等比数列的概念教学设计
高中数学《等比数列的概念和通项公式》教案
一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的通项公式。
2. 培养学生运用等比数列知识解决实际问题的能力。
3. 提高学生对数列这一数学思想的认知,培养学生的逻辑思维能力。
二、教学内容1. 等比数列的概念2. 等比数列的通项公式3. 等比数列的性质三、教学重点与难点1. 教学重点:等比数列的概念,等比数列的通项公式。
2. 教学难点:等比数列通项公式的推导和应用。
四、教学方法1. 采用问题驱动法,引导学生主动探索等比数列的概念和性质。
2. 运用案例分析法,让学生通过具体例子理解等比数列的通项公式。
3. 采用小组讨论法,培养学生的合作意识和团队精神。
五、教学过程1. 导入新课:通过回顾数列的概念,引导学生思考等比数列的特点。
2. 讲解等比数列的概念:借助具体例子,讲解等比数列的定义和性质。
3. 推导等比数列的通项公式:引导学生运用已知知识,推导出等比数列的通项公式。
4. 应用等比数列通项公式:通过实例,展示等比数列通项公式的应用。
5. 课堂练习:布置相关练习题,巩固所学知识。
6. 总结与拓展:对本节课内容进行总结,提出拓展问题,激发学生课后思考。
7. 课后作业:布置适量作业,巩固所学知识。
六、教学评价1. 通过课堂表现、作业和练习,评价学生对等比数列概念和通项公式的掌握程度。
2. 结合课后作业和课堂讨论,评估学生运用等比数列知识解决实际问题的能力。
3. 通过小组讨论和课堂提问,了解学生对数列思想的认知和逻辑思维能力的提升。
七、教学资源1. PPT课件:制作包含等比数列概念、性质和通项公式的PPT课件,以便于学生理解和记忆。
2. 练习题库:准备一定数量的等比数列练习题,包括基础题、应用题和拓展题,以供课堂练习和课后作业使用。
3. 教学视频:搜集相关的教学视频,如等比数列的动画演示、讲解等,以辅助教学。
八、教学进度安排1. 第一课时:介绍等比数列的概念和性质。
2. 第二课时:推导等比数列的通项公式,讲解应用实例。
等比数列的概念说课稿(通用5篇)
等比数列的概念说课稿等比数列的概念说课稿(通用5篇)在教学工作者开展教学活动前,总归要编写说课稿,说课稿有助于学生理解并掌握系统的知识。
写说课稿需要注意哪些格式呢?下面是小编收集整理的等比数列的概念说课稿(通用5篇),希望能够帮助到大家。
等比数列的概念说课稿1今天我说的课题是《等比数列及其通项公式》。
主要研究两类问题:一、等比数列内容的介绍及通项公式的推导。
二、激发学生的探索精神,培养独立思考和善于总结的优良习惯,达到新课程标准中提出的“关注学生体验、感悟和实践活动的要求”。
下面我就五个方面阐述这节课。
一、教材分析:本节授课内容为等比数列的定义及其通项公式的推导。
1、教材的地位和作用:等比数列是数列的重要组成部分,掌握了它及其通项公式,有利于进一步研究等比数列的性质及前n项和的推导以及应用,从而极大提高学生利用数列知识解决实际问题的能力。
同时,这节课的内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要的意义。
2、教材的处理:结合教参与学生的学习能力,我将《等比数列及其通项公式》安排了2节课时。
本节课是第一课时。
根据目前高一学生的状况以及以往的经验,发现虽然这节课的内容比较简单,但由于老师的讲解过多,导致学生丢失了很多重要的知识。
为了激发学生的学习热情,实施趣味教学,我利用一个初中自然学科中的“细胞分裂”的问题以及课本第109页的一个典故引出等比数列的定义及其通项公式。
之后,再由浅入深,由低到高地设置了三个层次的问题,逐步加深学生对等比数列及其通项公式的记忆和理解。
由此,我对教材的引入、例题、练习做了适当的补充和修改。
3、教学重点与难点及解决办法:根据学生现状、教学要求及教材内容,确立本节课的教学重点为:等比数列的定义及通项公式。
解决的办法是:归纳类比;叠乘法。
根据学生的实际情况——运用所学的知识分析、解决问题的能力校差,我把这节课的难点定为:等比数列的定义及通项公式的深刻理解。
要突破这个难点,关键在于紧扣定义,类比等差数列的相关知识,来发现解决问题的方法。
等比数列的概念教案
等比数列的概念教案一、教学目标1. 掌握等比数列的概念;2. 能够判断一个数列是否为等比数列;3. 理解等比数列的特点和性质。
二、教学准备教师准备:黑板、白板、彩色粉笔、示意图、图片等;学生准备:课本、笔、作业本等。
三、教学过程1. 导入教师可以适当引入一些与数列相关的内容,如递增数列、递减数列等,让学生复习一下已学内容,并激发学生对等比数列的兴趣。
2. 概念讲解(教师在黑板上写下等比数列的定义)等比数列是指一个数列中,从第二项开始,每一项都是前一项乘以同一个常数r得到的。
(教师通过示意图或实际例子,如1、2、4、8、16等,展示等比数列的特点)- 前一项与后一项的比值相等;- 从第二项开始,每一项都是前一项乘以同一个常数r得到。
(教师提示学生观察并总结等比数列的通项公式)设等比数列的首项为a,公比为r,第n项为an,则通项公式为an= a * r^(n-1)。
3. 案例分析(教师给出一些具体的等比数列,让学生判断其是否为等比数列,并求出公比和第n项等。
可以通过黑板、白板或提供作业题的形式进行)案例1:2,4,8,16,32,...案例2:3,6,12,24,48,...4. 练习与巩固(教师提供一些练习题,让学生巩固所学知识)练习1:判断以下数列是否为等比数列,并求出它的公比和第n项。
a) 1,3,9,27,...b) 2,5,10,20,...c) 4,12,36,108,...练习2:求以下等比数列的第n项。
a) 2,6,18,54,...,n=5b) 3,9,27,...,n=6c) 5,25,125,...,n=45. 拓展与应用(教师让学生在生活中找到一些实际应用等比数列的例子,并与同学分享)例如,银行定期存款的利率、细菌的繁殖等。
6. 总结与思考(教师进行小结,回顾本节课的学习内容,并进行思考指导,如如何判断一个数列是否为等比数列,如何求解等比数列的公比和第n项等)四、作业布置1. 完成课堂练习题;2. 预习下一课时的内容。
(完整版)等比数列的概念(教案).doc
(完整版)等比数列的概念(教案).doc等比数列的概念亳州三中范图江一、教学目1、体会等比数列特性,理解等比数列的概念。
2、能根据定判断一个数列是等比数列,明确一个数列是等比数列的限定条件。
3、能运用比的思想方法得到等比数列的定 ,会推出等比数列的通公式。
二、教学重点、点重点:等比数列定的及用,通公式的推。
点:正确理解等比数列的定,根据定判断或明某些数列等比数列,通公式的推。
三、教学程 1、入复等差数列的相关内容 :定: a n1and,( n N * )通公式: a n a 1 (n 1)d , n N *等差数列只是数列的其中一种形式,在来看两数列 1、2、 4、8?? ,1、 1 、1 、 1248:两数列中,各数列的各之有什么关系? 2、探究,建构概念:与等差数列的概念相比,可以出种数列的概念?是什么?<1> 定:如果一个数列从地2 起,每一与前一的比都等于同一个常数,称此数列的不比数列。
个常数就叫做公比,用q 表示。
<2> 数学表达式:a n 1q,( n N * )a n:从等比数列的定及其数学表达式中,可以看出什么?也就是,个公式在什么条件下成立?1等比数列各均不零,公比q 0 。
学生看P 45 的例,目的是学生知道等比数列在生活中的用,从而知道其重要性。
3、运用概念例 1 判断下列数列是否等比数列:( 1) 1、 1、 1、 1、 1;( 2) 0、 1、 2、 4、 8;(3) 1、1 11 12 、、 -8 、 .4 16分析( 1)数列的首项为 1,公比为 1,所以是等比数列;(2)等比数列中的各项均不为零,所以不是等比数列;1(3)数列的首项为 1,公比为,所以是等比数列 .2注成等比数列的条件:1oan 1q;2 o a n 0;3o q 0 .a n练习 P 47 1、判断下列数列是否为等比数列:(1) 1、 2、 1、 2、 1;(2) -2、 -2、 -2、 -2;(3) 1、1 111 ;(4) 2、 1、1 、 1 、 0.3 、、27 、2 49 81分析( 1)a 1 a 3 1a 22,,比值不等于同一个常数,所以不是等比数列;a 2 2(2)首项是 -2,公比是 1,所以是等比数列;1(3)首项是 1,公比是,所以是等比数列;3(4)数列中的最后一项是零,所以不是等比数列.例 2 求出下列等比数列中的未知:(1) 2, a , 8;(2) - 4,b ,c , 1.2分析在做种的候,可以根据等比数列的定,列出一个或多个等式来求解。
高三数学《等比数列》教学设计[推荐五篇]
高三数学《等比数列》教学设计[推荐五篇]第一篇:高三数学《等比数列》教学设计作为一名辛苦耕耘的教育工作者,通常会被要求编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
教学设计应该怎么写才好呢?下面是小编为大家收集的高三数学《等比数列》教学设计,仅供参考,希望能够帮助到大家。
教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。
教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。
教学过程:一.复习准备1.等差数列的通项公式。
2.等差数列的前n项和公式。
3.等差数列的性质。
二.讲授新课引入:1“一尺之棰,日取其半,万世不竭。
”2细胞分裂模型3计算机病毒的传播由学生通过类比,归纳,猜想,发现等比数列的特点进而让学生通过用递推公式描述等比数列。
让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。
2当首项等于0时,数列都是0。
当公比为0时,数列也都是0。
所以首项和公比都不可以是0。
3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?4以及等比数列和指数函数的`关系5是后一项比前一项。
列:1,2,(略)小结:等比数列的通项公式三.巩固练习:1.教材P59练习1,2,3,题2.作业:P60习题1,4。
第二课时5.2.4等比数列(二)教学重点:等比数列的性质教学难点:等比数列的通项公式的应用一.复习准备:提问:等差数列的通项公式等比数列的通项公式等差数列的性质二.讲授新课:1.讨论:如果是等差列的三项满足那么如果是等比数列又会有什么性质呢?由学生给出如果是等比数列满足2练习:如果等比数列=4,=16,=?(学生口答)如果等比数列=4,=16,=?(学生口答)3等比中项:如果等比数列.那么,则叫做等比数列的等比中项(教师给出)4思考:是否成立呢?成立吗?成立吗?又学生找到其间的规律,并对比记忆如果等差列,5思考:如果是两个等比数列,那么是等比数列吗?如果是为什么?是等比数列吗?引导学生证明。
等比数列的概念的教案
等比数列的概念的教案【教学目标】1. 理解等比数列的定义及概念。
2. 理解等比数列的公比及其特点。
3. 掌握等比数列的通项公式及部分和公式。
4. 能够解决有关等比数列的相关问题。
【教学重难点】等比数列的定义及公比的特点。
等比数列通项公式和部分和公式的掌握和应用。
【教学过程】一、导入新知识通过比较算式(2,4,6,8,10)和(2,4,8,16,32),让学生对这两个数字有一个基本认识。
二、概念的讲解等比数列,也叫做等比数列,是指从第二项开始,每一项与它前面一项的比值都是相等的数列。
这个比值叫做公比q。
比如(2,4,8,16,32)就是一个等比数列,“2”是首项,而“4、8、16、32”都是前一项的“2”倍,“2”就是它们之间的公比。
三、概念的解释1.等比数列的公比:等比数列中,任意两项的比都相等,这个公比叫做q2.等比数列的通项公式:an = a1 ×q^(n-1)3.等比数列的前n项和公式:Sn = a1(1-q^n) / (1-q)四、问题解决1. 若等比数列的公比为q,首项为a1,它的第n项为an,求这n 项的和Sn。
(1)特殊情况:当q=1时,等比数列就是等差数列。
(2)特殊情况:当a1=1,q=2时,等比数列就是二次幂数列。
(3)特殊情况:当a1=-1,q=2时,等比数列就是多项式(1-x)^n的展开式中x=2 的项,即(1-2)^n的展开式中系数为单数的项的和也是符号相间的等比数列。
2.在等比数列(2,4,8,16,32)中,第10项是多少?五、作业1.每组同学互换通项公式和部分和公式的求法,并互相进行验证和解答。
2.请同学们在下堂课之前,从课本或网络中查找并阅读有关等比数列相关的题目和资料,以便于下节课的讨论和交流。
等比数列的概念 教案
等比数列的概念教案一、学习目标1.知识与技能(1)理解等比数列的概念,明确“同一个常数”的含义(2)掌握等比数列的通项公式及其应用(3)会判断等比数列,了解等比数列在实际中的应用2.过程与方法(1)采用观察、思考、类比、归纳、探究,得出结论的方法进行教学(2)发挥学生的主体作用,做好探究性活动(3)密切联系实际,激发学生学习的积极性3.情感态度价值观(1)通过生活中的大量实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比归纳能力。
(2)通过对有关实际问题的解决,体现教学与实际生活的密切联系,激发学生的学习兴趣。
二、教学重难点1.教学重点等比数列的概念以及通公式2.教学难点在具体问题中抽象出数列的模型和数列的等比关系三、教学方法探究式与启发式相结合四、教学过程1.引入定义数学符号例1 判断下列数列是否为等比数列。
若是,请求出公比;若不是,请说明理由。
(1)1/3,1/6,1/12,1/24,1/48,…… (2)-2,-2,-2,-2,-2,-2,…… (3)-3,3,-3,3,-3,3,…… (4)0,0,0,0,0,0,…… (5)1,0,1,0,1,0,……(6) 注:非零常数列时等比数列3.通项公式如果一个数列{}n a 是等比数列,1a 为首项,q 为公比,求{}n a 的通项公式 迭代法:由此可知,等比数列{}n a 的通项公式为累乘法:q a a q a aq a a q a a n n =⋯===-1342312,,,,所以一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
这个常数叫做等比数列的公比,常用字母q 表示。
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公比,常用字母d 表示。
)0(,,,,,,65432≠⋯⋯x x x x x x x q a a ⋅=122123q a q a a ⋅=⋅=3134q a q a a ⋅=⋅=4145qa q a a ⋅=⋅=11-⋅=n n q a a 11342312-=-•⋯⋯•••n q n a n aa a a a a a 11-=n qa n a 11-•=∴n q a n a例2 已知数列{}n a 是等比数列, ,公比为q ,求{}n a 的通项公式。
高中数学《等比数列的概念和通项公式》教案
高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。
2. 引导学生推导等比数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力、运算能力和解决问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质和判定方法。
2. 等比数列的通项公式:引导学生推导通项公式,并进行证明。
3. 等比数列的求和公式:介绍等比数列前n项和的公式。
三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式和求和公式。
2. 教学难点:等比数列通项公式的推导和证明。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析和归纳等比数列的性质。
2. 运用类比法,让学生理解等比数列与等差数列的异同。
3. 利用多媒体辅助教学,展示等比数列的动态变化过程。
4. 开展小组讨论,培养学生的合作意识和解决问题的能力。
五、教学过程1. 导入新课:通过引入日常生活中的实例,如银行存款利息问题,引导学生思考等比数列的概念。
2. 讲解等比数列的定义和性质:让学生通过观察、分析和归纳等比数列的性质,得出等比数列的定义。
3. 推导等比数列的通项公式:引导学生利用已知条件,通过变换和代数运算,推导出等比数列的通项公式。
4. 证明等比数列的通项公式:让学生理解并证明等比数列通项公式的正确性。
5. 介绍等比数列的求和公式:引导学生运用通项公式,推导出等比数列前n项和的公式。
6. 课堂练习:布置一些有关等比数列的题目,让学生巩固所学知识。
7. 总结与反思:对本节课的内容进行总结,让学生反思自己的学习过程,提高学习效果。
8. 课后作业:布置一些有关等比数列的练习题,巩固所学知识。
六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生更好地理解等比数列的概念和性质。
2. 互动提问:在教学过程中,教师应引导学生积极参与课堂讨论,提问等方式来巩固学生对等比数列的理解。
等比数列的概念-教学设计
等比数列的概念-教学设计《等比数列 (第一课时)》教学设计教学目标︰1、通过实例,理解等比数列的概念通过从丰富实例中抽象出等比数列的模型,使学生认识到这一类型数列也是现实世界中大量存在的数列模型;同时经历由发现几个具体数列的等比关系,归纳等比数列的定义的过程。
2、探索并掌握等比数列的通项公式及等比中项通过等差数列的通项公式的推导过程的类比,探索等比数列的通项公式,探索等比数列的通项公式的图象特征及等比中项。
教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要的数列模型之一,探索并掌握等比数列的通项公式。
教学难点:等比数列通项公式及其应用教学过程:一、复习提问一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.1, 3, 5, 7, 9,…; (1)3, 0, -3, -6, … ; (2)(3) . , , , , 104103102101二、创设情境,引入新课在前几节课中,我们学习了等差数列的定义、等差数列的通项公式及等差中项的定义,今天我们就来学习另外一种特殊的数列,首先看实例。
● 实例分析1:1细胞分裂:1,2,4,8,…● 实例分析2:公元前5至前3世纪,中国战国时,《庄子》一书中有“一尺之棰,日取其半,万世不竭”的关于物质无限可分的观点。
你能解释这个论述的含义吗?【学生】思考、讨论,用现代语言叙述。
【老师】(用现代语言叙述后)如果把“一尺之棰”看成单位“1”,那么得到的数列是什么样的呢?【学生】发现等比关系,写出一个无穷等比数列:1,,,,,…。
【老师】大家知道计算机病毒的传播是非常快的,速度大的惊人,那么让我们看一个这样的实例。
● 实例分析3:一种计算机病毒可以查找计算机中的地址薄,通过邮件进行传播。
如果把病毒制造者发送病毒称为第一轮,邮件接收者发送病毒称为第二轮,依此类推。
假设每一轮每一台计算机都感染20台计算机,那么在不重复的情况下,这种病毒每一轮感染的计算机数构成的数列是什么?【学生】合作讨论,得出什么为第一轮,第二轮。
等比数列教学案
等比数列教学案篇一:等比数列第一课时教案等比数列的定义教案内容:等比数列教学目标:1.理解和掌握等比数列的定义;2.理解和掌握等比数列的通项公式及其推导过程和方法;3.运用等比数列的通项公式解决一些简单的问题。
授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。
教学难点:等比数列通项公式的探求。
教具准备:多媒体课件教学过程:(一)复习导入1.等差数列的定义2.等差数列的通项公式及其推导方法3.公差的确定方法.4.问题:给出一张书写纸,你能将它对折10次吗?为什么?(二)探索新知1.引入:观察下面几个数列,看其有何共同特点?(1)-2,1,4,7,10,13,16,19,(2)8,16,32,64,128,256,(3)1,1,1,1,1,1,1,(4)1,2,4,8,16,263请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,,一直进行下去,记录下每个单位时间的细胞个数得到了一列数这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列——等比数列.2.等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一....项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列..的公比;公比通常用字母q表示(q0),3.递推公式:an1∶anq(q0)对定义再引导学生讨论并强调以下问题(1)等比数列的首项不为0;(2)等比数列的每一项都不为0;(3)公比不为0.(4)非零常数列既是等比数列也是等差数列;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?3.等比数列的通项公式:【傻儿子的故事】古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。
高中数学《等比数列的概念和通项公式》教案
高中数学《等比数列的概念和通项公式》教案一、教学目标:1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。
2. 引导学生掌握等比数列的通项公式,并能灵活运用通项公式解决相关问题。
3. 培养学生的数学思维能力,提高学生分析问题和解决问题的能力。
二、教学内容:1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。
2. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。
3. 等比数列的性质:探讨等比数列的性质,如相邻项之比、公比等。
4. 等比数列的求和公式:介绍等比数列的求和公式,并解释其推导过程。
5. 应用:通过例题展示等比数列通项公式的应用,让学生学会解决实际问题。
三、教学重点与难点:1. 教学重点:等比数列的概念、通项公式、求和公式及其应用。
2. 教学难点:等比数列通项公式的推导和求和公式的理解。
四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究等比数列的性质和公式。
2. 利用多媒体辅助教学,通过动画和图形展示等比数列的特点,增强学生的直观感受。
3. 通过例题和练习题,让学生在实践中掌握等比数列的运用。
五、教学过程:1. 引入:通过生活中的实例,如银行利息计算,引出等比数列的概念。
2. 讲解:详细讲解等比数列的定义、特点和通项公式,引导学生理解并掌握。
3. 互动:学生提问,教师解答,共同探讨等比数列的相关问题。
4. 练习:布置练习题,让学生运用通项公式解决问题,巩固所学知识。
6. 作业:布置作业,让学生进一步巩固等比数列的知识。
六、教学评估:1. 课堂问答:通过提问的方式检查学生对等比数列概念和通项公式的理解程度。
2. 练习题:布置课堂练习题,评估学生运用通项公式解决问题的能力。
3. 作业批改:对学生的作业进行批改,了解学生对所学知识的掌握情况。
七、教学反思:1. 针对学生的反馈,反思教学过程中的不足之处,如讲解不清、学生理解困难等问题。
2. 针对教学方法的适用性,调整教学策略,以提高教学效果。
高中数学《等比数列的概念和通项公式》教案
高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其性质。
2. 引导学生推导等比数列的通项公式,并能灵活运用通项公式解决相关问题。
3. 培养学生的逻辑思维能力、运算能力和解决实际问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。
2. 等比数列的性质:探讨等比数列的性质,如相邻项的比值是常数,公比等。
3. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。
4. 运用通项公式解决实际问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。
5. 拓展与应用:引导学生思考等比数列在实际生活中的应用,如复利、生长速率等。
三、教学重点与难点1. 教学重点:等比数列的概念、性质和通项公式的推导及应用。
2. 教学难点:等比数列通项公式的理解和运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。
2. 用实例讲解等比数列的概念,让学生在实际问题中感受等比数列的应用。
3. 通过小组讨论、合作交流,培养学生的团队协作能力。
4. 利用多媒体课件,生动展示等比数列的性质和通项公式,提高学生的学习兴趣。
五、教学准备1. 多媒体课件:制作等比数列的概念、性质和通项公式的课件。
2. 教学素材:准备一些关于等比数列的实际问题,用于课堂练习。
3. 教学反思:对以往教学等比数列的经验进行总结,以便更好地指导学生学习。
六、教学过程1. 导入新课:通过一个实际问题,如复利计算,引出等比数列的概念。
2. 探究等比数列的性质:让学生通过观察、分析实例,发现等比数列的性质。
3. 推导等比数列的通项公式:引导学生运用已学的数学知识,如代数运算,推导出等比数列的通项公式。
4. 应用通项公式解决问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。
5. 总结与拓展:总结等比数列的概念、性质和通项公式的要点,提出一些拓展问题,激发学生的学习兴趣。
等比数列教案
等比数列教案等比数列教案一、引言数学是一门重要的学科,它不仅培养学生的逻辑思维能力,还有助于他们解决实际问题。
数列是数学中的重要概念之一,而等比数列是数列中的一种特殊形式。
本教案将介绍等比数列的定义、性质以及解题方法,旨在帮助学生更好地理解和应用等比数列。
二、等比数列的定义与性质1. 定义等比数列是指一个数列中,从第二项开始,每一项与前一项的比都相等的数列。
这个比值称为公比,通常用字母q表示。
2. 性质(1)等比数列的通项公式:对于等比数列an,其通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。
(2)等比数列的前n项和公式:对于等比数列an,其前n项和Sn = a1 * (1 -q^n) / (1 - q)。
(3)等比数列的性质:等比数列的任意三项可以构成一个等比比例。
三、等比数列的解题方法1. 求某一项的值给定等比数列的首项a1和公比q,如果要求第n项an的值,可以使用通项公式an = a1 * q^(n-1)进行计算。
2. 求前n项的和给定等比数列的首项a1和公比q,如果要求前n项的和Sn,可以使用前n项和公式Sn = a1 * (1 - q^n) / (1 - q)进行计算。
3. 求公比已知等比数列的前两项a1和a2,如果要求公比q,可以通过计算q = a2 / a1得到。
四、等比数列的应用等比数列在实际生活中有着广泛的应用。
以下是两个常见的应用示例:1. 货币贬值问题假设某国货币每年贬值10%,初始价值为1000元。
我们可以使用等比数列来计算每年的货币价值。
首项a1为1000元,公比q为0.9(1-10%),我们可以计算出第n年的货币价值an。
这样,我们就可以预测未来几年货币的贬值情况。
2. 生物繁殖问题某种细菌每小时繁殖一次,初始数量为10个。
我们可以使用等比数列来计算每小时的细菌数量。
首项a1为10个,公比q为2(每小时繁殖一次),我们可以计算出第n小时的细菌数量an。
等比数列教案范文
等比数列教案等比数列教案范文作为一无名无私奉献的教育工作者,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么你有了解过教案吗?下面是小编精心整理的等比数列教案范文,希望能够帮助到大家。
等比数列教案1教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。
教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n—1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。
而这个数列就是我们今天要研究的等比数列了。
)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
等比数列的概念和通项公式教案
等比数列的概念和通项公式教案第一章:等比数列的概念1.1 引入:通过复习数列的基本概念,引导学生理解数列的定义和性质。
1.2 等比数列的定义:引导学生通过观察和分析一些具体的数列,总结等比数列的定义和特点。
1.3 等比数列的性质:引导学生探究等比数列的性质,如相邻两项的比值是常数,每一项可以表示为前一项与公比的乘积等。
1.4 等比数列的举例:给出一些等比数列的例子,让学生通过计算和分析加深对等比数列的理解。
第二章:等比数列的通项公式2.1 等比数列的通项公式的引入:通过一些具体的等比数列,引导学生观察和分析其通项公式。
2.2 等比数列的通项公式的推导:引导学生利用等比数列的性质和数学归纳法推导出通项公式。
2.3 等比数列的通项公式的应用:给出一些应用等比数列通项公式的例子,让学生通过计算和分析加深对通项公式的理解。
第三章:等比数列的前n项和3.1 等比数列的前n项和的定义:引导学生理解等比数列前n项和的含义和意义。
3.2 等比数列的前n项和的公式:引导学生利用等比数列的性质和数学归纳法推导出前n项和的公式。
3.3 等比数列的前n项和的应用:给出一些应用等比数列前n项和的例子,让学生通过计算和分析加深对前n项和的理解。
第四章:等比数列的性质和运算4.1 等比数列的性质:引导学生探究等比数列的性质,如公比的取值范围,等比数列的单调性等。
4.2 等比数列的运算:引导学生掌握等比数列的运算规则,如加减乘除等。
4.3 等比数列的性质和运算的应用:给出一些应用等比数列的性质和运算的例子,让学生通过计算和分析加深对等比数列的理解。
第五章:等比数列的综合应用5.1 等比数列的实际应用:引导学生将等比数列的概念和公式应用到实际问题中,如经济增长模型,放射性衰变等。
5.2 等比数列的解题策略:引导学生掌握解决等比数列问题的方法和技巧,如利用通项公式和前n项和公式等。
5.3 等比数列的综合练习:给出一些综合性的练习题,让学生通过计算和分析加深对等比数列的综合应用的理解。
等比数列概念教案
等比数列概念优秀教案一、教学目标1. 知识与技能:(1)理解等比数列的定义及其性质;(2)学会用通项公式和求和公式解决等比数列相关问题。
2. 过程与方法:(1)通过观察、分析、归纳等比数列的性质;(2)培养学生的逻辑思维能力和数学表达能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极向上的学习态度。
二、教学内容1. 等比数列的定义(1)引导学生回顾数列的概念;(2)引入等比数列的定义:从第二项起,每一项都是前一项与一个常数(公比)的乘积。
2. 等比数列的性质(1)引导学生观察等比数列的前几项,分析其特点;(2)引导学生归纳等比数列的性质:任意两项的比值相等,即a_n / a_(n-1) = a_(n+1) / a_n = q(公比)。
3. 等比数列的通项公式(1)引导学生利用等比数列的性质推导通项公式;(2)得出通项公式:a_n = a_1 q^(n-1)。
4. 等比数列的前n项和公式(1)引导学生探讨等比数列前n项和的计算方法;(2)得出前n项和公式:S_n = a_1 (1 q^n) / (1 q)(q ≠1),当q = 1时,S_n = n a_1。
5. 等比数列的应用(1)利用通项公式和求和公式解决实际问题;(2)培养学生运用数学知识解决实际问题的能力。
三、教学重点与难点1. 重点:等比数列的定义、性质、通项公式和前n项和公式。
2. 难点:等比数列前n项和公式的推导及应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质;2. 运用归纳法,让学生通过观察、分析、归纳等比数列的性质;3. 利用实例讲解,培养学生运用数学知识解决实际问题的能力。
五、教学过程1. 引入:回顾数列的概念,引导学生思考数列的另一种分类——等比数列。
2. 探究等比数列的定义和性质:让学生观察等比数列的前几项,引导学生归纳等比数列的性质。
3. 推导等比数列的通项公式:引导学生利用等比数列的性质推导通项公式。
等比数列的概念(教案)
§2.4 等比数列第1课时等比数列的概念与通项公式一、教学内容《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。
而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。
所以本节内容比较重要,地位较突出.二、教学目标1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、教学重难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、学情分析高一学生已经初步形成了自己的学习习惯,好奇心强,有着自主的探究能力和思考辨别能力.但通过考试成绩的分析可以看出,学生基础薄弱,知识的引入及理解都应多加强调,在教学中,需要多设计问题,化难为易,循序渐进,以问题串为载体引导学生分析问题,解决问题.五、教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.六、教学用具多媒体,三角板,彩色粉笔,电子笔七、授课类型新授课八、教学过程(一)课前复习1.等差数列的概念2.通项公式.(二)新授课1.课堂探究1课本48页4个实例.①细胞分裂个数构成的数列②“一尺之锤,日取其半,万世不竭”,将“一尺之锤”看成单位“1”,得到的数列③计算机每轮感染的数量构成的数列④银行存款中,每一年的本利和得到的数列思考:类比等差数列的定义,这4个数列项与项之间都有什么共同特征?试将共同特征用语言叙述出来,并用符号表示.【师生活动】教师引导学生从生活中的实例出发,借助等差数列的概念进行类比推理.【设计意图】以学生熟悉的等差数列的概念为背景,通过思考,引导学生进行分析,使学生形成“等比数列是后一项与前一项的比是同一常数的数列”的感知,从而流畅自然的引出等比数列的概念.2.等比数列的概念一般地,如果一个数列从第..2.项起..,每一项与它的前一项的比.等于同一常数....,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,用字母q )0(≠q 来表示.用数学符号表示为:}{n a 是等比数列⇔),2,0(1+-∈≥≠=N n n q q a a n n 且 【师生活动】在上一个环节的基础上,教师引导学生给出等比数列的概念.【设计意图】流畅的引出等比数列的概念,使学生理解等比数列.3.对概念的再认识(1)公比是否能等于0? 等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)公比q>0的等比数列有什么特征?公比q<0的等比数列有什么特征?【师生活动】教师引导学生,观察等比数列中的各项的要求.【设计意图】使学生很自然的对等差、等比数列的异同点进行初步认知. 例1.判断下列数列是否为等比数列?若是,找出公比;若不是,请说明理由.① 1, 4, 16, 32.② 0, 2, 4, 6, 8.③ 1,-10,100,-1000,10000.④ 81, 27, 9, 3, 1.⑤ a a a a a ,,,,【师生活动】学生根据等比数列的概念进行判断.【设计意图】1.让学生体会等比数列中公比可正可负,可以大于1,也可以小于1.2.让学生体会等比数列中不能出现0.3.体会非零常数列既是等差数列,又是等比数列.4.课堂探究2 等比数列的通项公式)(11+-∈=N n q a a n n方法:累乘法【师生活动】教师引导学生回顾等差数列的通项公式推导过程,引导学生类比推导等比数列的通项公式.【设计意图】培养学生小组合作,类比推理的学习能力.5.对通项公式的再认识① 等比数列通项公式11-=n n q a a 中,是公比的...1-n 次方... ② 写出通项公式需已知的量是首项..与公比..,它们均不为...0.【师生活动】教师引导学生从等比数列的定义,通项公式的形式,推导过程,对通项公式进行再认识.【设计意图】熟练掌握等比数列的通项公式以及常用变形式.(三)练习导学案上的练习题九、课堂小结1.等比数列的概念2.等比数列的通项公式及推导方法 11-=n n q a a3.本节课所运用的数学思想方法十、课后作业练习册2.4.1等比数列的概念和通项公式十一、板书设计十二、教学反思(附页)。
高二数学《等比数列的概念》教学设计
2.4等比数列的概念一、内容与解析(一)内容:等比数列的概念及通项公式(二)解析:这节内容由于是在等差数列的基础上,运用同样的方法和步骤,研究类似的问题,学生接受起来较为容易,所以应多放手让学生思考,并注意运用类比思想,这样不仅有利于学生分清等差和等比数列的区别,而且可以锻炼学生从多角度、多层次分析和解决问题的能力.另外,与等差数列相比等比数列须要注意的细节较多,如没有零项、q≠0等,在教学中应注意加以比较.这节课是在等差数列的基础上,运用同样的研究方法和研究步骤,研究另一种特殊数列———等比数列.重点是等比数列的定义和通项公式的发现过程及应用,难点是应用.二、教学目标及解析1. 熟练掌握等比数列的定义、通项公式等基本知识,并熟练加以运用.2. 进一步培养学生的类比、推理、抽象、概括、归纳、猜想能力.3. 感受等比数列丰富的现实背景,进一步培养学生对数学学习的积极情感.三、问题诊断分析在本节课的教学中,学生可能遇到的问题是如何解关于首项和公比的方程组,产生这一问题的原因是学生的基础较差.要解决这一问题,就是要强调学生用除法先消掉首项再对关于公比的方程化简。
四、教学过程1、创设情境,提出问题 (阅读本章引言并打出幻灯片)情境1:本章引言内容提出问题:同学们,国王有能力满足发明者的要求吗?引导学生写出各个格子里的麦粒数依次为:1,2,,2,2,2432 ……,632 (1)于是发明者要求的麦粒总数是 情境2:某人从银行贷款10000元人民币,年利率为r ,若此人一年后还款,二年后还款,三年后还款,……,还款数额依次满足什么规律?10000(1+r),100002)1(r +,100003)1(r +, (2)情境3:将长度为1米的木棒取其一半,将所得的一半再取其一半,再将所得的木棒继续取其一半,……各次取得的木棒长度依次为多少?,81,41,21…… (3) 问:你能算出第7次取一半后的长度是多少吗?观察、归纳、猜想得7)21( 2、自主探究,找出规律:学生对数列(1),(2),(3)分析讨论,发现共同特点:从第二项起,每一项与前一项的比都等于同一常数。
等比数列的概念和通项公式教案
等比数列的概念和通项公式教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其性质。
2. 引导学生推导等比数列的通项公式,并能灵活运用通项公式解决相关问题。
3. 培养学生的逻辑思维能力、运算能力及解决实际问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质及判定方法。
2. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。
3. 等比数列的求和公式:介绍等比数列前n项和的公式,并解释其推导过程。
三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及求和公式。
2. 教学难点:等比数列通项公式的推导和应用。
四、教学方法1. 采用讲授法,讲解等比数列的概念、性质、通项公式及求和公式。
2. 利用案例分析,让学生通过实际问题理解等比数列的应用。
3. 开展小组讨论,引导学生探讨等比数列的性质和通项公式的推导过程。
五、教学安排1. 第一课时:介绍等比数列的概念和性质。
2. 第二课时:推导等比数列的通项公式,解释其意义。
3. 第三课时:讲解等比数列的求和公式,并进行案例分析。
4. 第四课时:开展练习,巩固等比数列的相关知识。
5. 第五课时:总结等比数列的概念、性质、通项公式及求和公式,进行拓展讲解。
六、教学策略与方法1. 案例分析:通过分析实际问题,让学生了解等比数列在生活中的应用,提高学生的兴趣和积极性。
2. 小组讨论:组织学生进行小组讨论,培养学生的团队合作意识和解决问题的能力。
3. 练习巩固:布置相关的练习题,让学生在实践中巩固等比数列的概念、性质和公式。
七、教学评价1. 课堂问答:通过提问,了解学生对等比数列概念、性质和公式的掌握情况。
2. 练习解答:检查学生练习题的完成情况,评估学生对等比数列知识的应用能力。
3. 小组讨论:评价学生在团队合作中的表现,包括分析问题、解决问题的能力。
八、教学拓展1. 探索等比数列的其他性质:引导学生深入研究等比数列的其他性质,如等比数列的项的符号规律、等比数列的项的绝对值规律等。
等比数列教案(精选7篇)
等比数列教案等比数列教案什么是教案?教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
等比数列教案(精选7篇)作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?下面是小编为大家收集的等比数列教案(精选7篇),希望能够帮助到大家。
等比数列教案1教学目标1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;(3)通过通项公式认识等比数列的性质,能解决某些实际问题.2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.教材分析(1)知识结构等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.(2)重点、难点分析教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.教学建议(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 等比数列教案2教学目标1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.教学重点,难点重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具投影仪,多媒体软件,电脑.教学方法讨论、谈话法.教学过程一、提出问题给出以下几组数列,将它们分类,说出分类标准.(幻灯片)①-2,1,4,7,10,13,16,19,②8,16,32,64,128,256,③1,1,1,1,1,1,1,④-243,81,27,9,3,1,,,⑤31,29,27,25,23,21,19,⑥1,-1,1,-1,1,-1,1,-1,⑦1,-10,100,-1000,10000,-100000,⑧0,0,0,0,0,0,0,由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等比数列的概念》教学设计方案
教学目标
1.通过教学使学生理解的概念,推导并掌握通项公式.
2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.
3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.
教学重点,难点
重点、难点是的定义的归纳及通项公式的推导.
教学用具
投影仪,多媒体软件,电脑.
教学方法
讨论、谈话法.
教学过程
一、提出问题
给出以下几组数列,将它们分类,说出分类标准.(幻灯片)
①-2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为).
二、讲解新课
请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——. (这里播放变形虫分裂的多媒体软件的第一步)
(板书)
1.等比数列的定义(板书)
根据与等差数列的名字的区别与联系,尝试给下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出的定义,标注出重点词语. 请学生指出②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是,让学生讨论后得出结论:当时,数列既是等差又是,当时,它只是等差数列,而不是.教师追问理由,引出对的认识:
2.对等比定义的认识(板书)
(1)的首项不为0;
(2)的每一项都不为0,即;
问题:一个数列各项均不为0是这个数列为的什么条件?
(3)公比不为0.
用数学式子表示的定义.
是①.在这个式子的写法上可能会有一些争议,如写成,可让学生研究行不行,好不好;接下来再问,能否改写为是?为什么不能?
式子给出了数列第项与第项的数量关系,但能否确定一个?(不能)确定一个需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.
3.的通项公式(板书)
问题:用和表示第项 .
①不完全归纳法
②叠乘法
,…,,这个式子相乘得,所以 .
(板书)(1)的通项公式
得出通项公式后,让学生思考如何认识通项公式.
(板书)(2)对公式的认识
由学生来说,最后归结:
①函数观点;
②方程思想(因在等差数列中已有认识,此处再复习巩固而已).
这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.
三、小结
1.本节课研究了的概念,得到了通项公式;
2.注意在研究内容与方法上要与等差数列相类比;
3.用方程的思想认识通项公式,并加以应用.
四、作业(略)
五、板书设计
1.等比数列的定义
2.对定义的认识
3.等比数列的通项公式
(1)公式
(2)对公式的认识
探究活动
将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0.01毫米.
参考答案:
30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度.如果纸再薄一些,比如纸厚0.001毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(用对数算也行).。