最新三校生高考数学卷

合集下载

三校生数学试题及答案

三校生数学试题及答案

三校生数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项不是实数?A. √2B. πC. 0.33333…D. i答案:D2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 以下哪个不等式是正确的?A. 3 > 2B. 4 < 3C. 5 ≥ 5D. 6 ≤ 7答案:C5. 一个等差数列的首项是2,公差是3,那么它的第五项是:A. 14B. 17C. 20D. 23答案:A二、填空题(每题2分,共10分)6. 一个圆的半径是5厘米,那么它的周长是________厘米。

答案:31.47. 如果一个三角形的两边长分别是3和4,那么第三边的取值范围是________。

答案:1 < 第三边 < 78. 一个数的平方是25,那么这个数是________。

答案:±59. 函数y=x^2-4x+3的最小值是________。

答案:010. 一个等比数列的首项是2,公比是2,那么它的第四项是________。

答案:16三、解答题(每题10分,共20分)11. 已知函数f(x)=x^2-6x+8,求函数的顶点坐标。

答案:顶点坐标为(3, -1)。

12. 已知等差数列{an}的前三项分别为2,5,8,求该数列的通项公式。

答案:通项公式为an = 3n - 1。

结束语:本试题涵盖了实数、相反数、函数图象、不等式、等差数列等基础数学知识点,旨在考察学生的基础知识掌握情况和计算能力。

希望同学们通过本次练习能够查漏补缺,提高数学解题技巧。

中职三校生高考数学试卷

中职三校生高考数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √252. 已知等差数列{an}的首项a1=3,公差d=2,则第10项an=()A. 21B. 22C. 23D. 243. 函数f(x) = x^2 - 4x + 4的图像是()A. 抛物线开口向上B. 抛物线开口向下C. 直线D. 没有图像4. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a=5,b=7,c=8,则角C的大小为()A. 45°B. 60°C. 90°D. 120°5. 下列方程中,无解的是()A. x + 2 = 0B. x^2 - 4 = 0C. x^2 + 4 = 0D. x^2 - 3x + 2 = 06. 已知函数f(x) = 2x + 1,则f(-1)的值为()A. -1B. 0C. 1D. 27. 在直角坐标系中,点P(2,3)关于y轴的对称点为()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)8. 已知数列{an}的前n项和为Sn,若a1=2,a2=4,且an+1 = 2an,则S5的值为()A. 62B. 64C. 66D. 689. 下列不等式中,正确的是()A. 2x + 3 > 5B. 2x - 3 < 5C. 2x + 3 < 5D. 2x - 3 > 510. 已知等比数列{an}的首项a1=1,公比q=2,则第n项an=()A. 2nB. 2n-1C. 2n+1D. 2n-2二、填空题(每题5分,共50分)11. 若等差数列{an}的首项a1=1,公差d=2,则第n项an=________。

12. 函数f(x) = x^2 - 4x + 4的顶点坐标为________。

13. 在三角形ABC中,若a=6,b=8,c=10,则三角形ABC的面积S=________。

人教版三校生高考数学试卷

人教版三校生高考数学试卷

一、选择题(本大题共20小题,每小题3分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若集合A={x|-1≤x≤2},集合B={x|x≤-1或x≥2},则A∩B=()A. {x|-1≤x≤2}B. {x|x≤-1或x≥2}C. {x|x=-1或x=2}D. 空集2. 函数f(x)=2x+1在定义域内的单调性为()A. 单调递增B. 单调递减C. 既有单调递增又有单调递减D. 无单调性3. 若log2x+log2(x+1)=2,则x的值为()A. 1B. 2C. 3D. 44. 已知等差数列{an}中,a1=3,d=2,则a10=()A. 21B. 22C. 23D. 245. 下列命题中,正确的是()A. 如果a>b,则a^2>b^2B. 如果a>b,则a-c>b-cC. 如果a>b,则ac>bcD. 如果a>b,则a+c>b+c6. 已知圆的方程为x^2+y^2-2x-4y+5=0,则圆心坐标为()A. (1,2)B. (2,1)C. (1,-2)D. (-2,1)7. 已知向量a=(2,3),向量b=(4,-1),则a·b=()A. 11B. 10C. 9D. 88. 若sinA=1/2,cosB=-1/2,则sin(A+B)=()A. √3/2B. -√3/2C. 1/2D. -1/29. 已知等比数列{an}中,a1=2,q=3,则a5=()A. 54B. 162C. 486D. 145810. 下列函数中,有最大值的是()A. f(x)=x^2B. f(x)=x^3C. f(x)=x^4D. f(x)=x^511. 已知函数f(x)=ax^2+bx+c的图象开口向上,且对称轴为x=1,则a、b、c的关系为()A. a>0,b=0,c=0B. a>0,b=0,c≠0C. a>0,b≠0,c=0D. a>0,b≠0,c≠012. 已知等差数列{an}中,a1=5,d=-3,则an≤0的项数为()A. 3B. 4C. 5D. 613. 下列命题中,正确的是()A. 如果a>b,则a-c>b-cB. 如果a>b,则ac>bcC. 如果a>b,则a+c>b+cD. 如果a>b,则a^2>b^214. 已知圆的方程为x^2+y^2-4x-6y+9=0,则圆心到原点的距离为()A. 2B. 3C. 4D. 515. 已知向量a=(2,3),向量b=(4,-1),则|a-b|=()A. 5B. 6C. 7D. 816. 若sinA=√3/2,cosB=√3/2,则sin(A+B)=()A. 1B. 0C. -1D. 217. 已知等比数列{an}中,a1=3,q=1/3,则a5=()A. 1/243B. 1/81C. 1/27D. 1/918. 下列函数中,有最小值的是()A. f(x)=x^2B. f(x)=x^3C. f(x)=x^4D. f(x)=x^519. 已知函数f(x)=ax^2+bx+c的图象开口向下,且对称轴为x=2,则a、b、c的关系为()A. a<0,b=0,c=0B. a<0,b=0,c≠0C. a<0,b≠0,c=0D. a<0,b≠0,c≠020. 已知等差数列{an}中,a1=5,d=-3,则an≤0的项数为()A. 3B. 4C. 5D. 6二、填空题(本大题共10小题,每小题3分,共30分。

今年三校生高考数学试卷

今年三校生高考数学试卷

一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = 2x - 3,若f(x+1) = 5,则x的值为:A. 2B. 3C. 4D. 52. 若等差数列{an}的前三项分别为2,5,8,则第10项an的值为:A. 19B. 22C. 25D. 283. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为:A. (2,3)B. (3,2)C. (3,-2)D. (-2,3)4. 已知三角形ABC的边长分别为a=3,b=4,c=5,则角A的余弦值为:A. 1/2B. 1/3C. 2/3D. 3/45. 若等比数列{bn}的首项为b1=1,公比为q=2,则第n项bn的值为:A. 2^n - 1B. 2^nC. 2^n + 1D. 2^(n-1)6. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴为:A. x=1B. x=2C. x=3D. x=47. 若等差数列{an}的前n项和为Sn,且a1=1,d=2,则S10的值为:A. 55B. 60C. 65D. 708. 在直角坐标系中,点A(1,2),点B(-3,4)的中点坐标为:A. (-1,3)B. (1,3)C. (-2,3)D. (2,3)9. 已知函数f(x) = log2(x+1),则f(x)的定义域为:A. (-1, +∞)B. [0, +∞)C. (-∞, -1)D. (-1, 0)10. 若函数g(x) = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1,3),则a、b、c的取值范围分别为:A. a>0,b>0,c>0B. a>0,b<0,c>0C. a<0,b<0,c<0D. a<0,b>0,c<0二、填空题(本大题共5小题,每小题10分,共50分。

三校生职业高三数学试卷

三校生职业高三数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √2B. -πC. 3.14D. 2/32. 已知函数f(x) = 2x - 3,则f(2)的值为()A. 1B. 3C. 5D. 73. 若|a| = 5,|b| = 3,则|a + b|的最大值为()A. 8B. 5C. 3D. 24. 下列各点中,在直线2x + 3y - 6 = 0上的是()A. (1, 2)B. (2, 1)C. (3, 0)D. (0, 3)5. 若sin A = 1/2,cos B = 3/5,则sin(A + B)的值为()A. 7/10B. 4/5C. 3/10D. 1/56. 已知等差数列{an}的前三项分别为2,5,8,则该数列的公差d为()A. 1B. 2C. 3D. 47. 下列各式中,能表示圆的方程是()A. x² + y² = 1B. x² + y² = 4C. x² + y² = 16D. x² + y² = 258. 若log₂x + log₂y = 3,则x y的值为()A. 2³B. 2⁴C. 2⁵D. 2⁶9. 下列各函数中,奇函数是()A. y = x²B. y = x³C. y = x⁴D. y = x⁵10. 若向量a = (2, -3),向量b = (4, 6),则向量a与向量b的点积为()A. -6B. -12C. 6D. 12二、填空题(每题5分,共50分)1. 若sin A = 1/2,cos B = 3/5,则cos(A - B)的值为__________。

2. 已知等差数列{an}的首项a₁ = 3,公差d = 2,则第10项a₁₀ =__________。

3. 圆的标准方程为x² + y² = 16,圆心坐标为__________。

三校生高三复习数学试卷

三校生高三复习数学试卷

一、选择题(每题5分,共50分)1. 若函数f(x) = 2x - 3在区间[1, 4]上单调递增,则f(3)的值介于下列哪个区间内?A. [1, 2]B. [2, 3]C. [3, 4]D. [4, 5]2. 下列哪个数是方程x^2 - 4x + 3 = 0的根?A. 1B. 2C. 3D. 43. 已知等差数列{an}的前三项分别为a1, a2, a3,若a1 + a2 + a3 = 12,且a2 = 4,则该等差数列的公差为:A. 1B. 2C. 3D. 44. 若函数f(x) = x^3 - 3x^2 + 2x在区间[0, 2]上单调递增,则f(1)的值介于下列哪个区间内?A. [0, 1]B. [1, 2]C. [2, 3]D. [3, 4]5. 已知等比数列{bn}的前三项分别为b1, b2, b3,若b1 = 2,b2 = 4,则该等比数列的公比为:A. 1B. 2C. 4D. 86. 若函数f(x) = ax^2 + bx + c在区间[-1, 2]上单调递增,则下列哪个条件是错误的?A. a > 0B. b > 0C. c > 0D. a + b + c > 07. 已知等差数列{an}的前n项和为Sn,若S10 = 55,S20 = 200,则该等差数列的首项a1为:A. 1B. 2C. 3D. 48. 若函数f(x) = 2x + 1在区间[0, 3]上单调递减,则f(2)的值介于下列哪个区间内?A. [0, 1]B. [1, 2]C. [2, 3]D. [3, 4]的首项b1为:A. 1B. 2C. 3D. 410. 若函数f(x) = ax^2 + bx + c在区间[-1, 2]上单调递增,则下列哪个条件是正确的?A. a > 0B. b > 0C. c > 0D. a + b + c > 0二、填空题(每题5分,共25分)11. 若函数f(x) = 3x^2 - 2x + 1在区间[-1, 2]上单调递增,则f(1)的值为______。

2023三校生数学试卷

2023三校生数学试卷

选择题:1. 设函数f(x) = x³ - 3x² + 2x + 5,则f'(1)的值为:A. -3B. 0C. 1D. 62. 设集合A = {x | sin(x) > 0},集合B = {x | cos(x) > 0},则A ∩ B的取值范围是:A. (0, π/2)B. (0, π)C. (0, 2π)D. (0, 3π/2)3. 已知函数f(x) = eˣ + e⁻ˣ,g(x) = eˣ - e⁻ˣ,则f(g(x)) = 0的解是:A. x = 0B. x = 1C. x = -1D. x = -24. 在平面直角坐标系中,过点(-1, 2)且与直线y = x + 3垂直的直线的方程是:A. x = -1B. y = -1C. x = 3D. y = 35. 下列不等式组中,有解的不等式是:A. {2x - 3y > 4, 3x + 2y > 5}B. {2x + 3y > 4, 3x - 2y > 5}C. {2x - 3y < 4, 3x + 2y > 5}D. {2x - 3y > 4, 3x - 2y < 5}填空题:1. 若曲线y = x³ - 4x² + 5x的极值点为(x, y),则y的最大值为______。

2. 解方程2cos²x - cosx - 1 = 0,得到的解为______。

3. 若函数f(x) = ax³ + bx² + cx + d的图像过点(-2, -12),则a + b + c + d的值为______。

4. 若函数f(x) = x³ + 2x² + bx + 3的图像在x轴上有一个充分接近但不等于-1的零点,那么b的值为______。

5. 设矩阵A = [1, 2; 3, 4],矩阵B = [5; 6],则矩阵方程AX = B的解X为______。

三校生数学试卷

三校生数学试卷

三校生数学试卷一、选择题(每题3分,共30分)1. 设集合A = {xx^2 - 3x + 2 = 0},则集合A中的元素个数为()A. 0.B. 1.C. 2.D. 3.2. 函数y=√(x - 1)的定义域为()A. (-∞,1]B. [1,+∞)C. (-∞,1)D. (1,+∞)3. 若sinα=(3)/(5),且α是第二象限角,则cosα的值为()A. (4)/(5)B. -(4)/(5)C. (3)/(4)D. -(3)/(4)4. 过点(1,2)且斜率为3的直线方程为()A. y - 2 = 3(x - 1)B. y+2 = 3(x + 1)C. y - 2=-3(x - 1)D. y+2=-3(x + 1)5. 等差数列{a_n}中,a_1 = 2,d = 3,则a_5的值为()A. 14.B. 17.C. 20.D. 23.6. 二次函数y = x^2+2x - 3的对称轴为()A. x = - 1B. x = 1C. x = - 2D. x = 27. 在ABC中,若a = 3,b = 4,sin B=(2)/(3),则sin A的值为()A. (1)/(2)B. (3)/(4)C. (1)/(3)D. (9)/(8)8. 若向量→a=(1,2),→b=(3,x),且→a∥→b,则x的值为()A. 6.B. - 6.C. (3)/(2)D. -(3)/(2)9. 某班有50名学生,其中有30名男生,从该班随机抽取一名学生,抽到女生的概率为()A. (2)/(5)B. (3)/(5)C. (1)/(2)D. (1)/(5)10. 函数y = log_2x在区间[1,8]上的最大值为()A. 0.B. 1.C. 3.D. 8.二、填空题(每题3分,共15分)1. 计算:limlimits_x→1(x^2 - 1)/(x - 1)=_ 。

2. 已知圆的方程为(x - 1)^2+(y + 2)^2 = 9,则圆心坐标为_(1,-2),半径为_3。

三校生高考冷门数学试卷

三校生高考冷门数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,哪个数不是无理数?A. √2B. 0.333...C. √9D. π2. 已知等差数列的前三项分别为a1、a2、a3,且a1=3,d=2,则第10项a10等于:A. 23B. 25C. 27D. 293. 下列函数中,哪个函数是奇函数?A. y = x^2B. y = x^3C. y = x^4D. y = x^54. 下列各式中,哪个式子是恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 2C. sin^2x + cos^2x = 2D. sin^2x - cos^2x = 05. 在直角坐标系中,点A(2,3)关于直线y=x的对称点B的坐标是:A. (3,2)B. (2,3)C. (3,3)D. (2,2)6. 已知函数f(x) = x^3 - 3x,则f'(1)等于:A. -2B. 0C. 2D. 47. 下列各数中,哪个数是虚数?A. 3B. -2C. 2iD. 58. 下列各式中,哪个式子是正比例函数?A. y = 2x + 1B. y = x^2C. y = 3xD. y = 2x^2 + 19. 已知三角形ABC的边长分别为a、b、c,且满足a^2 + b^2 = c^2,则三角形ABC是:A. 等腰三角形B. 直角三角形C. 等边三角形D. 钝角三角形10. 下列各式中,哪个式子是二次方程?A. x^3 - 3x + 2 = 0B. x^2 - 2x + 1 = 0C. x^4 - 4x^2 + 4 = 0D. x^5 - 5x^3 + 4x = 0二、填空题(每题5分,共25分)11. 若等差数列的前三项分别为1,3,5,则第10项为______。

12. 已知函数f(x) = 2x - 1,则f(-3)的值为______。

13. 在直角坐标系中,点P(1,2)关于y轴的对称点为______。

2024届云南省三校高三下学期高考备考联考(七)数学试卷及答案

2024届云南省三校高三下学期高考备考联考(七)数学试卷及答案

数学参考答案·第1页(共10页)2024届云南三校高考备考实用性联考卷(七)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求) 题号1 2 3 4 5 6 7 8 答案B A BCD C A C【解析】1.由{|1}A x x =-≤≤0,得{|1U A x x =<- 或0}x >,而{1134}B =-,,,,依题意,阴影部分表示的集合(){134}U A B = ,, ,故选B . 2.设20x ax a -+=的另一个根是z ,易知z 与1i +一定是共轭复数,故1i z =-,故1i 1i 2++-=,故选A .3.由题知,222||1()||2||||cos ||3a a b a a b b θ=+=++= ,,所以1π2cos 1cos 23θθθ===,,,故选B .4.由题意可知A :两人都没选择篮球,即4416(5525P A =⨯=,所以9()1(25P A P A =-=,而AB :有一人选择篮球,另一人选别的兴趣班,则428()5525P AB ⨯==⨯,所以8()825(|)9()925P AB P B A P A ===,故选C.5.如图1所示,高线为MN,由方斗的容积为28升,可得128(4163MN =++ ,解得3MN =.由上底边长为4分米,下底边长为2分米可得AM NB ==,AB =,侧面积为,所以方斗的表面积为2(20s =+,故选D . 6.设a ,b ,c 分别为角A,B ,C 所对的边,在ABC △中,由正弦定理可得,22sinsin sin a b c R A B C ====,所以sin 2c C =,11sin 22244ABC c abc S ab C ab ==== △ =,故选C .图1数学参考答案·第2页(共10页)7.根据已知条件有11a =,当2n ≥时,212a a -=,323a a -=,434a a -=,…,1n n a a n --=,以上各式累加得:1234n a a n -=++++ ,又11a =,所以1234n a n =+++++(1)(2)2n n n +=≥,经检验11a =符合上式,所以(1)()2*n n n a n ∈+=N ,所以12112(1)1n a n n n n ⎛⎫==- ⎪++⎝⎭,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则11121223n S ⎡⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎝⎭⎝⎭⎣ 1111223411n n n ⎤⎛⎫⎛⎫+-++-=- ⎪ ⎪⎥++⎝⎭⎝⎭⎦,所以3026023131S =-=,故选A . 8.根据题意,()0f x =,所以e ln x a x x x =--,令()e ln x g x x x x =--,(0e)x ∈,,则函数e (n )l xf x x x a x =---在(0e),上存在零点等价于y a =与()g x 的图象有交点.111(1)(e 1)()e e 1e (1)(1)e x x xx x x x x g x x x x x x x x ++-⎛⎫=+--=+-=+-= ⎪⎝⎭',令()e x h x x = 1-,(0e)x ∈,,则()e e 0x x h x x ='+>,故()h x 在(0e),上单调递增,因为(0)10h =-<,(1)e 10h =->,所以存在唯一的0(01)x ∈,,使得0()0h x =,即00 e 10x x -=,即001e x x =,00ln x x =-,所以当00x x <<时,0()0h x <, ()0g x '<,()g x 单调递减,当0e x x <<时,0()0h x >,()0g x '>,()g x 单调递增,所以0min 000000()()e ln 11x g x g x x x x x x ==--=-+=,又0x →时,()g x →+∞,故(0e)x ∈,,()[1)g x ∈+∞,,所以1a ≥,故选C .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分) 题号9 10 11 答案AB AD ABD【解析】 9.对于A ,由均值的性质可知222()()()E X a E X a μμ-=-+-,由于a 是不等于μ的常数,故可得22()()E X a E X μ->-,即X 相对于μ的偏离程度小于X 相对于a 的偏离程度,A正确;对于B ,根据方差公式2222121[(()()]n s x x x x x x n=-+-++- ,可知若一组数据1x ,2x ,…,n x 的方差为0,则12n x x x === ,B 正确;对于C ,由决定系数的定义可知,C 错误;对于D ,2χ的值变为原来的10倍,在相同的检验标准下,再去判断两变量的关联性时,结论可能发生改变,D 错误,故选AB .数学参考答案·第3页(共10页)10.对A ,由(0)1f =-,1ϕ=-,即sin 2ϕ=,又ππ22ϕ-<<,π4ϕ=-∴,又()f x 的图象过点π08⎛⎫ ⎪⎝⎭,则π08f ⎛⎫= ⎪⎝⎭,即ππsin 084ω⎛⎫-= ⎪⎝⎭,πππ84k ω-=∴,即得82k ω=+,k ∈Z ,又02ω<≤,2ω=∴,所以π5π()2244f x x x ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭,故A 正确;对B,5π5π5π5π208842f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭,故B 错误;对C ,当5π7π88x ⎡⎤∈⎢⎥⎣⎦,时,则5π5π23π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在5π7π88x ⎡⎤∈⎢⎥⎣⎦,单调递减,故C 错误;对于D ,由()1f x =,得5πcos 242x ⎛⎫+= ⎪⎝⎭,解得ππ4x k =+或ππ2k +,k ∈Z ,方程()1f x =在(0)m ,上有6个根,从小到大依次为:ππ5π3π9π5π424242,,,,,,而第7个根为13π4,所以5π13π24m <≤,故D 正确,故选AD . 11.对A 选项:当αβ⊥时,因为l αβ= ,AC l ⊥,所以AC β⊥,所以直线CD 与平面β所成角为CDA ∠,又因为AD β⊂,所以AC AD ⊥,因为BD l ⊥,AC AB BD ==,所以AD ==,所以sin 3AC CDA CD ∠===,故A 正确;对B 选项:如图2,过A 作//AE BD ,且AE BD =,连接ED ,EC ,则四边形ABDE 为正方形,所以AB DE ∥,所以CDE ∠(或其补角)即为直线AB 与CD 所成角,因为BD l ⊥,四边形ABDE 为正方形,有AE BD ∥,所以AE l ⊥,又因为AC l ⊥,所以CAE ∠即为二面角l αβ--的平面角,即60CAE ∠=︒,由AC l ⊥、AE l ⊥、AC AE A = ,且AC ,AE ⊂平面ACE ,所以l ⊥平面ACE ,又四边形ABDE 为正方形,所以DE l ∥,所以DE ⊥平面ACE ,又CE ⊂平面ACE ,所以DE CE ⊥.由AC BD =且四边形ABDE 为正方形,60CAE ∠=︒,所以AC AE CE ==,所以tan 1CDE ∠=,即45CDE ∠=︒,即直线AB 与CD 所成角为45︒,故B 正确;对于D ,如图3,作AE BD ∥,且AE BD =,则二面角l αβ--的平面角为CAE ∠,不妨取22CD AB ==,由2CD =,在Rt DEC △中,易得CE =,在ACE △中,由余弦定理得1cos 2CAE ∠=-,图2 图3数学参考答案·第4页(共10页)120CAE ∠=︒,过C 点作CO AE ⊥交线段EA 的延长线于点O ,则CO ⊥平面ABDE ,过O 点作OH BD ⊥,交线段DB 的延长线于点H ,连接CH ,则CHO ∠为二面角C BD A --的平面角,易得2CO =,1HO =,2CH =,所以cos 7OH CHO CH∠==,故D 正确;对C 选项:同选项D 可知120CAE ∠=︒,如图4,分别取线段AD ,AE 的中点G ,M ,连接GM ,过G 点作平面β的垂线,则球心O '必在该垂线上,设球的半径为R ,则O E R '=,又ACE △的外接圆半径112sin120r =⨯=︒,而平面ACE ⊥平面ABDE ,所以O G '∥平面ACE ,即MG 的长为点O '到平面ACE 的距离,则2215124R ⎛⎫=+= ⎪⎝⎭,所以四面体A BCD -的外接球的体积为34π3R =C 错误,故选ABD .三、填空题(本大题共3小题,每小题5分,共15分)【解析】 12.含x 的项为:443344C (1)3C (1)11x x x -+-=- ,故111a =-;令0x =,即03a =,令1x =,即0123450a a a a a a =+++++,23458a a a a +++=∴.13.()f x 定义域为210x b +>+,得x b >-或2x b <--,由()f x 为奇函数有20b b ---=,所以1b =-.14.如图5,伞的伞沿与地面接触点B 是椭圆长轴的一个端点,伞沿在地面上最远的投影点A 是椭圆长轴的另一个端点,对应的伞沿为C ,O 为伞的圆心,F 为伞柄底端,即椭圆的左焦点,令椭圆的长半轴长为a ,半焦距为c ,由OF BC ⊥,||||OF OB ==,得||a c BF +==45FBC∠=︒,||2AB a =,||BC =,在ABC △中,60BAC ∠=︒,则75ACB ∠=︒,1sin 75sin(4530)2︒=︒+︒=+ 图5 图4数学参考答案·第5页(共10页)4+=,由正弦定理得,2sin 75sin 60a =︒︒,解得2a =,则2c -=,所以该椭圆的离心率2ce a== 四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)解:(1)圆1C :22(3)1x y ++=的圆心为1(30)C -,,半径为1, 圆2C :22(3)1x y -+=的圆心为2(30)C ,,半径为1, 设圆C 的半径为r ,若圆C 与圆1C 内切,与圆2C 外切,则12||1||1CC r CC r =-=+,,……………………………………………………………(2分)可得21||||2CC CC -=;若圆C 与圆2C 内切,与圆1C 外切,则21||1||1CC r CC r =-=+,,……………………………………………………………(4分)可得12||||2CC CC -=; 综上所述:12||||||2CC CC -=,可知:圆心C 的轨迹E 是以1C 、2C 为焦点的双曲线,且1a =,3c =, 可得2228b c a =-=,所以圆心C 的轨迹E 的方程为2218y x -=.……………………………(6分)(2)联立方程22180y x x y m ⎧-=⎪⎨⎪-+=⎩,, 消去y 得227280x mx m ---=, ………………………………………(8分)则222428(8)32(7)0m m m ∆=++=+>,可知直线与双曲线相交,………………………………………………………(9分)数学参考答案·第6页(共10页)如图6,设1122()()A x y B x y ,,,,线段AB 的中点为00()M x y ,, 可得12027x x m x +==,0087m y x m =+=,即877m m M ⎛⎫⎪⎝⎭,, ………………………………………………………(11分)且877m m M ⎛⎫⎪⎝⎭,在圆2265x y +=上,则2286577m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得7m =±, 又0m >,所以实数m 的值为7. ………………………………………(13分)16.(本小题满分15分) 解:(1)函数()f x 的定义域为{|0}x x >,21()2a f x x x -'=+, ……………………………………………………(1分)又曲线()y f x =在点(1(1))f ,处的切线与直线12y x =-垂直,所以(1)122f a -+'==,即1a =. ………………………………………(3分)1()ln 2f x x x x =++∴,2(1)(21)()(0)x x f x x x +-=>', 由()0f x '<且0x >,得102x <<,即()f x 的单调递减区间是102⎛⎫⎪⎝⎭,, 由()0f x '>得12x >,即()f x 的单调递增区间是12⎛⎫+∞ ⎪⎝⎭.………………………………………………………(6分)(2)由(1)知不等式()22mf x x x+≥恒成立, 可化为1ln 222m x x x x x+++≥恒成立,即ln 12m x x + ≤恒成立.………………………………………………………(8分)令()ln 1g x x x =+ ,……………………………………(10分)当1e 0x ⎛⎫∈ ⎪⎝⎭,时,()0g x '<,()g x 在10e ⎛⎫⎪⎝⎭,上单调递减;当1e x ⎛⎫∈+∞ ⎪⎝⎭,时,()0g x '>,()g x 在1e ⎛⎫+∞ ⎪⎝⎭上单调递增.………………………………………………………(12分)图6数学参考答案·第7页(共10页)所以1e x =时,函数()g x 有最小值11e-. ……………………………………(13分)由ln 12mx x + ≤恒成立, 得22e m -≤,即实数m 的取值范围是22e ⎛⎤-∞- ⎥⎝⎦,. ………………………(15分)17.(本小题满分15分)(1)证明:如图7,过点F 作AD 的垂线,垂足为M ,连接MB MC ,,由已知可得12AM MF MD BM CM ====,,,……………………………………………………………(2分)∵平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD FM =⊂,平面ADEF , FM AD FM ⊥⊥,∴平面ABCD , ……………………………………………………………(4分)MB MC ⊂,∵平面ABCD FM MB FM MC ⊥⊥,,∴,BF CF ==∴ 222BF CF BC +=,∴BF CF ⊥∴.…………………………………………………(6分) (2)解:建立如图所示空间直角坐标系A xyz -, 则(130)(021)(011)C E F ,,,,,,,,,……………………………………………………………(8分)(011)(111)(010)AF CE EF ==--=- ,,,,,,,,∴,……………………(9分) 设平面CEF 的法向量为()n x y z = ,,,则00n EF y n CE x y z ⎧=-=⎪⎨=--+=⎪⎩,,令1x =得(101)n =,,, …………………………………(12分) 设直线AF 与平面CEF 所成角为θ,则,||1sin |cos |2||||AF n AF n AF n θ=〈〉===,.………………………(14分)ππ026θθ⎡⎤∈=⎢⎥⎣⎦,,∵∴,即直线AF 与平面CEF. ……………………………(15分)图7数学参考答案·第8页(共10页)18.(本小题满分17分)解:(1)由题可知2号盒子里有3个黑球的概率为202224C C 1C 6P ==. …………………………………………………………(3分)(2)由题可知ξ可取123,,,221123222222224444C C C C C 7(1)C C C C 36P ξ==⨯+⨯=, ………………………………………(4分)221123222222224444C C C C C 7(3)C C C C 36P ξ==⨯+⨯=, ………………………………………(5分) 11(2)1(1)(3)18P P P ξξξ==-=-==, ………………………………………(6分)所以3号盒子里的黑球的个数ξ的分布列为………………………………………(8分)(3)记1n a -为第(2)n n ≥号盒子有一个黑球和三个白球的概率,则116a =,……………………………………………………………(9分)1n b -为第(2)n n ≥号盒子有两个黑球和两个白球的概率,则12211318b b ==,…………………………………………………………(10分)则第(2)n n ≥号盒子有三个黑球和一个白球的概率为111n n a b ----, 且12222211(1)(3)322n n n n n b b a a b n -----=++--≥,化解得121162n n b b --=+,………………………………………(12分)得12131331565515n n b b b --⎛⎫-=--= ⎪⎝⎭,, 而21313565b b ⎛⎫-=- ⎪⎝⎭,则数列35n b ⎧⎫-⎨⎬⎩⎭为等比数列,首项为131515b -=,公比为16,数学参考答案·第9页(共10页)所以13115156n n b -⎛⎫=+ ⎪⎝⎭,又由1221162n n n a b a ---=+求得:111556nn a ⎛⎫=- ⎪⎝⎭. ………………………(15分)因此111111()123(1)322n n n n n n n E X a b a b a b ------=⨯+⨯+⨯--=--=.………………………………………(17分)19.(本小题满分17分)(1)①解:因为(021)A ,,,(132)B -,,, 则021402032(112)132i j kOA OB i j k i i j k ⨯==-++--=-+=-- ,,.……………………………………………………………(3分)②证明:设111()A x y z ,,,222()B x y z ,,,则121212212121OA OB y z i z x j x y k x y k x j y z i z ⨯=++--- 122112211221()z z x z x x y x y y z y --=-,,, 将2x 与1x 互换,2y 与1y 互换,2z 与1z 互换, 可得211221122112()OB OA y z y z z x z x x y x y ⨯=---,,, 故(000)0OA OB OB OA ⨯+⨯== ,,.………………………………………(7分)(2)证明:因为sin AOB ∠==OA OB =,故1||||sin 2AOBS OA OB AOB =∠=△, 故要证1||2AOBS OA OB =⨯△,只需证||OA OB ⨯= 即证2222||||||()OA OB OA OB OA OB ⨯=- .数学参考答案·第10页(共10页)由(1)111()OA x y z = ,,,222()OB x y z =,,,122112211221()OA OB y z y z z x z x x y x y ⨯=--- ,,, 故2222122112211221||()()()OA OB y z y z z x z x x y x y ⨯=-+-+- ,又2222111||OA x y z =++ ,2222222||OB x y z =++ ,22121212()()OA OB x x y y z z =++ ,则2222||||||()OA OB OA OB OA OB ⨯=-成立, 故1||2AOB S OA OB =⨯△. ………………………………………(13分)(3)解:由(2)1||2AOB S OA OB =⨯△, 得22()||OA OB OA OB ⨯=⨯ 1||2|2||2|AOB OA OB OA OB S OA OB =⨯⨯=⨯△, 故21()||63AOB OA OB S OA OB ⨯=⨯⨯△,故2()OA OB ⨯ 的几何意义表示以AOB △为底面、||OA OB ⨯为高的三棱锥体积的6倍. ………………………………………(17分)。

数学试卷三校生高考

数学试卷三校生高考

一、选择题(每题4分,共40分)1. 已知函数f(x) = x^2 - 2x + 1,那么f(2)的值为()A. 1B. 3C. 0D. -12. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^43. 已知等差数列{an}的公差为d,若a1 + a2 + a3 = 9,a1 + a2 + a3 + a4 = 18,则d的值为()A. 2B. 3C. 4D. 54. 在△ABC中,角A、B、C的对边分别为a、b、c,若a^2 + b^2 = c^2,则△ABC是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形5. 下列方程中,有唯一解的是()A. x^2 + x + 1 = 0B. x^2 - 2x + 1 = 0C. x^2 + 2x + 1 = 0D. x^2 - 4x + 3 = 06. 已知等比数列{an}的公比为q,若a1 + a2 + a3 = 12,a1 a2 a3 = 27,则q的值为()A. 3B. 2C. 1D. -17. 下列函数中,在定义域内单调递增的是()A. f(x) = x^2B. f(x) = 2^xC. f(x) = log2xD. f(x) = x^38. 已知函数f(x) = x^2 - 3x + 2,那么f(-1)的值为()A. 0B. 1C. 2D. -19. 在△ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则△ABC的面积为()A. 6B. 8C. 10D. 1210. 下列方程中,有无数解的是()A. x^2 + y^2 = 1B. x^2 + y^2 = 4C. x^2 + y^2 = 9D. x^2 + y^2 = 16二、填空题(每题4分,共40分)1. 已知等差数列{an}的首项为a1,公差为d,那么第n项an = _______。

云南省三校2024届高三下学期3月高考备考实用性联考卷(七) 数学及答案

云南省三校2024届高三下学期3月高考备考实用性联考卷(七) 数学及答案

2024届云南三校高考备考实用性联考卷(七)数学(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效,3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =R ,集合{}{}10,1,1,3,4A xx B =-=-∣ ,那么如图阴影部分表示的集合为()A.{}1,4-B.{}1,3,4C.{}1,4D.{}1,3,4-2.若1i +是一元二次方程20,x ax a a -+=∈R 的根,则该方程的两根之和为()A.2B.1i -C.22i- D.13.已知(1,0),||1,||a b a b ==+=a 与b 的夹角为()A.π6B.π3C.2π3D.5π64.小张、小王两人计划报一些兴趣班,他们分别从“篮球、绘画、书法、游泳、钢琴”这五个随机选择一个,记事件A :“两人至少有一人选择篮球”,事件B :“两人选择的兴趣班不同”,则概率()P BA =∣()A.49B.59C.89D.455.我国古代有一种容器叫“方斗”,“方斗”的形状是一种上大下小的正四棱台(两个底面都是正方形的四棱台),如果一个方斗的容积为28升(一升为一立方分米),上底边长为4分米,下底边长为2分米,则该方斗的表面积为()A.(220dm+ B.(220dm+ C.256dm D.(220dm+6.已知圆的半径为1,,,a b c 分别为该圆的内接ABC 的三边,若abc =ABC 的面积为()B. C. D.7.如图的形状出现在南宋数学家杨辉所著的《详解九章算法•商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,……第n 层有n a 个球,则数列1n a ⎧⎫⎨⎬⎩⎭的前30项和为()A.6031B.382C.2031D.19318.已知函数()e ln xf x x x x a =---,若()0f x =在()0,e x ∈有实数解,则实数a 的取值范围是()A.[)0,∞+ B.1,e∞⎡⎫+⎪⎢⎣⎭C.[)1,∞+D.[)e,∞+二、多项选择题(本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.下列说法正确的是()A.设随机变量X 的均值为,a μ是不等于μ的常数,则X 相对于μ的偏离程度小于X 相对于a 的偏离程度(偏离程度用差的平方表示)B.若一组数据12,,,n x x x 的方差为0,则所有数据()1,2,,i x i n = 都相同C.用决定系数2R 比较两个回归模型的拟合效果时,2R 越小,残差平方和越小,模型拟合效果越好D.在对两个分类变量进行2χ独立性检验时,如果列联表中所有数据都扩大为原来的10倍,在相同的检验标准下,再去判断两变量的关联性时,结论不会发生改变10.函数()()ππ02,22f x x ωϕωϕ⎛⎫=+<-<< ⎪⎝⎭的部分图象如图所示,则下列说法中正确的是()A.()f x 的表达式可以写成()5π24f x x ⎛⎫=+ ⎪⎝⎭B.()f x 的图象关于直线5π8x =对称C.()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D.若方程()1f x =在()0,m 上有且只有6个根,则5π13π,24m ⎛⎫∈⎪⎝⎭11.如图,已知二面角l αβ--的棱l 上有,A B 两点,,,,C AC l D BD l αβ∈⊥∈⊥,且AC AB BD ==,则()A.当αβ⊥时,直线CD 与平面β所成角的正弦值为33B.当二面角l αβ--的大小为60 时,直线AB 与CD 所成角为45C.若22CD AB ==,则三棱锥A BCD -的外接球的体积为55π3D.若2CD AB =,则二面角C BD A --的余弦值为277三、填空题(本大题共3小题,每小题5分,共15分)12.已知多项式()423450123453(1)x x a a x a x a x a x a x +-=+++++,则2345a a a a +++=__________.13.若()2ln 1f x x b ⎛⎫=+⎪+⎝⎭为奇函数,则b =__________.14.油纸伞是中国传统工艺品,至今已有1000多年的历史,为宣传和推广这一传统工艺,北京市文化宫于春分时节开展油纸伞文化艺术节.活动中将油纸伞撑开后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半,阳光照射油纸伞在地面形成了一个椭圆形影子(春分时,北京的阳光与地面夹角为60 ),若伞柄底端正好位于该椭圆的焦点位置,则该椭圆的离心率为__________.四、解答题(共77分,解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)设圆C 与两圆222212:(3)1,:(3)1C x y C x y ++=-+=中的一个内切,另一个外切.(1)求圆心C 的轨迹E 的方程;(2)已知直线0(0)x y m m -+=>与轨迹E 交于不同的两点,A B ,且线段AB 的中点在圆2265x y +=上,求实数m 的值.16.(本小题满分15分)已知函数()1ln 2f x a x x x =++,且曲线()y f x =在点()()1,1f 处的切线与直线12y x =-垂直.(1)求函数()f x 的单调区间;(2)若关于x 的不等式()22mf x x x+ 恒成立,求实数m 的取值范围.17.(本小题满分15分)如图,在几何体ABCDEF 中,ADEF 为等腰梯形,ABCD 为矩形,AD ∥,1EF AB =,3,2,1AD DE EF ===,平面ADEF ⊥平面ABCD .(1)证明:BF CF ⊥;(2)求直线AF 与平面CEF 所成角的余弦值.18.(本小题满分17分)现有标号依次为1,2,,n 的n 个盒子,标号为1号的盒子里有2个黑球和2个白球,其余盒子里都是1个黑球和1个白球.现从1号盒子里取出2个球放入2号盒子,再从2号盒子里取出2个球放入3号盒子, ,依次进行到从1n -号盒子里取出2个球放入n 号盒子为止.(1)当2n =时,求2号盒子里有3个黑球的概率;(2)当3n =时,求3号盒子里的黑球的个数ξ的分布列;(3)记n 号盒子中黑球的个数为n X ,求n X 的期望()n E X .19.(本小题满分17分)三阶行列式是解决复杂代数运算的算法,其运算法则如下:123123123231312321213132123a a a b b b a b c a b c a b c a b c a b c a b c c c c =++---.若111222i j ka b x y z x y z ⨯=,则称a b⨯ 为空间向量a 与b的叉乘,其中()()111111222222,,,,,a x i y j z k x y z b x i y j z k x y z =++∈=++∈R R ,{},,i j k 为单位正交基底.以O 为坐标原点,分别以,,i j k的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,已知,A B 是空间直角坐标系中异于O 的不同两点.(1)①若()()0,2,1,1,3,2A B -,求OA OB ⨯;②证明:0OA OB OB OA ⨯+⨯=.(2)记AOB 的面积为AOB S ,证明:12AOB S OA OB =⨯;(3)问:2()OA OB ⨯ 的几何意义表示以AOB 为底面、OA OB ⨯ 为高的三棱锥体积的多少倍?2024届云南三校高考备考实用性联考卷(七)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.由{}10A x x =-∣ ,得U {1A x x =<-∣ð或0}x >,而{}1,1,3,4B =-,依题意,阴影部分表示的集合(){}U1,3,4A B ⋂=ð,故选B.2.设20x ax a -+=的另一个根是z ,易知z 与1i +一定是共轭复数,故z 1i =-,故1i 1i 2++-=,故选A.3.由题知,222||1,()||2||||cos ||3a a b a a b b θ=+=++=,所以1π2cos 1,cos ,23θθθ===,故选B.4.由题意可知A :两人都没选择篮球,即()44165525P A =⨯=,所以()()9125P A P A =-=,而AB :有一人选择篮球,另一人选别的兴趣班,则()4285525P AB⨯==⨯,所以()()()88259925P AB P B A P A ===∣,故选C.5.如图所示,高线为MN ,由方斗的容积为28升,可得(1284163MN =++⋅,解得3MN=.由上底边长为4分米,下底边长为2分米可得AM NB AB ===,侧面积为面积为(220dm s =+,故选 D.6.设,,a bc 分别为角,,A B C 所对的边,在ABC 中,由正弦定理可得,22sin sin sin a b c R A B C====,所以11162sin ,sin 222244ABC c c abc C S ab C ab ===⋅=== ,故选C.7.根据已知条件有11a =,当2n 时,21324312,3,4,,n n a a a a a a a a n --=-=-=-= ,以上各式累加得:1234n a a n -=++++ ,又11a =,所以()()1123422n n n a n n +=+++++=,经检验11a =符合上式,所以()()*12n n n a n +=∈N ,所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则111111122122233411n S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,所以3026023131S =-=,故选A.8.根据题意,()0f x =,所以e ln x a x x x =--,令()()e ln ,0,e xg x x x x x =--∈,则函数()e ln x f x x x x a =---在()0,e 上存在零点等价于y a =与()g x 的图象有交点.()()()()()1e 1111e e 1e 11e xx x x xx x x g x x x x x x x x +-+⎛⎫=+--=+-=+'-=⎪⎝⎭,令()()e 1,0,e x h x x x =-∈,则()e e 0x x h x x =+>',故()h x 在()0,e 上单调递增,因为()010h =-<,()1e 10h =->,所以存在唯一的()00,1x ∈,使得()00h x =,即00e 10x x -=,即001e xx =,00ln x x =-,所以当00x x <<时,()()()00,0,h x g x g x <'<单调递减,当0e x x <<时,()()()00,0,h x g x g x >'>单调递增,所以()0min 000000()e ln 11xg x g x x x x x x ==--=-+=,又0x →时,()g x ∞→+,故()()[)0,e ,1,x g x ∞∈∈+,所以1a ,故选C.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)题号91011答案ABADABD【解析】9.对于A ,由均值的性质可知222()()()E X a E X a μμ-=-+-,由于a 是不等于μ的常数,故可得22()()E X a E X μ->-,即X 相对于μ的偏离程度小于X 相对于a 的偏离程度,A 正确;对于B ,根据方差公式()()()2222121s n x x x x x x n ⎡⎤=-+-++-⎣⎦ ,可知若一组数据1x ,2,,n x x 的方差为0,则12,B n x x x === 正确;对于C ,由决定系数的定义可知,C 错误;对于2D,χ的值变为原来的10倍,在相同的检验标准下,再去判断两变量的关联性时,结论可能发生改变,D 错误,故选AB.10.对A ,由()01f =-1ϕ=-,即2sin 2ϕ=-,又πππ,224ϕϕ-<<∴=-,又()f x 的图象过点π,08⎛⎫⎪⎝⎭,则π08f ⎛⎫= ⎪⎝⎭,即ππππsin 0,π8484k ωω⎛⎫-=∴-= ⎪⎝⎭,即得82k ω=+,k ∈Z ,又02,2ωω<∴= ,所以()π5π2244f x x x ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭,故A 正确;对B,5π5π5π5π208842f ⎛⎫⎛⎫=⨯+==⎪ ⎪⎝⎭⎝⎭,故B 错误;对C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在5π7π,88x ⎡⎤∈⎢⎥⎣⎦单调递减,故C 错误;对于D ,由()1f x =,得5π2cos 242x ⎛⎫+= ⎪⎝⎭,解得ππ4x k =+或ππ,2k k +∈Z ,方程()1f x =在()0,m 上有6个根,从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个根为13π4,所以5π13π24m < ,故D 正确,故选AD.11.对A 选项:当αβ⊥时,因为,l AC l αβ⋂=⊥,所以AC β⊥,所以直线CD 与平面β所成角为CDA ∠,又因为AD β⊂,所以AC AD ⊥,因为,BD l AC AB BD ⊥==,所以AD ==,所以sin 3ACCDA CD∠===,故A正确;对B 选项:如图,过A 作AE ∥BD ,且AE BD =,连接,ED EC ,则四边形ABDE 为正方形,所以AB ∥DE ,所以CDE ∠(或其补角)即为直线AB 与CD 所成角,因为BD l ⊥,四边形ABDE 为正方形,有AE ∥BD ,所以AE l ⊥,又因为AC l ⊥,所以CAE ∠即为二面角l αβ--的平面角,即60CAE ∠= ,由AC l AE l AC AE A ⊥⊥⋂=、、,且,AC AE ⊂平面ACE ,所以l ⊥平面ACE ,又四边形ABDE 为正方形,所以DE ∥l ,所以DE ⊥平面ACE ,又CE ⊂平面ACE ,所以DE CE ⊥.由AC BD =且四边形ABDE 为正方形,60CAE ∠= ,所以AC AE CE ==,所以tan 1CDE ∠=,即45CDE ∠= ,即直线AB 与CD 所成角为45 ,故B 正确;对于D ,如图,作AE ∥BD ,且AE BD =,则二面角l αβ--的平面角为CAE ∠,不妨取22CD AB ==,由2CD =,在Rt DEC中,易得CE =,在ACE 中,由余弦定理得1cos 2CAE ∠=-,120CAE ∠= ,过C 点作CO AE ⊥交线段EA 的延长线于点O ,则CO ⊥平面ABDE ,过O 点作OH BD ⊥,交线段DB 的延长线于点H ,连接CH ,则CHO ∠为二面角C BD A --的平面角,易得37,1,22CO HO CH ===,所以27cos 7OH CHO CH ∠==,故D 正确;对C 选项:同选项D 可知120CAE ∠= ,如图,分别取线段,AD AE 的中点,G M ,连接GM ,过G 点作平面β的垂线,则球心O '必在该垂线上,设球的半径为R ,则O E R '=,又ACE 的外接圆半径1312sin120r =⨯= ,而平面ACE ⊥平面ABDE ,所以O G '∥平面ACE ,即MG 的长为点O '到平面ACE 的距离,则2215124R ⎛⎫=+= ⎪⎝⎭,所以四面体A BCD -的外接球的体积为34π36R =,故C 错误,故选AB D.三、填空题(本大题共3小题,每小题5分,共15分)【解析】12.含x 的项为:443344C (1)3C (1)11x x x ⋅⋅-+⋅⋅⋅-=-,故111a =-;令0x =,即03a =,令1x =,即01234523450,8a a a a a a a a a a =+++++∴+++=.13.()f x 定义域为210x b+>+,得x b >-或2x b <--,由()f x 为奇函数有20b b ---=,所以1b =-.14.如图,伞的企沿与地面接触点B 是椭圆长轴的一个端点,伞沿在地面上最远的投影点A 是椭圆长轴的另一个端点,对应的伞沿为,C O 为伞的圆心,F 为伞柄底端,即椭圆的左焦点,令椭圆的长半轴长为a ,半焦距为c ,由,OF BC OF OB ⊥==,得45,2,a c BF FBC AB a BC ∠+===== ABC 中,60BAC ∠= ,则()175,sin75sin 453022224ACB ∠==+=⨯+⨯= ,由正弦定理得,2sin75sin60a =,解得2a =,则2c =,所以该椭圆的离心率2c e a ==-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)解:(1)圆221:(3)1C x y ++=的圆心为()13,0C -,半径为1,圆222:(3)1C x y -+=的圆心为()23,0C ,半径为1,设圆C 的半径为r ,若圆C 与圆1C 内切,与圆2C 外切,则121,1CC r CC r =-=+,可得212CC CC -=;若圆C 与圆2C 内切,与圆1C 外切,则211,1CC r CC r =-=+,可得122CC CC -=;综上所述:122CC CC -=,可知:圆心C 的轨迹E 是以12C C 、为焦点的双曲线,且1,3a c ==,可得2228b c a =-=,所以圆心C 的轨迹E 的方程为2218y x -=.(2)联立方程221,80,y x x y m ⎧-=⎪⎨⎪-+=⎩消去y 得227280x mx m ---=,则()()222Δ42883270m m m =++=+>,可知直线与双曲线相交,如图6,设()()1122,,,A x y B x y ,线段AB 的中点为()00,M x y ,可得120008,277x x m m x y x m +===+=,即8,77m m M ⎛⎫ ⎪⎝⎭,且8,77m m M ⎛⎫ ⎪⎝⎭在圆2265x y +=上,则2286577m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得7m =±,又0m >,所以实数m 的值为7.16.(本小题满分15分)解:(1)函数()f x 的定义域为()21{0},2a xx f x x x >=-'+∣,又曲线()y f x =在点()()1,1f 处的切线与直线12y x =-垂直,所以()1122f a =-+=',即1a =.()()()()21211ln 2,(0)x x f x x x f x x x x +-+'∴=+=>,由()0f x '<且0x >,得102x <<,即()f x 的单调递减区间是10,2⎛⎫ ⎪⎝⎭,由()0f x '>得12x >,即()f x 的单调递增区间是1,2∞⎛⎫+ ⎪⎝⎭.(2)由(1)知不等式()22m f x x x + 恒成立,可化为1ln 222m x x x x x +++ 恒成立,即ln 12m x x ⋅+ 恒成立.令()ln 1g x x x =⋅+,当10,e x ⎛⎫∈ ⎪⎝⎭时,()()0,g x g x '<在10,e ⎛⎫ ⎪⎝⎭上单调递减;当1,e x ∞⎛⎫∈+ ⎪⎝⎭时,()()0,g x g x '>在1,e ∞⎛⎫+ ⎪⎝⎭上单调递增.所以1e x =时,函数()g x 有最小值11e-.由ln 12m x x ⋅+ 恒成立,得22e m - ,即实数m 的取值范围是2,2e ∞⎛⎤-- ⎥⎝⎦.17.(本小题满分15分)(1)证明:如图7,过点F 作AD 的垂线,垂足为M ,连接,MB MC ,由已知可得1,2,2,5AM MF MD BM CM =====,平面ADEF ⊥平面ABCD ,平面ADEF ⋂平面,ABCD AD FM =⊂平面ADEF ,,FM AD FM ⊥∴⊥平面ABCD ,,MB MC ⊂ 平面,,ABCD FM MB FM MC ∴⊥⊥,3,6BF CF ∴==,222BF CF BC ∴+=,BF CF ∴⊥.(2)解:建立如图所示空间直角坐标系,A xyz -则()()()1,3,0,0,2,1,0,1,1C E F ,()()()0,1,1,1,1,1,0,1,0AF CE EF ∴==--=- ,设平面CEF 的法向量为(),,n x y z = ,则0,0,n EF y n CE x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩ 令1x =得()1,0,1n = ,设直线AF 与平面CEF 所成角为θ,则,1sin cos ,2AF n AF n AF nθ⋅==== .ππ0,,26θθ⎡⎤∈∴=⎢⎥⎣⎦ ,即直线AF 与平面CEF所成角的余弦值为2.18.(本小题满分17分)解:(1)由题可知2号盒子里有3个黑球的概率为202224C C 1C 6P ==.(2)由题可知ξ可取1,2,3,()221123222222224444C C C C C 71C C C C 36P ξ==⨯+⨯=,()221123222222224444C C C C C 73C C C C 36P ξ==⨯+⨯=,()()()11211318P P P ξξξ==-=-==,所以3号盒子里的黑球的个数ξ的分布列为ξ123P 7361118736(3)记1n a -为第()2n n 号盒子有一个黑球和三个白球的概率,则116a =,1n b -为第()2n n 号盒子有两个黑球和两个白球的概率,则12211,318b b ==,则第()2n n 号盒子有三个黑球和一个白球的概率为111n n a b ----,且()()1222221113322n n n n n b b a a b n -----=++-- ,化解得121162n n b b --=+,得12131331,565515n n b b b --⎛⎫-=--= ⎪⎝⎭,而21313565b b ⎛⎫-=- ⎪⎝⎭,则数列35n b ⎧⎫-⎨⎬⎩⎭为等比数列,首项为131515b -=,公比为16,所以13115156n n b -⎛⎫=+ ⎪⎝⎭,又由1221162n n n a b a ---=+求得:111556n n a ⎛⎫=- ⎪⎝⎭.因此()()1111111231322n n n n n n n E X a b a b a b ------=⨯+⨯+⨯--=--=.19.(本小题满分17分)(1)①解:因为()()0,2,1,1,3,2A B -,则()0214020321,1,2132i j k OA OB i j k i i j k ⨯==-++--=-+=-- .②证明:设()()111222,,,,,A x y z B x y z ,则121212212121OA OB y z i z x j x y k x y k z x j y z i⨯=++--- ()122112211221,,y z y z z x z x x y x y =---,将2x 与1x 互换,2y 与1y 互换,2z 与1z 互换,可得()211221122112,,OB OA y z y z z x z x x y x y ⨯=--- ,故()0,0,00OA OB OB OA ⨯+⨯== .(2)证明:因为sin AOB ∠===.故1sin 2AOB S OA OB AOB ∠=⋅= ,故要证12AOB S OA OB =⨯ ,只需证OA OB ⨯= ,即证2222||||()OA OB OA OB OA OB ⨯=-⋅ .由(1)()()()111222122112211221,,,,,,,,OA x y z OB x y z OA OB y z y z z x z x x y x y ==⨯=--- ,故()()()2222122112211221||OA OB y z y z z x z x x y x y ⨯=-+-+- ,又()2222222222111222121212|,|,()OA x y z OB x y z OA OB x x y y z z =++=++⋅=++ ,则2222||||()OA OB OA OB OA OB ⨯=-⋅ 成立,故12AOBS OA OB =⨯ .(3)解:由(2)12AOB S OA OB =⨯ ,得22()||OA OB OA OB ⨯=⨯ 1222AOB OA OB OA OB S OA OB =⨯⋅⨯=⋅⨯ ,故21()63AOB OA OB S OA OB ⨯=⋅⨯⨯ ,故2()OA OB ⨯ 的几何意义表示以AOB 为底面、OA OB ⨯ 为高的三棱锥体积的6倍.。

三校生数学考试题及答案

三校生数学考试题及答案

三校生数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x+3=7的解?A. x=1B. x=2C. x=3D. x=4答案:B2. 函数y=x^2-4x+4的最小值是多少?A. 0B. 1C. 4D. 7答案:A3. 已知一个等差数列的首项为3,公差为2,那么它的第五项是多少?A. 11B. 13C. 15D. 17答案:C4. 一个圆的半径为5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:C5. 以下哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x^4D. y=x^5答案:B6. 计算下列极限:\[\lim_{x \to 0} \frac{\sin(x)}{x}\]A. 0B. 1C. πD. 2答案:B7. 一个三角形的两边长分别为3和4,且这两边的夹角为60度,那么这个三角形的面积是多少?A. 3√3B. 4√3C. 6√3D. 8√3答案:A8. 以下哪个不等式是正确的?A. |x| > xB. |x| ≥ xC. |x| < xD. |x| ≤ x答案:B9. 计算下列定积分:\[\int_0^1 x^2 dx\]A. 1/3B. 1/2C. 2/3D. 1答案:A10. 以下哪个选项是不等式x^2 - 4x + 4 ≤ 0的解集?A. (-∞, 2]B. [2, ∞)C. (-∞, 2) ∪ (2, ∞)D. {2}答案:D二、填空题(每题4分,共20分)11. 计算等比数列的前三项和,首项为2,公比为3,和为______。

答案:1412. 已知函数f(x) = 2x - 1,求f(3)的值,结果为______。

答案:513. 一个直角三角形的两直角边长分别为6和8,那么斜边的长度为______。

答案:1014. 计算下列极限:\[\lim_{x \to \infty} \frac{1}{x}\]结果为______。

三校高考数学试卷答案

三校高考数学试卷答案

一、选择题1. 答案:A解析:根据题意,等差数列的公差为d,首项为a1,第n项为an,则有an = a1 + (n-1)d。

将n=5代入,得a5 = a1 + 4d,a6 = a1 + 5d。

由题意得a5 - a6 = -2d,代入选项,只有A选项符合。

2. 答案:C解析:设直线l的方程为y = kx + b,将其代入圆的方程x^2 + y^2 = 4中,得x^2 + (kx + b)^2 = 4。

展开后整理,得(k^2 + 1)x^2 + 2kbx + b^2 - 4 = 0。

由于直线与圆相切,故判别式Δ = 0,即4k^2b^2 - 4(k^2 + 1)(b^2 - 4) = 0。

化简得k^2 = 1,所以k = ±1。

当k = 1时,b = 2;当k = -1时,b = -2。

因此,直线l的方程为y = ±x + 2。

选项C符合题意。

3. 答案:D解析:由题意知,函数f(x) = |x - 1|在x = 1处取得极小值。

因此,f'(1) = 0。

对于分段函数,在分界点处导数不存在,所以f'(1)不存在。

选项D正确。

4. 答案:B解析:设向量a = (x, y),则向量b = (2x - y, 3x + 2y)。

根据向量的数量积公式,有a·b = x(2x - y) + y(3x + 2y) = 2x^2 + 5xy + 2y^2。

要使a·b = 0,即2x^2 + 5xy + 2y^2 = 0。

因为x和y不为零,所以x^2 + y^2 = 0,即x = 0,y = 0。

所以向量a = (0, 0)。

选项B正确。

5. 答案:C解析:根据复数的乘法公式,(a + bi)(c + di) = ac - bd + (ad + bc)i。

将a= 1,b = 2,c = 3,d = 4代入,得(1 + 2i)(3 + 4i) = 13 - 24 + (14 + 23)i = -5 + 10i。

云南省三校2025届高三高考备考实用性联考卷(二)数学试题+答案

云南省三校2025届高三高考备考实用性联考卷(二)数学试题+答案

2025届云南三校高考备考实用性联考卷(二)数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟. 一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,()()1i 2i −+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.“a b >”是“ln ln a b >”成立的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若3sin 2sin A B =,则2222b a a−的值为( ) A .19−B .13C .1D .724.已知()2,X N µσ∼,且()()330.2P X t P X t >+=<−=,则()33P t X −<<=( )A .0.2B .0.3C .0.7D .0.85.在ABC △中,点D 是线段BC 上的一点,且满足3BC BD =,点P 是线段AD 的中点,若存在实数m 和n ,使得BP mAB nAC =+,则m n +=( ) A .13B .13−C .12D .12−6.函数()()πsin 0,0,2f x A x A ωϕωϕ=+>><的部分图象如图所示,将()f x 的图象向左平移π12个单位长度后所得图象关于原点对称,则图中的a 值为( )A .1−B .C .D . 7.已知圆台上、下底面的半径分别为1和2,体积为7π,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC △面积的最大值为( )A .3B C .D .68.1x ,2x 为函数()log 3a f x x =−的两个零点,其中12x x <,则下列说法错误的是( )A .121x x =B .122x x +>C .124x x +的最小值为4D .124x x +的最小值为4二、多项选择题(本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.设{}n a 是首项为1a ,公差为d 的等差数列;{}n b 是首项为1b ,公比为q 的等比数列.已知数列{}n n a b +的前n 项和221n n S n n =−+−,*n ∈N ,则( )A .12a =−B .11b =C .4d q +=D .1d =10.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos 2c B b C c +=,且2sin sin sin B A C =,则( )A .a ,b ,c 成等比数列B .ABC △为钝角三角形C .A ,B ,C 成等差数列D .若2c =,则ABC S =△11.现有颜色为红、黄、蓝的三个箱子,其中红色箱子内装有2个红色球,1个黄色球和1个蓝色球;黄色箱子内装有2个红色球,1个蓝色球;蓝色箱子内装有3个红色球,2个黄色球.若第一次先从红色箱子内随机抽取1个球,将取出的球放入与球同色的箱子中,第二次再从刚才放入与球同色的这个箱子中任取一个球,则下列说法正确的是( )A .若第一次抽到黄色球,那么第二次抽到蓝色球的概率为14B .第二次抽到蓝色球的概率为316C .如果第二次抽到的是蓝色球,则它最有可能来自红色箱子D .如果还需将5个不同的小球放入这三个箱子内,每个箱子至少放1个,则不同的放法共有150种三、填空题(本大题共3小题,每小题5分,共15分)12.()1012x −的展开式中x 项的系数为______. 13.已知()f x ′是定义域为π0,2的函数()f x 的导函数,且()()sin cos 0f x x f x x +<′,则不等式()1πsin 26f x x f>的解集为______. 14.已知椭圆()22122:10x y C a b a b +=>>与双曲线()22222:10,0x y C m n m n−=>>的左、右焦点相同,分别为1F ,2F ,1C 与2C 在第一象限内交于点M ,且21213MF F F =,1C 与2C 的离心率分别为1e ,2e .则1211e e −=______,12e e 的取值范围是______. 四、解答题(共77分,解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)为了引导学生阅读世界经典文学名著,某学校举办“名著读书日”活动,每个月选择一天为“名著读书日”,并给出一些推荐书目.为了了解此活动促进学生阅读文学名著的情况,该校在此活动持续进行了一年之后,随机抽取了校内100名学生,调查他们在开始举办读书活动前后的一年时间内的名著阅读数量,所得数据如下表:不少于5本少于5本 合计 活动前 35 65 100 活动后 60 40 100 合计95105200(1)依据小概率值0.001α=的独立性检验,分析举办该读书活动对学生阅读文学名著是否有促进作用; (2)已知某学生计划在接下来的一年内阅读6本文学名著,其中4本国外名著,2本国内名著,现从6本名著中随机抽取3本在上半年读完,求上半年读完的国内名著本数X 的分布列及数学期望. 附:()()()()()22n ad bc a b c d a c b d χ−=++++,其中n a b c d =+++.临界值表:α0.10.05 0.01 0.005 0.001x α2.7063.841 6.635 7.879 10.82816.(本小题满分15分)如图,已知四棱锥S ABCD −中,SA ⊥平面ABCD ,90CDA DCB ∠=∠=°,224BC AD CD ===.(1)求证:平面SAC ⊥平面SAB ;(2)若平面SAB 与平面SCD ,求线段SA 的长. 17.(本小题满分15分) 已知函数()()31ln 3f x x x ax x a =−−∈R . (1)()f x 在1x =处的切线与直线y x =垂直,求a 的值; (2)若()f x 有两个极值点,求a 的取值范围. 18.(本小题满分17分)抛物线()2Γ:20y px p =>的图象经过点()1,2M −,焦点为F ,过点F 且倾斜角为θ的直线l 与抛物线Γ交于点A ,B ,如图.(1)求抛物线Γ的标准方程; (2)当π3θ=时,求弦AB 的长; (3)已知点()2,0P ,直线AP ,BP 分别与抛物线Γ交于点C ,D .证明:直线CD 过定点. 19.(本小题满分17分) 如图,已知点列2,n n nP x x与(),0n n A a 满足1n n x x +>,11n n n n P P A P ++⊥ 且11n n n n P P A P ++= ,其中n +∈N ,11x =.(1)求2x ;(2)求1n x +与n x 的关系式;(3)证明:22222123141n x x x x n +++++≤+ .2025届云南三校高考备考实用性联考卷(二)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)题号 1 2 3 4 5 6 7 8 答案 DBDBDABC【解析】1.()()21i 2i 2i 2i i 3i −+=+−−=− ,∴其对应的点坐标为()3,1−,位于第四象限,故选D . 2.由题意,利用对数函数性质可知:ln ln 0a b a b a b >⇒>>⇒>,故必要性成立;而ln ln a b a b >⇒>,但不能确定a ,b 是否都大于0,若a ,b 小于0时函数无意义,故a b >不能推出ln ln a b >,故充分性不成立,所以“a b >”是“ln ln a b >”的必要而不充分条件,故选B .3.因为3sin 2sin A B =由正弦定理得32a b =,所以32b a =,22222237212122b a b a a −=×−=×−=,故选D . 4.根据正态曲线的对称性,由()()33P X t P X t >+=<−,得3332t tµ++−==,再由总体密度曲线,数形结合知:()330.3P t X −<<=,故选B .5.由题意,()11213333AD AB BD AB BC AB AC AB AB AC =+=+=+−=+,而1112123636BP AP AB AD AB AB AC AB AB AB =−=−=+−=−+ ,由已知,2,31,6m n=− =则12m n +=−,选项D 正确,故选D .6.由()max 2f x =得2A =,()f x 的图象上的所有点向左平移π12个单位长度后图象关于原点对称,得函数()f x 的图象过点π,012,所以7ππ12122T −=,所以2ππT ω==,故2ω=,又π012ωϕ+=,得π6ϕ=−,所以()π2sin 26f x x =−,π2sin 16a=−=− ,故选A . 7.圆台的高为h ,则圆台的体积()221π12127π3V h =++××=,解得3h =,如图,取上下底面圆心M 、N ,连接MN 、MC 、NC ,由圆台性质可知MN NC ⊥,且3MN =,又2NC =,故MC MC 为ABC △以AB 为底的高时,ABC △面积最大,且其最大值为122×B .8.函数()log 3a f x x =−的定义域为()0,+∞,0a >且1a ≠,由()0f x =,得log 3a x =,因此直线y 3=与函数log a y x =的图象有两个公共点,其横坐标为1x ,2x ,a 比1大还是小对log a y x =的图象没有影响,可令1a >,而当01x <<时,log a y x =−递减,当1x >时,log a y x =递增,于是1201x x <<<,对于A ,由12log log a a x x =,得12log log a a x x −=,即121x x =,A 正确;对于B,12221x x x x +=+,而函数1y x x=+在()1,+∞上单调递增,因此122212x x x x +=+>,B 正确;对于C ,1222144x x x x +=+,函数14y x x=+在()1,+∞上单调递增,因此12221445x x x x +=+>,C 错误;对于D ,1222444x x x x +=+≥,当且仅当22x =时取等号,D 正确,故选C . 二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)题号 9 10 11 答案BCABDACD【解析】 9.()()12111111212211nn n b q n n b b d d S na d n a n q qq q −−=++=+−+−+ −−−, 221n n S n n =−+− ,11112121111dd a b q bq=−=−∴ −=− − ,10a ∴=,2d =,11b =,2q =,故选BC .10.2sin sin sin B A C = ,由正弦定理可得2b ac =,且,,0a b c >,则a ,b ,c 成等比数列,故A 正确;将cos cos 2c B b C c +=,利用正弦定理化简得:sin cos sin cos2sin C B BC C +=,即()sin 2sin C B C +=,sin 2sin A C ∴=,利用正弦定理化简得:2c a =,222b ac c ∴==,b ∴,::2:2a bc c c ∴==,所以A 角最大,由222cos 02c b a A cb +−==<得A 角为钝角,故B 正确;若A ,B ,C 成等差数列,则2B A C =+,且πA B C ++=,可得π3B =,则由余弦定理可得2222224231cos 22242a cbc c cB ac c c +−+−===≠×,故C 错误;若2c =,可得b =,4a =,则b c >,由3cos 4B =,()0,πB ∈,可得sin B =,所以1sin 2ABC S ac B==△D 正确,故选ABD .11.对于选项A ,在第一次抽到黄色球的条件下,将抽到的黄色球放入黄色箱子内,此时黄色箱子内有2个红色球,1个黄色球,1个蓝色球,因此第二次抽到蓝色球的概率为14,故A 选项正确;对于选项B 、C ,记1A =“第一次抽到红色球”,2A =“第一次抽到黄色球”,3A =“第一次抽到蓝色球”,1B =“第二次在红色箱子中抽到蓝色球”2B =“第二次在黄色箱子中抽到蓝色球”,3B =“第二次在蓝色箱子中抽到蓝球”,B =“第二次抽到蓝球”,易知1A ,2A ,3A 两两互斥,和为Ω,()112P A =,()()2314P A P A ==,()1114P B A =,()2214P B A =,()3316P B A =,()()()()33111111111124444648i i i i i i i P B P A B P A P B A == ===×+×+×= ∑∑,故B 选项错误;第二次的球取自箱子的颜色与第一次取的球的颜色相同,所以()()()()111111624111148P A P B A P A B P B ×===,()()()()222211344111148P A P B A P A B P B ×===,()()()()333311246111148P A P B A P A B P B ×===,所以如果第二次抽到的是蓝色球,则它来自红色箱子的概率最大,故C 选项正确;对于D ,将5个不同的小球分成3组(每组至少一个)(按1:1:3分或按2:2:1分)再分配给3个箱子,由两个计数原理知,共有2223535322C C C A 150A +=种,故D 选项正确,故选ACD . 三、填空题(本大题共3小题,每小题5分,共15分)【解析】12.展开式中x 的系数为()1110C 220−=−. 13.设()()sin g x f x x =,()()()sin cos 0g x f x x f x x +′=<′,所以函数()g x 单调递减,()()1πππsin sin sin 2666f x x f f x x f >⇔> ,即()π6g x g > ,得π6π02x x <<<,所以π06x <<,所以不等式的解集为π0,6. 14.由已知可得()23c a m =−,所以23a mc c=−,即121123e e −=;所以,()()22221292994244a m a am m c c c a m e e a m am am am m a −−+=⋅====+−.令a t m =,则129124e e t t =+−.因为a m >,所以1at m =>.又1212MF MF F F +>,所以有()223a c a m >=−,所以有3a m <;1212MF MF F F −<,所以有()223m c a m <=−,所以有35a m >,所以5,33a t m =∈ .设函数12y t t =+−,则2110y t =−>′,函数12y t t=+−在区间5,33上单调递增,所以44153y <<,所以12335e e <<. 四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)解:(1)零假设0H :该读书活动对学生阅读文学名著没有促进作用;由表中数据可知,()2220035406560500012.5310.82810595100100399χ×−×==≈>×××, 故可推断0H 不成立,即认为举办该读书活动对学生阅读文学名著有促进作用,该推断犯错误的概率不超过0.001.(2)由题意可知,X 的可能取值为0、1、2,()3436C 10C 5P X ===;()214236C C 31C 5P X ===;()124236C C 12C 5P X ===,所以X 的数学期望为:()1310121555E X =×+×+×=. 16.(本小题满分15分)(1)证明:设BC 中点为E ,连接AE ,如图,因为90CDA DCB °∠=∠=,且AD CD =, 故四边形ADCE 为正方形,而AC 2AE =,AB所以222BC AB AC =+,所以AB AC ⊥, 因为SA ⊥平面ABCD ,AC ⊂平面ABCD , 所以SA AC ⊥,又,SA AB ⊂平面SAB ,SA AB A = , 所以AC ⊥平面SAB , 因为AC ⊂平面SAC , 所以平面SAC ⊥平面SAB .(2)解:以A 为坐标原点,AE 、AD 、AS 所在直线分别为x 、y 、z 轴,建立如图所示的空间直角坐标系A xyz −,设()0SA a a =>,则()2,2,0C ,()0,2,0D ,()2,2,0B −,()0,0,S a , 所以()0,2,SDa =−,()2,0,0DC =,设平面SCD 的法向量为(),,n x y z = ,则00n SD n DC ⋅=⋅=,即2020y az x −= = ,令2z =,所以()0,,2n a =,由(1)知,平面SAB 的法向量为()2,2,0AC =,设平面SAB 与平面SCD 所成角为θ,则cos θ=cos,AC nAC nAC n⋅==,解得a=a=,所以AS=.17.(本小题满分15分)解:(1)易知()22ln11lnf x x ax x ax′=+−−=−,又()f x在1x=处的切线与y x=垂直,所以()11f′=−,即1a−=−,所以1a=.(2)因为()2lnf x x ax=−′,且()f x有两个极值点,所以方程()0f x′=在()0,+∞上有两个不同的根,即方程2ln0x ax−=有两个不同的正数根,将问题转化为函数()2ln xg xx=与函数y a=的图象在()0,+∞上有两个不同的交点,则()()4312ln12lnx x xg xx x−−==′,令()312lnxg xx−==′,解得x=当x>()0g x′<,()g x单调递减,当0x<<时,()0g x′>,()g x单调递增,且当1x>时,()0g x>,且x+∞,()0g x→,()10g=,故作出()g x的图象如图所示:由图象可知10,2ea∈满足题意,即a的取值范围为10,2e.18.(本小题满分17分)(1)解:曲线22y px=图象经过点()1,2M−,所以()222p−=,所以2p=,所以抛物线Γ的标准方程为24y x=.(2)解:由(1)知()1,0F ,当π3θ=时,l的方程为)1y x −,联立)214y x y x=− = ,得231030x x −+=,则12103x x +=, 由12163AB x x p =++=,所以弦163AB =. (3)证明:由(1)知()1,0F ,直线AB 的斜率不为0,设直线AB 的方程为1x my =+, ()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y ,联立214x my y x=+ = 得2440y my −−=,2Δ16160m =+>, 因此124y y m +=,124y y =−.设直线AC 的方程为2x ny =+,联立224x ny y x=+ = 得2480y ny −−=, 则2Δ16320n =+>′,因此134y y n +=,138y y =−,得318y y −=, 同理可得428y y −=. 所以()343412223434341212441882244CD y y y yy y k y y x x y y y y m y y −−=====−=−−−+++−. 因此直线CD 的方程为()332x m y y x =−+,由对称性知,定点在x 轴上,令0y =得,2233331181822244y x my x my m y y −−=−+=−+=−+ ()122122222111111144161616444444y y y y y m y y y y y y y + +=+=+=++=+⋅=, 所以,直线CD 过定点()4,0.19.(本小题满分17分)解:(1)因为1212PP A P ⊥ ,1212PPA P = ,所以()()21221222221212124222x a x x x x x a x x x −=−+−=−+,得2122x x x −=,所以22x =. (2)由11122,n n n n n n P P x x x x +++ =−−,1112,n n n n n A P x a x +++ =− ,1112140n n n n n n n nP P A P x a x x ++++⋅=⇒−= ①, 又11n n n n P P A P ++= ,则()()22221111222n n n n n n n x x x a x x x ++++ −+−=−+②,将①代入②得()()22111222222111114444211n n n n n n n n n n n n n X X X X x X X X X X x X X ++++++++ −+=+⇒−=⇒−=. (3)要证22222123141n x x x x n +++++≤+ 等价于证明22222314n x x x n ++++≤ ,当2n ≥时,()12122212n n n n i i i i i i x x x x x ++===+−=−=<∑∑ ()2221111122211112212n n n n n n n n n n i i n i x x x x x x x x x x n x ++++++++= −=⇒=−<− ⇒−=−>⇒> ∑,<−,所以12n x x +−≤12n x +⇒≤−2188484n x n n +⇒≤++−≤−()()2222231413214n x x x n n +⇒+++≤+++−= , 22222314n x x x n +∴+++≤ ,22222123141n x x x x n +∴++++≤+ .。

三校生高考数学试卷答案

三校生高考数学试卷答案

一、选择题1. 选择题(本题共10小题,每小题5分,共50分)(1)若函数f(x) = x^2 - 2x + 1在区间[1, 3]上单调递增,则f(x)在区间[0, 1]上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:A解析:f'(x) = 2x - 2,令f'(x) = 0,解得x = 1。

当x < 1时,f'(x) < 0,f(x)单调递减;当x > 1时,f'(x) > 0,f(x)单调递增。

因此,f(x)在区间[1, 3]上单调递增,在区间[0, 1]上单调递增。

(2)已知函数f(x) = |x - 2| + |x + 1|,则f(x)的值域为:A. [-3, 3]B. [0, 3]C. [1, 3]D. [0, +∞)答案:B解析:当x < -1时,f(x) = -(x - 2) - (x + 1) = -2x + 1;当-1 ≤ x < 2时,f(x) = (x - 2) - (x + 1) = -3;当x ≥ 2时,f(x) = (x - 2) + (x + 1) =2x - 1。

因此,f(x)的值域为[0, 3]。

(3)已知等差数列{an}的前n项和为Sn,且S10 = 55,S15 = 120,则公差d为:A. 1B. 2C. 3D. 4答案:C解析:由等差数列前n项和公式得,S10 = 5(a1 + a10) = 55,S15 = 15(a1 +a15) = 120。

解得a1 = 1,a10 = 11,a15 = 9。

因此,公差d = (a15 - a10) / (15 - 10) = 2。

(4)若直线l的方程为x + 2y - 3 = 0,则直线l的斜率为:A. -1/2B. 1/2C. -2D. 2答案:A解析:直线l的斜率k = -A/B = -1/2。

(5)已知复数z = 2 + 3i,则|z| + arg(z)的值为:A. 5B. 5 + π/2C. 5 + πD. 5 - π/2答案:C解析:|z| = √(2^2 + 3^2) = √13,arg(z) = arctan(3/2)。

三校生的高考数学试卷

三校生的高考数学试卷

考试时间:120分钟满分:150分一、选择题(每小题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. 0C. 1.5D. -2.12. 已知函数f(x) = 2x - 3,那么f(2)的值是()A. 1B. 3C. 5D. 73. 如果a < b,那么下列不等式中一定成立的是()A. a - 1 < b - 1B. a + 1 < b + 1C. a / 2 < b / 2D. a 2 < b 24. 在直角坐标系中,点P(3, 4)关于y轴的对称点坐标是()A. (-3, 4)B. (3, -4)C. (-3, -4)D. (3, 4)5. 下列哪个图形的面积可以用勾股定理来计算?()A. 矩形B. 圆C. 三角形D. 梯形6. 若a, b, c是等差数列的连续三项,且a + b + c = 18,则a的值是()A. 6B. 4C. 2D. 87. 下列哪个函数是奇函数?()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = 1/x8. 如果一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²9. 下列哪个数是实数集R中的无理数?()A. √4B. √9C. √16D. √2510. 下列哪个方程的解是x = 2?()A. 2x + 3 = 7B. 3x - 1 = 5C. 4x + 2 = 9D. 5x - 3 = 11二、填空题(每小题5分,共50分)11. 若x = 2,则x^2 - 3x + 2的值为______。

12. 下列函数中,f(0)的值最小的是f(x) = x^2 + 2x + 1。

13. 在直角坐标系中,点A(1, 2)和点B(-3, 4)之间的距离是______。

2024江西三校生高考数学

2024江西三校生高考数学

高职数学试卷第一卷(选择题 共70分)一、 是非选择题:本大题共10小题,每小题3分,共30分.对每小题的命题作出选择,对的选A,错的选B.1.{}0∅= (A,B)2.sin 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期是π (A,B)3.常数数列既是等差数列也是等比数列 (A,B)4.0.20.10.80.8--> (A,B)5.0AB BC CA ++= (A,B)6.若,a R ∈a =的充要条件是 0a ≥ (A,B)7.空间的两条直线若不相交就平行 (A,B)8.函数()2321f x x =-是偶函数 (A,B)9.椭圆2211625x y +=的离心率为35 (A,B)10.空间三条直线,,,a b c 若,,a c b c ⊥⊥则//a b (A,B)二、 单项选择题:本大题共8小题,每小题5分,共40分.11.与{}21x x =集合相等的集合是( )A {}1B {}1-C {}1,1-D ∅12.在下列条件中,可以确定一个平面的条件是( )A 经过两点B 经过两条直线C 经过不在通一条直线上的三点D 以上都不正确13若向量(1,2),(2,1),a b ==-则a b ⋅=等于( )A 0B 3C 4D 以上都不正确14.使不等式220x x a -+>恒成立a 的取值范围是( )A 1a <B 1a >C 2a >D 2a <15.从江西省的11个设区市中随意抽取2个设区市进行“创建卫生城”的检查,省会城市南昌被抽取到的概率是( ) A 110 B 111 C 15 D 21116.已知中心在原点,焦点在x 轴上的双曲线的离心率为5,3焦距为10,则双曲线的方程为( ) A 221925x y -= B 221916x y -= C 221916x y += D 221925x y += 17.1023132x x ⎛⎫- ⎪⎝⎭的二项绽开式中的常数项为( ) A 第三项 B 第四项 C 第五项 D 第六项18.函数()()()200xx f x x x ->⎧⎪=⎨<⎪⎩则()2f f ⎡⎤⎣⎦等于( ) A-2 B2 C -4 D4其次卷(非选择题 共80分)三、 填空题:本大题共6小题,每小题5分,共30分.19.lg 2lg5+=20.数2与8的等差中项为21.函数()90y x x x=+>的最小值为 22.cos80cos 20sin80sin 20+=23.过点(2,1)-且垂直于的直线的方程是24.设,,a b c 为非零向量,λ为实数,则命题 (1)//b a a b λ=⇔(2)若a b a b ==-则,a b 的夹角为60(3)若,a b c b ⋅=⋅则a c =.其中真命题的是四、解答题:本大题共6小题,25-28小题每小题8分,29-30小题每小题9分,共50分.解答应写出过程或步骤25.已知43sin ,cos .55αα=-=求212sin 4απα⎛⎫+ ⎪⎝⎭的值 26.某商品现售价100元.(1)若每次降价20元,经过两次降价后的售价是多少元?(2)若每次降价20,经过两次降价后的售价是多少?27.数列{}n a 中,已知1111,2n n a a a +=-=+(1)求数列{}n a 的前n 项和n S ;(2)求n S 的最小值28.已知函数()3,f x ax bx =+且()13,f =又点()2,12在函数的图像上,(1)求函数()f x 的解析式(2)若()()0,f x f >求x 的取值范围29.已知棱长为1正方体1111ABCD A B C D -中,E 为BC 的中点(1)求证111D C B E ⊥;(2)求异面直线11C D 与AE 所成的角.(3)求二面角1B AE B --的大小30. 已知点(8,0)A ,B C 、两点分别在x 轴和y 轴上的运动,且,AB BP BC CP ⊥=(1)求P 动点的轨迹方程;(2)若过点A 的直线l 于P 的轨迹较于不同的两点49M N QM QN ⋅=、,,,其中()10Q -,,求直线l 的方程。

2024届云南三校高考备考实用性联考卷(六)数学-答案

2024届云南三校高考备考实用性联考卷(六)数学-答案

数学参考答案·第1页(共9页)2024届云南三校高考备考实用性联考卷(六)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求) 题号 1 2 3 4 5 6 7 8 答案 BCACCDBA【解析】1.由题意,{|13}U A x x x =<或≥ ,(){034}U A B = ,, ∴,故选B .2.(1)i 1i (1)i 12i2i z z z z -=+⇒--=-⇒=-⇒=+,故选C . 3.由于1sin cos 44αα==,所以22cos sin 2αα+=54-,故选A .4.由20217n n ->-得2n <或8.5n >,所以8n =时,n S 取得最小值,故选C .5.由题意得πππ()2sin 22sin 2666g x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,ππ66x ⎡⎤∈-⎢⎥⎣⎦,∵,∴πππ2626x ⎡⎤-∈-⎢⎥⎣⎦,,()[21]g x ∈-,∴,故选C . 6.设L '是变化后的传输损耗,F '是变化后的载波频率,D '是变化后的传输距离,则18L L '=+,2D D '=,1820lg 20lg 20lg 20lg 20lg20lg D F L L D F D F D F'''''=-=+--=+,则20lg1820lg 212F F '=-≈,即lg 0.6lg 4F F≈'≈,从而4F F '≈,即载波频率约增加到原来的4倍,故选D .7.连接2NF ,设1||2NF n =,则1||3MF n =,2||23MF a n =-,2||22NF a n =-,在2Rt MNF △中,22222||||||MN MF NF +=,即222(5)(23)(22)n a n a n +-=-,所以215a n =,所以12||5aMF =, 28||5a MF =,在12Rt MF F △中,2221212||||||MF MF F F +=,即222517c a =,所以5e =,故选B .数学参考答案·第2页(共9页)8.因为SC BC ⊥,SC AC ⊥,且BC AC C = ,BC ⊂平面ABC ,AC ⊂平面ABC ,所以SC ⊥平面ABC ,又因为BC AB ⊥,AB SB ⊥,且BC SB B = ,BC ⊂平面SBC ,SB ⊂平面SBC ,所以AB ⊥平面SBC ,所以可以将三棱锥S ABC -放入一个长方体ABFE DCSG -中,该长方体以AB SC BC ,,为长,宽,高,如图1所示,则长方体ABFE DCSG -的外接球就是三棱锥S ABC -的外接球,下面计算该长方体外接球半径R 的最小值;因为10AB BC = ,所以22220AB BC AB BC += ≥,所以22220525AB BC SC +++=≥,即2(2)25R ≥,所以52R ≥,所以该长方体外接球表面积的最小值为2254π4π25π2R ⎛⎫=⨯= ⎪⎝⎭,所以三棱锥S ABC -的外接球表面积的最小值为25π,故选A .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分)题号 9 10 11 12 答案ACBCDABDABC【解析】9.因为()()f x f x -=-,所以A 正确;因为1()02f x x x =-=,得2x =,所以C 正确,故选AC .10.圆M 的圆心为(01)M -,,半径12r =,圆22430N x y x -++=:,即22(2)1x y -+=的圆心为(20)N ,,半径21r =;A 选项,两圆方程作差得4260x y +-=,即23y x =-+,所以两圆公共弦AB 所在直线方程为23y x =-+,A 错误;B 选项,圆心(20)N ,到直线AB 的距离5d ==,半径21r =,所以点P 到直线AB 的距离的最大值为15+,B 正确;C 选项,||AB==,C 正确;D 选项,圆心(01)M -,到直线43130x y --=的距离112d r ===,圆心(20)N ,到直线43130x y --=的距离221d r ===,所以直线43130x y --=是圆M 与圆N 的一条公切线,D 正确,故选BCD .图1数学参考答案·第3页(共9页)11.对于A ,连接11AD A D ,,则11A D AD AB ⊥⊥,平面1111ADD A A D AB AB AD A ⊥= ,,,∴AB ⊂平面11ABC D ,1AD ⊂平面11ABC D ,1A D ⊥∴平面11ABC D ,1D P ⊂平面11ABC D ,11A D D P ⊥∴,所以直线1A D 与直线1D P 所成的夹角一定为90︒;对于B ,连接PC ,1PC ,1D C ,则三棱锥11C D PC -的体积等于三棱锥11P CC D -的体积,AB ∥∴平面11CDD C ,点P 到平面11CDD C 的距离BC =,为定值1,即三棱锥11P CC D -的高为1,底面三角形11CD C 的面积为12,1111111111326C D PC P D C C V V --==⨯⨯⨯⨯=∴,所以B 正确;对于C ,因为P 满足1DP =,则动点P 的轨迹的长度为以D 为圆心,1为半径的圆的周长的四分之一,所以P点的轨迹的长度为π2;对于D ,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD .对于平面ABC ,1DD 为垂线,1D P 为斜线,DP 为射影,所以1DPD ∠即为直线1D P 与平面ABC 所成角.设AC BD O = ,则AC BD ⊥.因为P 是ABC △内(包括边界)的动点,所以当P 与O重合时,22DB DP ==最小,此时11sin 1DPD D P =∠,当P 与B重合时,DP DB ==最大,此时11sin 13DPD D P ==∠,所以13si 3n DPD ∈⎢⎣∠⎦,,故选ABD .12.由题意知()ln 12(0)f x x mx x '=++>,令()0f x '=得,ln 120(0)x mx x ++=>有两个解12x x ,,令()ln 120g x x mx =++=,即等价于()g x 有且仅有两个零点,也即()g x 在(0)+∞,上有唯一的极值点且不等于零,又12()mx g x x +'=且0m <,所以当102x m ⎛⎫∈- ⎪⎝⎭,时,()0g x '>,则()g x 单调递增,当12x m ⎛⎫∈-+∞ ⎪⎝⎭,时,()0g x '<,则()g x 单调递减,所以12x m =-是函数()g x 的极大值点,则102g m ⎛⎫-> ⎪⎝⎭,即11ln 1222m m m ⎛⎫⎛⎫-++⨯- ⎪ ⎪⎝⎭⎝⎭ ln(2)0m =-->,解得102m -<<,且有12102x x m <<-<,111()ln 12f x x mx '=++∵11222220ln 12()ln 120ln 12x mx f x x mx x mx '=⇒=--=++=⇒=--,,111()ln f x x x =+∴22111111(12)(1)0mx x mx mx x mx =--+=-+<.因为12x m ⎛⎫∈-+∞ ⎪⎝⎭时,()g x 单调递减,所以102g m ⎛⎫-> ⎪⎝⎭,2()0g x =,所以()f x 在212x m ⎡⎤-⎢⎥⎣⎦,上单调递增,则有21()2f x f m ⎛⎫>- ⎪⎝⎭数学参考答案·第4页(共9页)111111ln ln 224222m m m m m ⎡⎤⎛⎫⎛⎫=--+=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,又因为110122m m -<<⇒->,令()h x = 1ln 12x x x ⎛⎫-> ⎪⎝⎭,,则11()ln 1ln 022h x x x '=+-=+>,所以函数()h x 在(1)+∞,上单调递增,则1()(1)2h x h >=-,所以21()2f x >-,故选ABC .三、填空题(本大题共4小题,每小题5分,共20分)【解析】13.因为每组小矩形的面积之和为1,所以(0.010.01520.0250.005)101a +⨯+++⨯=,所以0.03a =,测评得分落在[4080),内的频率为(0.010.01520.03)100.7+⨯+⨯=,落在[4090),内的频率为(0.010.01520.030.025)100.95+⨯++⨯=,设第75百分位数为x ,由0.7(80)0.0250.75x +-⨯=,解得82x =,故第75百分位数为82.14.a b λ+ 与c 垂直,则()(3)0a b a b λ+-= ,即2233a a b a b b λλ+-- (13)a b λλ=+-30-=,其中π11||||cos 11322a b a b ==⨯⨯= ,代入可解得5λ=-.15.因为()cos cos (1)(sin )(1)sin f x x x x x x x '=--+-=+.所以当(0π)x ∈,时,()0f x '>,()f x 为增函数;当(π2π)x ∈,时,()0f x '<,()f x 为减函数;所以()f x 在[02π],上的最大值(π)π1b f ==+.又因为(0)1(2π)2π1f f =-=--,,所以()f x 在[02π],上的最小值(2π)2π1a f ==--,所以πa b +=-.16.如图2,因为21||||F P F H b ==,所以||2PH a =.因为1sin F PO ∠=,所以1tan 2FPO ∠=,在1Rt PHF△中,1tan 2bF PH a ∠=,所以22b a =,所以b a=,又因为a=所以b =,所以双曲线方程为22136x y -=.因为tan MON ∠=-,所以sin 3MON ∠=.设00()Q x y ,到两渐近线的距离为12d d ,,则图2数学参考答案·第5页(共9页)220012|2|3x y d d -== .又因为220026x y -=,所以122d d = ,所以12||||sin sin OMQN d d S QM QN MON MON =∠==∠ .四、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)解:(1)选条件①:因为3sin cos tan 4B B B =,所以sin 3sin cos cos 4B B B B =,即23sin 4B =, 又因为ABC △为锐角三角形,所以π02B ⎛⎫∈ ⎪⎝⎭,,所以sin 2B =,所以π3B =.12=,所以cos )cos B B B B -=+,3cos B B =,又因为π02B ⎛⎫∈ ⎪⎝⎭,,所以cos 0B ≠,所以tan B =,所以π3B =. 选条件③:由正弦定理可得2sin cos sin cos sin cos C B B A A B -=, 即2sin cos sin cos sin cos sin()sin C B A B B A A B C =+=+=, 又因为sin 0C ≠,所以1cos 2B =, 因为π02B ⎛⎫∈ ⎪⎝⎭,,所以π3B =.…………………………………………(5分)(2)由BD 平分ABC ∠,得ABC ABD BCD S S S =+△△△,则1π1π1πsin sin sin 232626ac c a =+,即ac a c =+. 在△ABC 中,由余弦定理可得222π2cos 3b ac ac =+-,又b =2218a c ac +-=,联立2218ac a c a c ac =+⎧⎨+-=⎩,,可得223180a c ac --=, 解得6ac =(3ac =-舍去).故1π1sin 6232ABC S ac ==⨯=△ ………………………………(10分)数学参考答案·第6页(共9页)18.(本小题满分12分)(1)证明:∵点E 在 AB 上且AB 为直径,AE EB ⊥∴,又ABCD ABE AD AB AD ABCD ⊥⊥⊂平面平面,,且平面∵,AD ABE ⊥平面∴, BE ABE ⊂平面∵,AD BE ⊥∴,又DA AE A = ∵,BE ADE ⊥平面∴. ………………………………(6分)(2)解:当四棱锥E ABCD -体积最大时,E 是 AB 的中点, 此时AE BE =,OE AB ⊥, 取CD 中点F ,连接OF ,如图3, 则OF AD ∥,即OF ABE ⊥平面, 又OE AB ⊥∵,∴以O 为坐标原点,分别以OE ,OB ,OF 所在直线为x 轴,y 轴及z 轴,建立如图所示的空间直角坐标系,(000)(010)(010)(011)(100)O A B C E -,,,,,,,,,,,,,,∴, (021)(110)AC AE ==,,,,,∴,设平面ACE 的一个法向量为()n x y z = ,,,则200n AC y z n AE x y ⎧=+=⎪⎨=+=⎪⎩,, 取1x =,可得(112)n =-,,,平面ADE 的一个法向量为(110)BE =-,,,设平面ACE 与平面ADE 所成夹角为θ,则||cos 3||||n BE n BE θ=== ,即平面ADE 与平面ACE所成夹角的余弦值为3. …………………………(12分)19.(本小题满分12分)解:(1)由题知,当1n =时,113S a ==, 当2n ≥时,2214(1)(1)422n n n n n n n a S S n -++-+-+=-=-=,因为13a =,所以*31()2n n a n n n =⎧=∈⎨⎩N ,,,≥. 因为1112n n n b b --⎛⎫=+ ⎪⎝⎭,所以1112n n n b b --⎛⎫-= ⎪⎝⎭,由累加法得1112n n b -⎛⎫=- ⎪⎝⎭,图3数学参考答案·第7页(共9页)综上,*31()2n n a n n n =⎧=∈⎨⎩N ,,,≥,1112n n b -⎛⎫=- ⎪⎝⎭. …………………………(6分)(2)由(1)知(1)n n n c a b =-*131()122n n n n n -=⎧⎪=∈⎨⎛⎫⎪ ⎪⎝⎭⎩N ,,,,≥所以{}n c 的前n 项和123123123432222n n n n nT c c c c c --=+++++=++++⋅⋅⋅+ ①, 23413234222222n n nT =++++⋅⋅⋅+②, ①−②得23412151111511122222222222n n n n n n nT --⎛⎫⎛⎫=++++⋅⋅⋅+-=+-- ⎪ ⎪⎝⎭⎝⎭,所以2111266222n n n n n nT ---+=--=-. ………………………………(12分)20.(本小题满分12分)(1)解:01p =,212211C 22p ⎛⎫== ⎪⎝⎭,424413C 28p ⎛⎫== ⎪⎝⎭. ………………………(6分)(2)证明:法一:设2()k n n =∈N ,则22221(2)!1C 2!!2nnn k n nn p p n n ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ,同理22221222221(22)!1C2(1)!(1)!2n n n k n n n p p n n +++++++⎛⎫⎛⎫=== ⎪ ⎪++⎝⎭⎝⎭,所以222+2(22)!1!!21121(1)!(1)!2(2)!2222n n k k p n n n n p n n n n n +++⎛⎫===- ⎪++++⎝⎭, 因为n ∈N ,所以11222n +≤,所以+212k kp p ,即220k k p p +-≥. 法二:当0k =时,由(1)知022p p =,即2020p p -=;当0k ≠时,设*2()k n n =∈N ,则2221C 2n n k n np p ⎛⎫== ⎪⎝⎭,221222221C 2n n k n n p p +++++⎛⎫== ⎪⎝⎭,因为1111112221212222222C C C C C C C C 2C C n n n n n n n n n n n n n n n n n n n n +++-+-+++=+=+++=++,所以22221111222222222111(C 2C C)(C C )222n n n n n n n k n nn nn n n p p p +++-+-++⎛⎫⎛⎫==++=++ ⎪ ⎪⎝⎭⎝⎭22112211(C C )22n n n k n n p ++-⎛⎫=++ ⎪⎝⎭,数学参考答案·第8页(共9页)因为2211221(CC)02n n n nn++-⎛⎫+> ⎪⎝⎭,所以2102k k p p +->,即220k k p p +->; 综上,220k k p p +-≥. ……………………………………………………(12分)21.(本小题满分12分) 解:(1)设11()A x y ,,22()B x y ,,直线AB 的方程为x my b =+.联立24y x x my b ⎧=⎨=+⎩,得2440y my b --=,则124y y m +=,124y y b =-①, 因为CA CB ⊥,所以0CA CB =,即12120x x y y +=,所以1212()()0my b my b y y +++=②,由①②得:240b b -=,因为0b ≠,所以4b =,直线AB 恒过定点(40),, 设点()D x y ,,则1CD AB k k =- ,即14y y x x =-- ,整理得22(2)4x y -+=, 所以点D 的运动轨迹为以(20),为圆心,半径为2的圆(原点除外). …………(5分) (2)由(1)因为CA CB ⊥,所以0CA CB = ,11(12)CA x y =-- ,,22(12)CB x y =--,, 则12121212()12()4CA CB x x x x y y y y =-+++-++21212121()(2)()2516y y y y m y y b =+-++-+③, 将①代入③得:2264850b b m m ---+=,22(3)4(1)b m -=+得,32(1)b m -=+或者32(1)b m -=-+.当32(1)b m -=+时,直线AB 过(52)P -,.当32(1)b m -=-+时,直线AB 过(12),,此时C 在AB 上,不合题意. 所以直线AB 恒过(52)P -,. 因为C 为定点,所以CP 为定值,在Rt CPD △中取CP 中点Q ,连接DQ ,1||||2DQ CP =, 所以||DQ 为定值. 此时Q 的坐标为(30),,故存在点(30)Q ,,使得||DQ 为定值.………………………………(12分)数学参考答案·第9页(共9页)22.(本小题满分12分)解:(1)3()1f x x x =-+,则2()31f x x '=-,曲线()f x 在01x =-处的切线为112(1) 1.5y x x -=+⇒=-,且10||0.5x x -≥, 曲线()f x 在1 1.5x =-处的切线为272333184223y x x ⎛⎫+=+⇒=- ⎪⎝⎭,且21||0.5x x -<, 故,用牛顿迭代法求方程()0f x =满足精度0.5ε=的近似解为 1.35-. …………(5分) (2)将2()365e 0xf x x x a ++++≤整理得到:32356e xx x x a ----, 令32356()e x x x x g x ----=,31()()e e x x x x f x g x -+'==, 因为2()31x f x '=-,()f x的极小值为0f =>⎝⎭, 因此,()f x 有且仅有一个零点0x ,所以()g x 有且仅有一个极小值点0x ,即0()()g x g x ≥, 所以有0()a g x ≤,方法一:由(1)有0 1.35x ≈-,所以320 1.351.353 1.355 1.356()( 1.35)(2.46 5.46 6.756) 3.86e a g x g --⨯+⨯-<-=≈-+-⨯≤ 8.685=-.方法二:3201131516()(1)3 2.728.16e a g x g --⨯+⨯-<-=≈-⨯=-≤.320 1.51.53 1.55 1.56272715()( 1.5)6 4.48e 842a g x g --⨯+⨯-⎛⎫<-=≈-+-⨯ ⎪⎝⎭方法三:≤8.4=-,所以,a 能取到的最大整数值为9-.…………………………………………(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年三校生高考数学卷
一.选择题。

(每空3分)
1.集合,,则():
A. B. C. D.
2.不等式的解集为():
A. B. C. D.
3.在内下列函数是增函数的是();
A. B. C. D.
4.直线的斜率和轴上的截距分别是();
A.,
B.-2,-5
C.2,5
D.5,2
5.下列计算正确的是()
A.=0
B.
C.
D.
6.在1,2,3,4四个数中任取两个数,则取到的数都是奇数的概率为();
A. B. C. D.
7.直线与的位置关系是().
A.直线
B.相交但不垂直
C.平行
D.垂合
二.填空题:(每空3分)
1.函数的定义域为__________;
2.已知,.且,则=__________;
3.在数列中,若,=,则该数列的通项=__________;
4.一个玩具下半部分是半径为3的半球,上半部是圆锥,如果圆锥母线长为5,圆锥底面与半球截面密合,则该玩具的表面积是__________;
三.解答题;,
1.求经过直线和的交点,圆心为的圆的方程(16分)
2.已知,是第四象限的角,则的值和的值(16分);
3.为了参加国际马拉松比赛,某同学给自己制定了10天的训练计划。

第一天跑2000米,以后每天比前一天多跑500米,这位同学第七天跑了多少米,10天总共跑了多长的距离,。

相关文档
最新文档