第22章二次函数总复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第22章 二次函数总复习
一、【复习目标】
1、掌握二次函数的概念、基本性质,二次函数解析式的求法;
2、熟练掌握二次函数的图象与性质,并会利用二次函数的图象与性质解决实际应用问题. 二、【复习导学】
(二)知识点梳理:
1、二次函数概念:一般地,形如 (a b c ,,是常数,0a ≠)的函数,叫做二次函数. 其中a 是二次项系数,b 是一次项系数,c 是常数项. 注:与一元二次方程类似,二次项系数0a ≠,而b c ,可以为零;等号左边是函数,右边是关于 自变量x 的二次式,x 的最高次数是2.
2、二次函数的基本形式
(1)形如:2y ax =的二次函数的图象和性质:a 的绝对值越大,抛物线的开口越小 (2)形如:k ax y +=的二次函数的图象和性质:上加下减. (3)形如:y a x h =-的二次函数的图象和性质:(h 前面是负号时:h>0向右平移,h<0时向左平移)
(4)形如:y a x h k =-+的二次函数的图象和性质:
左加右减(变的是x 的变量),上加下减(变的是函数值) ,即如:
由y=ax 2
向左平移2个为单位再向下平移3个单位得到:y=a (x+2)2-3 ; 由y=ax 2向右平移2个为单位再向上平移3个单位得到:y=a (x-2)2+3 .
3、二次函数()2
y a x h k =-+与c bx ax y ++=2
的比较:
从解析式上看,()2
y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2
2424b ac b y a x a a -⎛⎫=++ ⎪⎝
⎭,则对于c bx ax y ++=2
来说:2424b ac b h k a a -=-=
,, 即对称轴是:a
b
x 2-=对,顶点坐标是:)44,2(2a b ac a b --. 4、二次函数c bx ax y ++=2
图象的画法:
五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,
、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).
注:画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 5、二次函数c bx ax y ++=2
的性质:
(1)当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭
,.当2b
x a <-
时, y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b
x a
=-时,y 有最小值244ac b a -.
(2)当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b
x a <-
时, y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b
x a
=-时,y 有最大值244ac b a -.
6、二次函数解析式的表示方法
(1)一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);知道三点的坐标用一般式. (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);知道顶点坐标或对称轴和最值时用顶点式. (3)交点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标),当函数与x 轴有 两个交点时,用交点式.
注:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线 与x 轴有交点,即2
40b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
7、抛物线c bx ax y ++=2
中,c b a ,,的作用:
(1)a 决定开口方向及开口大小:当a >0时,二次函数开口 ;当a 0时,二次函数开口向下. |a | 越大,开口越小,|a | 越小,开口越大. (2)b 和a 共同决定抛物线对称轴的位置:∵抛物线c bx ax y ++=2的对称轴是直线a b x 2-
=
∴ ①当0=b 时(即:02a
b x -
=)⇔对称轴为y 轴;
②当a 、b 同号时(即: