BPA=60°,∴△PAB为等边三角形,∠AOB=120°∴PB=AB=PA=3,∠POB=60°∴OB=.∵OB=OC,∴S△AOB =S△AOC∴S阴影=S扇形OAB==π.【考点】1.切线的性质;2.扇形面积的计算.20.如图,直线a∥b,AB⊥BC,∠1=40°,则∠2的度数为()A.30°B.40°C.50°D.60°【答案】C【解析】先根据平行线的性质求出∠ACB的度数,再由垂直的定义得出∠ABC的度数,根据三角形内角和定理即可得出结论.∵直线a∥b,∠1=40°,∴∠ACB=∠1=40°.∵AB⊥BC,∴∠ABC=90°,∴∠2=90°﹣∠ACB=90°﹣40°=50°.【考点】平行线的性质21.海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)【答案】【解析】过点A作AF⊥CD,垂足为F,过点D作DE⊥CD,可得出∠FCA=∠ACN=45°,∠NCB=30°,∠ADE=60°,则∠FAD=60°,∠FAC=∠FCA=45°,∠ADF=30°,从而AF=FC=AN=NC,设AF=FC=x,则tan30°=,解得x=,由tan30°=,得到,解得:BN=,由AB=AN+BN,即可得出结论.试题解析:过点A作AF⊥CD,垂足为F,过点D作DE⊥CD,如图所示:由题意可得出:∠FCA=∠ACN=45°,∠NCB=30°,∠ADE=60°,则∠FAD=60°,∠FAC=∠FCA=45°,∠ADF=30°,∴AF=FC=AN=NC,设AF=FC=x,∴tan30°=,解得:x=,∵tan30°=,∴,解得:BN=,∴AB=AN+BN==.答:灯塔A、B间的距离为()海里.【考点】1.解直角三角形的应用-方向角问题;2.几何图形问题.22.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是 . 【答案】.【解析】如图,连接BD .∵四边形ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°, ∴△DAB 是等边三角形, ∵AB=2, ∴△ABD 的高为,∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,,∴△ABG ≌△DBH (ASA ), ∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =.【考点】1.扇形面积的计算;2.全等三角形的判定与性质;3.菱形的性质.23. 一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是21cm 2,则该矩形的面积为( )A .60cm 2B .70cm 2C .120cm 2D .140cm 2【答案】A .【解析】黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,故矩形的面积=21÷(50%-15%)=21÷35%=60(cm 2).故选A .【考点】矩形的性质.24. 如图,以Rt △ABC 的边AC 为直径的⊙O 交斜边AB 于点D ,点F 为BC 上一点,AF 交⊙O于点E,且DE∥AC.(1)求证:∠CAF=∠B.(2)若⊙O的半径为4,AE=2AD,求DE的长.【答案】【解析】(1)连接CE,根据圆周角定理可知∠AEC=90°,故∠CAF+∠ACE=90°.再由题意可知∠B+∠DAC=90°,根据DE∥AC,可得,故,由圆周角定理可知∠ACE=∠DAC,故可得出结论;(2)连接DC,由(1)知DE∥AC,故可得出AD=CE,由全等三角形的判定定理得出Rt△ACD≌Rt△CAE,所以CD=AE=2AD,设AD=x,则CD=2x,在Rt△ABD中根据勾股定理可求出AD,CD的长,过D作DM⊥AC,过O作ON⊥ED,由AD•CD=AC•DM可得出DM的长,连OD,在Rt△OND中,由勾股定理可求出DN的长,由ED=2DN即可得出结论.试题解析:(1)证明:连接CE,∵AC是⊙O的直径,∴∠AEC=90°,∴∠CAF+∠ACE=90°.∵∠ACB=90°,∴∠B+∠DAC=90°,∵DE∥AC,∴,∴,∴∠ACE=∠DAC,∴∠CAF=∠B;(2)解:连DC,∵DE∥AB,∴∠CAE=∠AED,∴AD=DE,在Rt△ACD与Rt△CAE中,∵,∴Rt△ACD≌Rt△CAE(HL),∴CD=AE=2AD,设AD=x,则CD=2x,在Rt△ACD中,x2+(2x)2=82,∴AD=,CD=.过D作DM⊥AC,过O作ON⊥ED,∴AD•CD=AC•DM,∴DM====ON,连OD,在Rt△OND中,∵DN===∴ED=2DN=.【考点】圆周角定理;勾股定理25.一个正方体的平面展开图如图所示,将它折成正方体后“设”字对面是()A.和B.谐C.泰D.州【答案】B.【解析】已知,这是一个正方体的平面展开图,共有六个面,其中面“建”与面“州”相对,面“和”与面“泰”相对,“谐”与面“设”相对.故答案选B.【考点】正方体的侧面展开图.26.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6B.5C.3D.3【答案】C.【解析】∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵AB是⊙C的直径,∴∠AOB=90°,∴∠ABO=90°-∠BAO=90°-60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长==3.故选:C.【考点】1.圆内接四边形的性质;2.坐标与图形性质;3.含30度角的直角三角形.27.如图,四边形OBCD中的三个顶点在⊙O上,点A是优弧BD上的一个动点(不与点B、D 重合).(1)当圆心O在∠BAD内部,∠ABO+∠ADO=60°时,∠BOD= ;(2)当圆心O在∠BAD内部,四边形OBCD为平行四边形时,求∠A的度数;(3)当圆心O在∠BAD外部,四边形OBCD为平行四边形时,请直接写出∠ABO与∠ADO的数量关系.【答案】(1)120 °;(2)60°;(3)60°.【解析】(1)连接OA,如图1,根据等腰三角形的性质得∠OAB=∠ABO,∠OAD=∠ADO,则∠OAB+∠OAD=∠ABO+∠ADO=60°,然后根据圆周角定理易得∠BOD=2∠BAD=120°;(2)根据平行四边形的性质得∠BOD=∠BCD,再根据圆周角定理得∠BOD=2∠A,则∠BCD=2∠A,然后根据圆内接四边形的性质由∠BCD+∠A=180°,易计算出∠A的度数;(3)讨论:当∠OAB比∠ODA小时,如图2,与(1)一样∠OAB=∠ABO,∠OAD=∠ADO,则∠OAD﹣∠OAB=∠ADO﹣∠ABO=∠BAD,由(2)得∠BAD=60°,所以∠ADO﹣∠ABO=60°;当∠OAB比∠ODA大时,用样方法得到∠ABO﹣∠ADO=60°.试题解析:(1)连接OA,如图1,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAB+∠OAD=∠ABO+∠ADO=60°,即∠BAD=60°,∴∠BOD=2∠BAD=120°;(2)∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∵∠BOD=2∠A,∴∠BCD=2∠A,∵∠BCD+∠A=180°,即3∠A=180°,∴∠A=60°;(3)当∠OAB比∠ODA小时,如图2,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAD﹣∠OAB=∠ADO﹣∠ABO=∠BAD,由(2)得∠BAD=60°,∴∠ADO﹣∠ABO=60°;当∠OAB比∠ODA大时,同理可得∠ABO﹣∠ADO=60°,综上所述,|∠ABO﹣∠ADO|=60°.【考点】1.圆周角定理;2.平行四边形的性质;3.圆内接四边形的性质.28.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于 °.【答案】130【解析】∵四边形ABCD内接与⊙O,∴∠A+∠C=180°,∵∠A=115°,∴∠C=65°,∴∠BOD=2∠C=130°;【考点】1.圆内接四边形的性质;2.圆周角定理.29.如图,将半径为8的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为()A.B.C.8D.10【答案】B.【解析】延长CO交AB于E点,连接OB,∵CE⊥AB,∴E为AB的中点,由题意可得CD=4,OD=4,OB=8,DE=(8×2﹣4)=×12=6,OE=6﹣4=2,在Rt△OEB中,根据勾股定理可得:OE2+BE2=OB2,代入可求得BE=,∴AB=.故选B.【考点】1.垂径定理;2.翻折变换(折叠问题).30.有一边长为4的正n边形,它的一个内角为120°,则其外接圆的半径为()A.B.4C.D.2【答案】B【解析】经过正n边形的中心O作边AB的垂线OC,则∠B=60°,∠O=30°,在直角△OBC中,根据三角函数得到OB=2BC=AB=4.点评:正多边形的计算31.如图,AC是△ABD的高,∠D=45°,∠B=60°,AD=10.求AB的长.【答案】【解析】首先根据Rt△ACD的三角函数求出AC的长度,然后根据Rt△ABC的三角形函数求出AB的长度.试题解析:在Rt△ACD中,AC=10×sin∠D=10×sin45°=5在Rt△ABC中,AB=.【考点】锐角三角函数的应用.32.如图,矩形ABCD中,AB=2,BC=3,分别以A、D为圆心,1为半径画圆,E、F分别是⊙A、⊙D上的一动点,P是BC上的一动点,则PE+PF的最小值是()A.2 B.3 C.4 D.5【答案】C.【解析】试题解析:∵矩形ABCD中,AB=2,BC=3,圆A的半径为1,∴A′D′=BC=3,DD′=2DC=4,AE′=1,∴A′D=5,∴DE′=5-1=4∴PE+PD=PE′+PD=DE′=4,故选C.【考点】轴对称-最短路线问题.33.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AB=3,则AD的值为()A.6B.3C.3D.3【答案】D【解析】根据AB=AC以及∠BAC=120°可得:∠D=30°,根据BD为直径可得:∠BAD=90°,则根据Rt△ABD的性质可得:BD=2AB=6,AD=3【考点】圆的基本性质34.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为()A.2.5B.5C.10D.15【解析】试题解析:设母线长为x,根据题意得2πx÷2=2π×5,解得x=10.故选C.【考点】圆锥的计算.35.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为()A.160m B.80mC.120(-1)m D.120(+1)m【答案】A【解析】过点A作AD⊥BC,则CD=120m,BD=40m,则BC=CD+BD=160m.【考点】三角形函数的应用.36.如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).【答案】米【解析】设CD=EF=x,根据Rt△CAD,求出AD与x的关系,根据Rt△BEF,求出BF与x的关系,然后根据BD=DF-BF=2-BF,AB=AD+BD=4求出x的值.试题解析:设小明的身高为x米,则CD=EF=x米.在Rt△ACD中,∠ADC=90°,tan∠CAD=,即tan30°=,AD=x在Rt△BEF中,∠BFE=90°,tan∠EBF=EF/BF,即tan60°=,BF=由题意得DF=2,∴BD=DF-BF=2-,∵AB=AD+BD=4,∴x+2-=4 解得:x=.答:小明的身高为米.【考点】锐角三角函数的应用.37.在Rt△ABC中,∠C=90°,a=4,b=3,则sinA的值是()A.B.C.D.【解析】试题解析:如图所示:∵在Rt△ABC中,∠C=90°,a=4,b=3,∴c=5,∴sinA=.故选B.【考点】1.锐角三角函数的定义;2.勾股定理.38.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为.【答案】10cm.【解析】圆锥的底面周长=扇形的弧长,据此列等式求出r的值.,解得r=10cm.故答案为:10cm.【考点】圆锥的有关计算.39.计算:2sin60°+tan45°= .【答案】.【解析】试题解析:原式=2×+1=.【考点】特殊角的三角函数值.40.(2015•盐城校级模拟)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.【答案】3π.【解析】根据弧长公式L=求解.解:L===3π.故答案为:3π.【考点】弧长的计算.41.(2015•徐州)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA= °.【答案】125.【解析】连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=36°,从而根据∠CDA=∠CDO+∠ODA计算求解.解:连接OD,则∠ODC=90°,∠COD=70°;∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=125°,故答案为:125.【考点】切线的性质.42. (2015秋•芜湖期末)若一个圆锥的侧面展开图是半径为18cm ,圆心角为240°的扇形,则这个圆锥的底面半径长是 cm . 【答案】12【解析】设这个圆锥的底面半径为rcm ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解方程求出r 即可.解:设这个圆锥的底面半径为rcm ,根据题意得2πr=,解得r=12,所以这个圆锥的底面半径长为12cm . 故答案为12.【考点】圆锥的计算.43. 如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是 .【答案】2.5【解析】根据题意可得阴影部分的面积等于△ABC 的面积,因为△ABC 的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积. 解:设AP 与EF 相交于O 点. ∵四边形ABCD 为菱形, ∴BC ∥AD ,AB ∥CD . ∵PE ∥BC ,PF ∥CD , ∴PE ∥AF ,PF ∥AE .∴四边形AEFP 是平行四边形. ∴S △POF =S △AOE .即阴影部分的面积等于△ABC 的面积.∵△ABC 的面积等于菱形ABCD 的面积的一半, 菱形ABCD 的面积=AC•BD=5, ∴图中阴影部分的面积为5÷2=2.5. 故答案为:2.5.【考点】菱形的性质.44. 如图1,是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB=20°)时最为合适,已知货车车厢底部到地面的距离AB=1.5m ,木板超出车厢部分AD=0.5m ,则木板CD 的长度为 .(参考数据:sin20°≈0.3420,cos20°≈0.9397,精确到0.1m).【答案】4.9m.【解析】根据∠ACB的正弦函数和AB的长度求AC的长,再加上AD即可.解:由题意可知:AB⊥BC.∴在Rt△ABC中,sin∠ACB=,∴AC===≈4.39,∴CD=AC+AD=4.39+0.5=4.89≈4.9(m).故答案为:4.9m.【考点】解直角三角形的应用-坡度坡角问题.45.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为_________.【答案】120°【解析】根据中点可得DE∥BC,则∠DEC+∠C=180°,根据∠C=60°,可得∠DEC=120°.【考点】三角形中位线的性质.46.如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中错误的是()A.CE=DE B.=C.∠BAC=∠BAD D.OE=BE【答案】D【解析】根据垂径定理分析即可.根据垂径定理和等弧对等弦,得A、B、C正确,只有D错误.故选D.【考点】垂径定理.47.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D= 度.【答案】90【解析】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D的度数.解:∵圆内接四边形的对角互补∴∠A:∠B:∠C:∠D=2:3:4:3设∠A=2x,则∠B=3x,∠C=4x,∠D=3x∴2x+3x+4x+3x=360°∴x=30°∴∠D=90°.【考点】圆内接四边形的性质.48.如图所示,动点C在⊙O的弦AB上运动,AB=,连接OC,CD⊥OC交⊙O于点D.则CD的最大值为.【答案】.【解析】作OH⊥AB,延长DC交⊙O于E,如图,根据垂径定理得到AH=BH=AB=,CD=CE,再利用相交弦定理得CD•CE=BC•AC,易得CD=,当CH最小时,CD最大,C点运动到H点时,CH最小,所以CD的最大值为.解:作OH⊥AB,延长DC交⊙O于E,如图,∴AH=BH=AB=,∵CD⊥OC,∴CD=CE,∵CD•CE=BC•AC,∴CD2=(BH﹣CH)(AH+CH)=(﹣CH)(+CH)=3﹣CH2,∴CD=,∴当CH最小时,CD最大,而C点运动到H点时,CH最小,此时CD=,即CD的最大值为.故答案为.【考点】垂径定理;勾股定理.49.在△ABC中,∠A,∠B都是锐角,且(sinA﹣)2+(tanB﹣1)2=0,则∠C= .【答案】75°.【解析】根据偶次幂具有非负性可得sinA﹣=0,tanB﹣1=0,再根据特殊角的三角函数值可得:∠A=60°,∠B=45°,然后再利用三角形内角和定理可得答案.解:由题意得:sinA﹣=0,tanB﹣1=0,解得:∠A=60°,∠B=45°,则∠C=180°﹣60°﹣45°=75°,故答案为:75°.【考点】特殊角的三角函数值;非负数的性质:偶次方.50.如图,正六边形ABCDEF的边长为2,两顶点A、B分别在x轴和y轴上运动,则顶点D到原点O 的距离的最大值和最小值的乘积为 . 【答案】12 【解析】当O 、D 、AB 中点共线时,OD 有最大值和最小值,BD=2,BK=1, ∴DK=,OK=BK=1, ∴OD 的最大值为:1+, 同理,把图象沿AB 边翻折180°得最小值为:-1,∴顶点D 到原点O 的距离的最大值和最小值的乘积为:(1+)(-1)=12.【考点】(1)、正多边形和圆;(2)、坐标与图形性质51. 下列四边形中,对角线相等且互相垂直平分的是A .平行四边形B .正方形C .等腰梯形D .矩形【答案】B .【解析】试题解析:对角线相等且互相垂直平分的四边形是正方形,故选B .【考点】1.等腰梯形的性质;2.平行四边形的性质;3.矩形的性质;4.正方形的性质.52. 如图,矩形ABCD 中,AE 平分∠BAD 交BC 于E ,∠CAE=15°,则下列结论:① △ODC 是等边三角形;②BC=2AB ;③∠AOE=135°; ④S △AOE =S △COE ,其中正确的结论的个数有A .1B .2C .3D .4【答案】C【解析】∵四边形ABCD 是矩形,∴∠BAD=90°,OA=OC ,OD=OB ,AC=BD ,<BR>∴OA=OD=OC=OB ,∵AE 平分∠BAD ,∴∠DAE=45°,∵∠CAE=15°,∴∠DAC=30°,∵OA=OD ,∴∠ODA=∠DAC=30°,∴∠DOC=60°,∵OD=OC ,∴△ODC 是等边三角形,∴①正确;∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,∴∠DAC=∠ACB=30°,∴AC=2AB ,∵AC >BC ,∴2AB >BC ,∴②错误;∵AD ∥BC ,∴∠DBC=∠ADB=30°,∵AE 平分∠DAB ,∠DAB=90°,∴∠DAE=∠BAE=45°,∵AD ∥BC ,∴∠DAE=∠AEB ,∴∠AEB=∠BAE ,∴AB=BE ,∵四边形ABCD 是矩形,∴∠DOC=60°,DC=AB ,∵△DOC 是等边三角形,∴DC=OD ,∴BE=BO ,∴∠BOE=∠BEO=(180°-∠OBE )=75°,∵∠AOB=∠DOC=60°,∴∠AOE=60°+75°=135°,∴③正确;∵OA=OC ,∴根据等底等高的三角形面积相等得出S △AOE =S △COE ,∴④正确;故选C .【考点】矩形的性质.53.如图,、是以线段为直径的⊙上两点,若,且,则( ).A.B.C.D.【答案】B.【解析】因为∠ACD=40°,CA=CD,所以∠CAD=∠D=(180°-40°)÷2=70°,所以∠B=∠D=70°,又因为AB为直径,所以∠ACB=90°,所以∠CAB=90°-∠B=90°-70°=20°,故选B.【考点】1.圆周角定理;2.弧,弦圆心角定理;3.三角形内角和定理.54.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48B.41.68C.43.16D.55.63【答案】B【解析】过点P作PA⊥MN于点A,则若该船继续向南航行至离灯塔距离最近的位置为PA的长度,利用锐角三角函数关系进行求解即可,如图,过点P作PA⊥MN于点A,MN=30×2=60(海里),∵∠MNC=90°,∠CPN=46°,∴∠MNP=∠MNC+∠CPN=136°,∵∠BMP=68°,∴∠PMN=90°﹣∠BMP=22°,∴∠MPN=180°﹣∠PMN﹣∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60(海里),∵∠CNP=46°,∴∠PNA=44°,∴PA=PN·sin∠PNA=60×0.6947≈41.68(海里)【考点】锐角三角函数的应用55.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.10海里/小时B.30海里/小时C.20海里/小时D.30海里/小时【答案】D.【解析】试题解析:∵∠CAB=10°+20°=30°,∠CBA=80°-20°=60°,∴∠C=90°,∵AB=20海里,∴AC=AB•cos30°=10(海里),∴救援船航行的速度为:10÷=30(海里/小时).故选D.【考点】解直角三角形的应用-方向角问题.56.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=42°32′,则∠2的度数()A.17°28′B.18°28′C.27°28′D.27°32′【答案】A.【解析】试题解析:过点A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=42°32′,∵∠BAC=60°,∴∠4=60°-42°32′=17°28′,∵NM∥AE,∴∠2=∠4=17°28′,故选A.【考点】平行线的性质.57.下列命题中,正确的是()A.平分弦的直径垂直于弦B.对角线相等的平行四边形是正方形C.对角线互相垂直的四边形是菱形D.三角形的一条中线能将三角形分成面积相等的两部分【答案】D.【解析】试题解析:A、平分弦(非直径)的直径垂直于弦,所以A选项错误;B、对角线垂直且相等的平行四边形是正方形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、三角形的一条中线能将三角形分成面积相等的两部分,所以D选项正确.故选D.【考点】命题与定理.58.如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.【答案】(1)四边形CEGF为菱形,理由详见解析;(2)3≤CE≤5.【解析】(1)根据折叠的性质,易证△EFG是等腰三角形,根据等腰三角形的性质可得GF=EC,又由GF∥EC,即可得四边形CEGF为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF为菱形;(2)如图1,当G与A重合时,CE取最大值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;如图2,当F与D重合时,CE取最小值,由折叠的性质得AE=CE,根据勾股定理即可得到结论.试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)解:如图1,当F与D重合时,CE取最小值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,∵∠ECD=90°,∴∠DEC=45°=∠CDE,∴CE=CD=DG,∵DG∥CE,∴四边形CEGD是矩形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,。
九年级第一轮复习专题图形与证明
图形与证明一、选择题(每小题3分,共30分)1. (2014山东济南)下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线相等的四边形是等腰梯形2.(2014新疆)四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平3.(广东深圳)下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。
A.1个B.2个C.3个D.4个4.(2014广东)如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CDD.AB=BC(第4题)(第5题)(第6题)5. (2014益阳)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是()7.(2014湘潭)以下四个命题正确的是()8. (2014年山东泰安)在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个 C.2个 D.1个9.(2014济南)在□ABCD中,延长AB到E,使BE=AB,连接DE交BC于F,则下列结论不一定成立的是()A.CDFE∠=∠B.DFEF=C.BFAD2=D.CFBE2=10. (2014聊城)如图,在矩形ABCD 中,边AB的长为3,点E,F分别在AD,BC上,连接.11.(广东佛山)命题“对顶角相等”的条件是______________.12. (2014年山东淄博)已知平行四边形ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使平行四边形ABCD成为一个菱形,你添加的条件是.13.(江苏泰州)命题“相等的角是对顶角”是命题. (填“真”或“假”)14.(2013嘉兴)在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为.15.(2014四川内江)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:______,使四边形ABCD为平行四边形(不添加任何辅助线).16.(巴中)如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是.(只需写出一个)A BCDEF(第9题)(第10题)·OBAC(第15题) (第16题) (第17题)17. (江苏宿迁)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α是 度时,两条对角线长度相等. 18.(青海省)如图,BC =EC ,∠1=∠2,添加一个适当的条件使△ABC ≌△DEC ,则需添加的条件是________(不添加任何辅助线).(第18题) (第19题) (第20题)19. (湖南邵阳)如图所示,将△ABC 绕AC 的中点O 顺时针旋转1800得到△CDA ,添加一个条件 ,使四边形ABCD 为矩形20. (山东潍坊)如图,ABCD 是对角线互相垂直的四边形,且OB=OD ,请你添加一个适当的条件_____________,使ABCD 成为菱形.(只需添加一个即可) 三、解答题(40分)21. (2014吉林)如图,△ABC 和△ADE 中,∠BAC =∠DAE ,AB =AE ,AC =AD ,连接BD ,CE ,求证:△ABD ≌△AEC .22. (2014宁夏)在平行四边形ABCD 中,将△ABC 沿AC 对折,使点B 落在B ′处,A B ′和CD 相交于点O . 求证:OA=OC .23. (2014四川广安)如图,在正方形ABCD 中,P 是对角线AC 上的一点,连接BP 、DP ,延长BC 到E ,使PB=PE .求证:∠PDC=∠PEC .24.(2014湖南永州)在同一平面内,△ABC 和△ABD 如图①放置,其中AB=BD .小明做了如下操作:将△ABC 绕着边AC 的中点旋转180°得到△CEA ,将△ABD 绕着边AD 的中点旋转180°得到△DFA ,如图②,请完成下列问题:(1)试猜想四边形ABDF 是什么特殊四边形,并说明理由.(2)连接EF,CD,如图③,求证:四边形CDEF 是平行四边形.。
中考数学几何证明题历年真题解析
中考数学几何证明题历年真题解析在中考数学考试中,几何证明题往往是一项考查学生几何推理和证明能力的重要题型。
下面我们将对历年中考数学几何证明题进行详细解析,帮助同学们更好地理解和掌握该题型。
1. 2016年中考真题题目:在平行四边形ABCD中,AB = AD,E是BC的中点,F是AD的中点。
连接AE并延长交BC于点G,连接CF并延长交AD于点H。
证明:EF∥HG。
解析:首先,我们需要明确平行四边形的性质,即对角线互相平分。
根据题目中给出的线段AE和CF是对角线,我们可以推断AE和CF平分了BD。
同时,由平行四边形的性质可知,AE和CF平行。
因此,EF∥HG。
2. 2018年中考真题题目:在△ABC中,AD是边BC上的高,证明:AD^2 = BD × DC。
解析:要证明AD^2 = BD × DC,我们可以利用相似三角形和勾股定理来推导。
首先,我们可以通过观察发现△ABC与△ADB和△ADC是相似三角形,因为∠ADB = ∠ADC(都是直角)、∠BDA = ∠CDA(共同边AD)、∠ABD = ∠ACD(对顶角相等)。
根据相似三角形的性质,我们可以得到以下比例关系:AD/DB = CD/AD。
根据等式AD/DB = CD/AD,可以得到AD^2 = BD × DC,证明完成。
通过对以上两道历年中考数学几何证明题的解析,我们可以发现,解决这类题目的关键是理清逻辑关系和灵活运用几何定理和几何性质。
在解题时,同学们应该仔细观察图形,寻找线索,合理运用已知条件,推导出所需要证明的结论。
此外,在数学几何证明题中,严谨的逻辑推理和清晰的叙述也是十分重要的。
同学们在写证明过程时,应该注意用准确的数学语言描述每一步的推理过程,并标明所使用的几何定理或性质。
这样不仅可以增加证明的可信度,还可以使得自己的思路更加清晰明了。
总之,数学几何证明题是中考数学中的一道重要题型,通过对历年真题的解析,我们可以更好地了解该题型的特点和解题技巧。
初三数学图形与证明试题
初三数学图形与证明试题1.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是___________【答案】6【解析】根据凸n边形的内角和为1260°,求出凸n边形的边数,即可得出,从一个顶点出发可引出(n-3)条对角线.解:∵凸n边形的内角和为1260°,∴(n-2)×180°=1260°,得,n=9;∴9-3=6.故答案为:6.本题考查了多边形的内角和定理及多边形的对角线,熟记多边形的内角和计算公式是正确解答本题的基础.2.如图所示几何体的左视图是().【答案】A【解析】找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形.故选A.3.如图,已知菱形ABCD的两条对角线相交于点O,AC=6cm,BD=8cm,则菱形的高AE为 cm.【答案】4.8【解析】由四边形ABCD是菱形,AC=6cm,BD=8cm,即可得AC⊥BD,OC=AC=3cm,OB=BD=4cm,然后由勾股定理求得BC的长,又由S菱形ABCD=1AC•BD=BC•AE,即可求得答案.试题解析:∵四边形ABCD是菱形,AC=6cm,BD=8cm,∴AC⊥BD,OC=AC=3cm,OB=BD=4cm,∴BC= =5(cm),∵S菱形ABCD=AC•BD=BC•AE,∴×6×8=5×AE,∴AE=4.8(cm).【考点】菱形的性质.4.一个圆锥形零件的高线长为,底面半径为2,则圆锥形的零件的侧面积为().A.2B.C.3D.6【答案】D.【解析】∵高线长为,底面半径为2,∴母线长为:,∴圆锥侧面积公式为:S=πrl=π×2×3=6π,故选D.【考点】圆锥的计算.5.如图,AB为⊙0的弦,AB=6,点C是⊙0上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是______________。
中考数学河北专总复习热点题型高分攻略课件:主题二图形变换中的证明与探究共张
中考数学河北专总复习热点题型高分攻略课件主题二:图形变换中的证明与探究共张1. 引言图形变换是中考数学中的一个重要知识点,也是考点比较多的一个主题。
在图形变换中,我们需要掌握各种图形的性质和变换规律,并能够运用这些知识解决相关问题。
本课件将重点介绍图形变换中的证明与探究,帮助同学们在中考中取得高分。
2. 证明题型2.1 三角形的证明三角形是图形变换中出现频率较高的一种形状。
在证明题型中,我们常常需要使用三角形的性质来进行推导和证明。
以下是一些常见的三角形证明题型:2.1.1 等腰三角形的性质证明对于一个三角形,如果两条边的长度相等,那么这个三角形就是等腰三角形。
我们可以通过证明角的性质来证明一个三角形是等腰三角形。
2.1.2 直角三角形的性质证明直角三角形是图形变换中常见的一种特殊三角形。
在证明中,我们可以利用直角三角形的性质来推导出。
2.2 平行线与等角线的证明平行线和等角线也是图形变换中经常出现的概念。
在证明题型中,我们常常需要证明两条线段平行或者两条线段相等。
2.2.1 平行线的证明平行线是指在同一个平面上,永不相交的两条直线。
在证明中,我们可以利用平行线的性质来进行推导。
2.2.2 等角线的证明等角线是指两条直线与一条直线的交点所成的相邻角互为对顶角。
在证明中,我们可以运用等角线的性质,结合角的基本知识进行推导。
3. 探究题型图形变换中的探究题型要求同学们通过观察和分析图形的性质,自行发现问题并解决问题。
3.1 相似三角形的研究相似三角形是指两个三角形中对应的角相等,对应的边成比例。
在探究题型中,我们可以通过观察两个相似三角形的特点,发现相似三角形的性质。
3.2 图形的对称性研究图形的对称性研究是图形变换中的一个重要内容。
通过观察图形的对称性质,我们可以发现一些有趣的规律和性质。
4.通过本课件的学习,我们了解了图形变换中的证明与探究题型,掌握了解决这些题型的方法和技巧。
在中考中,我们要注重理论知识的学习,同时多进行习题训练,提高解题能力。
2011中考复习专题突破-图形的认识与证明含知识点及详细解答
专题突破图形的认识与证明考点回放1、点、线、面的认识与表示2、比较角的大小,计算角度的和与差,认识度、分、秒,会进行简单换算3、角平分线及其性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角的平分线上4、对顶角、互余、互补角之间的关系5、垂线、垂线段概念,垂线段最短的性质,点到直线距离6、过一点有且仅有一条直线垂直于已知直线7、通过识别同位角、内错角、同旁内角,判定直线平行8、平行线的特征与应用9、过直线外一点有且仅有一条直线平行于已知直线10、两条平行线之间距离的意义与应用11、三角形的有关概念12、三角形的稳定性13、三角形的三边关系,有关等腰三角形的边长问题的讨论14、三角形的内角和为180°,直角三角形的两锐角互余15、三角形的全等与简单的图案设计16、三角形中位线的性质17、等腰三角形(等边三角形)的有关概念、性质和判定:等腰三角形的两底用相等,底边上的高、中线及项角平分线三线合一,有两个角相等的三角形是等腰三角形18、勾股定理,运用勾股定理解决简单问题;用勾股定理的逆定理判定直角三角形19、直角三角形斜边上的中线等于斜边一半20、线段垂直平分线及其性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线上21、多边形的内角和与外角和公式及应用,多边形对角线条数22、正多边形的概念与性质23、平行四边形、矩形、菱形、正方形、梯形的概念和它们之间的关系24、四边形的不稳定性25、平行四边形、矩形、菱形、正方形、等腰梯形有关性质和判别条件26、线段、矩形、平行四边形、三角形的重心及物理意义27、任意一个三角形、四边形或正六边形可以镶嵌平面28、对定义、命题的理解,以及真假命题的区分29、命题中条件与结论的区别30、圆的定义及确定圆的条件31、点与圆有关的位置关系32、三角形的外接圆、外心的意义和特征33、圆的对称性34、垂径定理、推论及应用35、圆心角、弧、弦之间关系36、圆周角定理、推论及其应用37、直线与圆的三种位置关系38、切线的性质与判定39、三角形内切圆、内心的意义及特征40、圆与圆有关的位置关系41、圆中的有关计算:弧长、扇形的面积、圆柱和圆锥侧面积与全面积42、尺规作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线,已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形,过不在同一直线上的三点作圆43、基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),根据三视图描述基本几何体或实物原型44、由部分视图确定其它视图45、几何体的截面46、根据光线的方向辨认实物的阴影(在阳光或灯光下)47、视点、视角及盲区的涵义,在简单的平面图和立体图中表示48、中心投影和平行投影:由平行光线形成的投影是平行投影.等高的物体垂直地面放置时,在太阳光下他们的影子一样长;两个物体、它们的平行投影及过物体顶端的投影线分别组成直角三角形,这两个直角三角形相似;由同一点(点光源)发出的光线形成的投影叫做中心投影,灯光下物体的影长与物体的高度不一定成比例典型题解析例1(·巴中市)李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( ). 解析:根据“相临不会是对面”的原则,既然“预”的对面是“中”,“成”的对面是“功”,则“预”与“中”不会相临,“成”与“功”也不会相临,这就排除了A 、B 和D ,故应选C . 例2 (重庆)如图,直线AB CD 、相交于点E ,DF AB ∥.若100AEC ∠=°,则D ∠等于( )A .70°B .80°C .90°D .100°解析:本题主要考查平行线的性质、互为邻补角(对顶有)概念.∠D 与∠AEC 的邻补角是一对同位角(或∠D 与∠AEC 的对顶角是一对同旁内角),所以∠D =180°-∠AEC =80°,故应选B 。
初三数学图形与证明试题答案及解析
初三数学图形与证明试题答案及解析1.顺次连接矩形ABCD各边的中点,所得四边形必定是()A.邻边不等的平行四边形B.矩形C.正方形D.菱形【答案】D【解析】如图:E,F,G,H为矩形的中点,则AH=HD=BF=CF,AE=BE=CG=DG,在Rt△AEH与Rt△DGH中,AH=HD,AE=DG,所以△AEH≌△DGH,因此根据全等三角形的性质可得EH=HG,同理,△AEH≌△DGH≌△BEF≌△CGF,因此可得EH=HG=GF=EF,所以四边形EFGH为菱形.故选A【考点】菱形的判定2.如图,某仓储中心有一斜坡AB,其坡度为,顶部A处的高AC为4m,B、C在同一水平地面上。
(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方形货柜的侧面图,其中DE=2.5m,EF=2m.将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高。
(,结果精确到0.1m)【答案】(1) 8m.(2) 4.5m.【解析】(1)根据坡度定义直接解答即可;(2)作DS⊥BC,垂足为S,且与AB相交于H.证出∠GDH=∠SBH,根据,得到GH=1m,利用勾股定理求出DH的长,然后求出BH=5m,进而求出HS,然后得到DS.试题解析:(1)∵坡度为i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足为S,且与AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∵DG=EF=2m,∴GH=1m,∴DH=m,BH=BF+FH=3.5+(2.5-1)=5m,设HS=xm,则BS=2xm,∴x2+(2x)2=52,∴x=m,∴DS=+=2m≈4.5m.【考点】解直角三角形的应用-坡度坡角问题.3.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=D.AF=EF【答案】D.【解析】∵AD∥BC,∴∠AFE=∠FEC,∵∠AEF=∠FEC,∴∠AFE=∠AEF,∴AF=AE,∴选项A正确;∵ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵AG=DC,∠G=∠C,∴∠B=∠G=90°,AB=AG,∵AE=AF,∴△ABE≌△AGF,∴选项B正确;设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,,即,解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=,∴选项C正确;由已知条件无法确定AF和EF的关系,故选D.【考点】翻折变换(折叠问题).4.(7分)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= cm时,四边形CEDF是矩形;②当AE= cm时,四边形CEDF是菱形;(直接写出答案,不需要说明理由)【答案】(1)证明见解析;(2)①当AE=3.5cm时,四边形CEDF是矩形.②当AE=2cm时,四边形CEDF是菱形.【解析】(1)利用“ASA”即可得证;①当四边形CEDF是矩形时,则有EG=DG=1.5cm,又由已知可得∠ADC=60°,从而得△EGD为等边三角形,从而得DE=1.5cm,从而得AE=3.5cm;②.当四边形CEDF是菱形时,则有EF⊥CD,由已知可知∠ADC=60°,从而可得∠DEG=30°,从而得DE=2DG=3,从而得AE=2.试题解析:(1)∵四边形ABCD是平行四边形,∴ CF∥ED,∴∠FCG=∠EDG,∵ G是CD的中点,∴ CG=DG,在△FCG和△EDG中,,∴△FCG ≌△EDG(ASA),∴ FG=EG,∵ CG=DG,∴四边形CEDF是平行四边形;(2)①当AE=3.5cm时,四边形CEDF是矩形.②当AE=2cm时,四边形CEDF是菱形.【考点】1.平行四边形的性质;2.全等三角形的判定与性质;3.矩形的判定;4.菱形的判定.5.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 度.【答案】60°.【解析】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD+∠OCD的度数.试题解析:连接DO并延长,∵四边形OABC为平行四边形,∴∠B="∠AOC,"∵∠AOC="2∠ADC,"∴∠B="2∠ADC,"∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC="180°,"∴3∠ADC="180°,"∴∠ADC="60°,"∴∠B="∠AOC=120°,"∵∠1="∠OAD+∠ADO,∠2=∠OCD+∠CDO,"∴∠OAD+∠OCD=(∠1+∠2)-(∠ADO+∠CDO)=∠AOC-∠ADC=120°-60°=60°.【考点】1.圆周角定理;2.平行四边形的性质.6.下列四个命题中真命题是()A.对角线互相垂直平分的四边形是正方形B.对角线垂直且相等的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.四边都相等的四边形是正方形【答案】C【解析】因为对角线互相垂直平分的四边形是菱形,所以A错误;因为对角线垂直且相等的四边形可能是菱形也可能是等腰梯形,所以B错误;因为对角线相等且互相平分的四边形是矩形,所以C正确;因为四边都相等的四边形是菱形,所以D错误;故选:C.【考点】特殊的平行四边形的判定.7.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。
初三数学图形与证明试题答案及解析
初三数学图形与证明试题答案及解析1.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是(▲ )A.30o B.25oC.20o D.15o【答案】B【解析】略2.如图,网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .【答案】.【解析】如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=,BC=,AD=,可以得知△ABC是等腰三角形,由面积相等可得,BC•AD=AB•CE,即CE=,sinA===,故答案为:.【考点】1.锐角三角函数的定义;2.三角形的面积;3.勾股定理.3.如图,AB∥CD,直线EF分别与AB、CD交于点E、F,若∠AEF=40°,则∠EFD的度数为()A.20° B.40° C.50° D.140°【答案】B【解析】根据AB∥CD可得∠EFD=∠AEF=40°.【考点】平行线的性质.4.如图,已知点A(-1,0)和点B(1,2),在y轴上确定点P,使得△ABP为直角三角形,则满足条件的点P共有()A.5个B.4个C.3个D.2个【答案】B.【解析】当∠BPA=90°时,即点P的位置有2个;当∠ABP=90°时,点P的位置有1个;当∠BAP=90°时,在y轴上共有1个交点.试题解析:如图:(1)以A为直角顶点,可过A作直线垂直于AB,与y轴交于一点,这一点符合点P的要求;(2)以B为直角顶点,可过B作直线垂直于AB,与y轴交于一点,这一点符合点P的要求;(3)以P为直角顶点,与y轴共有2个交点.所以满足条件的点P共有4个.故选B.【考点】一次函数综合题.5.两圆的半径分别为3cm和4cm,圆心距为2cm,两圆的位置关系是()A.内切B.外切C.相交D.内含【答案】C.【解析】圆心距为2cm,小于两圆的半径和7cm,大于两圆的半径差1cm,根据圆和圆的位置关系可得,两圆的位置关系是相交,故答案选C.【考点】圆和圆的位置关系.6.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25°B.50°C.60°D.30°【答案】A.【解析】∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠BAC=∠B=25°,∵OA=OB,∴∠OAB=∠B=25°,故选A.【考点】1.圆周角定理;2.平行线的性质.7.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50°B.40°C.30°D.25°【答案】B.【解析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.试题解析:解:如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.【考点】平行线的性质.8.如图,AB∥CD,CP交AB于点O,AO=PO,∠C=50°,则∠A= °.【答案】25【解析】∵AB//CD,∴∠POB=∠C=50°,∵OA=OP,∴∠A=∠P,∵∠A+∠P=∠POB,∴∠A=25°.【考点】1.平行线的性质;2.三角形外角的性质.9.如图,点A,B,C在圆O上,OC⊥AB,垂足为D,若⊙O的半径是10cm,AB=12cm,则CD= cm.【答案】2.【解析】先根据垂径定理求出AD的长,在Rt△AOD中由勾股定理求出OD的长,进而利用CD=OC-OD可得出结论.试题解析:∵⊙O的半径是10cm,弦AB的长是12cm,OC是⊙O的半径且OC⊥AB,垂足为D,∴OA=OC=10cm,AD=AB=×12=6cm,∵在Rt△AOD中,OA=10cm,AD=6cm,∴OD==8cm,∴CD=OC-OD=10-8=2cm.【考点】1.垂径定理;2.勾股定理.10.(8分)如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE 的延长线于F点,连接AD、CF.当△ABC满足什么条件时,四边形ADCF是菱形?为什么?【答案】当△ABC是直角三角形时,四边形ADCF是菱形,理由见解析【解析】根据三角形的中位线定理以及条件先证明四边形ADCF是平行四边形,然后再证明对角线垂直即可.试题解析:当△ABC是直角三角形时,四边形ADCF是菱形。
中考总复习图形证明
中考数学专题复习——图形的证明(1)三角形
1、 如图,在△ABC 中,AD 是中线,分别过点C 、B 作AD 及其延长线的垂线CF 、BE ,
垂足分别为点F 、E .求证:BF= CE 。
2、如图,四边形ABCD 的对角线AC 与BD 相交于点O ,∠1=∠2,∠3=∠4。
求证:BO= DO
4321A F
D B
4、如图,已知△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,
求证:AD=CE。
D
B
C
中考数学专题复习——图形的证明(2)四边形
1、如图,在平行四边形ABCD中,点E是AD的中点,连接CE,延长CE交BA的延长线于点F。
求证:FA =AB.
A
E
5、如图,四边形ABCD 为矩形,F 为BC 边上的一点,AF 的延长线交DC 的延长线于点G ,DE ⊥AG ,垂足为E ,DE= DC ,求证:AF= BC.
E G
B A D C
F
中考数学专题复习——图形的证明(3)圆。
湖南省2009年中考数学热点专题六 图形与证明
热点专题六 图形与证明某某 X 倬胜【考点聚焦】图形与证明是空间与图形的核心内容之一,它贯穿在整个几何知识的学习及运用之中. 内容主要有:了解定义、命题、定理、互逆命题、反证法的含义;掌握平行线的性质定理和判定定理、全等三角形的性质定理和判定定理、直角三角形全等的判定定理;掌握三角形的内角和定理和推论、角平分线和垂直平分线性质定理及逆定理、三角形中位线定理;掌握等腰三角形、等边三角形、直角三角形性质与判定定理;掌握平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理.【热点透视】热点1:把握三角形全等的性质,考查线段相等的证明.例1 (2008某某)如图1,菱形ABCD 中,E F ,分别为BC 、CD 上的点,且CE CF =.求证:AE AF =.分析:本题中灵活运用菱形的性质:四边相等,两组对角分别相等.找到全等三角形的对应元素是解本题的关键.证明:∵四边形ABCD 是菱形,∴AB BC CD AD ===,B D ∠=∠.∵CE CF =,∴BE DF =.在ABE △与ADF △中,AB AD =,B D ∠=∠,BE DF =.∴ABE ADF △≌△,∴AE AF =.点评:掌握全等三角形的概念和性质,还要能准确辨认全等三角形中的对应元素,通过证明全等来证明线段相等或者角相等.热点2:紧扣三角形全等的判定,考查三角形全等的开放型问题.例2 (2008某某)如图2,在正五边形ABCDE 中,连结对角线AC 、AD 和CE ,AD 交CE 于F .(1)请列出图中两对全等三角形_________________(不另外添加辅助线);(2)请选择所列举的一对全等三角形加以证明.分析:由正多边形的性质可知:正多边形的各边相等,各角相等.这是一类结论不惟一的试题.解决此类问题的关键是依据图形,通过准确辨认全等三角形的对应元素,证明三角形全等.解:(1)△ABC ≌△AED ,△ABC ≌△EDC ;(2)证明:在正五边形ABCDE 中,AB BC CD DE EA ====,∠EAB =∠B =∠BCD =∠CDE =∠DEA ,故在△ABC 与△AED 中,AB =AE ,∠B =∠DEA ,BC =DE ,∴△ABC ≌△AED , 在△ABC 与△EDC 中,AB =ED ,∠B =∠CDE ,BC =DC ,∴△ABC ≌△EDC .点评:本考题题干简单清晰,但考点的内容与正多边形的知识相结合,需要具有分解基本图形的能力和基本的探究能力,才能顺利解题.热点3:合理添加辅助线,构造全等三角形解决相关问题.例3 (2008某某)如图3,已知AB AC =,(1)若CE BD =,求证:GE GD =;(2)若CE m BD =(m 为正数),试猜想GE 与GD 有何关系(只写结论,不证明).分析:证明在不同三角形中的两条线段和两个角相等的常用方法就是证明两个三角形全等,要证明线段GE 和GD 相等,在辨认三角形全等对应元素时,发现图中没有三角形全等,需要通过合理添加辅助线构造三角形全等.(1)证明:过D 作DF ∥CE ,交BC 于F ,∠E =∠GDF ,∵AB =AC ,DF ∥CE ,∴∠DFB =∠ACB =∠ABC ,∴DF =DB =EC .又∠DGF =∠EGC ,∴△GDF ≌△GEC .∴GE =GD .(2)GE m GD =.点评:在证明三角形全等时,可以通过翻折法、旋转法、平移法找到对应元素,或者合理添加辅助线构造全等三角形的对应元素.热点4:定义、命题、定理、互逆命题的考查.例4 (2008永州)下列命题是假命题的是( )(A)四个角相等的四边形是矩形(B)对角线互相平分的四边形是平行四边形(C)四条边相等的四边形是菱形(D)对角线互相垂直且相等的四边形是正方形分析:掌握平行四边形、矩形、菱形、正方形的判定方法是解决本题的关键. 解:选(D ).点评:本题考查同学们对平行四边形及特殊的平行四边形的判定方法的把握,遇到这种题,同学们可利用数形结合的思想将其中的文字语言转化为图形语言,便能迅速作出准确判断.热点5:平行四边形、矩形、菱形、正方形、等腰梯形的性质与判定的考查.例5 (2008某某)如图5,已知点D 在ABC △的BC △边上,DE AC ∥交AB 于E ,DF AB ∥交AC 于F .(1)求证:AE DF =;(2)若AD 平分BAC ∠,试判断四边形AEDF 的形状,并说明理由.分析:本题主要考查同学们对平行四边形及特殊的平行四边形的判定方法的把握.证明:(1)∵DE AC ∥,∴ADE DAF ∠=∠,同理DAE FDA ∠=∠.∵AD DA =,∴ADE DAF △≌△,∴AE DF =.(2)若AD 平分BAC ∠,四边形AEDF 是菱形.证明:∵DE AC ∥,DF AB ∥,∴四边形AEDF 是平行四边形,∵FAD EAD ∠=∠,∴AF DF =,∴平行四边形AEDF 为菱形.点评:三角形全等及平行四边形的性质都可以证明两线段相等,此类题起点低,注重基础知识及基本技能的考查,考查了同学们最基本的几何推理证明能力.热点6:圆的有关概念及性质的考查例6 (2008某某)如图6,AB 是O 的直径,C 是O 上一点,过圆心O 作OD AC ⊥,D 为垂足,E 是BC 上一点,G 是DE 的中点,OG 的延长线交BC 于F .(1)图中线段OD 、BC 所在直线有怎样的位置关系?写出你的结论,并给出证明过程;(2)猜想线段BE EF FC ,,三者之间有怎样的数量关系?写出你的结论,并给出证明过程.分析:平面内两直线的位置关系只有平行和相交两种,先通过观察图形可猜想OD ∥BC ,再利用圆的有关概念及性质得证.解:(1)结论:OD BC ∥.证明:∵AB 是O 的直径,C 是O 上一点,∴90ACB ∠=,即BC ⊥AC .又OD ⊥AC ,∴OD ∥BC .(2)结论:EF BE FC =+.证明:∵OD ⊥AC ,∴AD =DC .又O 为AB 的中点,∴OD 是△ABC 的中位线.∴BC =2OD .在△ODG 与△EFG 中,∵DG =EG ,∠GOD =∠GFE ,∠ODG =∠FEG ,∴ODG FEG △≌△.∴OD =EF .∴22BE EF FC BC OD EF ++===.∴EF BE FC =+.点评:为了使同学们对推理论证的必要性有更深刻的理解,新课程中的逻辑推理常在探究、猜想的前提下进行.本题就采用了这种方式.该题主要考查了直径与圆周角、垂直于弦的直径等概念之间的联系.【考题预测】1.下列命题中真命题的个数是( )①两个相似多边形面积之比等于相似比的平方;②两个相似三角形的对应高之比等于它们的相似比;③在ABC △与A B C '''△中,AB AC A B A C='''',A A '∠=∠,那么ABC A B C '''△∽△; ④已知ABC △及位似中心O ,能够作一个且只能作一个三角形,使位似比为0.5. (A)1个 (B)2个 (C)3个 (D)4个2.已知如图7,在四边形ABCD 中,对角线AC ,BD 交于点E ,且AC 平分∠DAB ,AB =AE ,AC =AD .下四个结论:①AC ⊥BD ;②CB =DE ;③12DBC DAB ∠=∠;④△ABE 是等边三角形.请写出正确的结论序号____________(把你认为正确的结论序号填上,并证明其中一个).3.如图8,菱形ABCD 中,E 、F 分别为CB 、CD 延长线上的点,且CE CF =.求证:AE AF =.4.如图9,在Rt △ABC 中,90ACB ∠=,2AB AC =,DE 垂直平分BC ,垂足为D ,交AB 于点E .又点F 在DE 的延长线上,且2EF DE =.求证:四边形ACEF 是菱形.5.如图10,D 是ABC △边AB 上一点,DE 交AC 于点E ,DE EF =,FC AB ∥.求证:AE CE =.6.如图11,已知AC 切O 于A ,CB 顺次交O 于D B ,两点,6AC =,5BD =,连结AD ,AB .(1)求证:CAD CBA △∽△;(2)求线段DC 的长.7.如图12,ABC △是O 的内接三角形,AC BC =,D 为O 中上一点,延长DA 至点E ,使CE CD =.(1)求证:AE BD =;(2)若AC BC ⊥,求证:AD BD CD +=.8.如图13,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连结AE 并延长交BD 于点F ,直线CF 交AB 的延长线于点G .(1)求证:点F 是BD 中点;(2)求证:CG 是O 的切线;(3)若2FB FE ==,求O 的半径.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 参 sin39 o≈ 16 , tan39 o≈ 4 )
20
5
25
5
27.如图,在梯形 ABCD中, AD∥ BC,E 为 BC的中点, BC=2AD,EA=ED=2,AC与 ED相交 于点 F.
试卷第 6 页,总 7 页
( 1)求证:梯形 ABCD是等腰梯形; ( 2)当 AB与 AC具有什么位置关系时,四边形 AECD是菱形?请说明理由,并求出此时 菱形 AECD的面积. 28.如图,⊙ O是△ ABC的外接圆, AB是⊙ O的直径, D 为⊙ O上一点, OD⊥ AC,垂足为 E,连接 BD.
S
2(用“ >”、“ <”或“ =”填空) .
21.如图,在 Rt △ ABC中,∠ B=90°, AB=6,BC=8,以其三边为直径向三角形外作三个
半圆,矩形 EFGH的各边分别与半圆相切且平行于
AB 或 BC,则矩形 EFGH的周长
是
.
三、解答题 22.如图, AF=DC,BC∥ EF,请只补充一个条件,使得△ ABC≌△ DEF,并说明理由.
∵ EM∥ CD,∴ BN: NF=BM:CM。∴ BN=NF。∴ NM=1 CF=1 。∴ NG=1 。
22
2
∵ BG=AB=CD=CF+DF,=3∴ BN=BG﹣ NG=3﹣ 1
5 。∴ BF=2BN=5
22
∴ BC BF2 CF2 52 12 2 6 。故选 B。
2. A。 【解析】∵菱形 ABCD的周长为 24cm,∴边长 AB=24÷4=6cm。 ∵对角线 AC、 BD相交于 O点,∴ BO=DO。
上,与汉字“美”相对的面上的汉字是【
】
那么在原正方体的表面
试卷第 2 页,总 7 页
A.我
B .爱
C
.枣
11 .如图给定的是纸盒的外表面,下面能由它折叠而成的是【
D.庄 】
A、
B、
C、
D、
12.如图,小明要测量河内小岛 B 到河边公路 l 的距离,在 A 点测得 BAD 30°, 在 C 点测得 BCD 60°,又测得 AC 50 米,则小岛 B 到公路 l 的距离为【 】
由△ ABF∽△ AGB得 AB AF ,即 AB 2 AF AG 。 AG AB
由勾股定理得, AF 2 AB 2 BG 2, FG 2 BG 2 BF 2 。
∴ DE
2
BG
AF
2
BG
AF 2
BG 2
2AF BG
AB 2 BF 2
BG 2
2AF BG
AB 2 ( BG 2 BF2) 2AF BG AF AG FG 2 2AF BG FG 2 AF (AG 2BG )。
( 1)求证:直线 PA为⊙ O的切线;
( 2)试探究线段 EF、 OD、 OP之间的等量关系,并加以证明;
( 3)若 BC=6, tan ∠ F= 1 ,求 cos ∠ ACB的值和线段 PE的长. 2
评卷人
得分
四、计算题
试卷第 7 页,总 7 页
本卷由【在线组卷网 】自动生成,请仔细校对后使用,答案仅供参考。
若 OC=OE,∵ DF⊥ EC,∴ CD=D。E
∵ CD=AD<DE(矛盾),故②错误。
∵∠ OCD+∠CDF=90°,∠ CDF+∠DFC=90°,∴∠ OCD=∠DFC。
∴ tan ∠ OCD=tan∠ DFC=DC = 4 。故③正确。 FC 3
∵△ EBC≌△ FCD,∴ S△EBC=S△FCD。
(1) 求证: BD平分∠ ABC; (2) 当∠ ODB=3°0 时,求证: BC=OD. 29.如图, 已知 AD为⊙ O的直径, B 为 AD延长线上一点, BC与⊙ O切于 C点,∠A=30°.
求证:( 1) BD=CD;( 2)△ AOC≌△ CDB. 30.如图, PB 为⊙ O 的切线, B 为切点,直线 PO交⊙于点 E、 F,过点 B 作 PO的垂线 BA,垂足为点 D,交⊙ O于点 A,延长 AO与⊙ O交于点 C,连接 BC, AF.
《中考复习专题之历年热点试题》— >图形与证明
第 I 卷(选择题)
一、选择题
1.如图,矩形 ABCD中, E 是 AD的中点,将△ ABE沿 BE 折叠后得到△ GBE,延长 BG交
CD于 F 点,若 CF=1, FD=2,则 BC的长为【
】
A. 3 2
B. 2 6 C. 2 5
D. 2 3
2.如图,菱形 ABCD的周长为 24cm,对角线 AC、BD相交于 O点, E 是 AD的中点,连接
米.
B
A A. 25
C Dl
B. 25 3
100 3
C.
3
D. 25 25 3
试卷第 3 页,总 7 页
第 II 卷(非选择题)
请点击修改第 II 卷的文字说明
二、填空题 13.如图,△ ABC的周长是 32,以它的三边中点为顶点组成第 2 个三角形,再以第 三角形的三边中点为顶点组成的第 3 个三角形, …,则第 n 个三角形的周长为
又∵ E 是 AD的中点,∴ OE是△ ABD的中位线。∴ OE=1 AB=1 ×6=3( cm)。故选 A。 22
3. C。 【解析】∵正方形 ABCD中,对角线 AC、 BD相交于点 O, ∴ AB=BC=CD=A,DOA=OB=OC=,OD四个角都是直角, AC⊥BD。 ∴图中的等腰直角三角形有△ AOB、△ AOD、△ COD、△ BOC、△ ABC、△ BCD、△ ACD、△ BDA 八个。故选 C。 4. D 【解析】∵四边形 ABCD是正方形,∴ AB=AD, AD∥ BC, ∵ DE⊥ AG,BF∥ DE,∴ BF⊥ AG。∴∠ AED=∠ DEF=∠BFE=90°。 ∵∠ BAF+∠DAE=90°,∠ DAE+∠ADE=90°,∴∠ BAF=∠ADE。 ∴△ AED≌△ BFA( AAS)。故结论 A 正确。 ∴ DE=AF,AE=BF,∴ DE﹣ BF=AF﹣ AE=EF。故结论 B 正确。 ∵ AD∥ BC,∴∠ DAE=∠ BGF。 ∵ DE⊥ AG,BF⊥ AG,∴∠ AED=∠GFB=90°。∴△ BGF∽△ DAE。故结论 C 正确。
1. B。
参考答案
【解析】过点 E 作 EM⊥ BC于 M,交 BF于 N。 ∵四边形 ABCD是矩形,∴∠ A=∠ABC=90°, AD=BC, ∵∠ EMB=09°,∴四边形 ABME是矩形。∴ AE=BM, 由折叠的性质得: AE=GE,∠ EGN=∠A=90°,∴ EG=BM。 ∵∠ ENG=∠BNM,∴△ ENG≌△ BNM( AAS)。∴ NG=N。M ∵ E 是 AD的中点, CM=DE,∴ AE=ED=BM=C。M
∴ S△ - EBC S△ FOC=S△FCD- S-,即 S△ODC=S 四边形 BEOF。故④正确。故选 C。
6. B。 【解析】寻找规律:∵等腰直角三角形
OAB中,∠ A=∠ B=450,
OE,则线段 OE的长等于【
】
A.3cm
B.4cm C.2.5cm
D.2cm
3.如图,正方形 ABCD中,对角线 AC,BD相交于点 O,则图中的等腰直角三角形有 【
】
A. 4 个 B . 6 个 C . 8 个 D . 10 个
4.如图, ABCD是正方形, G是 BC上(除端点外)的任意一点,
交 AG于点 F.下列结论不一定成立的是【
A3B3C3D3;……;依次作下去,则第 n 个正方形 AnBnCnDn 的边长是【
】
1 ( A) 3n 1
1 ( B) 3n
7.已知⊙ O的直径等于
1 ( C) 3n 1
1 (D) 3n 2
12cm,圆心 O到直线 l 的距离为
5cm,则直线 l 与⊙ O的交点个
数为【
】
A. 0 B . 1 C . 2 D .无法确定
2个 .
14.如图,菱形 ABCD的边长为 8cm,∠ A=60°, DE⊥ AB 于点 E,DF⊥ BC于点 F,则四
边形 BEDF的面积为
2
_cm .
15.如图,在梯形 ABCD中, AD∥BC,E 是 CD的中点,连接 AE并延长交 BC的延长线于
点 F,且 AB⊥ AE.若 AB=5, AE=6,则梯形上下底之和为
答案第 1 页,总 10 页
本卷由【在线组卷网 】自动生成,请仔细校对后使用,答案仅供参考。
∵ AG 2BG 0 (只有当∠ BAG=300 时才相等,由于 G是的任意一点,∠ BAG=300 不一定),
∴ DE
2
BG 不一定等于
FG2 ,即 DE﹣ BG=FG不一定成立。故结论
8.一个圆锥的三视图如图所示,则此圆锥的底面积为【
】
A.30πcm2 B .25πcm2 C .50πcm2 D .100πcm2 9.如图,在⊙ O中,弦 AB∥ CD,若∠ ABC=40°,则∠ BOD=【 】
A.20° B .40° C .50° D .80°
10 .如图是每个面上都有一个汉字的正方体的一种侧面展开图,
.
BC 是⊙ O 的切线,
试卷第 4 页,总 7 页
19.如图,⊙O的半径为 6cm,直线 AB是⊙ O的切线,切点为点 B,弦 BC∥ AO,若∠ A=30°,
则劣弧 B?C 的长为
cm .
20.如图 1,正方形 OCDE的边长为 1,阴影部分的面积记作 S1;如图 2,最大圆半径 r=1 ,
阴影部分的面积记作 S2,则 S1
ABC沿直线 BC向右平移,使
B 点与 C
( 1)猜想 AC与 BD的位置关系,并证明你的结论; ( 2)求线段 BD的长. 25.如图,在由边长为 1 的小正方形组成的网格中,三角形