中考数学填空题专题.docx
通用版中考数学填空题专题训练(附答案)
通用版中考数学填空题专题训练(附答案)一、填空题1.某射手在一次训练中共射出了10发子弹,射击成绩如图所示,则射击成绩的中位数是__环.2.跳高训练时,甲、乙两名同学在相同条件下各跳了10次,统计他们的平均成绩都是1.36米,且方差为,,则成绩较为稳定的是________(填“甲”或“乙”).3.某校航模小组进行航模训练,如图,A,B,C三只小船在平面直角坐标系中的坐标分别为(1,1),(﹣1,3),(﹣2,1),一段时间后,小船A到达A′(4,﹣1)的位置,为了保持队形不变,此时小船B所到达的位置B′的坐标是________.4.某学校足球兴趣小组的五名同学在一次射门训练中,射进球门的次数分别为:6,7,7,8,9.这组数据的众数是___.5.2020年,全市中小学生田径运动会,甲、乙、丙、丁四位运动员在“100米短跑”训练中,每人各跑5次,据统计,平均成绩都是13.8秒,方差分别是=0.11,=0.03,,,则四人的训练成绩最稳定的是________6.为了在体育中考中取得更好的成绩,小明积极训练,体育老师对小明投掷铅球的录像进行技术分析,如图,发现铅球在行进过程中高度y(m)与水平距离x(m)之间的关系为,由此可知小明此次投掷的成绩是___.7.为增强学生体质,感受中国的传统文化,某校将“抖空竹”定为特色体育项目每天大课间进行训练,某同学“抖空竹”的一个瞬间如图①所示,若将图①抽象成图①的数学问题:,,,则的大小是____________度.8.甲、乙、丙、丁四位同学在相同条件下进行“立定跳远”训练,每人各跳10次,统计他们的平均成绩(单位:米)和方差如下表所示:则这四名同学“立定跳远”成绩波动最大的是______.9.2022年冬奥会北京赛区,共举办包括滑冰(含短道速滑、速度滑冰、花样滑冰)、冰球、冰壶在内的3个大项5个分项的所有冰上项目比赛,为了迎接2022年的冬奥会,中小学都积极开展冰上运动.小聪和小明进行500米短道速滑训练,他们的五次成绩如表所示:设两个人的五次成绩的平均数依次为小聪,小明,方差依次为S2小聪,S2小明,你认为两人中技术更好的是,你的理由是____.10.甲、乙、丙三人进行羽毛球比赛赛前训练,每局两人进行比赛,第三个人做裁判,每一局。
中考数学填空百题训练.doc
中考数学填空百题训练 1. 点P (1,2)关于y 轴对称的点的坐标是 . 2. 如图所示,直线a ∥b ,则∠A = 度.3. 已知⊙O 的半径为8, 圆心O 到直线l 的距离是6, 则直线l 与⊙O 的位置关系是 .4. 如果直角三角形的斜边与一条直角边的长分别是13cm 和5cm ,那么这个直角三角形的面积 是 cm 2.5.当m = 时,分式2(1)(3)32m m m m ---+的值为零. 6.如图的围棋盘放在某个平面直角坐标系内,白棋② 的坐标为(7,4)--,白棋④的坐标为(6,8)--,那么黑棋①的坐标应该是 .7.学校食堂出售两种厚度一样但大小不同的面饼,小饼直径30cm ,售价30分;大饼直径40cm ,售价40分.你更愿意买 饼,原因是 . 8.计算:1-3=________。
9.有一个密码系统,其原理由下面的框图所示: 输入x → x+6 → 输出 当输出为10时,则输入的x=________。
10.已知两圆的半径分别为4厘米和1厘米,若两圆外切,则两圆的圆心距为________厘米。
11.当x>2时,化简2)2(-x =________。
12.初三(1)班研究性学习小组为了测量学校旗杆的高度(如图),他们离旗杆底部E 点30米的D 处,用测角仪测得旗杆的仰角为30º,已知测角仪器高AD=1.4米,则旗杆BE 的高为________米(精确到0.1米)。
13.计算:a ab ⋅=_______________14.分解因式:3x x -=______________________15.已知a ,b ,c ,d 是成比例线段,其中a=3cm ,b=2cm ,c=6cn ,则d=_______cm16.如图,沿正方形的对角线对折,把对折后重合的两个小正方形内的单项式相乘,乘积 是___________。
(只要写出一个结论)17.如图,ABCD 是各边长都大于2的四边形,分别以它的顶点为圆心、1为半径画弧(弧的端点分别在四边形的相邻两边上),则这4条弧长的和是________________18、如图,直线a,b 被直线c 所截,a ∥b 如果∠1=50°, 那么∠2=____度。
中考数学填空题专项练习(含答案解析)
一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .20192.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .43.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55°4.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为( )A .100°B .130°C .50°D .65°5.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=6.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-= 7.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .458.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >49.“射击运动员射击一次,命中靶心”这个事件是( )A .确定事件B .必然事件C .不可能事件D .不确定事件10.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根 11.若20a ab -=(b ≠0),则a ab +=( ) A .0 B .12C .0或12D .1或 2 12.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下: x 1.1 1.2 1.3 1.41.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 13.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( )A .36°B .54°C .72°D .108° 14.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( )A .14B .12C .23D .3415.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若CD =AP =8,则⊙O 的直径为( )A.10B.8C.5D.3二、填空题16.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).17.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.18.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为.19.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.20.如图,在边长为2的正方形ABCD中,以点D为圆心,AD长为半径画AC,再以BC 为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S1﹣S2的值为_____.(结果保留π)21.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.22.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.23.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个. 24.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.25.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2019的坐标为_______.三、解答题26.在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A ,B ,C ,D 表示);(2)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.27.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示). ()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.28.如图,平面直角坐标系中,每个小正方形边长是1.(1)画出△ABC关于原点中心对称的得到△A1B1C1;(2)画出△ABC关于C点顺时针旋转90°的△A2B2C2;(3)在(2)的条件下,求出B点旋转后所形成的弧线长.29.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?30.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.B3.C4.B5.B6.C7.C8.B9.D10.A11.C12.C13.C14.B15.A二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能17.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次18.【解析】试题分析:根据圆的确定先做出过ABC三点的外接圆从而得出答案如图分别作ABBC的中垂线两直线的交点为O以O为圆心OA为半径作圆则⊙O即为过ABC三点的外接圆由图可知⊙O还经过点DEFGH这519.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y>0时x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(120.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利21.k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k-1≠0且△=(-2)2-4(k-1)>0解得:k<2且k≠1考点:1根的判别式;2一元二次22.20【解析】【分析】一般用增长后的量=增长前的量×(1+增长率)再根据题意列出方程5(1+x)2=72即可解答【详解】设这两年中投入资金的平均年增长率是x由题意得:5(1+x)2=72解得:x1=023.2【解析】试题解析:∵袋中装有6个黑球和n个白球∴袋中一共有球(6+n)个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为224.(2)【解析】由题意得:即点P的坐标25.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 2.B解析:B【解析】【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF , ∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.3.C解析:C【解析】试题分析:如图,连接OC.∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C.【考点】圆周角定理.4.B解析:B【解析】【分析】根据三角形的内切圆得出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【详解】∵点O是△ABC的内切圆的圆心,∴∠OBC=12∠ABC,∠OCB=12∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故选B.【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.5.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 6.C解析:C【解析】【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x ,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 7.C解析:C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3355÷=故选C 8.B解析:B【解析】【分析】【详解】当函数值y >0时,自变量x 的取值范围是:﹣2<x <4.故选B .9.D解析:D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件, 故选D .考点:随机事件.10.A解析:A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x 2+x ﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b 2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x 2+x ﹣3=0有两个不相等的实数根,故选A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.C解析:C【解析】【分析】【详解】解:∵20a ab -= ()0b ≠,∴a(a-b)=0,∴a=0,b=a .当a=0时,原式=0;当b=a 时,原式=12,故选C 12.C解析:C【解析】【分析】仔细看表,可发现y 的值-0.24和0.25最接近0,再看对应的x 的值即可得.【详解】解:由表可以看出,当x 取1.4与1.5之间的某个数时,y=0,即这个数是ax 2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.13.C解析:C【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度,故选C.14.B解析:B【解析】【分析】画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.【详解】解:画树状图如下:,一共12种可能,两人摸出的小球颜色相同的有6种情况,所以两人摸出的小球颜色相同的概率是612=12,故选:B.【点睛】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.A解析:A【解析】【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【详解】连接OC,∵CD ⊥AB ,CD=8,∴PC=12CD=12×8=4, 在Rt △OCP 中,设OC=x ,则OA=x ,∵PC=4,OP=AP-OA=8-x ,∴OC 2=PC 2+OP 2,即x 2=42+(8-x )2,解得x=5,∴⊙O 的直径为10.故选A .【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.17.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250,由于18>0,故其最小值为1250cm2,故答案为:1250cm2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.18.【解析】试题分析:根据圆的确定先做出过ABC三点的外接圆从而得出答案如图分别作ABBC的中垂线两直线的交点为O以O为圆心OA为半径作圆则⊙O 即为过ABC三点的外接圆由图可知⊙O还经过点DEFGH这5解析:【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为5.考点:圆的有关性质.19.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y>0时x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(1解析:-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为﹣3<x<1.考点:二次函数的图象.20.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利解析:1 2π【解析】【分析】如图,设图中③的面积为S3.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S3.由题意:2132231··241··12S SS Sππ⎧+=⎪⎪⎨⎪+=⎪⎩,可得S1﹣S2=12π,故答案为12π.【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.21.k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k-1≠0且△=(-2)2-4(k-1)>0解得:k<2且k≠1考点:1根的判别式;2一元二次解析:k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.22.20【解析】【分析】一般用增长后的量=增长前的量×(1+增长率)再根据题意列出方程5(1+x)2=72即可解答【详解】设这两年中投入资金的平均年增长率是x由题意得:5(1+x)2=72解得:x1=0解析:20%.【解析】【分析】一般用增长后的量=增长前的量×(1+增长率),再根据题意列出方程5(1+x )2=7.2,即可解答.【详解】设这两年中投入资金的平均年增长率是x ,由题意得:5(1+x )2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.故答案是:20%.【点睛】此题考查一元二次方程的应用,解题关键在于列出方程.23.2【解析】试题解析:∵袋中装有6个黑球和n 个白球∴袋中一共有球(6+n )个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为2 解析:2【解析】试题解析:∵袋中装有6个黑球和n 个白球,∴袋中一共有球(6+n )个, ∵从中任摸一个球,恰好是黑球的概率为34, ∴6364n =+, 解得:n=2.故答案为2. 24.(2)【解析】由题意得:即点P 的坐标解析: ,2).【解析】由题意得:441a a =⇒= 2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2. 25.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变解析:(-1010,10102)【解析】【分析】根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y=x+2,联立方程求得A 2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【详解】∵A点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2019(-1010,10102),故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.三、解答题26.(1)图形见解析(2)1 2【解析】【分析】(1)本题属于不放回的情况,画出树状图时要注意;(2)B、C、D三个卡片的上的数字是勾股数,选出选中B、C、D其中两个的即可【详解】(1)画树状图如下:(2)∵共有12种等可能的结果数,抽到的两张卡片上的数都是勾股数的结果数为6种,∴抽到的两张卡片上的数都是勾股数的概率61 122 ==.27.(1)25;(2)35.【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205=.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.28.(1)图见详解;(2)图见详解;(3)32π.【解析】【分析】(1)利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案;(3)利用弧长公式计算即可得出结果.【详解】解:(1)如图示,△A1B1C1为所求;(2)如图示,△A 2B 2C 2为所求;(3)∵△ABC 关于C 点顺时针旋转90°得到的△A 2B 2C 2,每个小正方形边长是1, 由题图可知,半径3BC ,根据弧长的公式得:2239036320BB . 【点睛】此题主要考查了平移变换、旋转变换,正确得出对应点位置和熟悉弧长公式是解题关键. 29.(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x ;50﹣x .(3)每件商品降价25元时,商场日盈利可达到2000元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x 元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x 的一元二次方程,解之即可得出x 的值,再根据尽快减少库存即可确定x 的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元). 答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x 元,则商场日销售量增加2x 件,每件商品,盈利(50-x )元. 故答案为2x ;50-x .(3)根据题意,得:(50-x )×(30+2x )=2000,整理,得:x 2-35x+250=0,解得:x 1=10,x 2=25,∵商城要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).30.(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【解析】【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.。
(必考题)中考数学填空题专项练习经典测试题(含答案解析)
一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .20192.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4 4.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点5.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°6.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=8.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-= 9.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-10.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1211.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π-B .8433π-C .8233π-D .843π- 13.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9-14.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).17.已知二次函数y =(x −2)2+3,当x _______________时,y 随x 的增大而减小.18.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____.19.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.20.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.21.一元二次方程22x 20-=的解是______.22.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 23.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.24.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.25.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于_____.三、解答题26.如图,斜坡AB 长10米,按图中的直角坐标系可用353y x =-+表示,点A ,B 分别在x 轴和y 轴上,且30OAB ︒∠=.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?27.在平面直角坐标系中,已知二次函数y=ax2﹣2ax﹣3a(a>0)图象与x轴交于点A,B (点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B的坐标;(2)若M为对称轴与x轴交点,且DM=2AM.①求二次函数解析式;②当t﹣2≤x≤t时,二次函数有最大值5,求t值;③若直线x=4与此抛物线交于点E,将抛物线在C,E之间的部分记为图象记为图象P(含C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b 与图象P,图象Q都相交,且只有两个交点,求b的取值范围.28.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?29.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.30.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.B4.D5.C6.D7.B8.C9.B10.D11.D12.C13.C14.C15.B二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x 的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值23.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D(024.(22)或(2-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-∴设点A坐标为(2m)如图所示作AP⊥y轴于点P作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°25.-1【解析】由题意得ABBC于DBC于EBC交BC于FAB=勾股定理得AE=AD=1DB=-1三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 2.A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.B解析:B【解析】【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选B .本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 5.C解析:C【解析】试题解析:∵CC′∥AB ,∴∠ACC′=∠CAB=65°,∵△ABC 绕点A 旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C .6.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确.故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 8.C解析:C【解析】【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x ,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 9.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 10.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°,∵BC 是⊙O 内接正六边形的一边,∴∠BOC =360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.11.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12=(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD2223OD OC+∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.13.C解析:C【解析】由题意得:2a 2-a-3=0,所以2a 2-a=3,所以6a 2-3a=3(2a 2-a)=3×3=9, 故选C.14.C解析:C【解析】【分析】根据等弧概念对A 进行判断,根据垂径定理对B 、C 、D 选项进行逐一判断即可. 本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B 错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C 正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误. 故选C.15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤【解析】【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案.【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大,且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤,∴当21x -<≤时,y 的取值范围是:35y -≤≤.故答案为:35y -≤≤.【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键.19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P (摸到白球)== 解析:38【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P (摸到白球)=353+ =38. 20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x 的值直接计算【详解】∵一元二次方程x2﹣2x ﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x 的值,直接计算.【详解】∵一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),∴x 1+x 2=2,x 1x 2=﹣3,则x 1﹣x 2=﹣√(x 1+x 2)2−4x 1x 2=﹣√4+12=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s 取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。
(必考题)中考数学填空题专项练习习题(答案解析)
一、选择题1.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4 2.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣1 3.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540D .(32﹣x )(20﹣x )+x 2=5404.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55° 5.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>6.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A.6B.8C.10D.127.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1128.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.43B.63C.23D.89.如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A.68°B.58°C.72°D.56°10.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-11.如图,某中学计划靠墙围建一个面积为280m的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A .4m 或10mB .4mC .10mD .8m 12.当﹣2≤x≤1时,二次函数y=﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( ) A .74- B .3或3- C .2或3- D .2或3-或74- 13.设,a b 是方程2320170x x +-=的两个实数根,则22a a b +-的值为( ) A .2017 B .2018 C .2019 D .202014.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A .4-9πB .4-89π C .8-49π D .8-89π 15.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2二、填空题16.如图,将半径为6的半圆,绕点A 逆时针旋转60°,使点B 落到点B′处,则图中阴影部分的面积是_____.17.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.18.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.19.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:_______.20.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.21.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1_____y2.(用“>”、“<”、“=”填空)22.四边形ABCD内接于⊙O,∠A=125°,则∠C的度数为_____°.23.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.24.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为_______.25.在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=_____m2.(2)如图2,现考虑在(1)中矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,边BC 的长为____m .三、解答题26.已知x =n 是关于x 的一元二次方程mx 2﹣4x ﹣5=0的一个根,若mn 2﹣4n+m =6,求m 的值.27.如图,平面直角坐标系中,每个小正方形边长是1.(1)画出△ABC 关于原点中心对称的得到△A 1B 1C 1;(2)画出△ABC 关于C 点顺时针旋转90°的△A 2B 2C 2;(3)在(2)的条件下,求出B 点旋转后所形成的弧线长.28.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.29.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作EF ⊥AC 于点E ,交AB 的延长线于点F .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE 的长.30.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.B3.B4.C5.A6.D7.C8.A9.D10.C11.C12.C13.D14.B15.D二、填空题16.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋17.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离18.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y =0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=19.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二20.【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系列方程求解【详解】设此圆锥的底面半径为r根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr解得:r=1故答案为:1【点睛】本题考查了圆锥21.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上22.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性23.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小24.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变25.88π;【解析】【分析】(1)小狗活动的区域面积为以B为圆心10m为半径的圆以C为圆心6m为半径的圆和以A为圆心4为半径的圆的面积和据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心10为半三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.2.B解析:B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.3.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x ,根据题意得:(32-x )(20-x )=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.4.C解析:C【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.5.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.6.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.7.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126=.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.8.A解析:A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=323,∴3.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.9.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12=(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.11.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x 值.12.C解析:C【解析】【分析】根据对称轴的位置,分三种情况讨论求解即可.【详解】二次函数的对称轴为直线x=m ,①m <﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m )2+m 2+1=4,解得m=74-,与m <﹣2矛盾,故m 值不存在; ②当﹣2≤m≤1时,x=m 时,二次函数有最大值,此时,m 2+1=4,解得m=③当m >1时,x=1时二次函数有最大值,此时,﹣(1﹣m )2+m 2+1=4,解得m=2,综上所述,m 的值为2或﹣故选C .13.D解析:D【解析】【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a 是方程2320170x x +-=的实数根,可得2320170a a +-=,据此求出232017a a +=,利用根与系数关系得:+a b =-3,22a a b +- 变形为(2a 3a +)-(+a b ),代入即可得到答案.【详解】解:∵a 、b 是方程2320170x x +-=的两个实数根,∴+a b =-3;又∵2320170a a +-=,∴232017a a +=,∴22a a b +-=(2a 3a +)-(+a b )=2017-(-3)=2020即22a a b +-的值为2020.【点睛】本题考查了根与系数的关系与一元二次方程的解,把22a a b +-化成(2a 3a +)-(+a b )是解题的关键.14.B解析:B【解析】试题解析:连接AD ,∵BC 是切线,点D 是切点,∴AD ⊥BC ,∴∠EAF=2∠EPF=80°,∴S 扇形AEF =280?283609ππ=, S △ABC =12AD•BC=12×2×4=4, ∴S 阴影部分=S △ABC -S 扇形AEF =4-89π. 15.D解析:D【解析】【分析】根据已知图象可以得到图象与x 轴的交点是(-1,0),(2,0),又y >0时,图象在x 轴的上方,由此可以求出x 的取值范围.【详解】依题意得图象与x 轴的交点是(-1,0),(2,0),当y >0时,图象在x 轴的上方,此时x <-1或x >2,∴x 的取值范围是x <-1或x >2,故选D .【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x 轴的交点,然后由图象找出当y >0时,自变量x 的范围,注意数形结合思想的运用.16.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆A B而根据旋解析:24π【解析】【分析】根据整体思想,可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′,再利用扇形面积公式计算即可.【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋转的性质可知S半圆AB′=S半圆AB∴S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′而由题意可知AB=12,∠BAB′=60°即:S阴影=2 6012360π⋅⋅=24π故答案为24π.【点睛】本题考查了扇形面积的相关计算,根据整体思想求出表示阴影部分面积的方法,再用公式计算扇形的面积即可.17.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离18.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y=0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=解析:4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE,即可求解.【详解】令y=0,则:x=±1,令x=0,则y=2,则:OB=1,BD=2,OB=2,S阴影部分图形=S四边形BDFE=BD×OE=2×2=4.故:答案为4.【点睛】本题考查的是抛物线性质的综合运用,确定S阴影部分图形=S四边形BDFE是本题的关键.19.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二解析:(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差,据此即可列出方程.【详解】根据题意得:(x+1)2 -1=24,即:(x+1)2 =25.故答案为(x+1)2 =25.【点睛】本题考查了一元二次方程的应用——图形问题,解题的关键是明确图中不规则图形的面积计算方法.20.【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系列方程求解【详解】设此圆锥的底面半径为r根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr解得:r=1故答案为:1【点睛】本题考查了圆锥解析:【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr1203180π⨯=,解得:r=1.故答案为:1.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.21.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上解析:<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为<.22.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性解析:【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=55°,故答案为:55.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键. 23.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小解析:30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数.【详解】解:∵三角板是两块大小一样且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE´是△ABC的中线.24.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变解析:(-1010,10102)【解析】【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【详解】∵A点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2019(-1010,10102),故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.25.88π;【解析】【分析】(1)小狗活动的区域面积为以B为圆心10m为半径的圆以C为圆心6m为半径的圆和以A为圆心4为半径的圆的面积和据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心10为半解析:88π;5 2【解析】【分析】(1)小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4为半径的14圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的34圆,以A为圆心、x为半径的1 4圆、以C为圆心、10-x为半径的30360圆的面积和,列出函数解析式,由二次函数的性质解答即可.【详解】解:(1)如图,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4m为半径的14圆的面积和,∴S=34×π•102+14•π•62+14•π•42=88π;(2)如图,设BC=x ,则AB=10-x ,∴S=34•π•102+14•π•x 2+30360•π•(10-x)2 =π3(x 2-5x+250) =π3(x-52)2+325π4, 当x=52时,S 取得最小值, ∴BC=52. 故答案为:(1)88π;(2)52. 【点睛】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.三、解答题26.1【解析】【分析】把x=n 代入方程求出mn 2-4n 的值,代入已知等式求出m 的值即可.【详解】依题意,得2450mn n --=.∴245mn n -=.∵246mn n m -+=,∴56m +=.∴1m =.【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握运算法则是解本题的关键.27.(1)图见详解;(2)图见详解;(3)32π. 【解析】【分析】(1)利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案;(3)利用弧长公式计算即可得出结果.【详解】解:(1)如图示,△A 1B 1C 1为所求;(2)如图示,△A 2B 2C 2为所求;(3)∵△ABC 关于C 点顺时针旋转90°得到的△A 2B 2C 2,每个小正方形边长是1, 由题图可知,半径3BC =,根据弧长的公式得:2239036320BB . 【点睛】此题主要考查了平移变换、旋转变换,正确得出对应点位置和熟悉弧长公式是解题关键. 28.()1证明见解析;()2BEF 67.5∠=.【解析】【分析】()1由题意可知:CD CE =,DCE 90∠=,由于ACB 90∠=,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD ≌BCE ; ()2由ACD ≌()BCE SAS 可知:A CBE 45∠∠==,BE BF =,从而可求出BEF ∠的度数.【详解】()1由题意可知:CD CE =,DCE 90∠=,ACB 90∠=,ACD ACB DCB ∠∠∠∴=-,BCE DCE DCB ∠∠∠=-,ACD BCE ∠∠∴=,在ACD 与BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ACD ∴≌()BCE SAS ;()2ACB 90∠=,AC BC =,A 45∠∴=,由()1可知:A CBE 45∠∠==,AD BF =,BE BF ∴=,BEF 67.5∠∴=.【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.29.(1)相切,理由见解析;(2)DE=125. 【解析】【分析】(1)连接AD ,OD ,根据已知条件证得OD ⊥DE 即可;(2)根据勾股定理计算即可. 【详解】解:(1)相切,理由如下:连接AD ,OD ,∵AB 为⊙O 的直径,∴∠ADB=90°.∴AD ⊥BC .∵AB=AC ,∴CD=BD=12BC .∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得,==4.∵S ACD=12AD•CD=12AC•DE,∴12×4×3=12×5DE.∴DE=125.【点睛】本题主要考查直线与圆的位置关系,等腰三角形的性质、勾股定理等知识.正确大气层造辅助线是解题的关键.30.(1)20%;(2)每千克应涨价5元.【解析】【分析】(1)设每次下降的百分率为x,根据相等关系列出方程,可求每次下降的百分率;(2)设涨价y元(0<y≤8),根据总盈余=每千克盈余×数量,可列方程,可求解.【详解】解:(1)设每次下降的百分率为x根据题意得:50(1﹣x)2=32解得:x1=0.2,x2=1.8(不合题意舍去)答:每次下降20%(2)设涨价y元(0<y≤8)6000=(10+y)(500﹣20y)解得:y1=5,y2=10(不合题意舍去)答:每千克应涨价5元.【点睛】此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可.。
初三数学填空题练习题
初三数学填空题练习题填空题一:解下列方程:1. 3x + 7 = 22解:将方程两边同时减去7,得到:3x = 15再将方程两边同时除以3,得到:x = 5所以方程的解为 x = 5。
2. 2y + 5 = 13解:将方程两边同时减去5,得到:2y = 8再将方程两边同时除以2,得到:y = 4所以方程的解为 y = 4。
填空题二:计算下列算式的值:1. 4 + 7 x 5解:根据运算优先级,先计算乘法部分,得到:4 + 35 = 39所以算式的值为39。
2. 12 ÷ 4 + 3解:根据运算优先级,先计算除法部分,得到:3 + 3 = 6所以算式的值为6。
填空题三:根据给定的条件,填写下面的表格:条件:a = 3, b = 5| 数字 | a | b | a + b | a - b ||------|-----|-----|-------|-------|| 值 | 3 | 5 | 8 | -2 |填空题四:计算下列分式的值:1. (3/4) + (2/3)解:由于两个分式的分母不同,需要将它们的分母统一。
将3/4乘以3/3,将2/3乘以4/4,得到:(9/12) + (8/12) = 17/12所以分式的值为 17/12。
2. (5/6) - (1/3)解:由于两个分式的分母不同,需要将它们的分母统一。
将5/6乘以2/2,将1/3乘以2/2,得到:(10/12) - (2/12) = 8/12化简分式,得到:8/12 = 2/3所以分式的值为 2/3。
填空题五:解下列比例:1. 2:3 = 4:x解:根据比例的性质,可以得到:2/3 = 4/x交叉相乘,得到:2x = 12再将方程两边同时除以2,得到:x = 6所以比例的解为 x = 6.2. 6:y = 9:12解:根据比例的性质,可以得到:6/y = 9/12交叉相乘,得到:6 x 12 = 9y72 = 9y将方程两边同时除以9,得到:y = 8所以比例的解为 y = 8。
(完整word版)中考数学填空题专题训练
中考数学填空题专题训练1. 〔平方根,立方根〕①9 的平方根是; 16 的算术平方根是; 27 的立方根是。
② 25=; 3 8 =。
2. 〔因式分解〕① x 216② x 2 6x 9 ③ x 2xy3. 〔科学记数法〕①随着中国综合国力的提升,近来几年来全球学习汉语的人数不断增加.据报道,2005 年外国 学习汉语的学生人数已达38 200 000 人,用科学记数法表示为人. ②空气的密度为 0.001239 克 / 厘米 3,用科学记数法表示是克/ 厘米4. 〔自变量的取值范围〕①函数:1 中,自变量 x 的取值范围是______ .yx 1②函数 y = 2x 中,自变量 x 的取值范围是.5. 〔方程,不等式的解〕①方程 2x8 0的解是x y 10的解为②方程组y2x③分式方程1 1的解是.④方程 x 225 0 的解是 __________x 1⑤不等式 3x6 0的解集是.⑥ 不等式组2x 40 .3 x的解集为6. 〔分式的运算〕 ①计算:a 11 = .②化简 :a 1a 2 1 = .aaaa7. 〔多边形的内角和,外角和〕①八边形的内角和等于 度.②正 n 边形的内角和等于 540,那么 n . ③六边形的外角和等于度.④正 n 边形的每个外角均等于45°,那么 n .8.( 平均数,众数,中位数,极差,方差)①5 名同学目测同一本教科书的宽度时,产生的误差以下〔单位:cm 〕:2,2,11,那么这组数据的极差为 cm ., ,②小华的五次数学成绩分别是98、 62、 94、 98、 95,那么中位数是 __________.③初三年一班有 7 名同学参加参加学校举行的体育测试〔成绩单位:分〕,成绩分别是 87,90, 87, 89, 91, 88, 87。
那么它们成绩的众数是 。
④甲、乙两人进行射击比赛,在相同条件下各射击10 次,他们的平均成绩均为8 环,10 次射击成绩的方差分别是:S 甲22, S 乙21.2 ,那么,射击成绩较为牢固的是.⑤假设样本 1、 4、 2、5、 x 的平均数是 3,那么此样本的中位数为________.9.〔一次函数,二次函数,反比率函数〕①正比率函数y kx ( k0) 的图象经过原点、第二象限与第四象限,请写出吻合上述条件的k 的一个值:....②请任写一个图象在第一、三象限的反比率函数:...③反比率函数 y k.的图像经过点〔 2,3〕,那么kx④直线y x1不经过第象限.⑤将直线y 1 x向下平移 3 个单位所得直线的剖析式为 ___________________.33中,y随 x 的增大而⑥在一次函数y2x〔填“增大〞或“减小〞〕,当0x 5时,y的最小值为⑦函数y 3 x 2 2 4 ,当 x =时,函数取最大值为.⑧将抛物线y3( x2) 21向下平移 2 个单位,再向左平移 3 个单位,所得的抛物线的解析式为 ___________________.⑨写出一个极点在第二象限的二次函数的表达式:y.⑩如图,点P 在反比率函数的图象上,过P 点作 PA⊥ x 轴于 A 点,作PB⊥ y 轴于B 点,矩形OAPB的面积为9,那么该反比率函数的剖析式为.10.〔三角函数〕①在△ ABC中,假设∠ C=90°, AC=1, AB=5,那么 sinB=.②如图,在Rt △ ABC 中,∠ C=90°, AC=3,BC=4, 那么 AB=,sin A =.③如图,一架梯子斜靠在墙上,假设梯子到墙的距离AC =3米,cos BAC 3米.,那么梯子 AB 的长度为411.〔三角形〕①如图,在△ ABC中, AB=AC,∠ B=40°,那么∠ A=.②现有四条钢线,长度分别为〔单位:cm 〕7、6、3、2,从中取出三根连成一个三角形,这三根的长度可以为. 〔写出一种即可〕③若是两个相似三角形的相似比为 2 : 3 ,那么这两个三角形的面积比为.④等腰△ ABC的两边长分别为8 cm和 3 cm,那么它的周长为cm⑤如图, AB∥ CD, AC⊥ BC,垂足为C.假设∠ A=40°,那么∠BCD=度.⑥如图,在△ ABC中, AT 是中线,点G为重心,假设TG= 2, 那么 AG=12.〔网格纸〕①在右图方格纸中 ,△ ABC向右平移格后获取△ A1B1C1.②如图 , 将图中线段AB 绕点 A 按顺时针方向旋转90°后,获取线段AB′,那么点B′的坐标是;在整个旋转过程中,线段AB所扫过的面积为〔结果保存〕.③如图方格纸中,ABC 边长的值是无理数的有____个④如图,在平面直角坐标系中,一条圆弧经过正方形网格格点A、 B、C,假设点 A的坐标为 1, 2 ,那么该圆弧所在圆的圆心坐标为________.⑤如图,在平面直角坐标系中,将△ABC 绕 A 点逆时针旋转90°后, B 点对应点的坐标为________.13.〔圆锥〕①圆锥的底面半径为4cm,高为 3cm,那么这个圆锥的侧面积为__________cm2.②圆锥的底面半径为10,侧面积是300π,那么这个圆锥的母线长为③圆锥底面周长为2米,母线长为 4 米,那么它的侧面张开图的面积为平方米④圆锥的底面半径长为5,侧面张开后所得的扇形的圆心角为120°,那么该圆锥的母线长等于.⑤如图,两同心圆的圆心为O ,大圆的弦 AB 切小圆于 P ,两圆的半径分别为 2 和1,那么弦长 AB =;假设用阴影局部围成一个圆锥,那么该圆锥的底面半径为. ( 结果保存根号)14.〔弧长,扇形面积〕①如图,正方形ABCD的边长为3, E 为 CD边上一点, DE=1.△ ADE绕着A 点逆时针旋转后与△ABF复合,连结EF,那么① EF=;②点E从开始到旋转结束所经过的路径长为.ADEFB C②如,若是 1 的正六形ABCDEF着点 A 旋60°后与正六形 AGHMNP重合,那么点程中,所的路径B 的点是点〔果保存,点 E 在整个旋〕 .③:如,等ABC 和正方形ACPQ 的都1,在形所在的平面内,以点 A 旋中心将正方形ACPQ 沿逆方向旋度,使AQ 与AB 重合,(1) 旋角_________; (2)点 P 从开始到束所路径的___________.④两同心,大半径3,小半径1,阴影局部面〔果保存〕.15.〔完满平方公式〕①0 x 1.(1)假设 x2 y 6 ,y的最小是;(2).假设x2y23, xy1,x y =.②直y x2与函数322y ba b的是.x的象订交于点〔 a ,〕,③假设 a, b 是正数,a b1, ab 2 ,a b=.16.〔律研究〕①正方形 OA 1B1C1、A1A 2B 2C2、A 2A3 B3C3⋯⋯按如放置,其中点 A 1、A 2、A 3⋯⋯在 X正半上,点 B 1、B 2、 B 3⋯⋯在直 y=-x+2 上,依次推⋯⋯,点 A 1的坐是点 A n的坐是②如〔1〕,小正方形 ABCD 的面 1,把它的各延一倍获取新正方形A1B1C1D 1;把正方形 A1B1 C1D 1按原法延一倍获取正方形A2B2C2D2〔如〔2〕〕;正方形A2B2C2D2的面 __________ ,以此下去··,正方形A n B n C n D n的面 __________。
中考数学填空题专项练习经典习题(含答案解析)
一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( )A .()1119802x x +=B .()1119802x x -= C .()11980x x +=D .()11980x x -= 2.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2B .1C .0D .﹣1 3.一元二次方程的根是( ) A .3x = B .1203x x ==-, C .1203x x ==, D .1203x x ==,4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .2 5.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点6.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540 D .(32﹣x )(20﹣x )+x 2=5407.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( )A .13B .14C .15D .168.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )A .59B .49C .56D .139.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根10.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -3 11.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >4 12.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( )A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 13.如图,AOB 中,30B ∠=︒.将AOB 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒ 14.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <1 15.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D.230++-=有两个不相等的实数根ax bx c二、填空题16.若直角三角形两边分别为6和8,则它内切圆的半径为_____.17.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.18.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1_____y2.(用“>”、“<”、“=”填空)19.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.20.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.21.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.22.已知二次函数y=a(x+3)2﹣b(a≠0)有最大值1,则该函数图象的顶点坐标为_____.23.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将BD绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为_____.24.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y =−140x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米.(精确到1米)25.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_________.三、解答题26.用你喜欢的方法解方程(1)x 2﹣6x ﹣6=0(2)2x 2﹣x ﹣15=027.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m 的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.28.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表:x…1-12-0123…y (35)401-0m…(1)直接写出此二次函数的对称轴;(2)求b的值;(3)直接写出表中的m值,m= ;(4)在平面直角坐标系xOy中,画出此二次函数的图象.29.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.30.在平面直角坐标系xOy中,抛物线y=a2x-4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,-32a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.D4.D5.D6.B7.A8.B9.A10.B11.B12.A13.D14.D15.C二、填空题16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小20.(2)【解析】由题意得:即点P的坐标21.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1男2)(男1女122.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y23.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB =2BC∠ACB=90°弓形BD与弓形AD完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB =8AC=4∴阴影部24.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平25.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,∴全班共送:(x-1)x=1980,故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.2.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A .【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.3.D解析:D【解析】x 2−3x=0,x(x−3)=0,∴x 1=0,x 2=3.故选:D.4.D解析:D【解析】【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--, 利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意.【详解】解:由韦达定理,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--,所以,()2142(2)3k k ----+=-,化简,得:24k =,解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根,所以,△=()214(2)k k ---+=227k k +-〉0,k =-2不符合,所以,k =2故选:D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键. 5.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 6.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x ,根据题意得:(32-x )(20-x )=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.7.A解析:A【解析】【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.B解析:B【解析】【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49. 【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.9.A解析:A 【解析】 【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可. 【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根, 1+8﹣c =0,解得c =9, ∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0, ∴方程有两个不相等的实数根. 故选:A . 【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.10.B解析:B 【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y =(x +1)2−x 2不含二次项,故C 错误;D. y =x 3+2x −3是三次函数,故D 错误; 故选B.11.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.12.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.13.D解析:D【解析】【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得∠'的度数.A CO【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.14.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.C解析:C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.二、填空题 16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆解析:2-1 【解析】 【分析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8是直角边,则该三角形的斜边的长为:226+8=10,∴内切圆的半径为:6+810=22-;若8是斜边,则该三角形的另一条直角边的长为:228627=-,∴内切圆的半径为:6+278=712--.故答案为2或7-1.【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上解析:<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小. 【详解】由二次函数y=x 2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2, ∵1<x 1<2,3<x 2<4,∴A 点横坐标离对称轴的距离小于B 点横坐标离对称轴的距离, ∴y 1<y 2. 故答案为<.19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线可得△E′CB 是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE 旋转的度数【详解】解:∵三角板是两块大小解析:30 【解析】 【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线,可得△E′CB 是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE 旋转的度数. 【详解】解:∵三角板是两块大小一样且含有30°的角, ∴CE′是△ACB 的中线, ∴CE′=BC =BE′, ∴△E′CB 是等边三角形, ∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°, 故答案为:30. 【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE ´是△ABC 的中线.20.(2)【解析】由题意得:即点P 的坐标解析: ,2). 【解析】由题意得:441a a =⇒= 2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.21.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1男2)(男1女1解析:2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y解析:(﹣3,1)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),即可求解.【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1,∴﹣b=1,根据二次函数的顶点式方程y=a(x+3)2﹣b(a≠0)知,该函数的顶点坐标是:(﹣3,﹣b),∴该函数图象的顶点坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了二次函数的性质,解答该题时,需熟悉二次函数的顶点式y=a (x-h )2+k 中的h 、k 所表示的意义.23.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB =2BC∠ACB=90°弓形BD 与弓形AD 完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB=8AC =4∴阴影部解析:83π. 【解析】 【分析】 根据题意,用ABC 的面积减去扇形CBD 的面积,即为所求.【详解】 由题意可得,AB =2BC ,∠ACB =90°,弓形BD 与弓形AD 完全一样, 则∠A =30°,∠B =∠BCD =60°, ∵CB =4,∴AB =8,AC =,2604360π⨯⨯-=83π,故答案为:83π. 【点睛】本题考查不规则图形面积的求法,属中档题.24.85【解析】由于两盏EF 距离水面都是8m 因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平解析:8√5 【解析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就 是直线y=8与抛物线两交点的横坐标差的绝对值. 故有−140x 2+10=8,即x 2=80,x 1=4√5,x 2=−4√5.所以两盏警示灯之间的水平距离为:|x 1−x 2|=|4√5−(−4√5)|=8√5≈18(m )25.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:解析:56【解析】 【分析】 【详解】解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是56故答案为:56.三、解答题 26.(1)x 1=x 2=32)x 1=﹣2.5,x 2=3 【解析】 【分析】(1)先求出b 2﹣4ac 的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】 x 2﹣6x ﹣6=0, ∵a=1,b=-6,c=-6,∴b 2﹣4ac =(﹣6)2﹣4×1×(﹣6)=60,x =632±=x 1=x 2=3 (2)2x 2﹣x ﹣15=0, (2x +5)(x ﹣3)=0, 2x +5=0,x ﹣3=0, x 1=﹣2.5,x 2=3. 【点睛】此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.27.(1)60,10;(2)96°;(3)1020;(4)23【解析】 【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案; (4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可. 【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒, 故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为:1020; (4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种, ∴恰好抽到1名男生和1名女生的概率为82123=. 【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.28.(1)对称轴x =1;(2)b=-2;(3)m=3;(4)见解析 【解析】 【分析】(1)根据图表直接写出此二次函数的对称轴即可; (2)图象经过点(1,-1),代入求b 的值即可;(3)由题意将x=3代入解析式得到并直接写出表中的m 值; (4)由题意采用描点法画出图像即可. 【详解】解:(1)观察图像直接写出此二次函数的对称轴x=1.(2)∵二次函数2y x bx =+的图象经过点(1,-1),∴2b =-.(3)将x=3代入解析式得m=3.(4)如图.【点睛】本题考查了二次函数的图象和性质,根据二次函数的图象和性质分析是解此题的关键.29.(1)相切,证明见解析;(2)62.【解析】【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=OB CDEB DE=,推出348CD=,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)设⊙O的半径为r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan ∠E=OB CD EB DE=, ∴348CD =, ∴CD=BC=6,在Rt △ABC 中,=【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键. 30.(1)A (0,0),B (4,0);(2)①Q 点的纵坐标为3+3a ,②符合题意的a 的取值范围是 -1≤a <0.【解析】【分析】(1)令y =0,则a 2x -4ax =0,可求得A 、B 点坐标;(2)①设直线PC 的解析式为,将点P (1,-32a ),C (2,1)代入可解得31,13.2k a b a =+=-- ()3113.2y x a =+-- 由于Q 点的横坐标为4,可求得Q 点的纵坐标为3+3a ②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0,可求出a 的取值范围.【详解】(1)令y =0,则a 2x -4ax =0.解得 120, 4.x x ==∴ A (0,0),B (4,0)(2)①设直线PC 的解析式为.y kx b =+将点P (1,-32a ),C (2,1)代入上式, 解得31,13.2k ab a =+=-- ∴y=(1+32a)x-1-3a. ∵点Q 在直线PC 上,且Q 点的横坐标为4,∴Q 点的纵坐标为3+3a②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0.∴a≥-1.∴符合题意的a的取值范围是 -1≤a<0.图1 图2 图3【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.。
中考数学填空题专项及答案(共三十套)
2013 年中考数学填空题专项训练(共三十套)一、试题说明本试题均按照中考要求设计,覆盖中考数学填空题所有题型及考点,难度较中考略难。
每套试题最上方均配备标准答题卡,试题最后配备参考答案。
本试题是众享填空题专项训练的训练载体,是课程《2013 中考数学真题演练(一)分题型训练》第 3 讲、第4 讲、第5 讲的讲义及作业。
二、使用方法1.建议与众享在线课程《2013 中考数学真题演练(一)分题型训练》配套使用。
重在对填空题进行中考适应性训练,熟悉中考填空题题型结构,掌握填空题答题的一整套标准动作,确保中考考试中,填空题答案准确、完整、规范,会做的拿满分。
2.三十套题不一定要全部做完,关键是每做一套都按训练要求做,并能认真总结考点,分析自己的问题,积极解决。
针对自己不会的题,务必查找资源查漏补缺,尤其是超过 3 分钟无思路的题型;对自己会做、却屡次出错的题型务必借助资源找到根本原因,对症解决。
(课本、老师、同学、众享在线课程都是您可以利用的资源)3.当考试一样,限时做题,模拟考试场景,提升实战能力。
建议限时 8 分钟完成所有题目及答题卡的填写,最多10 分钟。
为更好的模拟中考考场情境,建议您打印使用。
中考数学填空题专项训练(一)二、填空题(每小题 3 分,共 21 分)9.写出一个大于21 的负整数.BD∥AE,∠DBC=20 °,则∠CAE 的10.如图,在△ ABC 中,∠ C=90 °,若y度数是.ABD BCE A第 10题图第11题图11. 如图,一次函数 y1= ax+ b(a≠ 0)与反比例函数y2k的图象交于A(1,4),B(4,1)两点,若使y1> y2,x则 x 的取值范围是.12.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的五张卡片中任意拿走三张,使剩下的卡片从左到右连成一个两位数,该数就是他猜的价格.如果商品的价格是50元,那么他一次就能猜中的概率是.A DM O N35560CB第12题图第13题图13. 如图所示,正方形 ABCD 内接于⊙ O,直径 MN ∥AD,则阴影部分面积占圆面积的.14. 如图,在五边形 ABCDE中,∠ BAE=125 °,∠B= ∠E=90 °,AB= BC,AE= DE,在 BC,DE 上分别找一点 M ,N,使得△ AMN 周长最小时,∠ AMN +∠ ANM 的度数为.A EB NMCD 15.已知□ABCD 的周长为 28,自顶点 A 作 AE⊥DC 于点 E,AF⊥BC 于点 F.若 AE=3 , AF=4 ,则CE- CF=.中考数学填空题专项训练(二)二、填空题(每小题 3 分,共 21 分)9.分解因式: x34x212x=.10.如图,∥,C 是BD上的点,且AB= ,∠ACD=110 °,则AE BD BC∠=.EABE AB C D第 10题图第11题图11.如图,现有圆心角为 90°的一个扇形纸片,该扇形的半径是50cm .小红同学为了在圣诞节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是.12.有三张正面分别标有数字3,4,5 的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽取的卡片上数字之差的绝对值大于 1 的概率是.13.两个全等的梯形纸片如图 1 摆放,将梯形纸片 ABCD 沿上底 AD 方向向右平移得到图2.已知 AD=4 ,BC=8 ,若阴影部分的面积是四边形A′B′CD 的面积的1,则图 2 中平移的距离 A′A=.3A(A')D(D')A' A D'DB(B')C(C')B'B C'C图1图214.在三角形纸片ABC 中,已知∠ ABC=90 °,AB=6 , BC=10 .过点 A 作直线 l 平行于 BC,折叠三角形纸片 ABC,使直角顶点 B 落在直线 l 上的 T 处,折痕为 MN .当点 T 在直线 l 上移动时,折痕的端点 M,N 也随之移动.若限定端点 M , N 分别在 AB,BC 边上移动,则线段 AT 长度的最大值与最小值之和为.15A, B 的坐标分别是( 1,0)(0,2),顶点C,D在双曲线y k( x>0)上,边AD.如图,□ABCD的顶点A,Bx交 y 轴于点 E,且四边形 BCDE的面积是△ ABE面积的5倍,则 k=.yDCEA OxB中考数学填空题专项训练(三)二、填空题(每小题 3 分,共 21 分)9.把命题“如果直角三角形的两直角边长分别为a,b,斜边长为 c,那么 a2+ b2=c2”的逆命题改写成“如果⋯⋯,那么⋯⋯”的形式:.10.根据如图所示的计算程序,若输入x 的值为 64 ,则输出结果为.否则输入非负数 x若结果小于0取算术平方根除以2减去3输出结果11.如图,在△ ABC 中,∠ A= α.∠ ABC 与∠ ACD 的平分线交于点 A1,得∠ A1;∠ A1BC 与∠ A1 CD 的平分线交于点 A2,得∠ A2;⋯⋯;∠A2012BC 与∠A CD 的平分线交于点 A ,得∠ A2013.则∠ A=.201220132013AyA1A2P1P2B C DO1x A A2第 11题图第13题图12.已知圆锥的高为 12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为..如图,△11,△ 2 1 2 是等腰直角三角形,点1, 2 在函数y 4 (x>0)的图象上,斜边OA1 ,13P OA P A A P P xA1A2都在 x 轴上,则点 A2的坐标是.14.在 Rt△ACB 中,∠ ACB=90 °, AC=6 ,BC=8,P,Q 两点分别是边 BC,AC 上的动点,将△ PCQ 沿15.一次数学课上,老师请同学们在一张长为18 厘米,宽为16 厘米的矩形纸板上,剪下一个腰长为10 厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其他两个顶点在矩形的边上,则剪下的等腰三角形的面积为平方厘米.AC'QC P B中考数学填空题专项训练(四)二、填空题(每小题 3 分,共 21 分).3-1=.92742810.如图,在平行四边形ABCD 中, DB= DC,∠ A=65 °,CE⊥BD 于点 E,则∠BCE=.第10题图D CD C第 11题图11.如图,菱形 ABCD 的边长为 2cm ,E∠A=60 °.弧 BD 是以点 A 为圆心、A B A BAB 长为半径的弧,弧 CD 是以点B 为圆心、 BC长为半径的弧.则阴影部分的面积为.12.哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜,如果和为偶数,则哥哥胜.该游戏对双方(填“公平”或“不公)平.”13.如图,在等边三角形ABC 中,点 O 在 AC 上,且 AO=3 ,CO=6 ,点 P 是 AB 上一动点,连接OP,将线段 OP 绕点 O 逆时针旋转 60°,得到线段 OD.要使点 D 恰好落在 BC 上,则 AP 的长是.14.如图,直线y3x b 与y轴交于点A,与双曲线yk在第一象限交于 B,C 两点,且 AB·AC=4 ,3x则 k=.yCA B DCOO x A PB15.小明尝试着将矩形纸片ABCD(如图 1,AD> CD)沿过 A 点的直线折叠,使得 B 点落在 AD 边上的点F 处,折痕为 AE(如图 2);再沿过 D 点的直线折叠,使得 C 点落在 DA 边上的点 N 处, E 点落在AE 边上的点 M 处,折痕为 DG(如图 3).如果第二次折叠后, M 点正好在∠ NDG 的平分线上,那么矩形 ABCD 长与宽的比值为.A D A F D A N DMGB C B E C B E C图1图2图3中考数学填空题专项训练(五)二、填空题(每小题 3 分,共 21 分)9.请写出一个二元一次方程组x2,使它的解是.y110.如图,在△ABC 中,⊥于,⊥于,与相交于点,若=,则∠=.AD BC DBEAC E AD BE F BF AC ABCBAF E O EDB DC A F C第10题图第13题图11.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,那么圆锥的母线长是.12.在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字1,2,4,21 ,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P 的横坐标,且点 P31图象上,则点 P 落在正比例函数 y= x 图象上方的概率是在反比例函数 y.x.如图,在等边三角形ABC 中, D是 BC 边上的一点,延长 AD 至E,使 AE AC,∠ BAE 的平分线交13=△ABC 的高BF于点O,则 tan∠=.AEO14.如图,将矩形纸片 ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若 EH=3厘米, EF=4 厘米,则矩形 ABCD 的面积为.A H D y y=x 2CE GAB F COHx第14题图第15题图15.如图,在第一象限内作射线OC,与 x 轴的夹角为 30°,在射线 OC 上取一点 A,过点 A 作 AH⊥x 轴于点 H.在抛物线 y= x2(x>0 )上取一点 P,在 y 轴上取一点 Q,使得以 P,O,Q 为顶点的三角形与△ AOH 全等,则符合条件的点 A 的坐标是.中考数学填空题专项训练(六)二、填空题(每小题 3 分,共 21 分)9.计算:25- (- 1)2=.10.如图,梯形 ABCD 中,AD∥ BC,DC⊥BC,将梯形沿对角线 BD 折叠,点 A 恰好落在 DC 边上的点 A′处,若∠ A′BC=15 °,则∠ A′BD 的度数为.yB'C'A D RCA'B A BC O P M x Q第 10题图第11题图第13题图11.如图,△ ABC 是等腰直角三角形,∠ ACB=90 °,BC= AC,把△ ABC 绕点 A 按顺时针方向旋转 45°后得到△ ′′,若=2 ,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是_________AB C AB(结果保留π).12.有 A,B 两个黑布袋, A 布袋中有两个完全相同的小球,分别标有数字 1 和 2.B 布袋中有三个完全相同的小球,分别标有数字 -2 ,-3和-4 .小明从 A 布袋中随机取出一个小球,记其标有的数字为 x,再从 B 布袋中随机取出一个小球,记其标有的数字为y,则满足 x+ y=-2 的概率是.13.如图,直线 y= kx-2 (k>0)与双曲线 yk在第一象限内的交点为 R,与 x 轴、 y 轴的交点分别为 P,xQ.过 R 作 RM⊥ x 轴,垂足为 M ,若△ OPQ 与△ PRM 的面积相等,则 k 的值为.14.已知菱形 ABCD 的边长是 8,点 E 在直线 AD 上,若 DE=3 ,连接 BE,与对角线 AC 相交于点 M,则MCAM的值是.15.在矩形 ABCD 中,AB=3 ,AD=4 ,将其沿对角线 BD 折叠,顶点 C 的对应位置为 G(如图 1),BG 交AD 于 E;再折叠,使点 D 落在点 A 处,折痕 MN 交 AD 于 F,交 DG 于 M ,交 BD 于 N,展开后得图 2,则折痕 MN 的长为.GGMAEDAEFDNBC B图1图2中考数学填空题专项训练(七)二、填空题(每小题 3 分,共 21 分) 9. 方程 x 2 2 x 的解为 .,则 AB.如图,在菱形 ABCD 中,点 E ,F 分别是 BD ,CD 的中点,若 EF.10=6cm =____________cmADE1346F25BC甲乙第10题图第 11题yD C图E11.王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分P别分成 3 等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后指针所指的两个数字之和为 7 时,OxAB王红胜;数字之和为 8 时,刘芳胜.那么这二人中获胜可能性较大的是.12.如图,在平面直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与 x 轴平行,点 P(3a ,a)是反比例函数 yk( k>0 )的图象与正方形的一个交点.若图中阴影部分的面积等于9,则该反x比例函数的解析式为 .13.如图所示,正方形 ABCD 中,E 是 AD 边上一点,以 E 为圆心、 ED 为半径的半圆与以 B 为圆心、 BA为半径的圆弧外切,则 sin ∠EBA 的值为 .14.如图,正方形 ABCD 与正三角形 的顶点 A 重合,将△ AEF 绕顶点 A 旋转,在旋转过程中,当 =AEF BE DF 时,∠ BAE 的大小可以是 .yC BB ADEEFO A x C D第 14题图第15题图15.如图,在平面直角坐标系中,矩形ABCO 的边 OA 在 x 轴上,边2),将矩形沿对角线AC 翻折,点 B 落在点 D 的位置,且 AD 交.OC 在 y 轴上,点 B 的坐标为 (1,y 轴于点 E.那么点 D 的坐标为中考数学填空题专项训练(八)二、填空题(每小题 3 分,共 21 分)9.9 -2tan45 °=.C 10.如图所示,四边形 ABCD 中, AE,AF 分别是 BC,CD 的垂直平分线,∠EAF=80 °,∠ CBD=30 °,则∠ ABC 的度数为.FE11.数学老师布置 10 道选择题作业,批阅后得到如下统计表.根据表中数据可D知,这 45 名同学答对题数组成的样本的中位数是题.A B答对题数78910人数41816712.二次函数y (x 2)29的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有4个.(提示:必要时可利用下面的备用图画出图象来分析)yO x图1图2第12题图第13题图13.如图 1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图 2 所示的一个圆锥,则圆锥的高为.14.如图,点 A1,A2,A3,A4在射线 OA 上,点 B1,B2, B3在射线 OB 上,且 A1 B1∥A2B2∥ A3 B3,A2B1∥A3B2∥A4 B3.若△ A2 B1B2,△ A3 B2B3的面积分别为 1,4,则图中三个阴影三角形面积之和为.BA B'DB3B24E PB11O A1A2 A3A4 A B C第 14题图第15题图15.如图,在矩形纸片 ABCD 中, AB=3,BC=5 ,将纸片折叠,使点 B 落在边 AD 上的点B'处,折痕为.在折痕CE 上存在一点P到边AD的距离与到点B的距离相等,则此相等距离为.CE中考数学填空题专项训练(九)二、填空题(每小题 3 分,共 21 分)9. 在数轴上与表示 3 的点的距离最近的整数点所表示的数是.10. 如图所示,已知O 是四边形ABCD 内一点, OB= OC= OD ,∠ BCD= ∠ BAD=75 °,则∠ ADO+ ∠ABO=.D CyOABABO Cx第10题图 第13题图11. 已知在 △ABC 中,AB=6,AC=8 ,∠A=90 °,把 Rt △ABC 绕直线 AC 旋转一周得到一个圆锥,其表面积为 S 1 ,把 Rt △ABC 绕直线 AB 旋转一周得到另一个圆锥,其表面积为S 2 ,则 S 1:S 2 等于 .12. 有四张正面分别标有数字 -3 ,0,1,5 的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张, 将该卡片上的数字记为 a ,则使关于 x 的分式方程1ax 21x 22x有正整数解的概率为.y 4 xy ky 4 x9y k13. 如图,直线3与双曲线x( x >0 )交于点 A .将直线3向右平移 2 个单位后, 与双曲线x(x >0 )AO2交于点 B ,与 x 轴交于点 C ,若BC,则 k =_____.14. 如图,在等腰 Rt △ ABC 中,∠ A=90 °,AC=9 ,点 O 在 AC 上,且 AO=2 ,点 P 是 AB 上一动点,连接 OP ,将线段 OP 绕点 O 逆时针旋转 90°,得到线段 OD ,要使点 D 恰好落在 BC 上,AP 的长度为.CA DDPOA PB B M C第 14题图第15题图15.如图所示,在梯形 ABCD中,AD∥ BC,∠ ABC=90°,AD= AB=6,BC=14,点 M 是线段 BC 上一定点,且MC=8.动点P 从 C 点出发沿 C→ D→A→ B 的路线运动,运动到点 B 停止.在点 P 的运动过程中,使△ PMC 为等腰三角形的点P有个.中考数学填空题专项训练(十)二、填空题(每小题 3 分,共 21 分)9.计算:13 27=.3210.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于.A'30°D AA D CE30°B C C'B A第10题图第11题图B C 11.如图,将△ABC 绕点 B 逆时针旋转到△A′BC′,使 A,B,C′在同一直线上,若∠ BCA=90 °,∠ BAC=30 °,=4cm ,则线段AC 扫过的面积是.AB12.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a,再由乙猜甲刚才所想数字,把乙所猜数字记为 b,且 a,b 分别取 0,1,2,3,若 a,b 满足 |a- b| 1,则称甲、乙两人“心有灵犀”.现≤任意找两人玩这个游戏,得出“心有灵犀”的概率为.13.如图,已知 AB=12 ,AB⊥BC 于点 B,AB⊥ AD 于点 A,AD=5, BC=10 .若点 E 是 CD 的中点,则AE 的长是.14.如图,正方形 OABC 的面积是 4,点 B 在反比例函数 y k( k>0 ,x<0 )的图象上.若点 R 是该反x比例函数图象上异于点 B 的任意一点,过点 R 分别作 x 轴、 y 轴的垂线,垂足分别为M,N,从矩形OMRN 的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为,则当 = (S S m m为常数,且 0< m<4)时,点 R 的坐标是.yyA Mx COB CRN OB x第14题图第 15题图15.已知:如图,△OBC 是直角三角形, OB 与 x 轴正半轴重合,∠ OBC=90 °,且 OB=1 ,BC=3,将△OBC 绕原点 O 逆时针旋转°,再将其各边扩大为原来的m 倍,使 OB111,将OB1 160=OC,得到△OB C△2122,⋯⋯,C 绕原点 O 逆时针旋转 60°,再将其各边扩大为原来的m 倍,使 OB = OC ,得到△OB C如此继续下去,得到△OB C,点 C的坐标是.中考数学填空题专项训练(十一)二、填空题(每小题 3 分,共 21 分)9.计算:2sin30°-16 =.10.如图, AD 是△ABC 的中线,∠ ADC=60 °,BC=6 ,把△ABC 沿直线 AD 折叠,点 C 落在点 C′处,连接 BC′,那么 BC′的长为.yAB A BC′A OD E60°C C OxB D C第 10题图第12题图第14题图11.甲、乙两名同学同时从学校出发,去 15 千米处的景区游玩,甲比乙每小时多行 1 千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?若设乙每小时行x 千米,则根据题意列出的方程是.12. 如图,有一直径为 4 的圆形铁皮,要从中剪出一个圆心角为60°的最大扇形 ABC.那么剪下的扇形ABC(阴影部分)的面积为.13. 在 4 张卡片上分别写有1~4 的整数,随机抽取一张后不放回,再随机抽取一张,A EDE4 的概率是那么抽取的两张卡片上的数字之和等于.Mk的第二象限的分支上, AB⊥ y 轴于点 B,点 C 在 x 轴负G 14. 如图,点 A 在双曲线yxB C B N半轴上,且 OC=2AB,点 E 在线段 AC 上,且 AE=3 EC,点 D 为 OB 的中点,若△ADE 的面积为 3,则 k 的值为.15. 如图,矩形纸片ABCD 中,=8cm ,AD=6cm ,按下列步骤进行裁剪和拼图:AB第一步:如图 1,在线段 AD 上任意取一点 E,沿 EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图 2,沿三角形 EBC的中位线 GH 将纸片剪成两部分,并在线段GH 上任意取一点M,在线段 BC 上任意取一点 N,沿 MN 将梯形纸片 GBCH 剪成两部分;第三步:如图 3,将 MN 左侧纸片绕 G 点按顺时针方向旋转180°,使线段 GB 与 GE 重合,将 MN 右侧纸片绕 H 点按逆时针方向旋转180°,使线段 HC 与 HE 重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值与最小值之和为.中考数学填空题专项训练(十二)二、填空题(每小题 3 分,共 21 分)9.数轴上 A,B 两点对应的实数分别是 2 和 2,若点 A 关于点 B 的对称点为点 C,则点 C 所对应的实数为.10.如图,是我们生活中经常接触的小刀,刀柄的外形是一个直角梯形(下底挖去一个小半圆),刀片上、下是平行的,转动刀片时会形成∠ 1 和∠ 2,则∠1+ ∠2=.y C1B2AO 1x第10题图第13题图11.将半径为 10,弧长为 12π的扇形围成圆锥(接缝忽略不计),那么圆锥母线与圆锥高的夹角的余弦值是.12. 已知(,)是平面直角坐标系中的点,其中a 是从 1,2,3 三个数中任取的一个数,b是从 1,2,M a b3,4 四个数中任取的一个数.定义“点 M(a,b)在直线 x+ y= n 上”为事件 Q ( 2 n≤7,n 为整数),n≤则当 Q n的概率最大时, n 的所有可能的值为.13.如图所示, Rt△ ABC 在第一象限,∠ BAC=90 °,AB= AC=2 ,点 A 在直线 y= x 上,且点 A 的横坐标为1,AB∥ x 轴, AC∥y 轴.若双曲线 yk (k≠0)与△ABC有交点,则k的取值范围是.x14.如图,将边长为 12cm 的正方形 ABCD 折叠,使得 A 点落在边 CD 上的 E 点,然后压平得折痕 FG,若 GF 的长为 13cm,则线段 CE的长为.FA DyAE C FO D E B x第 14题图第15题图15.如图,点 A 的坐标为 (1,1),点 C 是线段 OA 上的一个动点(不与 O,A 两点重合),过点 C 作 CD⊥x 轴,垂足为 D,以 CD 为边在右侧作正方形 CDEF.连接 AF 并延长交 x 轴的正半轴于点 B,连接,若以,,F 为顶点的三角形与△OFE相似,则点B的坐标是.OF B E中考数学填空题专项训练(十三)二、填空题(每小题 3 分,共 21 分)9.分解因式:3m2-6 mn+3 n2=.10.如图,计划把河 AB 中的水引到水池 C 中,可以先作 CD⊥AB,垂足为 D,然后沿 CD 开渠,则能使所开的水渠最短,这种方案的设计依据是.a cA D BdA BbCe 第10题图第11题图11. 已知电路AB 是由如图所示的开关控制,闭合,,,,e五个开关中的任意两个,则使电路形a b c d成通路的概率是.12. 已知圆锥的底面积和它的侧面积之比为1,则侧面展开后所得扇形的圆心角的度数是.413. 如图, A,B 是一次函数y x 1图象上的两点,直线AB与x轴交于点P,且PA1,已知过 A点PB2的反比例函数为 y 2,则过 B 点的反比例函数为.y x14. 如图,将矩形纸片 ABCD 放置在平面直角坐标系中,已知A(-9 ,1),B(-1 ,1),B(-1 ,7),将矩形纸片沿AC 折叠,点B落在点E处,AE交CD于点,则点FC F APx 的坐标为OyC ED CE FFA Bx GO A D B第14题图第15题图15.如图,等边三角形 ABC 中, D,E 分别为 AB,BC 边上的动点,且总使 AD= BE,AE 与 CD 交于点 F,AG⊥CD 于点 G,则FG的值是.AF中考数学填空题专项训练(十四)二、填空题(每小题 3 分,共 21 分)3x 2 y109.方程组的解是.x 2 y 610.如图,在△ABC 中, AB= AC,CD 平分∠ ACB,交 AB 于点 D, AE∥DC,交 BC 的延长线于点 E.若∠E=36 °,则∠ B=度.yAB CPDDB C E O A x第10题图第13题图11.有 4 张背面相同的扑克牌,正面数字分别为 2,3,4,5.若将这 4 张扑克牌背面向上洗匀后,从中任意抽取一张,放回后洗匀,再从中任意抽取一张,则抽取的这两张扑克牌正面数字之和是 3 的倍数的概率为.12.为参加毕业晚会,小敏用圆心角为 120°,半径为 20cm 的扇形纸片围成一顶圆锥形的帽子,若小敏的头围约 60cm,则她戴这顶帽子大小合适吗?.(填“合适”或“不合适”)13. 如图,双曲线y1 =1( >0),4(>0 ),点P为双曲线4上的一点,且⊥轴于点,x y2 =x y2 =PA x Ax x1xPB⊥ y 轴于点 B,PA, PB 分别交双曲线y1=于 D,C 两点,则△ PCD 的面积为.x14.如图,正方形 ABCD 的边长为 4,M , N 分别是 BC,CD 上的两个动点,且始终保持 AM ⊥MN .当BM=时,四边形ABCN的面积最大.A D13N33374315 23917 5第14题图第15题图15.一个自然数的立方可以分裂成若干个连续奇数的和,例如:23,33和 43分别可以按如图所示的方式“分裂”出2 个、3 个和4 个连续奇数的和,即 23=3+5 ,33=7+9+11 ,43=13+15+17+19 ,⋯,若 63也按照此规律进行“分裂” ,则“ 分裂” 出的奇数中,最大的那个奇数是.中考数学填空题专项训练(十五)二、填空题(每小题 3 分,共 21 分)9.写出一个在实数范围内能用平方差公式分解因式的多项式:.10.如图,在△ABC 中, =,将△ABC绕点C顺时针旋转 180°得到△,连接,.当∠AB AC FEC AE BFACB为度时,四边形 ABFE为矩形.B AB180°A E ECF DBFC O A 第 10题图第11题图第12题图11.如图所示, A,B 是边长为 1 的小正方形组成的 5×5 网格上的两个格点,在格点中任意放置点好能使△ABC 的面积为 1 的概率是.12.如图, Rt△ABC 中,∠ ACB=90 °,∠ B=30 °,AB=12cm ,以 AC 为直径的半圆 O交 AB 于点 D,点 E 是 AB 的中点, CE交半圆 O 于点 F,则图中阴影部分的面积为.13. 如图,以等腰 Rt△ ABC 的斜边 AB 为边作等边△ABD,C,D 在 AB 的同侧,连B接 DC,以 DC 为边作等边△ DCE,B,E 在 CD 的同侧.若 AB= 2 ,则BE=.14.如图,△ABC 的外角∠ ACD 的平分线 CP与内角∠ ABC 的平分线 BP 交于点 P,若∠ BPC=40 °,则∠ CAP=.yy=xA PP C,恰ACD E第 14题图第15题图15. 如图, P 是抛物线 y 2x 2 8x 8 对称轴上的一个动点,直线 x= t 平行于 y 轴,分别与直线 y= x ,抛物线交于 A , B 两点.若 △ABP 是以点 A 或点 B 为直角顶点的等腰直角三角形,则满足条件的t 值为 .中考数学填空题专项训练(十六)二、填空题(每小题 3 分,共 21 分) 9. 当 x=时,分式| x |3无意义.x 310.两位同学在描述同一反比例函数的图象时, 甲同学说:“从这个反比例函数图象上任意一点向x 轴,y 轴作垂线,与两坐标轴所围成的矩形的面积为 6”,乙同学说:“ 这个反比例函数图象与直线 y=- x有两个交点 ”.则这两位同学所描述的反比例函数的表达式为.11.如图, AB ∥CD ,以点 A 为圆心,小于 AC 长为半径作圆弧,分别交 AB ,AC 于 E ,F 两点,再分别以 E ,F 为圆心,大于 1EF 长为半径作圆弧,两条圆弧交于点P ,作射线 AP ,交 CD 于点 M .若∠2ACD=114 °,则∠ MAB 的度数为.DC MDPCFFPAEBA E B第11题图第13题图12.小刚、小强、小红利用假期到某个社区参加义务劳动,为决定到哪个社区,他们约定用“剪刀、石头、布 ”的方式确定,则在同一回合中,三人都出剪刀的概率是.13.如图,在 △ ABC 中,∠ ACB=90 °,以 AC 为一边在 △ABC 外侧作等边 △ ACD ,过点 D 作 DE ⊥AC ,垂足为 F ,DE 与 AB 相交于点 E ,连接 CE ,AB=15cm ,BC=9cm ,P 是射线 DE 上的一点.连接 PC ,PB ,则 △ PBC 周长的最小值为 .14.如图,在矩形 ABCD 中,AB=6,BC=8,E 是 BC 边上的一定点, P 是 CD 边上的一动点(不与点 C ,D 重合), M ,N 分别是 AE ,PE 的中点.在点 P 运动的过程中, MN 的长度不断变化,设 MN = d ,则 d的变化范围是.yy= 2x+ 3A DM PMNB EC N O x第14题图第15题图15.如图,点 M 是直线 y=2x+3上的动点,过点 M 作 MN ⊥ x 轴于点 N,y 轴上是否存在点 P,使△ MNP为等腰直角三角形?小明发现:当动点M 运动到 (-1 ,1)时,轴上存在点(0,1),此时有MN=MP,y P△MNP 为等腰直角三角形.请你写出y 轴上其他符合条件的点P 的坐标.中考数学填空题专项训练(十七)二、填空题(每小题 3 分,共 21 分)9.函数y x 21的自变量 x 的取值范围是.2x10.如图,AB∥ CD,EF与 AB,CD 分别相交于点 E,点 F,∠BEF的平分线 EG交 CD 于点 G,若∠1=50 °,则∠ 2=度.A yA E BO DB CA12DB E C D O xC F G第 10题图第 11题图第 13题图11.如图, AB 是⊙ O 的直径,点 E 为 BC 的中点, AB=4 ,∠ BED=120 °,则图中阴影部分的面积之和为.12.在一个不透明的盒子里装有 5 个分别写有数字 -2 ,-1 ,0, 1, 2 的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点 P 落在抛物线 y=- x2+2 x+5 与 x 轴所围成的区域内(不含边界)的概率是..已知:如图,直线y 3x 6与双曲线yk(x<0)相交于 A,B 两点,与 x 轴、 y 轴分别相交于 D,134xC 两点,若 AB=5 ,则 k=.14.如图,△ ABC 中, AB=8 厘米, AC=16 厘米,点 P 从 A 出发,以每秒 2 厘米的速度向 B 运动,点 Q 从 C 同时出发,以每秒 3 厘米的速度向 A 运动,其中一个动点运动到端点时,另一个动点也随之停止运动,那么,当以 A,P,Q 为顶点的三角形与△ ABC 相似时,运动时间为秒.APQB C 15.已知:如图, AB=10 ,点 C,D 在线段 AB 上,且 AC= DB=2 , P 是线段 CD 上的动点,分别以AP,PB 为边在线段 AB 的同侧作等边三角形AEP 和等边三角形 PFB,连接 EF,设 EF的中点为点 G.当点 P 从点 C 运动到点 D 时,点 G 移动的路径长是.中考数学填空题专项训练(十八)二、填空题(每小题 3 分,共 21 分)9.计算:3 276cos60 =.10. 如图,直线 a∥ b,直线 l 分别与 a,b 交于 E,F 两点, FP 平分∠ EFD,交 a 于 P 点,若∠ 1=70 °,则∠ 2=.FG lEa E 1PA C P DB 2bF D11060甲乙8050丙100第 10题图第12题图11.已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为.12.“五一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有2 条公路,乙地到丙地有 3 条公路,每一条公路的长度如图所示(单位:km).梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是.yC13.ABCD C D y10A,B 分别B D 如图,正方形的顶点,均在双曲线的第一象限分支上,顶点x在 x 轴、 y 轴上,则此正方形的边长为.OA x 14.动手操作:在一张长 12cm 、宽 5cm 的矩形纸片内折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(图 1),小明同学沿矩形的对角线AC 折出∠ CAE= ∠CAD,∠ACF= ∠ ACB,从而折出菱形 AECF(图 2).则小颖和小明同学的折法中,折出的菱形面积较大(填“小颖”或“小明.”)A HD AFDE GB F CB E C图 1图 215.已知:如图, O 为坐标原点,四边形 OABC 为矩形, A(10,0),C(0, 4),点 D 是 OA 的中点,点 P在 BC 上运动,当△ODP 是腰长为 5 的等腰三角形时, P 点的坐标为.yPCO D。
【精选试卷】(必考题)中考数学填空题专项练习经典测试题(答案解析)
一、填空题1.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .2.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.3.分解因式:2x 2﹣18=_____.4.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 .5.正六边形的边长为8cm ,则它的面积为____cm 2.6.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____. 7.计算:82-=_______________.8.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为_____.9.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°;(2)根据手中剩余线的长度出风筝线BC 的长度为70米;(3)量出测倾器的高度AB =1.5米.根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.1米,3≈1.73).10.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm11.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______12.若a ,b 互为相反数,则22a b ab +=________.13.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.14.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=_____.15.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧BC的长为 cm.16.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.17.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.18.不等式组125x ax x->⎧⎨->-⎩有3个整数解,则a的取值范围是_____.19.如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.20.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)21.已知关于x的方程3x n22x1+=+的解是负数,则n的取值范围为.22.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.23.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.24.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .25.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.26.在函数3y x=-的图象上有三个点(﹣2,y 1),(﹣1,y 2),(12,y 3),则y 1,y 2,y 3的大小关系为_____. 27.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.28.计算:21(1)211x x x x ÷-+++=________. 29.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.30.如图,点A 在双曲线y=4x上,点B 在双曲线y=k x (k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、填空题1.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD 交于点E 连接DFFMMNDN ∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=22.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2-112-22-2-4-12-1-21-2-3.2(x+3)(x ﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x ﹣3)故答案为:2(x+3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合4.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角5.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD6.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主7.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键8.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC9.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈62110.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面11.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE 的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m+m=10解得m=此时AF=212.0【解析】【分析】先提公因式得ab(a+b)而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b)而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数13.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为214.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键15.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B16.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=217.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π18.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得19.【解析】试题分析:连接OPOQ∵PQ是⊙O的切线∴OQ⊥PQ根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB时线段PQ最短此时∵在Rt△AOB中OA=OB=∴AB=OA=6∴OP=AB=3∴20.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;21.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且22.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC 相交于点E∵∠B=90°∴∴BE=∴23.【解析】【分析】设D(x2)则E(x+21)由反比例函数经过点DE列出关于x的方程求得x的值即可得出答案【详解】解:设D(x2)则E(x+21)∵反比例函数在第一象限的图象经过点D点E∴2x=x+224.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF25.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM26.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=27.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多28.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 29.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n 种可30.12【解析】【详解】解:设点A 的坐标为(a )则点B 的坐标为()∵AB ∥x 轴AC=2CD ∴∠BAC=∠ODC ∵∠ACB=∠DCO ∴△ACB ∽△DCO ∴∵OD=a 则AB=2a ∴点B 的横坐标是3a ∴3a=2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、填空题1.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD 交于点E 连接DFFMMNDN ∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣【解析】【分析】【详解】试题分析:如图所示:连接AC ,BD 交于点E ,连接DF ,FM ,MN ,DN ,∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC ⊥BD ,四边形DNMF 是正方形,∠AOC=90°,BD=2,∴∠AOE=45°,ED=1,∴﹣1,∴S 正方形DNMF =21)×21)×12=8﹣,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.2.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2-112-22-2-4-12-1-21-2-解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.3.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.5.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆6.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352+=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.7.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键2【解析】【分析】82.【详解】82=222.2.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.8.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.9.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.试题解析:在Rt△CBD中,.55(米).∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.10.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.11.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE 的最小值如图当DE⊥BC 时DE 最小设DA=DE=m 此时DB=m 由AB=DA+DB 得m+m=10解得m=此时AF=2 解析:152 【解析】 试题分析:如图,设AF 的中点为D ,那么DA=DE=DF.所以AF 的最小值取决于DE 的最小值.如图,当DE⊥BC 时,DE 最小,设DA=DE=m ,此时DB=53m ,由AB=DA+DB ,得m+53m=10,解得m=154,此时AF=2m=152. 故答案为152. 12.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab (a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数 解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab = ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.13.2【解析】【分析】设这个圆锥的底面圆的半径为R 根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.14.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.15.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧BC的长=606=2180ππ⋅⋅(cm).16.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=217.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线5=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.18.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得解析:﹣2≤a<﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【解析】试题分析:连接OPOQ∵PQ是⊙O的切线∴OQ⊥PQ根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB时线段PQ最短此时∵在Rt△AOB中OA=OB=∴AB=OA=6∴OP=AB=3∴解析:22【解析】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.20.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB=,利用两边及其夹角法可判定△ADE∽△ACB.21.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n<2且3 n2≠-【解析】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x的方程3x n22x1+=+的解是负数,∴n﹣2<0,解得:n<2.又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 22.【解析】【分析】延长AD 和BC 交于点E 在直角△ABE 中利用三角函数求得BE 的长则EC 的长即可求得然后在直角△CDE 中利用三角函数的定义求解【详解】如图延长ADBC 相交于点E ∵∠B=90°∴∴BE=∴解析:65【解析】 【分析】延长AD 和BC 交于点E ,在直角△ABE 中利用三角函数求得BE 的长,则EC 的长即可求得,然后在直角△CDE 中利用三角函数的定义求解.【详解】如图,延长AD 、BC 相交于点E ,∵∠B=90°,∴4tan 3BE A AB ==, ∴BE=443AB ⋅=, ∴CE=BE-BC=2,225AB BE +=, ∴3sin 5AB E AE ==, 又∵∠CDE=∠CDA=90°, ∴在Rt △CDE 中,sin CD E CE =, ∴CD=36sin 255CE E ⋅=⨯=. 23.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2解析:12x x 【解析】【分析】设D(x,2)则E(x+2,1),由反比例函数经过点D、E列出关于x的方程,求得x的值即可得出答案.【详解】解:设D(x,2)则E(x+2,1),∵反比例函数kyx=在第一象限的图象经过点D、点E,∴2x=x+2,解得x=2,∴D(2,2),∴OA=AD=2,∴2222,OD OA OD=+=故答案为:2 2.【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.24.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.25.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.26.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.27.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.28.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +.【点睛】本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.29.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.30.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.。
初三数学填空题
中考数学填空题专题训练1.﹣(﹣5)= ;|﹣3|= ;0)2(= 。
2.若∠α的余角是30°,则∠α= °,sin α= 。
3.如图,在⊙O 中,直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,则BC= cm, ∠ABD= °。
4.如图,点D 是Rt △ABC 的斜边AB 上的一点,DE ⊥BC 于E ,DF ⊥AC 于F ,若AF=15,BE=10,则四边形DECF 的面积是 。
5、早春二月的某一天,大连市南部地区的平均气温为-3°C ,北部地区的平均气温为-6°C ,则当天南部地区比北部地区的平均气温高____________°C ;6、函数1-=x y 中,自变量x 的取值范围是___________________;7、关于x 的一元二次方程02=++c bx x 的两根为11=x ,22=x ,则c bx x ++2分解因式的结果为__________________________;8、如图4,⊙O 的半径为5cm ,圆心到弦AB 的 距离为3cm ,则弦AB 的长为________________cm ;9、大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y (千米)与行驶的时间x (小时)之间的函数关系式为_______________________________________;10、边长为6的正六边形外接圆半径是___________________;11、将一个底面半径为2cm 高为4cm 的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图的面积为______________________________cm 212、某公司一名员工,月工资由1200元增加了10%后达到 元;13、若1x ,2x 是方程210x x --=的两个根,则1212x x x x ++⋅= ;14、人数相等的甲、乙两班学生参加同一次数学测验,班级平均分与方差分别为:x甲=80,x乙=80,2S甲=240,2Sx甲=180,则测验成绩较整齐的是 班 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学填空题专题训练
1.(平方根,立方根)
① 9 的平方根是;16 的算术平方根是; 27 的立方根是。
② 25=;38 =。
2.(因式分解)
① x216② x26x 9③ x2xy
3.(科学记数法)
①随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2005年海外学习汉语的学生人数已达 38 200 000 人,用科学记数法表示为人.
②已知空气的密度为克/ 厘米3,用科学记数法表示是克/厘米
4.(自变量的取值范围)
①函数: y1中,自变量 x 的取值范围是______ .
x1
②函数 y =2x 中,自变量 x 的取值范围是.
5.(方程,不等式的解)
①方程 2x 80 的解是②方程组x y10的解为
x y2
③分式方程11的解是.④方程x2250 的解是__________
x1
⑤不等式 3x 6 0的解集是.⑥ 不等式组2x 40
的解集3 x0
为.6.(分式的运算)
①计算:a 1
1 =.②化简 :
a 1
a2 1 =.a a a a
7.(多边形的内角和,外角和)
①八边形的内角和等于度.② 正n边形的内角和等于540,则n.
③六边形的外角和等于度.④正n 边形的每个外角均等于45°,则n.
8.( 平均数,众数,中位数,极差,方差)
① 5 名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm):
2 , 2 ,1, 1, 0 ,则这组数据的极差为cm.
②小华的五次数学成绩分别是98、 62、 94、 98、95,则中位数是 __________.
③初三年一班有7 名同学参加参加学校举行的体育测试(成绩单位:分),成绩分别是 87,
90, 87, 89, 91, 88, 87。
则它们成绩的众数是。
④甲、乙两人进行射击比赛,在相同条件下各射击10 次,他们的平均成绩均为
8 环, 10 次射击成绩的方差分别是:S甲2 2 , S乙21.2 ,那么,射击成绩较为稳定的是.
⑤若样本 1、 4、 2、 5、x的平均数是3,则此样本的中位数为________.
9.(一次函数,二次函数,反比例函数)
①已知正比例函数y kx ( k0) 的图象经过原点、第二象限与第四象限,请写出
符合上述条件的k 的一个值:.
...
②请任写一个图象在第一、三象限的反比例函数:.
..
③反比例函数y k
的图像经过点(2,3),则k.x
④直线 y x 1不经过第象限.
⑤将直 y线1
x向下平移3个单位所得直线的解析式为
3
___________________.
⑥在一次函数 y 2x 3中, y 随 x 的增大而
(填“增大”或“减小” ),
当 0 x 5时, y 的最小值为
⑦已知函数 y
3 x
2 2 4 ,当 x = 时,函数取最大值为 .
⑧将抛物线 y 3( x 2) 2
1向下平移 2 个单位,再向左平移
3 个单位,所得的抛
物线的解析式为 ___________________.
⑨写出一个顶点在第二象限的二次函数的表达式:
y
.
⑩如图,点 A 点,作
P 在反比例函数的图象上,过
PB
⊥ y P 点作 PA ⊥ x 轴
轴于 B 点,矩形
OAPB
于
的面
积为
9,则该反比例函数的解析式为
.
10. (三角函数)
①在△ ABC 中,若∠ ② 如 图 , 在 Rt △
C=90°, AC=1, AB=5,则 sinB=
ABC 中 , ∠ C=90° , AC=3,BC=4, 则
.
AB=
, sin A =
.
③如图,一架梯子斜靠在墙上, 若梯子到墙的距离 AC =3 米,
cos BAC
3 ,则梯子
AB 的长度为
米.
4
11. (三角形)
①如图,在△ ABC 中,AB=AC ,∠ B=40°,则∠ A= .
②现有四条钢线, 长度分别为 (单位: cm )7 、6 、 3 、2 ,
取出三根连成一个
三角形,这三根的长度可以为
. (写出一种即可)
③如果两个相似三角形的相似比为
2 :
3 ,那么这两个三角形的面积比为
④已知等腰△ ABC 的两边长分别为 8 cm 和 3 cm ,则它的周长为
从 中
.
cm
⑤如图, AB∥ CD, AC⊥ BC,垂足为 C.若∠ A=40°,则∠ BCD=度.
⑥如图,在△ ABC中, AT是中线,点 G为重心,若 TG= 2, 则 AG=
12. (网格纸)
①在右图方格纸中 ,△ ABC向右平
移格后得到△ A1B1C1.
②如图 , 将图中线段AB绕点 A 按顺时针方向旋转90°后,得到线段 AB′,则点B′的坐标是;在整个旋转过程中,线段AB所扫过的面积为(结果保留).
③如图方格纸中,ABC 边长的值是无理数的有____个
④如图,在平面直角坐标系中,一条圆弧经过正方形网格格点A、B 、C,若点
A 的坐标为1, 2,则该圆弧所在圆的圆心坐标为________.
⑤如图,在平面直角坐标系中,将△ABC绕 A 点逆时针旋转90°后, B 点对应点的坐标为 ________.
13. (圆锥)
2
①已知圆锥的底面半径为4cm,高为 3cm,则这个圆锥的侧面积为__________cm.
②已知圆锥的底面半径为10,侧面积是300π,则这个圆锥的母线长为
③圆锥底面周长为2米,母线长为4米,则它的侧面展开图的面积为平方米
④已知圆锥的底面半径长为5,侧面展开后所得的扇形的圆心角为
120°,则该圆锥的母线长等于.
⑤如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于 P ,两圆的
半径分别为 2 和 1,则弦长 AB =;若用阴影部分围成一个圆
锥,则该圆锥的底面半径
为. ( 结果保留根号 )
14.(弧长,扇形面积)
A D
①如图,正方形 ABCD的边长为 3, E 为 CD边上一点, DE=1.△ ADE绕着E
A 点逆时针旋转后与△ ABF复合,连结 EF,则① EF=
F
C ;②点B E
从开始到旋转结束所经过的路径长为.
②如图,如果边长为 1 的正六边形 ABCDEF绕着顶点 A 顺时针旋转 60°后与正六边形AGHMNP重合,那么点 B 的对应点是点,点 E 在整个旋转过程中,所经过的路径长为(结果保留).
③已知:如图,等边ABC 和正方形ACPQ的边长都为1,在图形所在的平面内,以点 A 为旋转中心将正方形ACPQ 沿逆时针方向旋转度,使 AQ 与AB重合,则(1)旋转角_________; (2) 点P从开始到结束所经过路径的长为
___________.
④两同心圆,大圆半径为3,小圆半径为1,则阴影部分面
积为(结果保留).
15.(完全平方公式)
①已知 0 x 1 .
(1) 若x2y 6 ,则y的最小值是;
(2). 若x2y2 3 , xy1,则x y =.
②已知直线 y x 2 与函数y 3
的图象相交于点( a ,b),则 a2b2的值x
是.
③若 a,b 是正数, a b 1, ab 2 ,a b =.
16.(律探索)
①正方形 OA1B1C1、 A1 A2B2C2、A2A3 B3 C3⋯⋯按如放置,其中点 A1、A2、 A3⋯⋯在 X 正半上,点 B1、 B2、 B3⋯⋯在直 y=-x+2 上,依次推⋯⋯ , 点 A1的坐是
点 A n的坐是
②如( 1),已知小正方形ABCD的面1,把它的各延一倍得到新正方
形 A1B1C1D1;把正方形 A1B1C1D1按原法延一倍得到正方形 A2B2C2D2(如( 2));
正方形A2B2C2D2的面 __________,以此下去···,正方形
A n
B n
C n
D n的面__________。