第2节 等差数列及其前n项和

合集下载

第二节 等差数列及其前n项和

第二节  等差数列及其前n项和
a1=3, 解得 d=-1 .
16 ×15 所以 S1 6 =1 6 ×3+ 2 ×(-1 ) =-7 2 . 答案: -72
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
等差数列及其前n项和 结

]设 等 差 数 { 5.[考 点 二 列 an}的前 n 项 和 为 S n, 已知前 6项和为 36, 最后 6 项 的 和 为 18, 0 Sn=3 2 4n( >6), 求 数 列 {an}的 项 数 及 a9 +a1 0 .












课时达标检测
等差数列及其前n项和 结

法二:由 等 差 数 列 的 性 质 ,可 S3, S 知 S9-S6, „, 6-S3, S2 1 -S1 8成 等 差 数 列 , 设 此 数 列 公 D差 . 为 5 所以 5+2D=1 0 ,所以 D=2. 所以 a1 9 +a2 0 +a2 1 =S2 1 -S1 8 =5+6D=5+1 5 =2 0 . [答案] 20












课时达标检测
等差数列及其前n项和 结

]设 Sn 为 等 差 数 { 4[ .考 点 一 列 an}的前 n 项 和 , a1 2 =-8,S9=-9, 则 S1 6 =_ _ _ _ _ _ _ _ .
解析: 设等差数{ 列 an}的 首 项 为 a1, 公 差 为 d, =a1+11d=-8, a1 2 由已知, 得 9×8 S =9a1+ 2 d=-9, 9
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测

第二节 等差数列及其前n项和

第二节  等差数列及其前n项和
课 前 ·双 基 落 实 课 堂 ·考 点 突 破 课后· 三维演练
等差数列及其前n项和
结束
2.等差数列的有关公式 (1)通项公式:an= a1+(n-1)d .
nn-1 na1+an d =_________. 1+ (2)前n项和公式:Sn= na ____________ 2 2
3.等差数列的常用性质 (1)通项公式的推广:an=am+ (n-m)d (n,m∈N*). (2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*), 则 ak+al=am+an . (3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差 为 2d .
课 前 ·双 基 落 实 课 堂 ·考 点 突 破 课后· 三维演练
等差数列及其前n项和
结束
2.(2017· 合肥质检)已知等差数列{an}的前n项和为Sn,a8=1,S16 =0,当Sn取最大值时n的值为 A.7 B. 8 C.9 D.10
a1=15, 解得 d=-2,
ቤተ መጻሕፍቲ ባይዱ
(
)
a8=a1+7d=1, 解析:法一:由 16×15 S =16a1+ d=0, 2 16
等差数列及其前n项和
结束
第二节
等差数列及其前n项和
1.等差数列的有关概念 (1)定义:如果一个数列从第 2 项 起,每一项与它的前一项的
差 都等于同一个常数,那么这个数列就叫做等差数列,这 ____
个常数叫做等差数列的 公差 ,通常用字母 d 表示. a+b A= (2)等差中项: 数列 a, A, b 成等差数列的充要条件是________ 2 , 其中 A 叫做 a,b 的 等差中项 .
等差数列及其前n项和
结束

第7章第2节等差数列及其前n项和2021年新高考数学自主复习

第7章第2节等差数列及其前n项和2021年新高考数学自主复习
第7章 数列
第1节 数列的概念与简单表示法
目 第2节 等差数列及其前n项和
录 目 第3节 比数列及其前n项和 录
第4节 数列的综合应用
专题3 求数列通项公式的方法及数列 求和的方法
第2节 等差数列及其前n项和
真题自测 考向速览 必备知识 整合提升 考点精析 考法突破
第2节 等差数列及其前n项和
∴S10=
=100,S5=
=25,∴ =4.
【答案】4
=______.
第2节 等差数列及其前n项和
4.[江苏2019·8]已知数列{an}(n∈N*)是等差数列,Sn是其前n项和.若a2a5+a8=0,S9=27, 则S8的值是________.
【解析】方法一:设等差数列{an}的公差为d,则a2a5+a8=(a1+d)(a1+4d)+a1+7d=0,
(3)用函数观点理解通项公式:an是定义在N*或其有限子集{1,2,3,…,n}上的一次函 数(d≠0)或常数函数(d=0).由等差数列的通项公式an=a1+(n-1)d可得an=dn+(a1-d), 如果设p=d,q=a1-d,那么an=pn+q,其中p,q是常数.当p≠0时,(n,an)在一次函 数y=px+q的图像上,即公差不为零的等差数列的图像是直线y=px+q上的离散的点. 当p=0时,an=q,等差数列为常数列,此时数列的图像是平行于x轴的直线(或x轴)上的 离散的点.
【答案】0 -10
第2节 等差数列及其前n项和
必备知识 整合提升
1. 等差数列的定义
一般地,如果一个数列_从__第__2_项__起__,__每__一__项__与__它__的__前__一__项__的__差__都__等__于__同__一__个__常__数___________, 那么这个数列就叫做等差数列,这个常数叫做等差数列的__公__差__,通常用字母__d___表示.

2020版高考数学一轮复习 第六章 数列 第2讲 理(含解析)新人教A版

2020版高考数学一轮复习 第六章 数列 第2讲  理(含解析)新人教A版

第2讲 等差数列及其前n 项和配套课时作业1.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14答案 C解析 设等差数列{a n }的公差为d ,由等差数列的前n 项和公式,得S 3=3×2+3×22d=12,解得d =2,则a 6=a 1+(6-1)d =2+5×2=12.故选C.2.(2019·宁德模拟)等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值是( ) A .20 B .22 C .24 D .-8 答案 C解析 因为a 1+3a 8+a 15=5a 8=120,所以a 8=24,所以2a 9-a 10=a 10+a 8-a 10=a 8=24.故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 S 3,S 6-S 3,S 9-S 6成等差数列,即9,27,a 7+a 8+a 9成等差数列,∴a 7+a 8+a 9=54-9=45.故选B.4.(2019·山东济南调研)已知数列{a n }为等差数列,且满足a 2+a 8=8,a 6=5,则其前10项和S 10的值为( )A .50B .45C .55D .40 答案 B解析 因为数列{a n }为等差数列,且a 2+a 8=8,所以根据等差数列的性质得2a 5=8,所以a 5=4,又因为a 6=5,所以S 10=10a 1+a 102=10a 5+a 62=45.故选B.5.(2019·陕西咸阳模拟)设等差数列{a n }的前n 项和为S n ,若S 9=54,则a 2+a 4+a 9=( )A .9B .15C .18D .36答案 C解析 由等差数列的通项公式及性质,可得S 9=9a 1+a 92=9a 5=54,a 5=6,则a 2+a 4+a 9=a 1+a 5+a 9=3a 5=18.故选C.6.已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( ) A .30B .45C .90D .186答案 C解析 因为a 2=6,a 5=15,所以a 5-a 2=3d ,d =3,所以{b n }是公差为6的等差数列,其前5项和为5a 2+10×6=90.故选C.7.(2019·福建模拟)设S n ,T n 分别是等差数列{a n },{b n }的前n 项和,若a 5=2b 5,则S 9T 9=( )A .2B .3C .4D .6答案 A解析 由a 5=2b 5,得a 5b 5=2,所以S 9T 9=9a 1+a 929b 1+b 92=a 5b 5=2,故选A.8.(2019·洛阳统考)设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13答案 C解析 ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.故选C.9.(2019·广雅中学模拟)已知等差数列{a n }中,a 2=2,a 4=8,若a b n =3n -1,则b 2019=( )A .2017B .2018C .2019D .2020答案 D解析 由a 2=2,a 4=8,得公差d =8-22=3,所以a n =2+(n -2)×3=3n -4,所以a n+1=3n -1.又由数列{a n }的公差不为0,知数列{a n }为单调数列,所以结合a b n =3n -1,可得b n =n +1,故b 2019=2020.故选D.10.已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 6D .S 6,S 7均为S n 的最大值 答案 C解析 因为S 5<S 6,所以S 5<S 5+a 6,所以a 6>0,因为S 6=S 7,所以S 6=S 6+a 7,所以a 7=0,因为S 7>S 8,所以S 7>S 7+a 8,所以a 8<0,所以d <0且S 6,S 7均为S n 的最大值,所以S 9<S 6.故选C.11.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,m ≥2,m ∈N *,则m =( )A .3B .4C .5D .6答案 C解析 ∵{a n }是等差数列,S m -1=-2,S m =0, ∴a m =S m -S m -1=2.又S m +1=3,∴a m +1=S m +1-S m =3, ∴d =a m +1-a m =1. 又S m =m a 1+a m2=m a 1+22=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5. 12.(2019·苏州模拟)定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n=d (n ∈N *,d 为常数),则称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2019a 2017=( ) A .4×20192-1 B .4×20182-1 C .4×20172-1 D .4×20172答案 C解析 由题意知{a n }为等差比数列,a 2a 1=1,a 3a 2=3,a 3a 2-a 2a 1=2,所以⎩⎨⎧⎭⎬⎫a n +1a n 是以1为首项,2为公差的等差数列,所以a n +1a n =1+(n -1)×2=2n -1,则a 2019a 2017=a 2019a 2018×a 2018a 2017=(2×2018-1)×(2×2017-1)=4×20172-1.故选C.13.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n(n ∈N *),则a 1+a 2+…+a 51=________.答案 676解析 ∵a n +2-a n =⎩⎪⎨⎪⎧0,n 为奇数,2,n 为偶数,∴数列{a n }的奇数项为常数1,偶数项构成以2为首项,2为公差的等差数列,∴a 1+a 2+…+a 51 =(a 1+a 3+…+a 51)+(a 2+a 4+…+a 50)=26+⎝ ⎛⎭⎪⎫25×2+25×242×2=676. 14.(2019·武汉模拟)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,-78解析 由题意,当且仅当n =8时,S n 取得最大值,说明⎩⎪⎨⎪⎧a 8>0,a 9<0.所以⎩⎪⎨⎪⎧7+7d >0,7+8d <0.所以-1<d <-78.15.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.答案 10解析 ∵2a n =a n -1+a n +1,又a n -1+a n +1-a 2n =0, ∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=2(2n -1)=38, 解得n =10.16.若两个等差数列{a n },{b n }的前n 项和分别为A n 与B n ,且满足A n B n =7n +14n +27(n ∈N +),则a 11b 11的值是________. 答案 43解析 根据等差数列的性质得:a 11b 11=2a 112b 11=a 1+a 21b 1+b 21=21a 1+a 21221b 1+b 212=A 21B 21=148111=43. 17.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.解 (1)设{a n }的公差为d ,由题意,得3a 1+3d =-15. 由a 1=-7,得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1),得S n =n 2-8n =(n -4)2-16. 所以当n =4时,S n 取得最小值,最小值为-16.18.(2019·广东惠州调研)已知数列{a n }满足a 1=1,a n +1=a n2a n +1,n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)设b n =a n2n +1,数列{b n }的前n 项和为S n ,求使不等式S n <k 对一切n ∈N *恒成立的实数k 的取值范围.解 (1)证明:因为a n +1=a n 2a n +1,所以1a n +1=1a n+2. 因为a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列,所以1a n=2n -1,所以a n =12n -1. (2)由b n =a n2n +1,得b n =12n +12n -1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12,所以要使不等式S n <k 对一切n ∈N *恒成立,则k 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞.19.(2019·洛阳市统考)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n +1=4S n-3(n ∈N *).(1)求a 2的值并证明a n +2-a n =2; (2)求数列{a n }的通项公式. 解 (1)令n =1得2a 1a 2=4S 1-3, 又a 1=1,所以a 2=12.2a n a n +1=4S n -3,① 2a n +1a n +2=4S n +1-3.②②-①得,2a n +1(a n +2-a n )=4a n +1. 因为a n ≠0,所以a n +2-a n =2.(2)由(1)可知,数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1, 所以a 2k -1=1+2(k -1)=2k -1, 即n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2, 首项为12,所以a 2k =12+2(k -1)=2k -32,即n 为偶数时,a n =n -32.综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -32,n 为偶数.20.(2019·唐山模拟)已知{a n }是公差为正数的等差数列,且a 3a 6=55,a 2+a 7=16.(1)求数列{a n }的通项公式;(2)若a n =b 1+b 23+b 35+…+b n2n -1,求数列{b n }的前n 项和S n . 解 (1)∵{a n }是公差d >0的等差数列, ∴由a 3a 6=55,a 2+a 7=16=a 3+a 6, 解得a 3=5,a 6=11,∴⎩⎪⎨⎪⎧a 1+2d =5,a 1+5d =11,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1.(2)∵a n =b 1+b 23+b 35+…+b n2n -1,∴a n -1=b 1+b 23+b 35+…+b n -12n -3(n ≥2,n ∈N *),两式相减,得b n2n -1=2(n ≥2,n ∈N *), 则b n =4n -2(n ≥2,n ∈N *), 当n =1时,b 1=1,∴b n =⎩⎪⎨⎪⎧1,n =1,4n -2,n ≥2,∴当n ≥2时,S n =1+n -16+4n -22=2n 2-1.又n =1时,S 1=1,适合上式, 所以S n =2n 2-1.。

2020版高考数学一轮复习教案:第5章 第2节_等差数列及其前n项和

2020版高考数学一轮复习教案:第5章 第2节_等差数列及其前n项和

第二节 等差数列及其前n 项和[考纲传真] 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.用符号表示为a n +1-a n =d(n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b 2,其中A 叫做a ,b 的等差中项.2.等差数列的通项公式与前n 项和公式(1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }和{a 2n +1}也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(7)等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n . [常用结论]1.等差数列前n 项和的最值在等差数列{a n }中,若a 1>0,d <0,则S n 有最大值,即所有正项之和最大,若a 1<0,d >0,则S n 有最小值,即所有负项之和最小.2.两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,则有a n b n =S 2n -1T 2n -1. 3.等差数列{a n }的前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列. [基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的. ( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0的二次函数. ( )[答案] (1)√ (2)√ (3)× (4)×2.(教材改编)等差数列11,8,5,…,中-49是它的第几项( )A .第19项B .第20项C .第21项D .第22项C [由题意知a n =11+(n -1)×(-3)=-3n +14,令-3n +14=-49得n =21,故选C.]3.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( )A .-1B .0C .1D .6B [a 2,a 4,a 6成等差数列,则a 6=0,故选B.]4.小于20的所有正奇数的和为________.100 [小于20的正奇数组成首项为1,末项为19的等差数列,共有10项,因此它们的和S 10=10(1+19)2=100.] 5.(教材改编)设S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=________.-1 [由S 2=S 6得a 3+a 4+a 5+a 6=0,即a 4+a 5=0,又a 4=1,则a 5=-1.]1.已知等差数列{a n }的前n 项和为S n ,a 6+a 18=54,S 19=437,则a 2 018的值是( )A .4 039B .4 038C .2 019D .2 038A [设等差数列{a n }的公差为d ,由题意可知⎩⎨⎧ 2a 1+22d =54,19a 1+171d =437,解得⎩⎨⎧a 1=5,d =2,所以a 2 018=5+2017×2=4 039,故选A.]2.(2019·武汉模拟)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于( )A .-1B .-2C .-3D .-4 C [由题意知⎩⎨⎧ a 1+a 7=2a 1+6d =-8,a 2=a 1+d =2. 解得⎩⎨⎧d =-3,a 1=5,故选C.] 3.《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有一女子擅长织布,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一个月(按30天计)共织390尺布.则该女子最后一天织布的尺数为( )A .18B .20C .21D .25 C [用a n 表示第n 天织布的尺数,由题意知,数列{a n }是首项为5,项数为30的等差数列.所以30(a 1+a 30)2=390, 即30(5+a 30)2=390,解得a 30=21,故选C.] 4.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________. -72 [设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧ a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9, 解得⎩⎨⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.]【例1】 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.[解] (1)证明:因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1⎝ ⎛⎭⎪⎫2-1a n -1-1a n -1 =a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列.(2)由(1)知b n =n -72,则a n =1+1b n =1+22n -7. 设f (x )=1+22x -7, 则f (x )在区间⎝ ⎛⎭⎪⎫-∞,72和⎝ ⎛⎭⎪⎫72,+∞上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.[拓展探究] 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.[解] 由已知可得a n +1n +1=a n n+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n .n 1n +1n2n 2+2n .(1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式. [解] (1)由已知,得a 2-2a 1=4,则a 2=2a 1+4,又a 1=1,所以a 2=6.由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)由已知na n +1-(n +1)a n =2n (n +1),得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a n n=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差d =2的等差数列.则a n n =1+2(n -1)=2n -1,所以a n =2n 2-n .►考法1 等差数列项的性质的应用【例2】 (1)(2019·长沙模拟)数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2+a 4+a 6=12,则a 3+a 4+a 5等于( )A .9B .10C .11D .12(2)(2019·银川模拟)已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(1)D (2)A [(1)数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列,利用等差数列的性质可知,a 3+a 4+a 5=a 2+a 4+a 6=12.(2)由a 3+a 6+a 10+a 13=32得4a 8=32,即a 8=8.又d ≠0,所以等差数列{a n }是单调数列,由a m =8,知m =8,故选A.] ►考法2 等差数列前n 项和的性质【例3】 (1)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 019=________.(1)B (2)8 076 [(1)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,即a 7+a 8+a 9=45,故选B.(2)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0142 014-S 2 0082 008=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 014+2 018=4,∴S 2 019=8 076.]n n 1020S 30=________.(2)等差数列{a n }的前n 项和为S n ,若a m =10,S 2m -1=110,则m =________.(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7=________.(1)60 (2)6 (3)3727[(1)由题意知,S 10,S 20-S 10,S 30-S 20成等差数列. 则2(S 20-S 10)=S 10+(S 30-S 20),即40=10+(S 30-30),解得S 30=60.(2)S 2m -1=(2m -1)(a 1+a 2m -1)2=2(2m -1)a m 2=110,解得m =6.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=132(a 1+a 13)132(b 1+b 13)=S 13T 13=3×13-22×13+1=3727.]【例4】 (1)等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( )A .5B .6C .7D .8C [(1)法一:由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0.根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大.法二:由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n .根据二次函数的性质,知当n =7时S n 最大.法三:根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和是先递增后递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,可得只有当n =3+112=7时,S n 取得最大值.](2)已知等差数列{a n }的前三项和为-3,前三项的积为8.①求等差数列{a n }的通项公式;②若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和T n .[解] ①设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎨⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎨⎧ a 1=2,d =-3或⎩⎨⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7.故a n =-3n +5或a n =3n -7.②当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎨⎧ -3n +7,n =1,2,3n -7,n ≥3.记数列{3n -7}的前n 项和为S n ,则S n =n [(-4)+(3n -7)]2=32n 2-112n . 当n ≤2时,T n =|a 1|+|a 2|+…+|a n |=-(a 1+a 2+…+a n )=-32n 2+112n ,当n ≥3时,T n =|a 1|+|a 2|+|a 3|+…+|a n |=-(a 1+a 2)+(a 3+a 4+…+a n )=S n -2S 2=32n 2-112n +10, 综上知:T n =⎩⎪⎨⎪⎧ -32n 2+112n ,n ≤2,32n 2-112n +10,n ≥3.n 135246n表示{a n }的前n 项和,则使S n 达到最大值的n 是( )A .21B .20C .19D .18 (2)设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.(1)B (2)130 [(1)因为a 1+a 3+a 5=3a 3=105,a 2+a 4+a 6=3a 4=99,所以a 3=35,a 4=33,所以d =-2,a 1=39.由a n =a 1+(n -1)d =39-2(n -1)=41-2n ≥0,解得n ≤412,所以当n =20时S n 达到最大值,故选B.(2)由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,所以n ≤5时,a n ≤0,当n >5时,a n >0,所以|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4+a 5)+(a 6+…+a 15)=S 15-2S 5=130.]1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8C [设{a n }的公差为d ,则由⎩⎨⎧ a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧ (a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,解得d =4.故选C.]2.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 B [∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.故选B.]3.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11 A [a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5(a 1+a 5)2=5a 3=5.]4.(2018·全国卷Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.[解](1)设{a n}的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以{a n}的通项公式为a n=2n-9.(2)由(1)得S n=n2-8n=(n-4)2-16.所以当n=4时,S n取得最小值,最小值为-16.。

高考数学(理)总复习讲义: 等差数列及其前n项和

高考数学(理)总复习讲义: 等差数列及其前n项和

第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d ❶(n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d ❷.(2)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (3)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2❸. ,d >0⇔{a n }为递增数列, d =0⇔{a n }为常数列, d <0⇔{a n }为递减数列.当d ≠0时,等差数列{an }的通项公式a n =dn +(a 1-d )是关于d 的一次函数. 当d ≠0时,等差数列{an }的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 是关于n 的二次函数. [熟记常用结论]1.若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . 2.若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . 3.若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.4.若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. 6.若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列.7.关于等差数列奇数项和与偶数项和的性质.(1)若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (2)若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.8.两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n =S 2n -1T 2n -1.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( ) 答案:(1)× (2)√ (3)× (4)√ 二、选填题1.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.2.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3D .4 解析:选B 设公差为d .∵a 1+a 5=2a 3=10,∴a 3=5, 又∵a 4=7,∴d =2.故选B.3.等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( ) A .1 B.53 C .-2D .3解析:选C ∵S 3=6=32(a 1+a 3),且a 3=a 1+2d ,a 1=4,∴d =-2,故选C.4.已知等差数列-8,-3,2,7,…,则该数列的第100项为________. 解析:依题意得,该数列的首项为-8,公差为5,所以a 100=-8+99×5=487. 答案:4875.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为________.解析:∵a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37, ∴m =37. 答案:37考点一等差数列基本量的运算[基础自学过关][题组练透]1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 3.(2019·西安质检)已知等差数列{a n }的前n 项和为S n ,且a 3·a 5=12,a 2=0.若a 1>0,则S 20=( )A .420B .340C .-420D .-340解析:选D 设数列{a n }的公差为d ,则a 3=a 2+d =d ,a 5=a 2+3d =3d ,由a 3·a 5=12,得d =±2,由a 1>0,a 2=0,可知d <0,所以d =-2,所以a 1=2,故S 20=20×2+20×192×(-2)=-340.4.(2019·西安八校联考)设数列{a n }是等差数列,且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( )A .S 4<S 3B .S 4=S 3C .S 4>S 1D .S 4=S 1解析:选B 设{a n }的公差为d ,由a 2=-6,a 6=6,得⎩⎪⎨⎪⎧ a 1+d =-6,a 1+5d =6,解得⎩⎪⎨⎪⎧a 1=-9,d =3.于是,S 1=-9,S 3=3×(-9)+3×22×3=-18,S 4=4×(-9)+4×32×3=-18,所以S 4=S 3,S 4<S 1,故选B.[名师微点]等差数列基本运算的常见类型及解题策略(1)求公差d 或项数n .在求解时,一般要运用方程思想. (2)求通项.a 1和d 是等差数列的两个基本元素.(3)求特定项.利用等差数列的通项公式或等差数列的性质求解.(4)求前n 项和.利用等差数列的前n 项和公式直接求解或利用等差中项间接求解. [提醒] 在求解数列基本量问题中主要使用的是方程思想,要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.考点二等差数列的判定与证明[师生共研过关][典例精析]若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.[解] (1)证明:当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1, 因为S n ≠0,所以1S n -1S n -1=2,又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)由(1)可得1S n =2n ,所以S n =12n .当n ≥2时, a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.[变式发散]1.(变设问)本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解:因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2, 所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1).又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ·⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1),所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.2.(变条件)将本例条件“a n +2S n S n -1=0(n ≥2),a 1=12”变为“S n (S n -a n )+2a n =0(n ≥2),a 1=2”,问题不变,试求解.解:(1)证明:当n ≥2时,a n =S n -S n -1且S n (S n -a n )+2a n =0, 所以S n [S n -(S n -S n -1)]+2(S n -S n -1)=0, 即S n S n -1+2(S n -S n -1)=0, 因为S n ≠0,所以1S n-1S n -1=12.又1S 1=1a 1=12,故数列⎩⎨⎧⎭⎬⎫1S n 是以首项为12,公差为12的等差数列. (2)由(1)知1S n =n 2,所以S n =2n ,当n ≥2时,a n =S n -S n -1=-2n (n -1).当n =1时,a 1=2不适合上式,故a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2. [解题技法]等差数列的判定与证明方法[提醒] 如果要证明一个数列是等差数列,则必须用定义法或等差中项法.判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.[过关训练]1.已知数列{a n }满足:a 1=2,a n +1=3a n +3n +1-2n,设b n =a n -2n3n ,求证:数列{b n }为等差数列,并求{a n }的通项公式.证明:因为b n +1-b n =a n +1-2n +13n +1-a n -2n3n =3a n +3n +1-2n -2n +13n +1-3a n -3·2n 3n +1=1, 所以{b n }为等差数列, 又b 1=a 1-23=0,所以b n =n -1, 所以a n =(n -1)·3n +2n .2.已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1. (1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)证明:因为1a n +1-1-1a n -1=a n -a n +1(a n +1-1)(a n -1)=13,所以b n +1-b n =13,所以数列{b n }是等差数列. (2)由(1)及b 1=1a 1-1=12-1=1, 知b n =13n +23,所以a n -1=3n +2,所以a n =n +5n +2.考点三等差数列的性质与应用[师生共研过关][典例精析](1)(2018·咸阳二模)等差数列{a n }的前n 项和为S n ,若a 4,a 10是方程x 2-8x +1=0的两根,则S 13=( )A .58B .54C .56D .52(2)已知等差数列{a n }的前10项和为30,它的前30项和为210,则前20项和为( ) A .100 B .120 C .390D .540(3)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 019=________.[解析] (1)∵a 4,a 10是方程x 2-8x +1=0的两根, ∴a 4+a 10=8,∴a 1+a 13=8, ∴S 13=13×(a 1+a 13)2=13×82=52.(2)设S n 为等差数列{a n }的前n 项和, 则S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+(S 30-S 20),又等差数列{a n }的前10项和为30,前30项和为210, ∴2(S 20-30)=30+(210-S 20),解得S 20=100.(3)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0142 014-S 2 0082 008=6d =6,∴d =1. 故S 2 0192 019=S 11+2 018d =-2 014+2 018=4, ∴S 2 019=4×2 019=8 076.[答案] (1)D (2)A (3)8 076[解题技法]一般地,运用等差数列性质可以优化解题过程,但要注意性质运用的条件,如m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *);数列S m ,S 2m -S m ,S 3m -S 2m 也成等差数列;⎩⎨⎧⎭⎬⎫S n n 也成等差数列.等差数列的性质是解题的重要工具. [过关训练]1.(2019·聊城模拟)设等差数列{a n }的前n 项和为S n ,若S 13=104,a 6=5,则数列{a n }的公差为( )A .2B .3C .4D .5解析:选B 设等差数列{a n }的公差为d . 因为S 13=104,所以13(a 1+a 13)2=104,所以13a 7=104,解得a 7=8.因为a 6=5,所以d =a 7-a 6=8-5=3.2.(2018·宁德二检)已知等差数列{a n }满足a 3+a 5=14,a 2a 6=33,则a 1a 7=( ) A .33 B .16 C .13D .12解析:选C 设等差数列{a n }的公差为d , 因为a 3+a 5=14,所以a 2+a 6=14,又a 2a 6=33,所以⎩⎪⎨⎪⎧ a 2=3,a 6=11或⎩⎪⎨⎪⎧a 2=11,a 6=3.当⎩⎪⎨⎪⎧a 2=3,a 6=11时,d =11-36-2=2,所以a 1a 7=(a 2-d )(a 6+d )=13;当⎩⎪⎨⎪⎧a 2=11,a 6=3时,d =3-116-2=-2,所以a 1a 7=(a 2-d )(a 6+d )=13. 综上,a 1a 7=13,故选C.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,则a 11b 11=________.解析:由等差数列前n 项和的性质, 得a 11b 11=S 21T 21=2×213×21+1=2132.答案:2132考点四等差数列前n 项和的最值问题[师生共研过关][典例精析]在等差数列{a n }中,已知a 1=13,3a 2=11a 6,则数列{a n }的前n 项和S n 的最大值为________.[解析] 法一 通项法 设等差数列{a n }的公差为d .由3a 2=11a 6,得3×(13+d )=11×(13+5d ),解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.由⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,得⎩⎪⎨⎪⎧-2n +15≥0,-2(n +1)+15≤0,解得132≤n ≤152.因为n ∈N *,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=7×(13-2×7+15)2=49.法二 二次函数法 设等差数列{a n }的公差为d .由3a 2=11a 6,得3×(13+d )=11×(13+5d ),解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.所以S n =n (13+15-2n )2=-n 2+14n =-(n -7)2+49,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=49. [答案] 49[解题技法]求数列前n 项和的最值的方法(1)通项法:①若a 1>0,d <0,则S n 必有最大值,其n 的值可用不等式组⎩⎪⎨⎪⎧a n ≥0,a n +1≤0来确定;②若a 1<0,d >0,则S n 必有最小值,其n 的值可用不等式组⎩⎪⎨⎪⎧a n ≤0,a n +1≥0来确定.(2)二次函数法:等差数列{a n }中,由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,可用求函数最值的方法来求前n 项和的最值,这里应由n ∈N *及二次函数图象的对称性来确定n 的值.(3)不等式组法:借助S n 最大时,有⎩⎪⎨⎪⎧S n ≥S n -1,S n ≥S n +1(n ≥2,n ∈N *),解此不等式组确定n的范围,进而确定n 的值和对应S n 的值(即S n 的最值).[过关训练]1.已知等差数列{a n }的前n 项和是S n ,若S 15>0,S 16<0,则S n 的最大值是( ) A .S 1 B .S 7 C .S 8D .S 15解析:选C 由等差数列的前n 项和公式可得S 15=15a 8>0,S 16=8(a 8+a 9)<0,所以a 8>0,a 9<0,则d =a 9-a 8<0,所以在数列{a n }中,当n <9时,a n >0,当n ≥9时,a n <0, 所以当n =8时,S n 最大,故选C.2.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. 解:(1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16, 所以当n =4时,S n 取得最小值,最小值为-16.[课时跟踪检测]一、题点全面练1.等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d =( ) A.14 B.12 C .2D .-12解析:选A 由a 4+a 8=2a 6=10,得a 6=5,所以4d =a 10-a 6=1,解得d =14.2.(2019·沈阳质量监测)在等差数列{a n }中,若S n 为{a n }的前n 项和,2a 7=a 8+5,则S 11的值是( )A .55B .11C .50D .60解析:选A 设等差数列{a n }的公差为d ,由题意可得2(a 1+6d )=a 1+7d +5,得a 1+5d =5,则S 11=11a 1+11×102d =11(a 1+5d )=11×5=55,故选A. 3.(2018·泉州期末)等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }的前9项和S 9等于( )A .99B .66C .144D .297解析:选A 由等差数列的性质可得a 1+a 7=2a 4,a 3+a 9=2a 6,又∵a 1+a 4+a 7=39,a 3+a 6+a 9=27,∴3a 4=39,3a 6=27,解得a 4=13,a 6=9,∴a 4+a 6=22,∴数列{a n }的前9项和S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×222=99. 4.(2019·广州五校联考)设等差数列{a n }的前n 项和为S n ,若a m =4,S m =0,S m +2=14(m ≥2,且m ∈N *),则a 2 019的值为( )A .2 020B .4 032C .5 041D .3 019 解析:选B 由题意得⎩⎪⎨⎪⎧ a m =a 1+(m -1)d =4,S m =ma 1+m (m -1)2d =0,S m +2-S m =a m +1+a m +2=2a 1+(m +m +1)d =14,解得⎩⎪⎨⎪⎧ a 1=-4,m =5,d =2,∴a n =-4+(n -1)×2=2n -6,∴a 2 019=2×2 019-6=4 032.故选B.5.(2019·长春质检)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( )A .6B .7C .8D .9解析:选C 由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d 2>0,所以前8项和为前n 项和的最小值,故选C.6.设等差数列{a n }的前n 项和为S n ,若a 6=2a 3,则S 11S 5=______. 解析:S 11S 5=112(a 1+a 11)52(a 1+a 5)=11a 65a 3=225. 答案:225 7.等差数列{a n }中,已知S n 是其前n 项和,a 1=-9,S 99-S 77=2,则S 10=________.解析:设公差为d ,∵S 99-S 77=2,∴9-12d -7-12d =2, ∴d =2,∵a 1=-9,∴S 10=10×(-9)+10×92×2=0. 答案:08.(2018·广元统考)若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+n ,则a 1+a 22+…+a n n =________.解析:当n =1时,a 1=2⇒a 1=4, 又a 1+a 2+…+a n =n 2+n ,①所以当n ≥2时,a 1+a 2+…+a n -1=(n -1)2+(n -1)=n 2-n ,② ①-②得a n =2n ,即a n =4n 2,所以a n n =4n 2n =4n , 则⎩⎨⎧⎭⎬⎫a n n 构成以4为首项,4为公差的等差数列. 所以a 1+a 22+…+a n n =(4+4n )n 2=2n 2+2n . 答案:2n 2+2n9.(2018·大连模拟)已知数列{a n }的各项均为正数,其前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.解:(1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,所以a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,所以两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1,即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n -1=-a n -1,则a n +a n -1=1.而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数矛盾,所以a n -1=a n -1,即a n -a n -1=1,因此数列{a n }为等差数列.(2)由(1)知a 1=3,数列{a n }的公差d =1,所以数列{a n }的通项公式为a n =3+(n -1)×1=n +2.10.已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.解:(1)由题意知(2a 1+d )(3a 1+3d )=36,将a 1=1代入上式,解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4. 即所求m 的值为5,k 的值为4.二、专项培优练(一)易错专练——不丢怨枉分1.若{a n }是等差数列,首项a 1>0,a 2 018+a 2 019>0,a 2 018·a 2 019<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 018B .2 019C .4 036D .4 037解析:选C 因为a 1>0,a 2 018+a 2 019>0,a 2 018·a 2 019<0,所以d <0,a 2 018>0,a 2 019<0,所以S 4 036=4 036(a 1+a 4 036)2=4 036(a 2 018+a 2 019)2>0,S 4 037=4 037(a 1+a 4 037)2=4 037·a 2 019<0,所以使前n 项和S n >0成立的最大正整数n 是4 036. 2.(2019·武汉模拟)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为( )A .-10B .-12C .-9D .-13解析:选B 设等差数列{a n }的公差为d ,∵a 3+a 7=36,∴a 4+a 6=36,又a 4a 6=275,联立,解得⎩⎪⎨⎪⎧ a 4=11,a 6=25或⎩⎪⎨⎪⎧ a 4=25,a 6=11,当⎩⎪⎨⎪⎧ a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,∴a 2a 3=-12为a n a n +1的最小值;当⎩⎪⎨⎪⎧ a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,∴a 7a 8=-12为a n a n +1的最小值.综上,a n a n +1的最小值为-12.3.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析:由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n-10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.答案:130(二)交汇专练——融会巧迁移4.[与方程交汇]若等差数列{a n }中的a 3,a 2 019是3x 2-12x +4=0的两根,则log 14a 1 011=________.解析:因为a 3和a 2 019是3x 2-12x +4=0的两根,所以a 3+a 2 019=4.又a 3,a 1 011,a 2 019成等差数列,所以2a 1 011=a 3+a 2 019,即a 1 011=2,所以log 14a 1 011=-12. 答案:-125.[与不等式恒成立交汇]设等差数列{a n }的前n 项和为S n ,且S 5=a 5+a 6=25.(1)求{a n }的通项公式;(2)若不等式2S n +8n +27>(-1)n k (a n +4)对所有的正整数n 都成立,求实数k 的取值范围.解:(1)设公差为d ,则5a 1+5×42d =a 1+4d +a 1+5d =25, ∴a 1=-1,d =3.∴{a n }的通项公式a n =3n -4.(2)由题意知S n =-n +3n (n -1)2,2S n +8n +27=3n 2+3n +27,a n +4=3n ,则原不等式等价于(-1)n k <n +1+9n对所有的正整数n 都成立. ∴当n 为奇数时,k >-⎝⎛⎭⎫n +1+9n 恒成立; 当n 为偶数时,k <n +1+9n恒成立. 又∵n +1+9n ≥7,当且仅当n =3时取等号,∴当n 为奇数时,n +1+9n在n =3上取最小值7, 当n 为偶数时,n +1+9n 在n =4上取最小值294, ∴不等式对所有的正整数n 都成立时,实数k 的取值范围是⎝⎛⎭⎫-7,294.。

2021届高考数学一轮复习第六章数列第2节等差数列及其前n项和教学案含解析新人教A版

2021届高考数学一轮复习第六章数列第2节等差数列及其前n项和教学案含解析新人教A版

第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能利用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[常用结论与微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).5.用等差数列的定义判断数列是否为等差数列,要注意定义中的三个关键词:“从第2项起”“每一项与它的前一项的差”“同一个常数”.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数. (4)若公差d =0,则前n 项和不是二次函数. 答案 (1)√ (2)√ (3)× (4)×2.(老教材必修5P46AT2改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A.31B.32C.33D.34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32.答案 B3.(老教材必修5P68T8改编)在等差数列{a n }中a 3+a 4+a 5=6,则S 7=( ) A.8B.12C.14D.18解析 a 3+a 4+a 5=3a 4=6,∴a 4=2,S 7=12×7×(a 1+a 7)=7a 4=14.答案 C4.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2020·上饶模拟)已知等差数列{a n },a 10=10,其前10项和S 10=70,则公差d =( ) A.-29B.29C.-23D.23解析 因为S 10=12×10×(a 1+a 10)=12×10×(a 1+10)=70,所以a 1=4,因为a 10=a 1+9d =10,所以d =23.答案 D6.(2019·全国Ⅲ卷)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5=________. 解析 由a 1≠0,a 2=3a 1,可得d =2a 1, 所以S 10=10a 1+10×92d =100a 1,S 5=5a 1+5×42d =25a 1,所以S 10S 5=4. 答案 4考点一 等差数列基本量的运算【例1】 (1)(一题多解)(2019·江苏卷)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.(2)(2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n -5 B.a n =3n -10 C.S n =2n 2-8nD.S n =12n 2-2n解析 (1)法一 由S 9=27⇒9(a 1+a 9)2=27⇒a 1+a 9=6⇒2a 5=6⇒a 5=3,即a 1+4d =3. 又a 2a 5+a 8=0⇒2a 1+5d =0, 解得a 1=-5,d =2.故S 8=8a 1+8×(8-1)2d =16.法二 同法一得a 5=3.又a 2a 5+a 8=0⇒3a 2+a 8=0⇒2a 2+2a 5=0⇒a 2=-3. ∴d =a 5-a 23=2,a 1=a 2-d =-5.故S 8=8a 1+8×(8-1)2d =16.(2)设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .答案 (1)16 (2)A规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若 a 3=4,求{a n }的通项公式; (2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d .由S 9=-a 5得9a 1+9×82d =-(a 1+4d ),即a 1+4d =0.由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n . (2)由(1)得a 1=-4d , 故a n =(n -5)d ,S n =n (n -9)d2.由a 1>0知d <0,故S n ≥a n 等价于n (n -9)2≤n -5,即n 2-11n +10≤0,解得1≤n ≤10, 所以n 的取值范围是{n |1≤n ≤10,n ∈N }. 考点二 等差数列的判定与证明典例迁移【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故数列{a n}的通项公式为a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列.【迁移2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a nn=1, 又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴数列{a n }的通项公式为a n =n 2-25n .规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到的结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义.【训练2】 记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n.(2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列. 考点三 等差数列的性质及应用【例3】 (1)(2019·安阳联考)在等差数列{a n }中,若a 2+a 8=8,则(a 3+a 7)2-a 5=( )A.60B.56C.12D.4(2)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 (1)∵在等差数列{a n }中,a 2+a 8=8, ∴a 2+a 8=a 3+a 7=2a 5=8,解得a 5=4, 所以(a 3+a 7)2-a 5=82-4=60.(2)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45, 所以a 7+a 8+a 9=45. 答案 (1)A (2)B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则 (1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1); (2)S 2n -1=(2n -1)a n .【训练3】 (1)(2020·广东六校联考)等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值是( ) A.14B.15C.16D.17(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解析 (1)依题意,由a 4+a 6+a 8+a 10+a 12=120,得5a 8=120,即a 8=24,所以a 9-13a 11=13(3a 9-a 11)=13(a 9+a 7+a 11-a 11)=13(a 9+a 7)=23a 8=23×24=16.(2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.答案 (1)C (2)A考点四 等差数列的最值问题 多维探究角度1 等差数列前n 项和的最值【例4-1】 (2019·北京卷)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值. 解 (1)设{a n }的公差为d . 因为a 1=-10,所以a 2=-10+d ,a 3=-10+2d ,a 4=-10+3d . 因为a 2+10,a 3+8,a 4+6成等比数列, 所以(a 3+8)2=(a 2+10)(a 4+6). 所以(-2+2d )2=d (-4+3d ). 解得d =2.所以{a n }的通项公式为a n =a 1+(n -1)d =2n -12. (2)由(1)知,a n =2n -12.则当n ≥7时,a n >0;当n =6时,a n =0,当n <6时,a n <0; 所以S n 的最小值为S 5=S 6=-30.规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;(2)利用公差不为零的等差数列的前n 项和S n =An 2+Bn (A ,B 为常数,A ≠0)为二次函数,通过二次函数的性质求最值. 角度2 等差数列项的最值【例4-2】 (2020·淮北模拟)S n 是等差数列{a n }的前n 项和,S 2 020<S 2 018,S 2 019<S 2 020,则S n <0时n 的最大值是( ) A.2 019B.2 020C.4 037D.4 038解析 因为S 2 020<S 2 018,S 2 019<S 2 020,所以a 2 020+a 2 019<0,a 2 020>0.所以S 4 038=4 038(a 1+a 4 038)2=2 019(a 2 020+a 2 019)<0,S 4 039=4 039(a 1+a 4 039)2=4 039a 2 020>0,可知S n <0时n 的最大值是4 038. 答案 D规律方法 本题借助等差数列的性质求出S n <0中n 的取值范围,从而求出n 的最大值,这种题型要与S n 的最值区别开来.【训练4】 (1)(角度1)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( ) A.6B.7C.8D.9(2)(角度2)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为________.解析 (1)由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值.故选C.(2)设等差数列{a n }的公差为d ,因为a 3+a 7=36,所以a 4+a 6=36,又a 4a 6=275,联立,解得⎩⎪⎨⎪⎧a 4=11,a 6=25或⎩⎪⎨⎪⎧a 4=25,a 6=11,当⎩⎪⎨⎪⎧a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,所以a 2a 3=-12为a n a n +1的最小值;当⎩⎪⎨⎪⎧a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,所以a 7a 8=-12为a n a n +1的最小值.综上,a n a n +1的最小值为-12. 答案 (1)C (2)-12A 级 基础巩固一、选择题1.(2019·衡阳一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120, 由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48. 答案 D2.(2020·河南名校联盟联合调研)设等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 8+a 13=2π21,则tan S 14=( ) A.-33B.33C.- 3D. 3解析 ∵{a n }是等差数列,且a 2+a 7+a 8+a 13=2π21,∴a 7+a 8=π21,∴S 14=14(a 1+a 14)2=7(a 7+a 8)=π3,∴tan S 14=tan π3= 3.答案 D3.(2020·武汉调研)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则S 10的值为( ) A.90B.91C.96D.100解析 ∵对任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1), ∴S n +1-S n =S n -S n -1+2, ∴a n +1-a n =2.∴数列{a n }在n ≥2时是等差数列,公差为2. 又a 1=1,a 2=2,∴S 10=1+9×2+9×82×2=91.故选B. 答案 B4.(2019·合肥质检)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( ) A.174斤B.184斤C.191斤D.201斤解析 用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数, 由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996, ∴8a 1+8×72×17=996,解之得a 1=65.∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤. 答案 B。

2020届高三数学一轮复习: 第5章 第2节 等差数列及其前n项和

2020届高三数学一轮复习: 第5章 第2节 等差数列及其前n项和

第二节 等差数列及其前n 项和[考纲传真] 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.用符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d ,a n =a m +(n -m )d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.()(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) [答案] (1)× (2)√ (3)√ (4)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=0,则公差d 等于( ) A .-1 B.1 C .2D.-2D [依题意得S 3=3a 2=6,即a 2=2,故d =a 3-a 2=-2,故选D.] 3.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5 B.7 C .9D.11A [a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5(a 1+a 5)2=5a 3=5.]4.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100 B.99 C .98D.97C [法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5.故a 100=a 5+(20-1)×5=98.故选C.]5.(教材改编)在100以内的正整数中有__________个能被6整除的数. 16 [由题意知,能被6整除的数构成一个等差数列{a n }, 则a 1=6,d =6,得a n =6+(n -1)6=6n . 由a n =6n ≤100,即n ≤1646=1623, 则在100以内有16个能被6整除的数.]n n 为{a n }的前n项和,若S 8=4S 4,则a 10=( )A.172 B.192 C .10D.12(2)(2017·云南省二次统一检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )A .9 B.10 C .11D.15(1)B (2)B [(1)∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12, ∴a 10=a 1+9d =12+9=192.(2)设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.][规律方法] 1.等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知三求二,体现了方程思想的应用.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法,称为基本量法.[变式训练1] (1)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B.1 C .2D.3(2)设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________.【导学号:01772176】(1)C (2)-72 [(1)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1, 得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.(2)设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎨⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.]已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列. (2)求数列{a n }中的通项公式a n . [解] (1)证明:因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1.所以n ≥2时,b n -b n -1=1a n -1-1a n -1-1 =1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.5分又b 1=1a 1-1=-52,所以数列{b n }是以-52为首项,1为公差的等差数列.7分 (2)由(1)知,b n =n -72,9分 则a n =1+1b n=1+22n -7.12分[规律方法] 1.判断等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.2.用定义证明等差数列时,常采用两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.[变式训练2] (1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )【导学号:01772177】A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *且n ≥2),则a 61=__________.(1)C (2)480 [(1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列. (2)由已知S nS n -1-S n -1S n =2S n S n -1可得,S n -S n -1=2,所以{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,所以a 61=S 61-S 60=1212-1192=480.]每列的三个数均成等差数列,如果数阵中所有数之和等于63,那么a 52=( )⎝ ⎛⎭⎪⎫a 41a 42 a 43a 51 a 52 a 53a 61a 62a 63 图5-2-1 A .2 B.8 C .7D.4(2)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 取得最大值.(1)C [法一:第一行三数成等差数列,由等差中项的性质有a 41+a 42+a 43=3a 42,同理第二行也有a 51+a 52+a 53=3a 52,第三行也有a 61+a 62+a 63=3a 62,又每列也成等差数列,所以对于第二列,有a 42+a 52+a 62=3a 52,所以a 41+a 42+a 43+a 51+a 52+a 53+a 61+a 62+a 63=3a 42+3a 52+3a 62=3×3a 52=63,所以a 52=7,故选C.法二:由于每行每列都成等差数列,不妨取特殊情况,即这9个数均相同,显然满足题意,所以有63÷9=7,即a 52=7,故选C.](2)法一:由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,4分 即d =-213a 1.7分从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.9分 故当n =7时,S n 最大.12分 法二:由法一可知,d =-213a 1. 要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,5分即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,9分解得6.5≤n ≤7.5,故当n =7时,S n 最大.12分 法三:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,5分故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,9分 所以a 7>0,a 8<0,所以当n =7时,S n 最大.12分 [规律方法] 1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[变式训练3] (1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( )A .18 B.99 C .198D.297(2)已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=__________.(1)B (2)20 [(1)因为a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.(2)法一:设数列{a n }的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D .所以5+2D =10, 所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20.][思想与方法]1.等差数列的通项公式,前n 项和公式涉及“五个量”,“知三求二”,需运用方程思想求解,特别是求a 1和d .(1)若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,….(2)若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,….2.等差数列{a n }中,a n =an +b (a ,b 为常数),S n =An 2+Bn (A ,B 为常数),均是关于“n ”的函数,充分运用函数思想,借助函数的图象、性质简化解题过程.3.等差数列的四种判断方法:(1)定义法:a n+1-a n=d(d是常数)⇔{a n}是等差数列.(2)等差中项法:2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列.(3)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(4)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.[易错与防范]1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.3.求等差数列的前n项和S n的最值时,需要注意“自变量n为正整数”这一隐含条件.。

第二节 等差数列及其前n项和

第二节 等差数列及其前n项和

3.等差中项
ab
如果⑥ A= 2 ,那么A叫做a与b的等差中项.
4.等差数列的常用性质 (1)通项公式的推广:an=am+⑦ (n-m)d (n,m∈N*). (2)若{an}是等差数列,且k+l=m+n(k,l,m,n∈N*),则⑧ ak+al=am+an . (3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为⑨ 2d . (4)若{an},{bn}(项数相同)是等差数列,则{pan+qbn}(p,q是常数)仍是等差 数列. (5)若{an}是等差数列,则ak,ak+m,ak+2m,…(k,m∈N*)组成公差为⑩ md 的 等差数列.
2

2
又a1=29,∴d=-2,
∴Sn=29n+ n(n 1) ×(-2)=-n2+30n=-(n-15)2+225.
2
∴当n=15时,Sn取得最大值.
方法指导 处理等差数列前n项和的最值问题的常用方法 (1)利用等差数列的单调性,求出其正负转折项; (2)将等差数列的前n项和Sn=An2+Bn(A,B为常数且A≠0)看作二次函数, 根据二次函数的性质求解.
1-2 (2017安徽师大附中模拟)公差不为零的等差数列{an}的前n项和为
Sn.若a4是a3与a7的等比中项,S8=32,则S10等于( )
A.18 B.24 C.60 D.90
答案 C 设{an}的公差为d(d≠0).
∵a4是a3与a7的等比中项,
∴ a42 =a3a7, 即(a1+3d)2=(a1+2d)(a1+6d),
2
∵a1=2,∴d=a2-a1=4-2=2.

第二节 等差数列及其前n项和

第二节  等差数列及其前n项和

返回
法二 二次函数法 设等差数列{an}的公差为d. 由3a2=11a6,得3×(13+d)=11×(13+5d),解得d=-2,所 以an=13+(n-1)×(-2)=-2n+15. 所以Sn=n13+125-2n=-n2+14n=-(n-7)2+49, 所以当n=7时,数列{an}的前n项和Sn最大,最大值为S7=49.
返回
2.等差数列的有关公式 (1)通项公式:an=_a_1_+__(_n_-__1_)_d__. (2)前n项和公式:Sn=_n_a_1_+__n__n_2-__1__d_=__n_a_1_2+__a_n__. 3.等差数列的常用性质 (1)通项公式的推广:an=am+_(_n_-__m_)_d_ (n,m∈N*). (2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*), 则_a_k_+__a_l=__a_m_+__a_n__.
B.2
(B )
C.3
D.4
3.等差数列{an}的前n项和为Sn,且S3=6,a1=4,则公差d 返回
等于
(C )
A.1
B.53
C.-2
D.3
4.已知等差数列-8,-3,2,7,…,则该数列的第100项为 487 ________.
5.在等差数列{an}中,a1=0,公差d≠0,若am=a1+a2+… +a9,则m的值为________.
( B)
A.S4<S3
B.S4=S3
C.S4>S1
D.S4=S1
[名师微点]
返回
等差数列基本运算的常见类型及解题策略
(1)求公差d或项数n.在求解时,一般要运用方程思想.
(2)求通项.a1和d是等差数列的两个基本元素. (3)求特定项.利用等差数列的通项公式或等差数列的性

第2讲 等差数列及其前n项和

第2讲  等差数列及其前n项和

第2讲 等差数列及其前n 项和一、选择题1.在等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则S 9等于( ).A .66B .99C .144D .297解析 ∵a 1+a 4+a 7=39,a 3+a 6+a 9=27, ∴3a 4=39,3a 6=27, ∴a 4=13,a 6=9.∴a 6-a 4=2d =9-13=-4, ∴d =-2,∴a 5=a 4+d =13-2=11, ∴S 9=9a 1+a 92=9a 5=99.答案 B2.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ). A .6B .7C .8D .9解析 由a 4+a 6=a 1+a 9=-11+a 9=-6,得a 9=5,从而d =2,所以S n =-11n +n (n -1)=n 2-12n =(n -6)2-36,因此当S n 取得最小值时,n =6. 答案 A3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ). A .-1B .1C .3D .7解析 两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1. 答案 B4.在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n 的最大值为( ). A .6B .7C .8D .9解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C.答案 C5.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为( ). A .12 3B .15 3C .12D .15解析 不妨设角A =120°,c <b ,则a =b +4,c =b -4,于是cos 120°=b 2+b -42-b +422b b -4=-12,解得b =10,所以S =12bc sin 120°=15 3.答案 B6.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( )A.7B.15C.20D.25 解析15242451,5551522a a a aa a S ++==⇒=⨯=⨯=.答案 B 二、填空题7.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________.解析 a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k k -12×2=k 2=9.又k ∈N *,故k =3.答案 38.设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案 69.两个等差数列的前n 项和之比为5n +102n -1,则它们的第7项之比为________.解析 设两个数列{a n },{b n }的前n 项和为S n ,T n ,则S n T n =5n +102n -1,而a 7b 7=a 1+a 13b 1+b 13=S 13T 13=5×13+102×13-1=31.答案 3∶110.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析 设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7 三、解答题11.已知数列{a n }的前n 项和S n =10n -n 2,(n ∈N *).(1)求a 1和a n ;(2)记b n =|a n |,求数列{b n }的前n 项和. 解 (1)∵S n =10n -n 2,∴a 1=S 1=10-1=9. ∵S n =10n -n 2,当n ≥2,n ∈N *时,S n -1=10(n -1)-(n -1)2=10n -n 2+2n -11, ∴a n =S n -S n -1=(10n -n 2)-(10n -n 2+2n -11) =-2n +11.又n =1时,a 1=9=-2×1+11,符合上式. 则数列{a n }的通项公式为a n =-2n +11(n ∈N *). (2)∵a n =-2n +11,∴b n =|a n |=⎩⎨⎧-2n +11n ≤5,2n -11n >5,设数列{b n }的前n 项和为T n ,n ≤5时,T n =n 9-2n +112=10n -n 2;n >5时T n =T 5+n -5b 6+b n2=25+n -51+2n -112=25+(n -5)2=n 2-10n +50,∴数列{b n }的前n 项和T n =⎩⎨⎧10n -n 2n ≤5,n ∈N *,n 2-10n +50n >5,n ∈N *.12.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式;(2)令b n =S nn +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列. 13.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-83=-2. ∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×(-52+45)=n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.14.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值; (2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.。

(浙江版)高考数学一轮复习 专题6.2 等差数列及其前n项和(讲)-浙江版高三全册数学试题

(浙江版)高考数学一轮复习 专题6.2 等差数列及其前n项和(讲)-浙江版高三全册数学试题

第02节 等差数列及其前n 项和【考纲解读】【知识清单】一.等差数列的有关概念1.定义:等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥.2.等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列.3.等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,其中2a bA +=. a ,A ,b 成等差数列⇔2a bA +=. 4.等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+. 5.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.6.注意区分等差数列定义中同一个常数与常数的区别. 对点练习:【2017届某某省某某市二模】在等差数列中,若,则_______.【答案】二、等差数列的前n 项和等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+. 对点练习:【2018届某某省“七彩阳光”联盟高三上期初联考】已知等差数列{}n a 的前n 项和为n S ,若14k S -=,9k S =,则k a =__________,1a 的最大值为__________.【答案】 54.【解析】15k k k a S S -=-=,因为()1592k k a S +==,又k 的最小值为2,可知1a 的最大值为4.三、等差数列的相关性质 1.等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列, 如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……;(3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+,特殊地,2m p q =+时,则2m p q a a a =+,m a 是p q a a 、的等差中项.(5)等差数列被均匀分段求和后,得到的数列仍是等差数列,即232,,n n n n n S S S S S --成等差数列. (6)两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. (7)若数列{}n a 是等差数列,则{}n ka 仍为等差数列.2.设数列{}n a 是等差数列,且公差为d ,(Ⅰ)若项数为偶数,设共有2n 项,则①-S S nd =奇偶; ②1n n S a S a +=奇偶;(Ⅱ)若项数为奇数,设共有21n -项,则①S S -偶奇n a a ==中(中间项);②1S nS n =-奇偶. 3.(),p q a q a p p q ==≠,则0p q a +=,m n m n S S S mnd +=++.4.如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是两个原等差数列公差的最小公倍数.5.若{}n a 与{}n b 为等差数列,且前n 项和分别为n S 与'n S ,则2121'm m m m a S b S --=. 6.等差数列的增减性:0d >时为递增数列,且当10a <时前n 项和n S 有最小值.0d <时为递减数列,且当10a >时前n 项和n S 有最大值. 对点练习:1.在等差数列{}n a 中,已知3810a a +=,则753a a += ( ) A .10 B .18 C .20 D .28 【答案】C2.已知等差数列}{n a 的前n 项和为n S ,满足95S S =,且01>a ,则n S 中最大的是( ) A .6S B .7S C .8S D .15S 【答案】B【解析】由95S S =,得()67897820a a a a a a +++=+=,由01>a 知,0,087<>a a ,所以7S 最大,故B 正确.【考点深度剖析】等差数列的性质、通项公式和前n 项和公式构成等差数列的重要内容,在历届高考中必考,既有独立考查的情况,也有与等比数列等其它知识内容综合考查的情况.选择题、填空题、解答题多种题型加以考查.【重点难点突破】考点1 等差数列的定义、通项公式、基本运算【1-1】【2017全国卷1(理)】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,68S =,则{}n a 的公 差为( ). A .1B .2C .4D .8【答案】C【1-2】【2017全国卷2(理))】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 【答案】21nn + 【解析】设{}n a 首项为1a ,公差为d .则3123a a d =+=, 414610S a d =+=,求得11a =,1d =,则n a n =,()12n n n S +=,()()112222122311nk kS n n n n ==++++⨯⨯-+∑11111112122311n n n n ⎛⎫=-+-++-+-= ⎪-+⎝⎭122111n n n ⎛⎫-=⎪++⎝⎭.【1-3】【2017届某某市耀华中学二模】已知等差数列{}n a 的前项和为n S ,且2142S =,若记2119132aa a nb --=,则数列{}n b ( )A. 是等差数列但不是等比数列B. 是等比数列但不是等差数列C. 既是等差数列又是等比数列D. 既不是等差数列又不是等比数列 【答案】C【领悟技法】1.等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列; (3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔{}n a 是等差数列; (4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔{}n a 是等差数列; (5){}n a 是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 2.活用方程思想和化归思想在解有关等差数列的问题时可以考虑化归为1a 和d 等基本量,通过建立方程(组)获得解.即等差数列的通项公式1(1)n a a n d =+-及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量1a 、d ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.特殊设法:三个数成等差数列,一般设为,,a d a a d -+;四个数成等差数列,一般设为3,,,3a d a d a d a d --++.这对已知和,求数列各项,运算很方便.4.若判断一个数列既不是等差数列又不是等比数列,只需用123,,a a a 验证即可. 5.等差数列的前n 项和公式若已知首项1a 和末项n a ,则1()2n n n a a S +=,或等差数列{a n }的首项是1a ,公差是d ,则其前n 项和公式为1(1)2n n n S na d -=+. 【触类旁通】【变式一】【2018届某某省某某市西北师X 大学附属中学高三一调】在《X 丘建算经》有一道题:“今有女子不善织布,逐日所织的布同数递减,初日织五尺,末一日织一尺,计织三十日,问共织布几何?” ( ) A.尺 B. 尺 C.尺 D.尺【答案】C【变式二】【2018届某某省某某市高三调研性检测】数列{}n a 满足1111,021n n n a a a a ++=+=-.(Ⅰ)求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;(Ⅱ)若数列{}n b 满足1122,1n nn n b a b b a +==+,求{}n b 的前n 项和n S . 【答案】(Ⅰ)证明见解析 (Ⅱ)()12326n n S n +=-⋅+【解析】试题分析:(1)先依据题设条件将11021n n n a a a +++=-变形为1112n na a +-=,进而借助等差数列的定义证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;(2)借助(1)的结论可求得()112121n n n a =+-=-,进而依据112n n n n b a b a ++=⋅求得1222n nn n a b -=⨯= 从而求得()212n n b n =-⋅,然后与运用错位相减法求得()12326n n S n +=-⋅+:解:(Ⅰ)若10n a +=,则0n a =,这与11a =矛盾, ∴10n a +≠,由已知得1120n n n n a a a a ++-+=,∴1112n na a +-=, 故数列{}n a 是以111a =为首项,2为公差的等差数列. (Ⅱ)由(Ⅰ)可知,()1112121n n a =+-=-, 由112n n n n b ab a ++=⋅可知112n n n n a b a b ++=.又112a b = ∴1222n nn n a b -=⨯= ∴()212n n b n =-⋅,∴()123123252212n n S n =⋅+⋅+⋅++-⋅, 则()23412123252212n n S n +=⋅+⋅+⋅++-⋅,∴()()231122222222123226n n n n S n n ++-=+⋅+⋅++⋅--⋅=-⋅-,∴()12326n n S n +=-⋅+考点2 等差数列的性质【2-1】【某某省武邑中学2018届高三上学期第二次调研数学(理)】数列{}n a 满足112n n n a a a -+=+()2n ≥,且1359a a a ++=, 24612a a a ++=,则345a a a ++=( ) A. 9 B. 10 C. 11 D. 12 【答案】D【2-2】【某某省某某一中2018届高三第二次月考】在数列{}n a 中, 28a =, 52a =,且122n n n a a a ++-=(*n N ∈),则1210a a a +++的值是( )A. -10B. 10C. 50D. 70【答案】C【解析】由122n n n a a a ++-=得122n n n a a a ++=+,即数列{}n a 是等差数列,由2582a a ==,,可得1102a d ==-,,,所以212n a n =-+,,当1n 6≤≤时, 0n a ≥,当7n ≥时, 0n a <,所以1210610250a a a S S +++=-=,选C .【2-3】 【2017届某某某某市第三中学高三三模】已知函数()f x 在()1,-+∞上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则{}n a 的前100项的和为( )A. 200-B. 100-C. 0D. 50- 【答案】B【领悟技法】1. 等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.等差数列的性质多与其下标有关,解题需多注意观察,发现其联系,加以应用, 故应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.3.应用等差数列的性质要注意结合其通项公式、前n 项和公式.4.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向、形成解题策略. 【触类旁通】【变式一】【2017届某某省某某市高三下第二次联考】设等差数列{}n a 的前n 项和为n S ,已知()355134a a -+=, ()388132a a -+=,则下列选项正确的是( )A. 1212S =, 58a a >B. 1224S =, 58a a >C. 1212S =, 58a a <D. 1224S =, 58a a < 【答案】A【解析】由()355134a a -+=, ()388132a a -+=可得:()()33558813(1)1,13(1)1a a a a -+-=-+-=-,构造函数3()f x x x =+,显然函数是奇函数且为增函数,所以5858(1)11(1)11f a f a a a -=>-=-⇒->-, 58a a >,又58(1)(1)0f a f a -+-=所以58(1)(1)a a -=--所以582a a +=,故112125812()6()122a a S a a +==+=【变式二】【”超级全能生”2018届高考全国卷26省9月联考乙卷】已知数列{}{},n n a b 满足1211,2,1a a b ===-,且对任意的正整数m,n,p,q ,当m n p q +=+时,都有m n p q a b a b -=-,则()2018112018i i i a b =∑-的值是__________. 【答案】2019【解析】由题意可得2112a b a b -=-, 22b =-, 3122,a b a b -=-得33a =,又11n n n n a b a b ++-=-,11110n n n n a b a b a b +++=+==+=,即,2n n n n n a b a b a =--=,原式可化为当m+n=p+q 时m n p q a a a a +=+,即{}n a 为等差列, n a n =, ()2018112018i i i a b =∑-=()20181122018i i a =∑=2019,填2019.考点3 等差数列的前n 项和公式的综合应用【3-1】【2017届某某省黄陵中学高三(重点班)模拟一】若数列{}n a 满足115a =且1332n n a a +=-,则使10k k a a +⋅<的k 的值为( )A. 21B. 22C. 23D. 24 【答案】C【3-2】【2017届某某某某市高三上基础测试】设等差数列{}n a 的前n 项和为n S ,已知316a =,610a =,则公差d =;n S 为最大值时的n =.【答案】2d =-10n =或11【解析】63(63),10163,2a a d d d =+-∴=+∴=-,因为31(31)a a d =+-,1162(2)a ∴=+⨯-,120a ∴=,221n S n n ∴=-+,当212(1)n =-⨯-,由n ∈Z 得10n =或11时,n S 为最大值.【3-3】【2017届某某省池州市东至县高三12月联考】已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题:①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ;⑤67a a >,其中正确命题的个数为( ) A. 2 B. 3 C. 4 D. 5 【答案】B【领悟技法】求等差数列前n 项和的最值,常用的方法:1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足100n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设n a 为最大项,则有11n n nn a a a a -+≥⎧⎨≥⎩;求最小项的方法:设n a 为最小项,则有11n n n n a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用. 【触类旁通】【变式一】【2017某某卷6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【变式二】【2018届某某省某某市部分学校新高三起点调研】设等差数列{}n a 满足3736a a +=,46275a a =,且1n n a a +有最小值,则这个最小值为__________.【答案】-12【解析】因为数列{}n a 是等差数列,且3736a a +=,所以4636a a +=,4646275,,a a a a =∴是一元二次方程2362750t t -+=的二根,由2362750t t -+=得()()25110t t --=, 125t ∴=或211t =,当4625,11a a ==时, 6411257642a a d --===--, ()44753n a a n d n ∴=+-=-+,当10,0n n a a +><时, 1n n a a +取得最小值,由()7530{71530n n -+>-++<解得465377n <<, 7n ∴=时, 1n n a a +取得最小值,此时()781min 4,3,12n n a a a a +==-=-,当4611,25a a ==时, 6425117642a a d --===-, ()44717n a a n d n ∴=+-=-,当10,0n n a a +时, 1n n a a +取得最小值,由()7170{71170n n -<+->解得101777n <<, 2n ∴=时, 1n n a a +取得最小值,此时()231min 3,4,12n n a a a a +=-==-, 故答案为12-. 【易错试题常警惕】易错典例:在等差数列{}n a 中,已知a 1=20,前n 项和为n S ,且S 10=S 15,求当n 取何值时,n S 有最大值,并求出它的最大值.【错解一】 设公差为d ,∵S 10=S 15,∴10×20+10×92d =15×20+15×142 d.得d =-53,a n =20-(n -1)·53.当a n >0时,20-(n -1)·53>0,∴n<13.∴n=12时,S n 最大,S 12=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.当n =12时,S n 有最大值S 12=130.【错解二】 由a 1=20,S 10=S 15,解得公差d =-53,令⎩⎪⎨⎪⎧20+(n -1)⎝ ⎛⎭⎪⎫-53>0, ①20+n ⎝ ⎛⎭⎪⎫-53≤0, ② 由①得n <13,由②得n≥12,∴n=12时,S n 有最大值S 12=130.易错分析: 错解一中仅解不等式a n >0不能保证S n 最大,也可能a n +1>0,应有a n ≥0且a n +1≤0. 错解二中仅解a n +1≤0也不能保证S n 最大,也可能a n ≤0,应保证a n ≥0才行. 正确解析: 解法一:∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142 d.∴d=-53. ∴a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653.∴a 13=0.即当n≤12时,a n >0,n≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.解法二:同解法一,求得d =-53,∴S n =20n +n (n -1)2·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n=-56⎝ ⎛⎭⎪⎫n -2522+3 12524.∵n∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.解法三:同解法一,求得d =-53,又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0,∴5a 13=0,即a 13=0.又a 1>0,∴a 1,a 2,…,a 12均为正数.而a 14及以后各项均为负数, ∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.温馨提醒:1.解决等差数列前n 项和最值问题时一般利用通项不等式组法,即①当a 1>0,d <0时,S n 最大⇔100n n a a +≥⎧⎨≤⎩;②当a 1<0,d >0时,S n 最小⇔10n n a a +≤⎧⎨≥⎩.2.在关于正整数n 的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定.3.等差数列的基本运算中,容易出现的问题主要有两个方面:一是忽视题中的条件限制,如公差与公比的符号、大小等,导致增解;二是不能灵活利用等差(比)数列的基本性质转化已知条件,导致列出的方程或方程组较为复杂,增大运算量.【学科素养提升之思想方法篇】----函数思想在数列求最值问题中的应用数列是特殊的函数关系,因此常利用函数的思想解决数列中最值问题 1.等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为1(1)2n n n S na d -=+可变形为S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,令A =d 2,B =a 1-d 2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题. 2.等差数列前n 项和的最值(1)若等差数列的首项a 1>0,公差d <0,则等差数列是递减数列,正数项有限,前n 项和有最大值,且满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0.(2)若等差数列的首项a 1<0,公差d >0,则等差数列是递增数列,负数项有限,前n 项和有最小值,且满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0.3.求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *. (2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a n ≥0,a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.【典例】【2018届某某省某某市五十五中开学考试】已知数列{}n a 是一个等差数列,且21a =,55a =-. (Ⅰ)求{}n a 的通项n a ;(Ⅱ)求{}n a 前n 项和n S 的最大值.【答案】(1)25n a n =-+;(2)n S 的最大值为4. 【解析】方得()224n S n =--+,根据二次函数图象及性质可知,当2n =时,前n 项和取得最大值,最大值为4.等差数列前n 项和22n S An Bn =+,因此可以看出二次函数或一次函数(0d =时)来求最值,考查数列与函数.试题解析:(1)525125252a a d ---===---, 所以()()()2212225n a a n d n n =+-=+-⨯-=-+; (2)13a =,()()213242n n n S n n n -=+⨯-=-+ 当2n =时,前n 项和取得最大值,最大值为4。

2022届高考一轮复习第6章数列第2节等差数列及其前n项和课时跟踪检测理含解

2022届高考一轮复习第6章数列第2节等差数列及其前n项和课时跟踪检测理含解

第六章 数 列第二节 等差数列及其前n 项和A 级·基础过关 |固根基|1.(2019届南昌市一模)已知{a n }为等差数列,若a 2=2a 3+1,a 4=2a 3+7,则a 5=( ) A .1 B .2 C .3D .6解析:选B 设等差数列{a n }的公差为d ,将题中两式相减可得2d =6,所以d =3,所以a 2=2(a 2+3)+1,解得a 2=-7,所以a 5=a 2+(5-2)d =-7+9=2,故选B .2.(2019届合肥市一检)已知正项等差数列{a n }的前n 项和为S n (n∈N *),a 5+a 7-a 26=0,则S 11的值为( )A .11B .12C .20D .22解析:选D 解法一:设等差数列的公差为d(d>0),由题意得(a 1+4d)+(a 1+6d)-(a 1+5d)2=0,即(a 1+5d)·(2-a 1-5d)=0,所以a 1+5d =0或a 1+5d =2.又{a n }为正项等差数列,所以a 1+5d>0,则a 1+5d =2,则S 11=11a 1+11×102d =11(a 1+5d)=11×2=22,故选D .解法二:因为{a n }为正项等差数列,所以由等差数列的性质,并结合a 5+a 7-a 26=0,得2a 6-a 26=0,所以a 6=2,所以S 11=11(a 1+a 11)2=11×2a 62=11a 6=22,故选D .3.(2019届贵阳市质量检测)在等差数列{a n }中,若a 1+a 9=8,则(a 2+a 8)2-a 5=( ) A .60 B .56 C .12D .4解析:选A 因为在等差数列{a n }中,a 1+a 9=a 2+a 8=2a 5=8,所以(a 2+a 8)2-a 5=64-4=60,故选A .4.(2019届广东七校第二次联考)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8解析:选D 解法一:设等差数列{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2,所以a n =-2n +17,由于a 8=-2×8+17=1>0,a 9=-2×9+17=-1<0,所以S n 取得最大值时n 的值是8,故选D .解法二:设等差数列{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2,则S n =15n +n (n -1)2×(-2)=-(n -8)2+64,所以当n =8时,S n 取得最大值,故选D .5.(2019届广州市第一次综合测试)设S n 是等差数列{a n }的前n 项和,若m 为大于1的正整数,且a m-1-a 2m +a m +1=1,S 2m -1=11,则m =( ) A .11 B .10 C .6D .5解析:选 C 由a m -1-a 2m +a m +1=1可得2a m -a 2m =1,即a 2m -2a m +1=0,解得a m =1.由S 2m -1=(a 1+a 2m -1)(2m -1)2=a m ×(2m -1)=11,得2m -1=11,解得m =6,故选C .6.(2019届桂林市、百色市、崇左市联考)设S n 为等差数列{a n }的前n 项和,若a 4a 3=34,则3S 5a 4=( )A .12B .15C .20D .25解析:选C 因为数列{a n }是等差数列,所以3S 5a 4=3×5a 3a 4=15a 3a 4.又a 4a 3=34,所以3S 5a 4=15a 3a 4=15×43=20.故选C .7.(2019届西安八校联考)设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足S n S n +1<0的正整数n 的值为( )A .10B .11C .12D .13解析:选C 由S 6>S 7>S 5,得S 7=S 6+a 7<S 6,S 7=S 5+a 6+a 7>S 5,所以a 7<0,a 6+a 7>0.所以S 13=13(a 1+a 13)2=13a 7<0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,所以S 12S 13<0,即满足S n S n +1<0的正整数n 的值为12,故选C .8.设S n 是公差不为0的等差数列{a n }的前n 项和,S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=( ) A .15 B .19 C .21D .30解析:选B 设等差数列{a n }的公差为d.由S 3=a 22得3a 2=a 22,所以a 2=0或a 2=3.由S 1,S 2,S 4成等比数列可得S 22=S 1·S 4,又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d ,所以(2a 2-d)2=(a 2-d)·(4a 2+2d),化简得3d 2=2a 2d ,又d≠0,所以a 2=3,d =2,所以a n =3+2(n -2)=2n -1,所以a 10=19.9.已知{a n }是等差数列,S n 是其前n 项和,若S k +10-S k =12k +10,则S 2k +10=( )A .1B .12C .15D .110解析:选 D 由题意知S k +10-S k =a k +1+a k +2+…+a k +10=a k +1+a k +102×10=12k +10,∴a k +1+a k +10=110(k +5),∴S 2k +10=a 1+a 2k +102×(2k +10)=a k +1+a k +102×(2k +10)=110.10.正项等差数列{a n }的前n 项和为S n ,已知a 1=1,a 3+a 7-a 25+15=0,且S n =45,则n =( ) A .8 B .9 C .10D .11解析:选B 因为{a n }是正项等差数列,a 3+a 7-a 25+15=0,所以a 25-2a 5-15=0,解得a 5=5(a 5=-3舍去).设{a n }的公差为d ,由a 5=a 1+4d =1+4d =5,解得d =1,所以S n =n[2a 1+(n -1)d]2=n[2+(n -1)]2=n (n +1)2=45,即n 2+n -90=(n +10)(n -9)=0,解得n =9(n =-10舍去),故选B .11.(2019年全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________.解析:解法一:设等差数列{a n }的公差为d ,则由题意,得⎩⎪⎨⎪⎧a 1+2d =5,a 1+6d =13,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以S 10=10×1+10×92×2=100. 解法二:由题意,得公差d =14(a 7-a 3)=2,所以a 4=a 3+d =7,所以S 10=10(a 1+a 10)2=5(a 4+a 7)=100.答案:10012.(2019年江苏卷)已知数列{a n }(n∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:解法一:设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d)(a 1+4d)+a 1+7d =a 21+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.解法二:设等差数列{a n }的公差为d.∵S 9=9(a 1+a 9)2=9a 5=27,∴a 5=3.又a 2a 5+a 8=0,则3(3-3d)+3+3d =0,解得d =2,则S 8=8(a 1+a 8)2=4(a 4+a 5)=4×(1+3)=16.答案:1613.(2019届广东七校第二次联考)已知数列{a n }满足a 1=1,a n +1=a n a n +1,且b n =1a n ,n∈N *.(1)求证:数列{b n }为等差数列;(2)设数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为T n ,求T n 的表达式. 解:(1)证明:因为b n =1a n ,且a n +1=a na n +1,所以b n +1=1a n +1=a n +1a n =1+1a n =1+b n ,故b n +1-b n =1. 又b 1=1a 1=1,所以数列{b n }是以1为首项,1为公差的等差数列. (2)由(1)知数列{b n }的通项公式为b n =n , 又b n =1a n ,所以a n =1b n =1n .故a n n +1=1n (n +1)=1n -1n +1, 所以T n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 14.(2019届南昌市二模)已知数列{a n }是公差不为零的等差数列,a 1=1,且存在实数λ满足2a n +1=λa n +4,n ∈N *.(1)求λ的值及通项公式a n ; (2)求数列{a 2n -n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d≠0, 由2a n +1=λa n +4(n∈N *), ① 得2a n =λa n -1+4(n∈N *,n≥2),②两式相减得,2d =λd,又d≠0,所以λ=2.将λ=2代入①可得2a n +1=2a n +4,即2d =4,所以d =2. 又a 1=1,所以a n =1+(n -1)×2=2n -1.(2)由(1)可得a 2n-n =2(2n -n)-1=2n +1-(2n +1),所以S n =(22+23+…+2n +1)-[3+5+…+(2n +1)]=4(1-2n)1-2-n (3+2n +1)2=2n +2-n 2-2n -4.B 级·素养提升 |练能力|15.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列,设首项a 1=4,则a 5=2,由等差数列的性质得a 2+a 4=a 1+a 5=6,所以第二尺与第四尺的重量之和为6斤.故选A .16.已知数列{a n }为等差数列,若a 21+a 210≤25恒成立,则a 1+3a 7的取值范围为( ) A .[-5,5] B .[-52,52] C .[-10,10]D .[-102,102]解析:选D 由数列{a n }为等差数列,可知a 1+3a 7=a 1+3(a 1+6d)=4a 1+18d =2(a 1+a 1+9d)=2(a 1+a 10).由基本不等式⎝ ⎛⎭⎪⎫a 1+a 1022≤a 21+a 2102得2|a 1+a 10|≤102,当且仅当a 1=a 10时取等号,所以a 1+3a 7的取值范围为[-102,102].17.(2019届江西红色七校第一次联考)已知数列{a n }为等差数列,若a 2+a 6+a 10=π2,则tan(a 3+a 9)的值为( )A .0B .33C .1D . 3解析:选D 因为数列{a n }是等差数列,所以a 2+a 6+a 10=3a 6=π2,所以a 6=π6,所以a 3+a 9=2a 6=π3,所以tan(a 3+a 9)=tan π3= 3.故选D . 18.(2019年全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.。

第二节等差数列及其前n项和

第二节等差数列及其前n项和

最大值为S6=57. (法二)由法一知,an=-3n+20,∴a1=17.
∵n∈N*,∴n=6.∴前6项和最大,又可得a1=17,d=-3.
高考总复习•数学(文科) (法三)将已知两式相减,得-2d=4-(-2),∴d=-3,又
由中项公式得 a6 = 2>0 , a7 =- 1<0 ,根据等差数列的单调
(法二)由100a1+
=145得a1=-
=60.
所以a1+a3+a5+…+a99=- 答案:(1)B (2)60

高考总复习•数学(文科) 等差数列性质的运用 【例2】 (1) 在等差数列 {an} 中,若 a4 +a6 +a8 + a10+ a12 =
120,则2a10-a12的值为________. (2)已知数列 {an} 是等差数列,若a4+2a6+a8=12,则该数
求导得f′(x) =x 靠近极小值点x= 的整数为6和7,代入f(n)计算得n
=7时f(n)最小,最小值为-49. 答案:-49
(2) 中项公式法: 2an + 1 = an + an + 2(n∈N*)⇔{an} 是等差数
列.
(3) 通项公式法: an = kn+b(k , b 是常数 )(n∈N*)⇔{an}是等 差数列. (4)前n项和公式法:Sn=An2+Bn(A,B是常数)(n∈N*)⇔{an} 是等差数列.
高考总复习•数学(文科) 变式探究 4.(2013· 北京宣武区模拟)数列{an}的前n项和为Sn,若a1= 3,点(Sn,Sn+1)在直线y= (1)求证:数列 是等差数列; x+n+1(n∈N*)上.
高考总复习•数学(文科) 解析:(1)设等差数列{an}的公差为d,
则an=a1+(n-1)d.由 a1=1,a3=-3可得1+2d=-3,

第2讲-等差数列及其前n项和

第2讲-等差数列及其前n项和

第2讲-等差数列学习提纲与学习目标1、掌握等差数列的定义、通项公式和前n项和公式的求法2、熟练掌握等差数列的性质,并能利用这些性质解决相应问题1.等差数列的定义对于数列{}n a ,如果对任意的*1()n n N ≥∈,都有1n n a a d +-=(常数),则称{}n a 为等差数列,常数d 叫这个等差数列的公差。

如,,a b c 三个数成等差数列,则称b 为,a c 的等差中项。

2.等差数列的通项公式若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为1(1)n a a n d =+-。

3.等差数列的前n 项和公式2111()(1)()2222n n n a a n n d d d S na n a n +-==+=+-;4. 数列{}n a 是等差数列2n S An Bn ⇔=+(,A B 为常数)nS n⇔为等差数列。

5.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).(3)a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(4)数列S m,S2m-S m,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)a n.例1(1)(2018全国I )设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12- B .10- C .10 D .12(2)(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是465"+2"S S S >的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件 【解析】(1)32433343332133233()S S S S S a a S S d S d a d a d d =+⇒=-++=+⇒=⇒=⇒+=, 因12a =,故3d =-,故51410a a d =+=-,选C 。

2022届高考数学一轮复习第五章第二节等差数列及

2022届高考数学一轮复习第五章第二节等差数列及

2022届高考数学一轮复习第五章第二节等差数列及第二节等差数列及其前n项和[全盘巩固]1.已知等差数列{an}的前n项和为Sn,a4=15,S5=55,则数列{an}的公差是()1A.B.4C.-4D.-34解析:选B∵{an}是等差数列,a4=15,S5=55,∴a1+a5=22,∴2a3=22,a3=11,∴公差d=a4-a3=4.2.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.27S3=3a1+3d=9,解析:选B设等差数列{an}的公差为d,依题意得6某5S=36,6=6a1+2=1,d=2,则a7+a8+a9=3a8=3(a1+7d)=45.3.(2022·辽宁高考)下面是关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;anp3:数列是递增数列;np4:数列{an+3nd}是递增数列.解得a1其中的真命题为()A.p1,p2B.p3,p4C.p2,p3D.p1,p4解析:选D∵{an}是等差数列,∴设an=a1+(n-1)d.∵d>0,∴{an}是递增数列,故a1-da1-d3p1是真命题;nan=dn2+(a1-d)n的对称轴方程为n=-当-时,由二次函数2d2d2anana1-d的对称性知a1>2a2,{nan}不是递增数列,p2=d+,当a1-d>0时,是nnn递减数列,p3是假命题;an+3nd=4nd+a1-d,4d>0,{an+3nd}是递增数列,p4是真命题.故p1,p4是真命题.4.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99.用Sn表示{an}的前n项和,则使得Sn达到最大值的n是()A.21B.20C.19D.18解析:选B∵a1+a3+a5=105,a2+a4+a6=99,∴3a3=105,3a4=99,即a3=35,a4=33.∴a1=39,d=-2,得an=41-2n.某令an≥0且an+1≤0,n∈N,则有n=20.5.已知Sn为等差数列{an}的前n项和,若S1=1=4,则的值为()935 A.B..4423解析:选A由等差数列的性质可知S2,S4-S2,S6-S44,得S4S2S6S4S4S2S4-S2S2S69=3,则S6-S4=5S2,所以S4=4S2,S6=9S2,=.S44某6.数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N).若b3=-2,b10=12,则a8=()A.0B.3C.8D.11解析:选B因为{bn}是等差数列,且b3=-2,b10=12,12--某故公差d==2.于是b1=-6,且bn=2n-8(n∈N),即an+1-an=2n-8.10-3所以a8=a7+6=a6+4+6=a5+2+4+6=…=a1+(-6)+(-4)+(-2)+0+2+4+6=3.7.在等差数列{an}中,首项a1=0,公差d≠0,若ak=a1+a2+a3+…+a7,则k=________.-d解析:a1+a2+…+a7=7a1+=21d,2而ak=a1+(k-1)d=(k-1)d,所以(k-1)d=21d,d≠0,故k=22.答案:228.在等差数列{an}中,an>0,且a1+a2+…+a10=30,则a5·a6的最大值为________.解析:∵a1+a2+…+a10=30,a1+a10即30,a1+a10=6,∴a5+a6=6,2a5+a62=9.∴a5·a6≤2答案:929.已知等差数列{an}中,an≠0,若n>1且an-1+an+1-an=0,S2n-1=38,则n=________.2解析:∵2an=an-1+an+1,an-1+an+1-an=0,2∴2an-an=0,即an(2-an)=0.∵an≠0,∴an=2.∴S2n-1=2(2n-1)=38,解得n=10.答案:10 1213某10.设Sn是数列{an}的前n项和且n∈N,所有项an>0,且Snn+an -.424(1)证明:{an}是等差数列;(2)求数列{an}的通项公式.1213解:(1)证明:当n=1时,a1=S1=a11-,424解得a1=3或a1=-1(舍去).当n≥2时,112an=Sn-Sn-1(a2n+2an-3)an-1+2an-1-3).4422∴4an=an-an-1+2an-2an-1.即(an+an-1)(an-an-1-2)=0.∵an+an-1>0,∴an-an-1=2(n≥2).∴数列{an}是以3为首项,2为公差的等差数列.(2)由(1)知an=3+2(n-1)=2n+1.11.已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3·a4=117,a2+a5=22.(1)求通项公式an;(2)求Sn的最小值;(3)若数列{bn}是等差数列,且bn=,求非零常数c.n+c解:(1)∵数列{an}为等差数列,∴a3+a4=a2+a5=22.又a3·a4=117,2∴a3,a4是方程某-22某+117=0的两实根,又公差d>0,∴a3<a4,∴a3=9,a4=13,Sna1+2d=9,∴a1+3d=13,a1=1,∴d=4.∴通项公式an=4n-3.(2)由(1)知a1=1,d=4,nn-1212∴Sn=na1+d=2n-n=2n-,248∴当n=1时,Sn最小,最小值为S1=a1=1.2Sn2n-n2(3)由(2)知Sn=2n-n,∴bn=n+cn+c1615∴b1=b2=b3.1+c2+c3+c∵数列{bn}是等差数列,∴2b2=b1+b3,61152即2c+c=0,2+c1+c3+c11∴c=-或c=0(舍去),故c=-222212.已知数列{an}是等差数列,bn=an-an+1.(1)证明:数列{bn}是等差数列;(2)若a1+a3+a5+…+a25=130,a2+a4+a6+…+a26=143-13k(k为常数),求数列{bn}的通项公式;(3)在(2)的条件下,若数列{bn}的前n项和为Sn,是否存在实数k,使Sn当且仅当n=12时取得最大值?若存在,求出k的取值范围;若不存在,请说明理由.22222解:(1)证明:设{an}的公差为d,则bn+1-bn=(an+1-an+2)-(an-an+1)=2an+1-(an+1222-d)-(an+1+d)=-2d,2(2)∵a1+a3+a5+…+a25=130,a2+a4+a6+…+a26=143-13k,∴13d=13-13k,∴d=1-k,-又13a1+某2d=130,∴a1=-2+12k,2∴an=a1+(n-1)d=(-2+12k)+(n-1)(1-k)=(1-k)n+13k-3,2222∴bn=an-an+1=(an+an+1)(an-an+1)=-2(1-k)n+25k-30k+5.(3)存在满足题意的实数k.由题意可知,当且仅当n=12时Sn最大,则b12>0,b13<0,22-k+25k-30k+5>0,-即22--k+25k-30k+5<0,k+18k-19>0,∴2k-22k+21>0,2解得k<-19或k>21.故k的取值范围为(-∞,-19)∪(21,+∞).[冲击名校]a11a12a13a32a33等差数列,若a22=8,则这9个数的和为()A.16B.32C.36D.72解析:选D依题意得a11+a12+a13+a21+a22+a23+a31+a32+a33=3a12+3a22+3a32=9a22=72.2.(2022·新课标全国卷Ⅱ)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为________.311.已知数阵aa21a22a23中,每行的3个数依次成等差数列,每列的3个数也依次成10a1+45d=0,,得15a1+105d=25,解析:由Sn=na1nn-22解得a1=-3,d=,3nn-212则Sn=-3n+n-10n),233132所以nSn=(n-10n),3132令f(某)=(某-10某),320222则f′(某)=某-=某某,3320当某∈1,时,f(某)单调递减;320当某∈时,f(某)单调递增,320又,f(6)=-48,f(7)=-49,3所以nSn的最小值为-49.答案:-49[高频滚动]21.已知数列{an}的前n项和Sn=-n+3n,若an+1an+2=80,则n的值为()A.5B.4C.3D.22解析:选A由Sn=-n+3n,可得an=4-2n,因此an+1·an+2=[4-2(n+1)][4-2(n+2)]=80,即n(n-1)=20,解得n=-4(舍去)或n=5.2n2.已知数列{an},{bn}满足a1=1,且an,an+1是函数f(某)=某-bn某+2的两个零点,则b10=________.nn+1解析:∵an+an+1=bn,an·an+1=2,∴an+1·an+2=2,∴an +2=2an.nn-1某又∵a1=1,a1·a2=2,∴a2=2,∴a2n=2,a2n-1=2(n∈N),∴b10=a10+a11=64.答案:64。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30,则S8等于( )
A.31
B.32
C.33
D.34
解析 由已知可得a51a+1+5d10=d2=,30, 解得da=1=-23643,,∴S8=8a1+8×2 7d=32. 答案 B
8
基础知识诊断
考点聚焦突破
3.(老教材必修5P68T8改编)在等差数列{an}中a3+a4+a5=6,则S7=( )
(1)通项公式的推广:an=am+___(_n_-__m__)d____ (n,m∈N*). (2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则_a_k_+__a_l=__a_m_+__a_n__.
3
基础知识诊断
考点聚焦突破
@《创新设计》
(3)若{an}是等差数列,公差为 d,则 ak,ak+m,ak+2m,…(k,m∈N*)是公差为_m__d_ 的等差数列. (4)若 Sn 为等差数列{an}的前 n 项和,则数列 Sm,S2m-Sm,S3m-S2m,…也是等 差数列. (5)若 Sn 为等差数列{an}的前 n 项和,则数列Snn也为等差数列.
4
基础知识诊断
考点聚焦突破
@《创新设计》
[常用结论与微点提醒] 1.已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等
差数列,且公差为p. 2.在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存
在最小值. 3.等差数列{an}的单调性:当d>0时,{an}是递增数列;当d<0时,{an}是递减
12
基础知识诊断
考点聚焦突破
@《创新设计》
考点一 等差数列基本量的运算
【例1】 (1)(一题多解)(2019·江苏卷)已知数列{an}(n∈N*)是等差数列,Sn是其前n项 和.若a2a5+a8=0,S9=27,则S8的值是________. (2)(2019·全国Ⅰ卷)记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则( )
2.等差数列的通项公式与前n项和公式 (1)若等差数列{an}的首项是a1,公差是d,则其通项公式为an=__a_1_+__(_n_-__1_)d___.
(2)前n项和公式:Sn=_n_a_1_+__n_(__n_-2__1_)__d__=
n(a1+an) _______2__________.
3.等差数列的性质
数列;当d=0时,{an}是常数列. 4.数列{an}是等差数列⇔Sn=An2+Bn(A,B为常数). 5.用等差数列的定义判断数列是否为等差数列,要注意定义中的三个关键词:
“从第2项起”“每一项与它的前一项的差”“同一个常数”.
5
基础知识诊断
考点聚焦突破
诊断自测
@《创新设计》
1.判断下列结论正误(在括号内打“√”或“×”)
(1)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an+an+2.( ) (2)等差数列{an}的单调性是由公差d决定的.( ) (3)数列{an}为等差数列的充要条件是其通项公式为n的一次函数.( ) (4)等差数列的前n项和公式是常数项为0的二次函数.( )
6
基础知识诊断
考点聚焦突破
解析 (3)若公差d=0,则通项公式不是n的一次函数. (4)若公差d=0,则前n项和不是二次函数. 答案 (1)√ (2)√ (3)× (4)×
@《创新设计》
7
基础知识诊断
考点聚焦突破
@《创新设计》
2.(老教材必修5P46AT2改编)设数列{an}是等差数列,其前n项和为Sn,若a6=2且S5=
A.-29
2 B.9
C.-23
2 D.3
解析 因为 S10=12×10×(a1+a10)=12×10×(a1+10)=70,所以 a1=4,因为 a10
=a1+9d=10,所以 d=23.
答案 D
11
基础知识诊断
考点聚焦突破
@《创新设计》
6.(2019·全国Ⅲ卷)记 Sn 为等差数列{an}的前 n 项和.若 a1≠0,a2=3a1,则SS150= ________. 解析 由a1≠0,a2=3a1,可得d=2a1, 所以 S10=10a1+10× 2 9d=100a1, S5=5a1+5×2 4d=25a1,所以SS150=4. 答案 4
第2节 等差数列及其前n项和
@《创新设计》
考试要求 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n项和公式; 3.能在具体的问题情境中识别数列的等差关系,并能利用等差数列的有关知识解 决相应的问题;4.了解等差数列与一次函数的关系.
1
基础知识诊断
考点聚焦突破
@《创新设计》
知识梳理
1.等差数列的概念
A.8
B.12
C.14
D.18
解析 a3+a4+a5=3a4=6,∴a4=2,S7=12×7×(a1+a7)=7a4=14.
答案 C
@《创新设计》
9
基础知识诊断
考点聚焦突破
@《创新设计》
4.(2018·全国Ⅰ卷)记Sn为等差数列{an}的前n项和.若3S3=S2+S4,a1=2,则a5=( )
A.-12
B.-10
C.10
D.12
解析 设等差数列{an}的公差为 d,则 3(3a1+3d)=2a1+d+4a1+6d,即 d=-32
a1.又 a1=2,∴d=-3,
∴a5=a1+4d=2+4×(-3)=-10. 答案 B
10
基础知识诊断
考点聚焦突破
@《创新设计》
5.(2020·东营模拟)已知等差数列{an},a10=10,其前 10 项和 S10=70,则公差 d =( )
(1)如果一个数列从第2项起,每一项与它的前一项的差等于_同__一__个__常__数___,那
么这个数列就叫做等差数列.
数学语言表达式:an+1-an=d(n∈N*,d为常数).
a+b
(2)若a,A,b成等差数列,则A叫做a,b的等差中项,且A=____2____.
2
基础知识诊断
考点聚焦突破
@《创新设计》
A.an=2n-5
B.an=3n-10
பைடு நூலகம்
C.Sn=2n2-8n D.Sn=12n2-2n
13
基础知识诊断
考点聚焦突破
@《创新设计》
解析 (1)法一 由 S9=27⇒9(a12+a9)=27⇒a1+a9=6⇒2a5=6⇒a5=3,即 a1 +4d=3. 又a2a5+a8=0⇒2a1+5d=0, 解得a1=-5,d=2. 故 S8=8a1+8×(82-1)d=16. 法二 同法一得a5=3. 又a2a5+a8=0⇒3a2+a8=0⇒2a2+2a5=0⇒a2=-3. ∴d=a5-3 a2=2,a1=a2-d=-5.
相关文档
最新文档