高考数学一轮复习第九章直线和圆的方程9.2.2直线与圆的位置关系理

合集下载

高考数学一轮复习 第九章 直线和圆的方程 9.1 直线方程和两直线间的位置关系课件

高考数学一轮复习 第九章 直线和圆的方程 9.1 直线方程和两直线间的位置关系课件

1.(2016四川,9,5分)设直线l1,l2分别是函数f(x)= ln x, x 1
图象上点P1,P2处的切线,l1与l2垂直相
交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞)
答案 A 设l1是y=-ln x(0<x<1)的切线,切点P1(x1,y1),l2是y=ln x(x>1)的切线,切点P2(x2,y2),
的方程为y=
4 4
t t
·(x+t),设△ABC的重心为G,易知G

4 3
,
4 3
.因为重心G
4 3
,
4 3
在光线RQ上,所以有
4 3
=
4 4
t t
4 3
t
,即3t2-4t=0.
所以t=0或t= 4 ,因为0<t<4,所以t= 4 ,即AP= 4,故选D.
3
3
3
考点二 两直线的位置关系
ln x,0 x 1,
2
2
11
x1 x2
= 1 ·( y1 y2 2)2 =1 ·( ln x1 ln x2 2)2
2 x1 x2
2
x1 x2
= 1 ·[ ln(xx11xx22 ) 2]2 = 1 · 4 = 2 ,
2
x1 x2
2 x1 x2 x1 x2
又∵0<x1<1,x2>1,x1x2=1, ∴x1+x2>2 x1x2 =2, ∴0<S△PAB<1.故选A.
2
二、填空题
3.(2017浙江金华十校调研,11)已知直线l1:2x-2y+1=0,直线l2:x+by-3=0,若l1⊥l2,则b=

高考数学一轮复习第九章直线和圆的方程圆的方程课件

高考数学一轮复习第九章直线和圆的方程圆的方程课件

解析 设圆心的坐标为x,41x2,据题意得14x2+1=-x,解得 x=-2,此时圆心的坐标为(-2,1),圆 的半径为 2,故所求圆的方程是(x+2)2+(y-1)2=4.
9 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3.直线 y=x-1 上的点到圆 x2+y2+4x-2y+4=0 的最近距离为( )
解法二:从形的角度,AB 为圆的弦,由平面几何知识知,圆心 P 应在 AB 中垂线 x=4 上,则由
2x-y-3=0, x=4,
得圆心 P(4,5).
∴半径 r=|PA|= 10. ∴圆的标准方程为(x-4)2+(y-5)2=10.
13 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第九章 直线和圆的方程
1 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第2讲 圆的方程及点、线、圆的位置关系
2 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3 撬点·基础点 重难点
注意点 圆的标准方程与一般方程的关系 圆的标准方程展开整理即可得到圆的一般方程,而圆的一般方程通过配方亦可转化为圆的标准方程, 二者只是形式的不同,没有本质区别.
7 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1.思维辨析 (1)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为 t 的一个圆.( × ) (2)方程 x2+y2+ax+2ay+2a2+a-1=0 表示圆心为-a2,-a,半径为12 -3a2-4a+4的圆.( × ) (3)方程 Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆的充要条件是 A=C≠0,B=0,D2+E2-4AF>0.( √ ) (4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20+y20+Dx0+Ey0+F>0.( √ ) (5)已知点 A(x1,y1),B(x2,y2),则以 AB 为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( √ )

全国版高考数学一轮复习第9章直线和圆的方程第1讲直线方程与两直线的位置关系课件理

全国版高考数学一轮复习第9章直线和圆的方程第1讲直线方程与两直线的位置关系课件理

考法1 求直线的方程
思维拓展
常见的直线系方程
(1)过定点P(x0,y0)的直线系方程:A(x-x0)+B(y-y0)=0(A2+B2≠0),还可以表示 为y-y0=k(x-x0)或x=x0. (2)平行于直线Ax+By+C=0的直线系方程:Ax+By+λ=0(λ≠C).
(3)垂直于直线Ax+By+C=0的直线系方程:Bx-Ay+λ=0.
a是直线的横截距. b是直线的纵截距.
不过原点且与两坐标轴均不 垂直的直线.
一般式 Ax+By+C=0(A2+B2≠0)
所有直线.
考点2 两直线的位置关系
1.两条直线的位置关系
斜截式
方程
相交 垂直
y=k1x+b1, y=k2x+b2.
k1≠k2. k1k2=-1.
平行
k1=k2且b1≠b2.
一般式
第九章 直线和圆的方程
第一讲 直线方程与两直线的 位置关系
考点帮·必备知识通关 考点1 直线的方程直 考点2 两直线的位置关系
考法帮·解题能力提升 考法1 求直线的方程 考法2 两直线的位置关系 考法3 两直线的交点与距离问题 考法4 对称问题
高分帮 ·“双一流”名校冲刺 明易错· 误区警示
易错 忽略斜率不存在致误
考法3 两直线的交点与距离问题
思维导引
考法3 两直线的交点与距离问题
解析 (1)易知点A到直线x-2y=0的距离不等于3,可设经过两已知直线交 点的直线系方程为(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0. (设出

[推荐学习]2017高考数学一轮复习第九章直线和圆的方程9.1.2两条直线的位置关系对点训练理

[推荐学习]2017高考数学一轮复习第九章直线和圆的方程9.1.2两条直线的位置关系对点训练理

2017高考数学一轮复习 第九章 直线和圆的方程 9.1.2 两条直线的位置关系对点训练 理1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x +y +5=0或2x +y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x -y +5=0或2x -y -5=0 答案 A解析 设所求直线的方程为2x +y +c =0(c ≠1),则|c |22+12=5,所以c =±5,故所求直线的方程为2x +y +5=0或2x +y -5=0.2.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝ ⎛⎦⎥⎤1-22,13 D.⎣⎢⎡⎭⎪⎫13,12 答案 B解析 (1)当直线y =ax +b 与AB ,BC 相交时(如图1),由⎩⎪⎨⎪⎧y =ax +b ,x +y =1.得y E =a +ba +1, 又易知x D =-b a,∴|BD |=1+b a, 由S △DBE =12×a +b a ·a +b a +1=12,得b =11+1a+1∈⎝ ⎛⎭⎪⎫0,12. (2)当直线y =ax +b 与AC ,BC 相交时(如图2),由S △FCG =12(x G -x F )·|CM |=12,得b =1-221-a 2∈⎝ ⎛⎭⎪⎫1-22,1(∵0<a <1),∵对于任意的a >0恒成立,∴b ∈⎝ ⎛⎭⎪⎫0,12∩⎝ ⎛⎭⎪⎫1-22,1,即b ∈⎝⎛⎭⎪⎫1-22,12.故选B.3.已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( ) A .b =a 3B .b =a 3+1aC .(b -a 3)⎝ ⎛⎭⎪⎫b -a 3-1a =0D .|b -a 3|+⎪⎪⎪⎪⎪⎪b -a 3-1a =0答案 C解析 若△OAB 为直角三角形,则∠A =90°或∠B =90°. 当∠A =90°时,有b =a 3;当∠B =90°时,有b -a 30-a ·a 3-0a -0=-1,得b =a 3+1a.故(b -a 3)⎝ ⎛⎭⎪⎫b -a 3-1a =0,选C.4.在平面直角坐标系xOy 中,若曲线y =ax 2+bx(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.答案 -3解析 ∵y =ax 2+b x ,∴y ′=2ax -b x2,由题意可得⎩⎪⎨⎪⎧4a +b2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2.∴a +b =-3.5.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.答案 5解析 易知A (0,0),B (1,3),且PA ⊥PB ,∴|PA |2+|PB |2=|AB |2=10.∴|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |时取“=”).。

高考数学一轮复习第九章直线和圆的方程9.2.3圆与圆的位置关系课件理

高考数学一轮复习第九章直线和圆的方程9.2.3圆与圆的位置关系课件理
[正解] (1)当直线的斜率不存在时,方程为 x=-1. 此时圆心 C(1,-2)到直线 x=-1 的距离 d=|-1-1|=2. 故该直线为圆的切线. (2)当直线的斜率存在时,设为 k, 则其方程为 y-1=k(x+1), 即 kx-y+k+1=0. 由已知圆心到直线的距离等于圆的半径, 即|k×1-k2+-2-+1k2+1|=2,
圆公共弦长.
(3)两圆位置关系与公切线条数
两圆位置关系
内含 内切 相交 外切 外离
公切线条数
01234
撬题·对点题 必刷题
已知圆 C:(x-1)2+(y+2)2=4,则过点 P(-1,1)的圆的切线方程为_x_=__-__1__或__5_x_+__1_2_y_-__7_=__0_. [错解]
[错因分析] 没有对 k 进行分类讨论,从而遗漏了 k 不存在的情况.
撬法·命题法 解题法
Hale Waihona Puke [考法综述] 根据两个圆的方程判断两圆的位置关系,利用圆的几何性质解决相关问题.
命题法 圆与圆的位置关系
典例 (1)圆(x+2)2+y2=4 与圆(x-2)2+(y-1)2=9 的位置关系为( )
A.内切
B.相交
C.外切
D.相离
(2)在平面直角坐标系 xOy 中,圆 C 的方程为 x2+y2-8x+15=0,4若直线 y=kx-2 上至少存在一点, 使得以该点为圆心,1 为半径的圆与圆 C 有公共点,则 k 的最大值是__3____.
代数
无实数解 一组实数解
两组实数解
特征
一组实数解 无实数解
公切线
4
3
2
条数
1
0
注意点 判别式与两圆的位置关系
在利用判别式 Δ 判断两圆的位置关系时,Δ>0 是两圆相交的充要条件,而 Δ=0 是两圆外切(内切)的必

课标专用2020届高考数学一轮复习第九章直线与圆的方程9.2直线圆的位置关系课件文

课标专用2020届高考数学一轮复习第九章直线与圆的方程9.2直线圆的位置关系课件文
32 42
评析 本题考查直线与圆的位置关系及点到直线的距离公式.
2.(2018江苏,12,5分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB
为直径的圆C与直线l交于另一点D.若
AB
·CD
=0,则点A的横坐标为
.
答案 3
解析 本题考查直线与圆的位置关系.
设A(a,2a),a>0,则C
2
2
(S△ABP)max= 1 ·|AB|·dmax=1 ×2 2 ×3 2 =6.
2
2
∴△ABP面积的取值范围是[2,6].故选A.
解题关键 把求△ABP面积的取值范围转化为求圆上的点到直线的距离的最值.
2.(2016课标全国Ⅱ,6,5分)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a= ( )
6.(2017课标全国Ⅲ,20,12分)在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐 标为(0,1).当m变化时,解答下列问题: (1)能否出现AC⊥BC的情况?说明理由; (2)证明过A,B,C三点的圆在y轴上截得的弦长为定值. 解析 (1)不能出现AC⊥BC的情况,理由如下: 设A(x1,0),B(x2,0),则x1,x2满足x2+mx-2=0,所以x1x2=-2.
同解法一,可得N(1,7),M(-5,-5),易知-5 2 ≤x≤1.
4.(2015湖南,13,5分)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐
标原点),则r =
.
答案 2
解析 过O作OC⊥AB于C,则OC= | 5 | =1,

高考数学一轮复习第九章直线和圆的方程9.1直线方程和两直线的位置关系公开课课件省市一等奖完整版

高考数学一轮复习第九章直线和圆的方程9.1直线方程和两直线的位置关系公开课课件省市一等奖完整版
y2 y1
4.经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率公式为② k= x 2 x 1(x1≠x2) .
直线上的向量 P 1P及2 与它同向的向量都称为直线的方向向量.直线P1
P2的方向向量
P
1P
的坐标是③
2
(x2-x1,y2-y1)
.
5.直线方程的几种基本形式
(1)点斜式:y-y1=k(x-x1),注意:斜率k是存在的. (2)斜截式:y=kx+b(k存在),其中b是直线l在y轴上的截距.
(3)两点式: y =y 1 (xx 1≠x 1x2且y1≠y2),当方程变形为(y2-y1)(x-x1)-(x2-x1)
y2 y1 x2 x1
(y-y1)=0时,对于一切情况都成立.
(4)截距式: x +y =1(其中ab≠0),a是直线l在x轴上的截距,b是直线l在y轴
ab
上的截距.
(5)一般式:Ax+By+C=0(其中A与B不同时为0).
3,6
23
,
6பைடு நூலகம்23
依题意知直线l过原点,由点斜式得直线l的方程为y=- 1 x.
6
解法三:设直线l与直线l1的交点为A(x1,y1),与直线l2的交点为B, 由线段AB的中点为原点得点B的坐标为(-x1,-y1).
把点A,B的坐标分别代入两直线方程中,得 43x1x1y15y1660, 0, 两式相加得x1+6y1=0,此时直线x+6y=0过点A,且过原点. 故直线l的方程为x+6y=0.
方法 3 两直线间的位置关系的解题策略
1.判定两直线平行的方法 (1)判断两直线的斜率是否存在,若存在,可先化成斜截式,若k1=k2,且b1≠ b2,则两直线平行;若斜率都不存在,还要判断是否重合. (2)直接用以下方法可避免对斜率是否存在进行讨论: 设直线l1:A1x+B1y+C1=0( A 12+ B 1≠2 0),l2:A2x+B2y+C2=0( A +22 B≠22 0), l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0. 2.判定两直线垂直的方法 (1)判断两直线的斜率是否存在,若存在,可先化成斜截式,若k1·k2=-1,则两 直线垂直;若一条直线的斜率不存在,另一条直线的斜率为0,则两直线也 垂直.

高考数学一轮复习第九章直线和圆的方程9.2.2直线与圆的位置关系课件理

高考数学一轮复习第九章直线和圆的方程9.2.2直线与圆的位置关系课件理

位置关系
方法 几何法
代数法
相交 相切
d<r
Δ>0
d=r Δ=0
相离
d>r Δ<0
注意点 切线长的计算
涉及到切线长的计算时,一般放在由切线长、半径及该点与圆心的连线构成的直角三角形中求解.
1.思维辨析 (1)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( √ ) (2)“k=1”是“直线 x-y+k=0 与圆 x2+y2=1 相交”的必要不充分条件.( × ) (3)过圆 O:x2+y2=r2 外一点 P(x0,y0)作圆的两条切线,切点分别为 A,B,则 O,P,A,B 四点共圆 且直线 AB 的方程是 x0x+y0y=r2.( √ )
第九章 直线和圆的方程
第2讲 圆的方程及点、线、圆的位置关系
考点二 直线与圆的位置关系
撬点·基础点 重难点
直线与圆的位置关系
设圆 C:(x-a)2+(y-b)2=r2,直线 l:Ax+By+C=0,圆心 C(a,b)到直线 l 的距离为 d,由
x-a2+y-b2=r2, Ax+By+C=0
消去 y(或 x),得到关于 x(或 y)的一元二次方程,其判别式为 Δ.
2.对任意的实数 k,直线 y=kx+1 与圆 x2+y2=2 的位置关系一定是( )
A.相离
B.相切
C.相交但直线不过圆心 D.相交且直线过圆心
解析 ∵x2+y2=2 的圆心(0,0)到直线 y=kx+1 的距离 d=|0-10++k21|= 11+k2≤1, 又∵r= 2,∴0<d<r.显然圆心(0,0)不在直线 y=kx+1 上,故选 C.
撬法·命题法 解题法
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请 与圆 C2:x2+y2-2x-2y+1=0 的公共弦所在直线被圆 C3:(x-1)2+(y-1)2=245所 截得的弦长为_____2_3__.

2020届高考数学一轮复习第九章直线和圆的方程9.2直线、圆的位置关系课件

2020届高考数学一轮复习第九章直线和圆的方程9.2直线、圆的位置关系课件

由圆(x-2)2+y2=2可得圆心坐标为(2,0),半径r= 2 ,△ABP的面积记为S,点P到直线AB的距离记为
d,则有S= 1 |AB|·d.易知|AB|=2 2 2
,dmax=|
2
02 12 12|来自+ 2=3 2
,dmin=|
2
02 12 12
|
- 2
= 2
,所以2≤S≤6,
所以过A,B,C三点的圆的圆心坐标为 m2
,

1 2

,
半径r=
m2 9
.
2
故圆在y轴上截得的弦长为2
r
2


m 2
2

=3,即过A,B,C三点的圆在y轴上截得的弦长为定值.
证法二:设△ABC的外接圆与y轴的另一个交点为D,则根据相交弦定理得|AO|·|BO|=|CO|·|DO|,
联立得

x
2
(x
y2 6)2
50, (y
3)2

65,
解得
x

y
1, 7


x y

5, 5,
即P为圆x2+y2=50的劣弧MN上的一点(如图),
易知-5 2 ≤x≤1.

解法二:设P(x,y),则由 PA · PB ≤20,可得(-12-x)(-x)+(-y)(6-y)≤20,即x2+12x+y2-6y≤20, 由于点P在圆x2+y2=50上, 故12x-6y+30≤0,即2x-y+5≤0, ∴点P为圆x2+y2=50上且满足2x-y+5≤0的点,即P为圆x2+y2=50的劣弧MN上的一点(如图),

新课标高考数学一轮复习第九章平面解析几何9.4直线圆的位置关系课件理

新课标高考数学一轮复习第九章平面解析几何9.4直线圆的位置关系课件理
(m+1)2+(m+2)2<3-2,解得-2<m<-1. 当-2<m<-1 时,圆 C1 和圆 C2 内含.
第二十四页,共38页。
【点拨】与判断直线与圆的位置关系一样, 利用几何方法判定两圆的位置关系比用代数方法 要简捷些.其具体方法是:利用圆的方程及两点 间距离公式求出两圆圆心距 d 和两圆的半径 R 和 r,再根据 d 与 R+r,d 与 R-r 的大小关系来判 定(详见“考点梳理”栏目).
解:由直线 mx-y-2m-1=0 得 m(x-2)-(y+ 1)=0,故直线过点(2,-1).当切线与过(1,0),(2, -1)两点的直线垂直时,圆的半径最大,此时有 r=
1+1= 2,故所求圆的标准方程为(x-1)2+y2=2. 故填(x-1)2+y2=2.
第十七页,共38页。
类型三 圆的弦长
第十页,共38页。
解:(1)由已知,圆心为 O(0,0),半径 r= 5,圆心到直线 2x-y+m
=0 的距离 d=
|m|
=|m|,
22+(-1)2 5
因为直线与圆无公共点,所以 d>r,即|m|> 5,所以 m>5 或 m<-5. 5
故当 m>5 或 m<-5 时,直线与圆无公共点. (2)由已知有 r2-d2=12,即 5-m52=1.得 m=±2 5,
解:设 AB 的中点为 M, 由题意知,圆的半径 R=2 3,|AB|=2 3,所以|OM|= |3mm-2+13|=3,解得 m=- 33,可得 l:x- 3y+6=0,由
xx- 2+y32=y+126=0,解得 A(-3, 3),B(0,2 3),则 AC 的直线
方程为 y- 3=- 3(x+3),BD 的直线方程为 y-2 3=- 3 x,令 y=0,解得 C(-2,0),D(2,0),所以|CD|=4.故填 4.

高考数学一轮复习第九章平面解析几何9.4直线与圆、圆

高考数学一轮复习第九章平面解析几何9.4直线与圆、圆

【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系 理1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( × ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(5)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(6)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.(教材改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是________. ①相切; ②相交但直线不过圆心; ③相交过圆心; ④相离.答案 ②解析 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是__________. 答案 [-3,1]解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+-2≤2,即|a +1|≤2,解得-3≤a ≤1.3.(2014·湖南改编)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =________. 答案 9解析 圆C 1的圆心C 1(0,0),半径r 1=1,圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆心C 2(3,4),半径r 2=25-m ,从而C 1C 2=32+42=5.由两圆外切得C 1C 2=r 1+r 2,即1+25-m =5,解得m =9.4.(2015·山东改编)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为____________.答案 -43或-34解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34.5.(教材改编)圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题型一 直线与圆的位置关系例1 (1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是______. (2)若过点(1,2)总可以作两条直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则实数k 的取值范围是________.(3)已知方程x 2+x tan θ-1sin θ=0有两个不等实根a 和b ,那么过点A (a ,a 2),B (b ,b 2)的直线与圆x 2+y 2=1的位置关系是________.答案 (1)相交 (2)⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833(3)相切解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.(2)把圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=16-3k 24,所以16-3k24>0,解得-833<k <833.由题意知点(1,2)应在已知圆的外部, 把点代入圆的方程得1+4+k +4+k 2-15>0, 即(k -2)(k +3)>0, 解得k >2或k <-3,则实数k 的取值范围是⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833.(3)由题意可知过A ,B 两点的直线方程为(a +b )x -y -ab =0,圆心到直线AB 的距离为d =|-ab |a +b 2+1,而a +b =-1tan θ,ab =-1sin θ,因此d =⎪⎪⎪⎪⎪⎪1sin θ⎝ ⎛⎭⎪⎫-1tan θ2+1,化简后得d =1,故直线与圆相切.思维升华 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12.(1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.(1)证明 由⎩⎪⎨⎪⎧y =kx +1,x -2+y +2=12,消去y 得(k 2+1)x 2-(2-4k )x -7=0, 因为Δ=(4k -2)2+28(k 2+1)>0,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 设直线与圆交于A (x 1,y 1)、B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长AB =1+k 2|x 1-x 2|=28-4k +11k21+k2=2 11-4k +31+k2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0,当t =0时,k =-34,当t ≠0时,因为k ∈R ,所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0, 故t =4k +31+k 的最大值为4,此时AB 最小为27.题型二 圆与圆的位置关系例2 (1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________.(2)过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程为________________________________________________________________________. (3)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是______________________.答案 (1)相交 (2)⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45(3)(-22,0)∪(0,22)解析 (1)两圆圆心分别为(-2,0)和(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交. (2)由⎩⎪⎨⎪⎧x 2+y 2+4x +y =-1, ①x 2+y 2+2x +2y +1=0, ②①-②得2x -y =0,代入①得x =-15或-1,∴两圆两个交点为⎝ ⎛⎭⎪⎫-15,-25,(-1,-2).过两交点的圆中,以⎝ ⎛⎭⎪⎫-15,-25,(-1,-2)为端点的线段为直径的圆时,面积最小.∴该圆圆心为⎝ ⎛⎭⎪⎫-35,-65,半径为⎝ ⎛⎭⎪⎫-15+12+⎝ ⎛⎭⎪⎫-25+222=255,圆的方程为⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45.(3)C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2. 依题意得:0<a 2+a 2<2+2,∴0<|a |<2 2. ∴a ∈(-22,0)∪(0,22)思维升华 判断圆与圆的位置关系时,一般用几何法,其步骤是 (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|;(3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.(1)圆C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0的位置关系为________.答案 内切解析 ∵圆C 1:x 2+y 2-2y =0的圆心为:C 1(0,1),半径r 1=1, 圆C 2:x 2+y 2-23x -6=0的圆心为:C 2(3,0),半径r 2=3, ∴C 1C 2=32+1=2,又r 1+r 2=4,r 2-r 1=2,∴C 1C 2=r 2-r 1=2,∴圆C 1与C 2内切.(2)设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},且M ∩N ≠∅,求a 的最大值和最小值.解 M ={(x ,y )|y =2a 2-x 2,a >0},即{(x ,y )|x 2+y 2=2a 2,y ≥0},表示以原点O 为圆心,半径等于2a 的半圆(位于横轴或横轴以上的部分).N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},表示以O ′(1,3)为圆心,半径等于a 的一个圆.再由M ∩N ≠∅,可得半圆和圆有交点,故半圆和圆相交或相切. 当半圆和圆相外切时,由OO ′=2=2a +a , 求得a =22-2;当半圆和圆相内切时,由OO ′=2=2a -a , 求得a =22+2,故a 的取值范围是[22-2,22+2],a 的最大值为22+2,最小值为22-2. 题型三 直线与圆的综合问题 命题点1 求弦长问题例3 (2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则MN =________.答案 4 6解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以MN =|y 1-y 2|=4 6. 命题点2 由直线与圆相交求参数问题例4 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN .解 (1)由题设,可知直线l 的方程为y =kx +1, 因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=+k 1+k 2,x 1x 2=71+k2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k+k1+k2+8. 由题设可得4k+k1+k2+8=12,解得k =1, 所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以MN =2. 命题点3 直线与圆相切的问题例5 (1)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________; 答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+-2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.(2)已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. ①与直线l 1:x +y -4=0平行;②与直线l 2:x -2y +4=0垂直; ③过切点A (4,-1).解 ①设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0; ②设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.(1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.(2)已知圆C 的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过A 点作圆的切线有两条,则a 的取值范围是____________.答案 (1)2 2 (2)⎝ ⎛⎭⎪⎫-233,233解析 (1)设P (3,1),圆心C (2,2),则PC =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-22=2 2.(2)将圆C 的方程化为标准方程为⎝ ⎛⎭⎪⎫x +a 22+(y +1)2=4-3a 24,其圆心坐标为C ⎝ ⎛⎭⎪⎫-a 2,-1,半径r =4-3a24. 当点A 在圆外时,过点A 可作圆的两条切线, 则AC >r ,即⎝ ⎛⎭⎪⎫1+a 22++2>4-3a24, 即a 2+a +9>0,解得a ∈R .又4-3a 2>0时x 2+y 2+ax +2y +a 2=0才表示圆,故可得a 的取值范围是⎝ ⎛⎭⎪⎫-233,233.7.高考中与圆交汇问题的求解一、与圆有关的最值问题典例 (1)(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为________.(2)(2014·北京)已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________.解析 (1)由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7.(2)根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且AB =2m . 因为∠APB =90°,连结OP , 易知OP =12AB =m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为OC =32+42=5,所以OP max =OC +r =6,即m 的最大值为6. 答案 (1)7 (2)6 二、直线与圆的综合问题典例 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则AB =________.(2)(2014·江西改编)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为________.解析 (1)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴AC 2=36+4=40.又r =2,∴AB 2=40-4=36. ∴AB =6.(2)∵∠AOB =90°,∴点O 在圆C 上. 设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上,∴当且仅当O ,C ,D 共线时,圆的直径最小为OD . 又OD =|2×0+0-4|5=45,∴圆C 的最小半径为25,∴圆C 面积的最小值为π(25)2=45π.答案 (1)6 (2)54π温馨提醒 (1)与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.(2)直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.[方法与技巧]1.直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的.2.求过一点的圆的切线方程时,首先要判断此点是否在圆上,然后设出切线方程.注意:斜率不存在的情形.3.圆的弦长的常用求法(1)几何法:求圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2;(2)代数方法:运用根与系数的关系及弦长公式:AB =1+k 2|x 1-x 2|=+k2x 1+x 22-4x 1x 2].[失误与防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.A 组 专项基础训练 (时间:40分钟)1.(2015·广东)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是______________.答案 2x +y +5=0或2x +y -5=0解析 设所求直线方程为2x +y +c =0,依题有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0.2.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A 、B 两点,且△ABC 为等边三角形,则实数a 的值为________. 答案 4±15解析 易知△ABC 是边长为2的等边三角形. 故圆心C (1,a )到直线AB 的距离为 3. 即|a +a -2|a 2+1=3,解得a =4±15. 3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为______________________________________________________________. 答案 2解析 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ). 化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切, ∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2.∴ab 的最大值为2.4.过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为______________. 答案 2x +y -3=0 解析如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为________. 答案 12,-4解析 因为直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则y =kx 与直线2x +y +b =0垂直,且2x +y +b =0过圆心,所以解得k =12,b =-4.6.(2015·山东)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=________. 答案 32解析 由题意,圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PA ⊥x 轴,PA =PB = 3.∴△POA 为直角三角形,其中OA =1,AP =3,则OP =2, ∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos 60°=32.7.已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0,则m 的取值范围为________.答案 [2,3]解析 曲线C :x =-4-y 2,是以原点为圆心,2为半径的半圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0, 说明A 是PQ 的中点,Q 的横坐标x =6,∴m =6+x P2∈[2,3].8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.9.已知以点C (t ,2t)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且OC 2=t 2+4t2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12OA ·OB =12×|4t |×|2t |=4,即△OAB 的面积为定值. (2)解 ∵OM =ON ,CM =CN , ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.10.(2014·课标全国Ⅰ)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当OP =OM 时,求l 的方程及△POM 的面积. 解 (1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于OP =OM ,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又OM =OP =22,O到l 的距离为4105,所以PM =4105,S △POM =12×4105×4105=165,故△POM 的面积为165.B 组 专项能力提升 (时间:30分钟)11.已知圆C :(x -a )2+(y -a )2=1 (a >0)与直线y =3x 相交于P ,Q 两点,则当△CPQ 的面积最大时,实数a 的值为________. 答案52解析 因为△CPQ 的面积等于12sin∠PCQ ,所以当∠PCQ =90°时,△CPQ 的面积最大,此时圆心到直线y =3x 的距离为22,因此22=|3a -a |10,解得a =52. 12.过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.答案 -33解析∵S △AOB =12·OA ·OB ·sin∠AOB=12sin∠AOB ≤12. 当∠AOB =π2时,△AOB 面积最大. 此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0), 即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33.(也可k =-tan∠OPH =-33). 13.在平面直角坐标系xOy 中,圆C 1:(x +1)2+(y -6)2=25,圆C 2:(x -17)2+(y -30)2=r 2.若圆C 2上存在一点P ,使得过点P 可作一条射线与圆C 1依次交于点A ,B ,满足PA =2AB ,则半径r 的取值范围是________. 答案 [5,55]解析 由题意可知满足PA =2AB 的点P 应在以C 1为圆心,半径为25的圆上及其内部(且在圆C 1的外部),记该圆为C 3,若圆C 2上存在满足条件的点P ,则圆C 2与圆C 3有公共点,所以|r-25|≤+2+-2≤r +25,即|r -25|≤30≤r +25,解得5≤r ≤55.14.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个交点;(2)设直线l 与圆C 交于点A ,B ,若AB =17,求直线l 的倾斜角;(3)设直线l 与圆C 交于A ,B ,若定点P (1,1)满足2AP →=PB →,求此时直线l 的方程. (1)证明 直线l 恒过定点P (1,1). 由12+(1-1)2<5知点P 在圆C 内, 所以直线l 与圆C 总有两个交点.(2)解 圆心到直线的距离d =r 2-⎝ ⎛⎭⎪⎫AB 22=32,又d =|0-1+1-m |m 2+1,所以32=|0-1+1-m |m 2+1, 解得m =±3,所以,l 的倾斜角为π3或2π3.(3)解 方法一 设A (x 1,y 1),B (x 2,y 2). 由2AP →=PB →得:2(1-x 1,1-y 1)=(x 2-1,y 2-1), 所以x 2+2x 1=3,①直线l 的斜率存在,设其方程为y -1=k (x -1),⎩⎪⎨⎪⎧y -1=k x -,x 2+y -2=5⇒(k 2+1)x 2-2k 2x +k 2-5=0,所以⎩⎪⎨⎪⎧x 1+x 2=2k2k +1, ②x 1x 2=k 2-5k 2+1, ③由①②③消去x 1,x 2解得k =±1,故所求直线l 的方程为x -y =0或x +y -2=0. 方法二如图,过点C 作CD ⊥AB 于D ,设AP =t ,则PB =2t ,AD =1.5t , PD =0.5t .在Rt△CDP 中,有CP 2=CD 2+PD 2,得CD 2=1-(0.5t )2, 在Rt△CDA 中,CD 2=5-()1.5t 2,所以t =2,从而,CD =22,又直线AB 的方程为mx -y +1-m =0,d =|m |m 2+1=22, 解得m =±1,故所求直线l 的方程为x -y =0或x +y -2=0.15.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.解 (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为直线l 被圆C 1截得的弦长为23,所以d =22-32=1.由点到直线的距离公式得d =|1-k -3-1+k2,从而k (24k +7)=0,即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k(x -a ).因为圆C 1和圆C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等, 即|1-k -3-a -b |1+k2=|5+1k -a -b |1+1k 2,整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b =-5k -4+a +bk ,即(a +b -2)·k =b -a +3或(a -b +8)k =a +b -5,因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎪⎨⎪⎧a =52,b =-12或⎩⎪⎨⎪⎧a =-32,b =132.这样点P 只可能是点P 1⎝ ⎛⎭⎪⎫52,-12或点P 2⎝ ⎛⎭⎪⎫-32,132,经检验点P 1和P 2满足题目条件.。

2020届高考数学一轮复习第九章直线和圆的方程9.2直线、圆的位置关系教师用书理(PDF,含解析)

2020届高考数学一轮复习第九章直线和圆的方程9.2直线、圆的位置关系教师用书理(PDF,含解析)

By+C2
= 0( A2 +B2 ≠0,C1 ≠C2 ) 间的距离
d=
| C1 -C2 | A2 +B2

3.常见的直线系方程
(1) 过定点 P( x0 ,y0 ) 的直线系方程:A( x-x0 ) +B( y-y0 ) = 0 ( A2 +B2 ≠0) ,也可以表示为 y-y0 = k( x-x0 ) 和 x = x0 ;
特别地,当直线 l1 与 l2 垂直时,k1 ·k2 = -1,A1 A2 +B1 B2 = 0. 2.距离公式
(1) 点到直线的距离:点 P( x0 ,y0 ) 到直线 Ax+By+C = 0( A2 + B2 ≠0) 的距离 d = | Ax0 +By0 +C | .
A2 +B2
(2) 两条平行线间的距离:两条平行线 Ax+By+C1 = 0 与 Ax+
位置 关系
外离
判断方法
几何法(判断圆心距 代数法( 联立两圆方 |O1O2 |与 R,r 的关系) 程,判断解的个数)
| O1O2 | >R+r
无解
公共点 Байду номын сангаас数

公切线 条数

外切
| O1O2 | = R+r
一解


相交 R-r< | O1O2 | <R+r
两解


内切
| O1O2 | = R-r
一解


内含 0≤ | O1 O2 | <R-r
无解


3.与圆的切线有关的结论 (1) 过圆 x2 +y2 = r2( r>0) 上一点 P( x0 ,y0 ) 的切线方程为 x0 x
+y0y = r2; (2)过圆(x-a) 2 +(y-b) 2 = r2( r>0) 上一点 P( x0,y0 ) 的切线

2022版高考数学大一轮复习第9章直线和圆的方程第2讲圆的方程及直线圆的位置关系1

2022版高考数学大一轮复习第9章直线和圆的方程第2讲圆的方程及直线圆的位置关系1

第九章 直线和圆的方程第二讲 圆的方程及直线、圆的位置关系练好题·考点自测1。

[2021安徽省四校联考]直线2x ·sin θ+y =0被圆x 2+y 2—2√5y +2=0截得的最大弦长为 ( )A.2√5B.2√3 C 。

3 D .2√22。

[2020全国卷Ⅰ,6,5分][文]已知圆x 2+y 2—6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为 ( ) A 。

1 B 。

2 C .3 D.43.[2016山东,7,5分][文]已知圆M :x 2+y 2-2ay =0(a 〉0)截直线x +y =0所得线段的长度是2√2。

则圆M 与圆N :(x —1)2+(y —1)2=1的位置关系是( ) A 。

内切 B.相交 C 。

外切 D.相离4。

[2020全国卷Ⅲ,10,5分]若直线l 与曲线y =√x 和圆x 2+y 2=15都相切,则l 的方程为 ( )A.y =2x +1B.y =2x +12C 。

y =12x +1 D .y =12x +125。

[2021吉林省高三联考]已知圆C :x 2+y 2=r 2(r 〉0),设p :r ≥32;q :圆C 上至少有3个点到直线√3x +y —2=0的距离 为12,则p 是q 的( )A 。

充分不必要条件 B.必要不充分条件 C 。

充要条件 D.既不充分也不必要条件6。

[2018全国卷Ⅲ,8,5分][文]直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6] B。

[4,8]C。

[√2,3√2] D.[2√2,3√2]7。

[2020全国卷Ⅰ,11,5分]已知☉M:x2+y2-2x—2y-2=0,直线l:2x+y+2=0,P为l上的动点.过点P作☉M的切线PA,PB,切点为A,B,当|PM|·|AB|最小时,直线AB的方程为() A。

2x—y—1=0 B.2x+y-1=0C。

全国版2022高考数学一轮复习第9章直线和圆的方程第2讲圆的方程及直线圆的位置关系课件理202103

全国版2022高考数学一轮复习第9章直线和圆的方程第2讲圆的方程及直线圆的位置关系课件理202103
第九章 直线和圆的方程
第二讲 圆的方程及直线、圆 的位置关系
考点帮·必备知识通关 考点1 圆的方程 考点2 直线与圆的位置关系 考点3 圆与圆的位置关系
考法帮·解题能力提升 考法1 求圆的方程 考法2 与圆有关的最值问题 考法3 直线与圆的位置关系 考法4 圆与圆的位置关系 考法5 圆的弦长问题 考法6 圆的切线问题
示例1 [2018天津,12,5分][文]在平面直角坐标系中,经过三点
(0,0),(1,1),(2,0)的圆的方程为
.
思维导引 思路一 设圆的一般方程为x2+y2+Dx+Ey+F=0(D2+E24F>0),分别将三点的坐标代入圆的方程,求出D,E,F即可; 思路二 设圆的标准方程为(x-a)2+(y-b)2=r2,分别将三点的坐标代入圆 的方程,求出a,b,r即可; 思路三 通过已知条件及圆的几何性质求出圆的基本量.
(1)同心圆系方程:(x-a)2+(y-b)2=r2(r>0),其中a,b是定值,r是参数; (2)过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方 程:x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R); (3)过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的 圆系方程:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(该圆系 不含圆C2,解题时,注意检验圆C2是否满足题意,以防漏解).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.对任意的实数 k,直线 y=kx+1 与圆 x2+y2=2 的位置关系一定是( )
A.相离
B.相切
C.相交但直线不过圆心 D.相交且直线过圆心
解析 ∵x2+y2=2 的圆心(0,0)到直线 y=kx+1 的距离 d=|0-10++k21|= 11+k2≤1, 又∵r= 2,∴0<d<r.显然圆心(0,0)不在直线 y=kx+1 上,故选 C.
撬法·命题法 解题法
第九章 直线和圆的方程
第2讲 圆的方程及点、线、圆的位置关系
考点二 直线与圆的位置关系
撬点·基础点 重难点
直线与圆的位置关系
设圆 C:(x-a)2+(y-b)2=r2,直线 l:Ax+By+C=0,圆心 C(a,b)到直线 l 的距离为 d,由
x-a2+y-b2=r2, Ax+By+C=0
消去 y(或 x),得到关于 x(或 y)的一元二次方程,其判别式为 Δ.
位置关系
方法 几何法
ห้องสมุดไป่ตู้
代数法
相交 相切
d<r
Δ>0
d=r Δ=0
相离
d>r Δ<0
注意点 切线长的计算
涉及到切线长的计算时,一般放在由切线长、半径及该点与圆心的连线构成的直角三角形中求解.
1.思维辨析 (1)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( √ ) (2)“k=1”是“直线 x-y+k=0 与圆 x2+y2=1 相交”的必要不充分条件.( × ) (3)过圆 O:x2+y2=r2 外一点 P(x0,y0)作圆的两条切线,切点分别为 A,B,则 O,P,A,B 四点共圆 且直线 AB 的方程是 x0x+y0y=r2.( √ )
3.圆 C1:x2+y2=1 与圆 C2:x2+y2-2x-2y+1=0 的公共弦所在直线被圆 C3:(x-1)2+(y-1)2=245所 截得的弦长为_____2_3__.
解析 圆 C1 的方程减圆 C2 的方程,即得公共弦所在的直线 l 的方程为 x+y-1=0,圆 C3 的圆心为(1,1), 其到 l 的距离 d= 12,由条件知,r2-d2=243,∴弦长为 23.
相关文档
最新文档