2014-2015年河南省南阳市高二上学期数学期中试卷及参考答案(文科)

合集下载

河南省南阳市2014-2015学年高二上学期期中质量评估数学(文)试题 扫描版含答案

河南省南阳市2014-2015学年高二上学期期中质量评估数学(文)试题 扫描版含答案

高二文科数学参考答案与评分标准1选择题1 2 3 4 5 6 7 8 9 10 11 12C B A B A B AD B D D C二、填空题(本大题共4个小题,每小题5分,共20分)13.2 14. 15. 16. 417.解:(Ⅰ)设等差数列的公差.因为,所以解得.所以. .........................................5分(Ⅱ)设等比数列的公比为.因为,所以,即.所以的前项和公式为..................................10分18.(1),不等式的解集是,所以的解集是,所以是方程的两个根,由韦达定理知,. 厖..................................................5分(2)恒成立等价于恒成立,所以的最大值小于或等于.设,则由二次函数的图象可知在区间为减函数,所以,所以. ..........................................12分19. (本题满分12分)(Ⅰ)由正弦定理,得,因为,解得,. 4分(Ⅱ)由,得,整理,得.若,则,,,的面积. (8)分若,则,.由余弦定理,得,解得.的面积.综上,的面积为或. (12)分20.解:由题意得,,∵∴由题设中的限制条件得于是得约束条件目标函数………6分做出可行域(如图),当平行移动到过(10,4)点时纵截距最大,此时最小.所以当,即时,元……12分(没有图扣2分)21.(本题满分12分)解(1)证明:∵A、B、C成等差数列,∴B=600, --------------------------2分又∆ABC的面积为,∴,∴ac=4 -----------------------5分∴a、2、c成等比数列 -----------------------------6分(2)在∆ABC中,根据余弦定理,得b2=a2+c2-2accos600=a2+c2-ac≥2ac-ac=ac=4,∴b≥2, 当且仅当a=c时,等号成立 ------------------9分∴∆ABC的周长L=a+b+c≥=.当且仅当a=c时,等号成立∴, 当且仅当a=c时,等号成立∴∆ABC周长的最小值为6,因为a=c,B=600,此时∆ABC为等边三角形. -----------------12分22. (Ⅰ)所以数列为以3为首项,以1为公差的等差数列,........................................3分(Ⅱ) (7)分(Ⅲ)当时当时 (12)分。

河南省南阳市2014-2015学年高二上学期期中质量评估数学(理)试题(扫描版)

河南省南阳市2014-2015学年高二上学期期中质量评估数学(理)试题(扫描版)

高二数学(理)参考答案与评分标准一、选择题(本大题共12个小题,每小题5分,共60分)1 2 3 4 5 6 7 8 9 10 11 12 CBBBACACBCDA二、填空题(本大题共4个小题,每小题5分,共20分) 13.[)2,3 14. 2213+15. 20(62)- 16. 2nn ∙ 17.解:(Ⅰ)设等差数列{}n a 的公差d . 因为3660a a =-=,, 所以112650.a d a d +=-⎧⎨+=⎩,解得1102a d =-=,.所以10(1)2212n a n n =-+-⋅=-. ------------5分(Ⅱ)设等比数列{}n b 的公比为q .因为21231248b a a a b =++=-=-,,所以824q -=-,即3q =.所以{}n b 的前n 项和公式为1(1)4(13)1n n n b q S q-==--.-----------10分 18. 解:(Ⅰ)2()2f x x bx c =++,不等式()0f x <的解集是()0,5,所以的解集是()0,5,所以是方程的两个根,由韦达定理知, 2()210f x x x =-. ------------5分(Ⅱ)()2f x t +≤ 恒成立等价于021022≤-+-t x x 恒成立,设2()2102g x x x t =-+-,则()g x 的最大值小于或等于则由二次函数的图象可知2102)(2-+-=t x x x g 在区间]1,1[-为减函数,所以t g x g +=-=10)1()(max ,所以10t ≤-. -----------12分19. 解:(Ⅰ)证明:∵A、B 、C 成等差数列,∴B =600,220x bx c ++<05和220x bx c ++=5,0,10,0,22b cb c -==∴=-=又∆ABC 的面积为3,∴360sin ac 210=,∴ac=4 ∴a、2、c 成等比数列 --------------------------4分 (Ⅱ)在∆ABC 中,根据余弦定理,得 b 2=a 2+c 2-2accos600=a 2+c 2-ac≥2ac -ac=ac=4,∴ b≥2, 当且仅当a=c 时,等号成立 ----------------8分 ∴∆ABC 的周长L =a+b+c≥b ac 2+=4b +.当且仅当a=c 时,等号成立 ∴426L ≥+=, 当且仅当a=c 时,等号成立 ∴∆ABC 周长的最小值为6,因为a=c ,B=600,此时∆ABC 为等边三角形. -----------------12分 20.解:由题意得,1300v x =,250v y =∵1230100,,420v v ≤≤≤≤ ∴525310,22x y ≤≤≤≤由题设中的限制条件得149≤+≤y x于是得约束条件⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤+≤22525103149y x y x目标函数y x y x p 23131)8(2)5(3100--=-+-+= ………6分做出可行域(如图),(没有图扣2分) 当223,23zx y y x z +-=+=即平行移动到过(10,4)点时纵截距最大,此时p 最小. 所以当4,10==y x ,即5.12,3021==v v 时,93min =p 元 ……12分 21.(Ⅰ)由正弦定理,得sin sin 3sin cos C A A C =,因为sin 0A ≠,解得tan 3C =,3C π=. ……… 4分(Ⅱ)解法一:由(Ⅰ)得2sinsin(2)3sin 233A A ππ+-=, 即331cos 2sin 23sin 2222A A A ++=. 35(1cos 2)sin 222A A += 23cos 5sin cos A A A = ……… 8分若cos 0A =,则2A π=,tan 3c b π=,213b =, ABC ∆的面积17326S bc ==.若cos 0A ≠,则3cos 5sin A A =,5721cos ,sin ,1414A A == 由正弦定理,得1a =. 321sin sin()14B A C =+=, ABC ∆的面积133sin 24S ac B ==. 综上,ABC ∆的面积为736或334. ……… 12分解法二:由sin sin()3sin 2C B A A +-=,得sin()sin()3sin 2B A B A A ++-=,整理,得sin cos 3sin cos B A A A =. 若cos 0A =,则2A π=,tan 3c b π=,213b =, ABC ∆的面积17326S bc ==.……… 8分若cos 0A ≠,则sin 3sin B A =,3b a =.由余弦定理,得2222cos c a b ab C =+-,解得1,3a b ==.ABC ∆的面积133sin 24S ab C ==.综上,ABC ∆的面积为736或334. ……… 12分22. (Ⅰ)12311232n n n a a a na a +++++⋅⋅⋅+=,n N *∈① 123123(1)2n n na a a n a a -∴+++⋅⋅⋅+-=,2n ≥②①-②:1122n n n n n na a a ++=-,13122n n n n a a ++∴=, ……… 2分 即1(1)3n n n a na ++=⨯(2n ≥),又由①得n=1时,121a a ==222a ∴=,2n ∴≥时,数列{}n na 是以2为首项,3为公比的等比数列.223(2)n n na n -∴=⋅≥,故21,123,2n n n a n n-=⎧⎪=⎨⋅≥⎪⎩ ……… 4分(Ⅱ)由(Ⅰ)可知当2n ≥时,2223n n n a n -=⋅,∴当1n =时,11T =;当2n ≥时,0121436323n n T n -=+⋅+⋅+⋅⋅⋅+⋅,①12213343632(1)323n n n T n n --=+⋅+⋅+⋅⋅⋅+-⋅+⋅,②①-②得,1221222(333)23n n n T n ---=+++⋅⋅⋅+-⋅=1123323n n n ---+-⋅ =11(12)3n n --+-⋅111()3(2)22n n T n n -∴=+-≥,又11T =也满足 111()3()22n n T n n N -*∴=+-∈ ……… 8分(Ⅲ)()11nn a a n n λλ≤+⇔≥+,由(Ⅰ)可知: 当2n ≥时,()2231n n n λ-⋅≥+,令()()2231n f n n n -⋅=+,则()()()()()1211233112232n n f n n n nf n n n n --++⋅=⋅=>++⋅+, 又()0f n >,∴()()1f n f n +>∴当2n ≥时,()f n 单增,∴()f n 的最小值是()123f = 而1n =时,11112a =+,综上所述,1n a n +的最小值是13 ∴13λ≥,即λ的最小值是13……… 12分。

河南省南阳市2014-2015学年高二上学期期中数学试卷(文科)-Word版含解析

河南省南阳市2014-2015学年高二上学期期中数学试卷(文科)-Word版含解析

河南省南阳市2014-2015学年高二上学期期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项符合要求.1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.B.D.C.充要条件D.既不充分又不必要条件5.(5分)设函数f(x)=bsinx的图象在点A(,f())处的切线与直线x﹣2y+3=0平行,若a n=n2+bn,则数列{}的前2014项和S2014的值为()A.B.C.D.6.(5分)已知(x,y)满足,则k=的最大值等于()A.B.C.1D.7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)在f(x)上是增函数C. f(x)是周期函数 D. f(x)的值域为时,f(x)=2x﹣1.(1)求f(x)在的最小值为﹣,求f(x)在该区间上的最大值.河南省南阳市2014-2015学年高二上学期期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项符合要求.1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.B.D.解答:解:A={x|x2﹣2x﹣3≥0}={x|x≥3或x≤﹣1},B={x|﹣2≤x<2},则A∩B={x|﹣2≤x≤﹣1},故选:A点评:本题主要考查集合的基本运算,比较基础.2.(5分)复数z1=3+i,z2满足z1•z2=4﹣2i(i为虚数单位),则z2在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:利用复数的运算法则、几何意义即可得出.解答:解:∵z1=3+i,z2满足z1•z2=4﹣2i,∴z2====1﹣i所对应的点(1,﹣1)在第四象限.故选:D.点评:本题考查了复数的运算法则、几何意义,属于基础题.3.(5分)各项为正的等比数列{a n}中,a4与a14的等比中项为2,则log2a7+log2a11=()A.4B.3C.2D.1考点:等比数列的性质.专题:计算题;等差数列与等比数列.分析:利用a4•a14=(a9)2,各项为正,可得a9=2,然后利用对数的运算性质,即可得出结论.解答:解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为2,∴a4•a14=(2)2=8,∵a4•a14=(a9)2,∴a9=2,∴log2a7+log2a11=log2a7a11=log2(a9)2=3,故答案为:3.点评:本题考查等比数列的通项公式和性质,涉及对数的运算性质,属基础题.4.(5分)已知向量的模为2,=(1,﹣2),条件p:向量的坐标为(4,2),条件q:⊥,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分条件和必要条件的定义,结合向量垂直和坐标之间的关系,即可得到结论.解答:解:若向量的坐标为(4,2),则•=4﹣2×2=4﹣4=0,此时⊥,即充分性成立.若⊥,设=(x,y),则x﹣2y=0,即x=2y,∵向量的模为2,∴x2+y2=20,由,解得或,即=(4,2)或(﹣4,﹣2),即必要性不成立,故p是q的充分不必要条件,故选:A.点评:本题主要考查充分条件和必要条件的判定,利用向量之间的关系是解决本题的关键,比较基础.5.(5分)设函数f(x)=bsinx的图象在点A(,f())处的切线与直线x﹣2y+3=0平行,若a n=n2+bn,则数列{}的前2014项和S2014的值为()A.B.C.D.考点:数列的求和;利用导数研究曲线上某点切线方程.专题:导数的综合应用;等差数列与等比数列.分析:求函数的导数,利用导数的几何意义,求出b的值,然后利用裂项法即可求出数列的前n项和.解答:解:∵f(x)=bsinx,∴f′(x)=bcosx,则f′()=bcos=,∵图象在点A(,f())处的切线与直线x﹣2y+3=0平行,∴切线斜率k==,解得b=1.∴a n=n2+bn=a n=n2+n=n(n+1),则==﹣,∴数列{}的前2014项和S2014的值为1﹣=1﹣,故选:D.,点评:本题主要考查数列和的计算,根据导数的几何意义求出b=1是解决本题的关键,求出数列的通项公式,利用裂项法是解决本题的突破.6.(5分)已知(x,y)满足,则k=的最大值等于()A.B.C.1D.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,则k的几何意义为点P(x,y)到定点A(﹣1,0)的斜率,利用数形结合即可得到结论.解答:解:k的几何意义为点P(x,y)到定点A(﹣1,0)的斜率,作出不等式组对应的平面区域如图:则由图象可知AB的斜率最大,其中B(0,1),此时k=,故选:C点评:本题主要考查线性规划的应用,利用z的几何意义是解决本题的关键,利用数形结合是解决本题的突破.7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)在f(x)上是增函数C. f(x)是周期函数 D. f(x)的值域为,当x>0时,值域为(1,+∞),∴函数的值域为,由此可得函数g(x)=sin2x=f(x﹣),∴将函数f(x)的图象右移个单位,即可得到g(x)=sin2x的图象.故选:A点评:本题给出y=Asin(ωx+φ)的部分图象,确定其解析式并讨论函数图象的平移.着重考查了三角函数的图象与性质、函数图象平移公式等知识,属于中档题.9.(5分)定义在R上的可导函数f(x),当x∈(1,+∞)时,f(x)+f′(x)<xf′(x)恒成立,a=f (2),b=f(3),c=(+1)f(),则a,b,c的大小关系为()A.c<a<b B.b<c<a C.a<c<b D.c<b<a考点:利用导数研究函数的单调性.专题:综合题;压轴题;导数的概念及应用.分析:根据x∈(1,+∞)时,f(x)+f′(x)<xf′(x),可得g(x)=在(1,+∞)上单调增,由于,即可求得结论.解答:解:∵x∈(1,+∞)时,f(x)+f′(x)<xf′(x)∴f′(x)(x﹣1)﹣f(x)>0∴′>0∴g(x)=在(1,+∞)上单调增∵∴g()<g(2)<g(3)∴∴∴c<a<b故选A.点评:本题考查导数知识的运用,考查函数的单调性,确定函数的单调性是关键.10.(5分)若正数x,y满足+=5,则3x+4y的最小值是()A.B.C.5D.6考点:基本不等式.专题:不等式的解法及应用.分析:将条件+=5进行转化,利用基本不等式的解法即可得到式子的最小值.解答:解:由于正数x,y满足+=5,则3x+4y=(3x+4y)()=++≥+2+2×=5,当且仅当=,即y=2x,即+=,∴x=,y=时取等号.故3x+4y的最小值是5,故选:C点评:本题主要考查基本不等式的应用,将条件进行转化,利用1的代换是解决本题的关键.11.(5分)已知O为△ABC内任意的一点,若对任意k∈R有|﹣k|≥||,则△ABC一定是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定考点:三角形的形状判断.专题:计算题;数形结合.分析:根据题意画出图形,在边BC上任取一点E,连接AE,根据已知不等式左边绝对值里的几何意义可得k=,再利用向量的减法运算法则化简,根据垂线段最短可得AC与EC垂直,进而确定出三角形为直角三角形.解答:解:从几何图形考虑:|﹣k|≥||的几何意义表示:在BC上任取一点E,可得k=,∴|﹣k|=|﹣|=||≥||,又点E不论在任何位置都有不等式成立,∴由垂线段最短可得AC⊥EC,即∠C=90°,则△ABC一定是直角三角形.故选A点评:此题考查了三角形形状的判断,涉及的知识有:平面向量的减法的三角形法则的应用,及平面几何中两点之间垂线段最短的应用,利用了数形结合的思想,要注意数学图形的应用可以简化基本运算.12.(5分)已知曲线方程f(x)=sin2x+2ax(a∈R),若对任意实数m,直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是()A.(﹣∞,﹣1)∪(﹣1,0)B.(﹣∞,﹣1)∪(0,+∞)C.(﹣1,0)∪(0,+∞)D.a∈R且a≠0,a≠﹣1考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:先将条件“对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线”转化成f'(x)=﹣1无解,然后求出2sinxcosx+2a=﹣1有解时a的范围,最后求出补集即可求出所求.解答:解:∵对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线∴曲线y=f(x)的切线的斜率不可能为﹣1即f'(x)=2sinxcosx+2a=﹣1无解∵0≤sin2x+1=﹣2a≤2∴﹣1≤a≤0时2sinxcosx+2a=﹣1有解∴对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是a<﹣1或a>0故选B.点评:本题主要考查了利用导数研究曲线上某点切线方程,以及转化的数学思想,解题的关键是对条件“对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线”的理解,属于基础题.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)如果log a4b=﹣1,则a+b的最小值为1.考点:对数的运算性质;基本不等式.专题:计算题.分析:由给出的对数等式得到a,b均为正数,且ab=,然后直接利用基本不等式求最值.解答:解:由log a4b=﹣1,得:a>0,b>0,,即ab=.所以a+b.当且仅当a=b=时上式取“=”.所以a+b的最小值为1.故答案为1.点评:本题考查了对数的运算性质,考查了利用基本不等式求最值的方法,利用基本不等式求最值,要注意“一正、二定、三相等”,此题是基础题.14.(5分)O为△ABC所在平面内的一点,若,则O必是△ABC的重心.(填写“内心”、“重心”、“垂心”、“外心”之一)考点:三角形五心.专题:计算题;平面向量及应用.分析:取BC中点D,连接并延长OD至E,使DE=OD 于是四边形BOCE是平行四边形,由条件和共线向量定理,即可得到AD为中线,同理延长BO交AC于F,则F也为中点,即可得到O是重心.解答:解:取BC中点D,连接并延长OD至E,使DE=OD 于是四边形BOCE是平行四边形,∵=,又,∴==2,∴A,O,D,E四点共线,即AD是中线,同理延长BO交AC于F,则F也为中点,∴O是重心.故答案为:重心点评:本题考查平面向量的运用,考查向量加法的平行四边形法则,同时考查三角形的重心定义,属于中档题.15.(5分)已知正项数列{a n}中,a1=1,a2=,(n≥2),则a6=.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:由题设知﹣=﹣,可知数列{}为等差数列,首项为1,公差d=﹣=4﹣1=3,故=3n﹣2,继而求出a6,解答:解:∵a1=1,a2=,(n≥2),∴﹣=﹣,∴数列{}为等差数列,首项为1,公差d=﹣=4﹣1=3,∴=1+3(n﹣1)=3n﹣2,∴=16,∵{a n}正项数列,∴a6=,故答案为:点评:本题考查数列的递推式的应用,是基础题.解题时要认真审题,注意等比数列的性质和应用.16.(5分)给出下列四个命题:①∀x∈R,e x≥ex;②∃x0∈(1,2),使得(x02﹣3x0+2)e x0+3x0﹣4=0成立;③在△ABC中,若tanA+tanB+tanC>0,则△ABC是锐角三角形;④已知长方体的长、宽、高分别为a,b,c,对角线长为l,则l3>a3+b3+c3;其中正确命题的序号是①②③④.考点:命题的真假判断与应用.专题:函数的性质及应用;导数的综合应用;解三角形;简易逻辑.分析:①,令f(x)=e x﹣ex,利用导数可求得当x=1时,f(x)=e x﹣ex取得极小值,也是最小值,从而可判断①;②,依题意得:e x0==,易判断当<x<2时,e x0>0,从而判断②;③在△ABC中,依题意,利用两角和的正切公式可得tanA+tanB+tanC=tanAtanBtanC>0,可判断③;④画出长方体,标出数据,利用作差法可判断④.解答:解:①,令f(x)=e x﹣ex,则f′(x)=e x﹣e,当x≥1时,f′(x)≥0,f(x)=e x﹣ex在即2sinωxcosϕ=0恒成立∴cosϕ=0,又∵0≤ϕ≤π,∴(3分)又其图象上相邻对称轴之间的距离为π∴T=2π∴ω=1∴f(x)=cosx(6分)(II)∵原式=(10分)又∵,∴(11分)即,故原式=(12分)点评:本题考查三角函数的周期性及其求法,同角三角函数基本关系的运用,考查计算能力,是基础题.18.(12分)设曲线f(x)=x2+1和g(x)=x3+x在其交点处两切线的夹角为θ,求cosθ.考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:求出两曲线的交点,再分别求得导数及切线的斜率,求得切线方程,再由两直线的方向向量,运用夹角公式,即可得到所求值.解答:解:由,得x3﹣x2+x﹣1=0,即(x﹣1)(x2+1)=0,∴x=1,∴交点为(1,2).又f'(x)=2x,∴f'(1)=2,∴曲线y=f(x)在交点处的切线l1的方程为y﹣2=2(x﹣1),即y=2x,又g'(x)=3x2+1.∴g'(1)=4.∴曲线y=g(x)在交点处的切线l2的方程为y﹣2=4(x﹣1),即y=4x﹣2.取切线l1的方向向量为,切线l2的方向向量为,则.点评:本题考查导数的运用:求切线方程,同时考查两直线的夹角问题,考查运算能力,属于中档题.19.(12分)已知△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,.(Ⅰ)求的值;(Ⅱ)设的值.考点:余弦定理;等比数列的性质;同角三角函数基本关系的运用;正弦定理.专题:计算题.分析:(Ⅰ)由cosB的值和B的范围,利用同角三角函数间的基本关系求出sinB的值,又a,b,c 成等比数列,根据等比数列的性质及正弦定理化简得到一个关系式,然后把所求的式子利用同角三角函数间的基本关系及两角和与差的正弦函数公式化简后,将得到的关系式和sinB的值代入即可求出值;(Ⅱ)根据平面向量的数量积得运算法则及cosB的值化简•=,即可得到ac的值,进而得到b2的值,然后由余弦定理和完全平方公式,由b2和ac及cosB的值,即可得到a+c的值.解答:解:(Ⅰ)由,由b2=ac及正弦定理得sin2B=sinAsinC.于是=.(6分)(Ⅱ)由.由余弦定理:b2=a2+c2﹣2ac•cosB,又b2=ac=2,cosB=,得a2+c2=b2+2ac•cosB=2+4×=5,则(a+c)2=a2+c2+2ac=5+4=9,解得:a+c=3.(12分)点评:此题考查学生灵活运用同角三角函数间的基本关系及两角和与差的正弦函数公式化简求值,灵活运用余弦定理及等比数列的性质化简求值,是一道中档题.20.(12分)设数列{a n}的各项都是正数,且对任意n∈N*,都有a n2=2S n﹣a n,其中S n为数列{a n}的前n项和.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=3n+(﹣1)n﹣1•λ•2an(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有b n+1>b n成立.考点:数列与函数的综合;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)由已知得,当n≥2时,,两式相减得,由此能求出.(Ⅱ)由已知得要使得b n+1>b n恒成立,只须,由此能推导出λ=﹣1对所有的n∈N*,都有b n+1>b n成立.解答:解:(Ⅰ)∵n∈N*时,,…①当n≥2时,,…②…(2分)由①﹣②得,即,∵a n+a n﹣1>0,∴a n﹣a n﹣1=1(n≥2),…(4分)由已知得,当n=1时,,∴a1=1.…(5分)故数列{a n}是首项为1,公差为1的等差数列.∴.…(6分)(Ⅱ)∵,∴,…(7分)∴=2×3n﹣3λ•(﹣1)n﹣1•2n.要使得b n+1>b n恒成立,只须.…(8分)(1)当n为奇数时,即恒成立.又的最小值为1,∴λ<1.…(9分)(2)当n为偶数时,即恒成立.又的最大值为,∴…(10分)∴由(1),(2)得,又λ≠0且λ为整数,…(11分)∴λ=﹣1对所有的n∈N*,都有b n+1>b n成立.…(12分)点评:本题考查数列的通项公式的求法,考查确定λ的值,使得对任意n∈N*,都有bn+1>bn成立,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.21.(12分)已知定义域为R的函数f(x)为奇函数,且满足f(x+4)=f(x),当x∈时,f(x)=2x﹣1.(1)求f(x)在,运用已知表达式,以及奇函数的定义,即可得到所求表达式;(2)由f(x+4)=f(x),则f(x)是以4为周期的周期函数,将f(24)的自变量运用周期转化到(﹣1,0)的区间,再代入,即可得到所求值.解答:解:(1)令x∈,∴f(﹣x)=2﹣x﹣1.又∵f(x)是奇函数,∴f(﹣x)=﹣f(x),∴﹣f(x)=f(﹣x)=2﹣x﹣1,∴.(2)∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴,∴,∴.点评:本题考查函数的奇偶性及运用:求解析式,考查函数的周期性及运用:求函数值,考查运算能力,属于中档题.22.(12分)设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在的最小值为﹣,求f(x)在该区间上的最大值.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:计算题.分析:(1)利用函数递增,导函数大于0恒成立,求出导函数的最大值,使最大值大于0.(2)求出导函数的根,判断出根左右两边的导函数的符号,求出端点值的大小,求出最小值,列出方程求出a,求出最大值.解答:解:(1)f′(x)=﹣x2+x+2af(x)在存在单调递增区间∴f′(x)>0在有解∵f′(x)=﹣x2+x+2a对称轴为∴递减∴解得.(2)当0<a<2时,△>0;f′(x)=0得到两个根为;(舍)∵∴时,f′(x)>0;时,f′(x)<0当x=1时,f(1)=2a+;当x=4时,f(4)=8a<f(1)当x=4时最小∴=解得a=1所以当x=时最大为点评:本题考查利用导函数求参数的范围、利用导函数求函数的单调性、求函数的最值.。

河南省南阳市高二数学上学期期中质量评估试题 文(扫描

河南省南阳市高二数学上学期期中质量评估试题 文(扫描

勘误:22题(Ⅰ)为:求首项a12015年南阳市秋期期中考试高二数学试题答案(文)一.选择题:DACCD BACAD CA 二.填空题:13.81 14. 2- 15. 8116. 43三.解答题:17.解:(1)由题意得a n =3n-1………………………………2分 由数列{}n b 满足b 1=s 1=3 …………………………3分 当n ≥2时,b n =s n -s n -1=2n +1∴b n =2n +1(n ∈N +) ……………………………………6分(2)由(1)得c n =(2n +1)·3n -1∴Tn =3+5·3+7·32+…+(2n -1)·3n -2+(2n +1)·3n -1①∴3Tn = 3·3+5·32+…+ (2n -1)·3n -1+(2n +1)·3n②①-② -2Tn =-2n ·3n∴Tn =n ·3n………………………………………10分 18.(1)由题意得a <0,且31,21是方程ax 2+5x +c =0的两个实数根,则 ⎪⎪⎩⎪⎪⎨⎧=-=+ac a21·3152131 解得⎩⎨⎧-=-=16c a ………………………………………4分 (2)由(1)知原不等式可化为-6x 2+(6+b )x -b ≥0, 即(6x -b )(x -1)≤0 ………………………6分 ①当6b >1,即b >6时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤61 b x x ……………8分 ②当6b=1,即b =6时,原不等式的解集为{}1=x x ……………………………10分 ③当6b<1,即b <6时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤16x b x …………12分 19. (本小题共12分)解:(1) 由B a b sin 23=⇒2sin sin B A B =⇒sin 2A =,又A 是锐角, 所以60A =︒ ………………………………………………6分 (2)由面积公式1sin 2S bc A ===40bc ⇒=,………8分又由余弦定理:2222cos 4913a b c bc A b c =+-=⇒+=…………………………12分20.…………………………………12分21.(22)解:(I )由Λ,3,2,1 ,32231341=+⨯-=+n a S n n n ① …………………6分…………………6分…………………12分得 3243134111+⨯-==a S a 所以 a 1=2 ………………………………4分(Ⅱ)再由①有 Λ,3,2 ,322313411=+⨯-=--n a S n n n ② 将①和②相减得 Λ,3,2 ),22(31)(34111=-⨯--=-=+--n a a S S a nn n n n n n整理得 Λ,3,2 ),2(4211=+=+--n a a n n n n ,因而数列}2{nn a +是首项为a 1+2=4,公比为4的等比数列,……………………8分 即nn n n a 44421=⨯=+-,n=1,2,3,…,因而 ,24nn n a -= n=1,2,3,…, ………………………………………12分。

河南省南阳市2015-2016学年高二上学期期终质量评估数学(文)试题(扫描版)

河南省南阳市2015-2016学年高二上学期期终质量评估数学(文)试题(扫描版)

2015年秋期高中二年级期终质量评估数学试题(文)参考答案一、选择题1.A 2.B 3.D 4.C 5.A 6.C 7.A 8. D 9. B 10.D 11.A 12.C二、填空题13.7 14.1 15.16. 1(,1)4三、解答题17.解析:(1)设等差数列{}n a 的公差为d,则1(1)n a a n d =+-因为719942a a a =⎧⎨=⎩,所以11164182(8)a d a d a d +=⎧⎨+=+⎩. 解得,111,2a d ==. ……………4分所以{}n a 的通项公式为12n n a +=.…………5分 (2)1222(1)1n n b na n n n n ===-++, ……7分 所以2222222()()()122311n n S nn n =-+-++-=++ . …………10分 18.解析:(1)由已知条件得cos 2A +3cos A =1,∴2cos 2A +3cos A -2=0,………4分解之得cos A =12 (cos A =-2舍去),由000180A <<得A =60°,∴角A 的大小为60°……6分(2)由面积公式S =12bcsin A =53,及b =5得c =4.………………………………8分根据余弦定理a 2=b 2+c 2-2bccos A 得a 2=21.又因为正弦定理中a sin A =2R ,所以(2R)2=a 2sin 2A =28.………………………………10分由正弦定理可得sin B =b 2R ,sin C =c 2R ,∴sin Bsin C =bc 4R 2=57.∴sin Bsin C 的值为57.………………………12分19.解析:(1)若a =1,则f(x)=3x -2x 2+ln x ,该函数的定义域为(0,+∞),f ′(x)=1x -4x +3=-4x 2+3x +1x =-(4x +1)(x -1)x (x>0).………………2分当x ∈(0,1),f ′(x)>0时,函数f(x)=3x -2x 2+ln x 单调递增. 当x ∈(1,+∞),f ′(x)<0时,函数f(x)=3x -2x 2+ln x 单调递减.故函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).……………6分 (2)f ′(x)=3a -4x +1x,若函数f(x)在区间[2,4]上为单调递增函数,即在区间[2,4]上,f ′(x)=3a -4x +1x ≥0,即3a -4x +1x ≥0在[2,4]上恒成立.………8分即3a ≥4x -1x . 令h(x)=4x -1x ,因为函数h(x)在[2,4]上单调递增, 所以()()max 6344h x h ==, 即3a ≥634,…………10分 解之得4021a <≤,∴实数a 的取值范围为4|021a a ⎧⎫<≤⎨⎬⎩⎭.…………………………………………12分20.解析:(1)∵F(1,0),∴直线l 的方程为y =2(x -1),…………………………1分设A(x 1,y 1),B(x 2,y 2),由22(1)4y x y x =-⎧⎨=⎩得x 2-3x +1=0,………3分 ∴x 1+x 2=3,x 1x 2=1. …………4分 ∴|AB|=(x 2-x 1)2+(y 2-y 1)2·(x 1+x 2)2-4x 1x 25. ∴|AB|的大小为5………………6分 (2)证明:设直线l 的方程为x =my +1,由214x my y x=+⎧⎨=⎩得y 2-4my -4=0. ∴y 1+y 2=4m ,y 1y 2=-4…………10分 OA →=(x 1,y 1),OB →=(x 2,y 2).∵OA →·OB →=x 1x 2+y 1y 2=(my 1+1)(my 2+1)+y 1y 2 =m 2y 1y 2+m(y 1+y 2)+1+y 1y 2=-4m 2+4m 2+1-4=-3.∴OA →·OB →是一个定值.……………12分 21. 解析:(1)f ′(x)=3x 2-6x +a ,f ′(0)=a.曲线y =f(x)在点(0,2)处的切线方程为y =ax +2. 由题设得-2a=-1,所以a =2 …………………4分(2)证明:由(1)知,f(x)=x 3-3x 2+2x +2. 设g(x)=f(x)-kx +2=x 3-3x 2+(2-k)x +4.由题设知2-k>0. 当x ≤0时,g ′(x)=3x 2-6x +2-k>0,g(x)单调递增, g(-1)=k -2<0,g(0)=4,所以g(x)=0在(-∞,0]有唯一实根. …………………8分 当x>0时,令h(x)=x 3-3x 2+4, 则g(x)=h(x)+(2-k)x>h(x).h ′(x)=3x 2-6x =3x(x -2).h(x)在(0,2)单调递减,在(2,+∞)单调递增, 所以g(x)>h(x)≥h(2)=0.所以g(x)=0在(0,+∞)没有实根. ………………………………………11分 综上,g(x)=0在R 有唯一实根,即曲线y =f(x)与直线y =kx -2只有一个 交点. ……………………………………………………………………12分 22.解析:(1)设椭圆的标准方程为x 2a 2+y2b2=1(a >b >0),F(c,0),则c =1,因为AF →·FB →=(a +c)(a -c)=a 2-c 2=1,所以a 2=2,b 2=1,则椭圆的标准方程为x 22+y 2=1.……………………………4分(2)假设存在直线l 符合题意,由题意知k MF =1-00-1=-1,故可设直线l 的方程为:y =x +n , 代入x 22+y 2=1得3x 2+4nx +2n 2-2=0,则Δ=16n 2-24(n 2-1)>0,解得n 2<3. 设P(x 1,y 1),Q(x 2,y 2),则x 1+x 2=-43n ,x 1x 2=2n 2-23, …………………………………………8分FP →·MQ →=(x 1-1,y 1)·(x 2,y 2-1)=(x 1-1)x 2+(y 2-1)y 1=2x 1x 2+(n -1)(x 1+x 2)+n 2-n =0,即3n 2+n -4=0,……………………………………………………………………10分解得n =1或n =-43,当n =1时,P 或Q 与M 重合,所以n≠1,所以n =-43.所以满足题意的直线l 存在,其方程为:y =x -43.………………………………12分。

高中数学必修五测试题 高二文科数学(必修五)

高中数学必修五测试题 高二文科数学(必修五)

2014—2015学年度第一学期期中考试高二文科数学试题(A )(必修五)一、选择题(每题5分,共10小题)1.设a 、b 、c 、d∈R,且a >b,c >d,则下列结论正确的是( ) A .a+c >b+dB .a-c >b-dC .ac >bdD .a d >b c211两数的等比中项是( ) A .2B .-2C .±2D .以上均不是3.若三角形三边长的比为5∶7∶8,则它的最大角和最小角的和是( ) A .90°B .120°C .135°D .150°4.数列{a n }中,2n a 2n 29n 3=-++,则此数列最大项的值是( )A .103B .11088C .11038D .1085.若△ABC 的周长等于20,面积是BC 边的长是 ( ) A .5B .6C .7D .86.在数列{a n }中,a 1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N *),则35a a 的值是( ) A .1516B .158C .34 D .387.在△ABC 中,角A ,B 均为锐角,且cosA >sinB ,则△ABC 的形状是( ) A .直角三角形 B .锐角三角形C .钝角三角形D .等腰三角形8.在等差数列{a n }中,2(a 1+a 4+a 7)+3(a 9+a 11)=24,则此数列的前13项之和等于( ) A .13B .26C .52D .1569.数列222222235721,,,,122334(1)n n n +⋅⋅⋅⨯⨯⨯+的前n 项的和是 ( )A . 211n-B .211n+C .211(1)n ++ D .211(1)n -+ 10.已知不等式(x + y )(1x + ay)≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8二、填空题(每题5分,共5小题) 11.数列{a n }的通项公式a n =1n n ++,则103-是此数列的第 项.12. 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B =________.13. 已知点(x,y )满足x 0y 0x y 1≥⎧⎪≥⎨⎪+≤⎩,则u=y-x 的取值范围是_______.14.如图,在四边形ABCD 中,已知AD⊥CD,AD =10,AB =14,∠BDA=60°,∠BCD=135°,则BC 的长为______. 15.在△ABC 中,给出下列结论:①若a 2>b 2+c 2,则△ABC 为钝角三角形; ②若a 2=b 2+c 2+bc,则角A 为60°; ③若a 2+b 2>c 2,则△ABC 为锐角三角形; ④若A∶B∶C=1∶2∶3,则a∶b∶c=1∶2∶3. 其中正确结论的序号为 . 三、解答题(共6小题,共75分)16.(12分)已知不等式ax 2-3x+6>4的解集为{x|x<1或x>b}. (1)求a,b .(2)解不等式ax 2-(ac+b )x+bc<0.17.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A=3a cos B.(1)求角B的大小;(2)若b=3,sin C=2sin A,求a,c的值.18.(12分)设数列{a n}的前n项和为S n=2a n-2n.(1)求a3,a4; (2)证明:{a n+1-2a n}是等比数列;(3)求{a n}的通项公式.19.(12分)设函数()cosfθθθ=+,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(1)若点P的坐标为12⎛⎝⎭,求f(θ)的值;(2)若点P(x,y)为平面区域Ω:1,1,1x yxy+≥⎧⎪≤⎨⎪≤⎩上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.20.(13分)某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的 利润=售价-供货价格,问:(1)每套丛书定价为100元时,书商能获得的总利润是多少万元? (2)每套丛书定价为多少元时,单套丛书的利润最大?21.(本小题满分14分)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===(1)若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值; (2)设122111n n n nT S S S ++=++⋅⋅⋅+,求n T .参考答案1.设a 、b 、c 、d∈R,且a >b,c >d,则下列结论正确的是( ) (A )a+c >b+d (B )a-c >b-d (C )ac >bd (D )a d >b c1.【解析】选A .由不等式的可加性可知a+c >b+d, 而当a=2,b=1,c=-2,d=-3时,B 不一定成立, C ,D 中a 、b 、c 、d 符号不定,不一定成立. 2.11两数的等比中项是( )A .2B .-2C .±2D .以上均不是2.【解析】设等比中项为x ,则x 2=1)1)=4.所以x=±2.故应选C .答案:C3.若三角形三边长的比为5∶7∶8,则它的最大角和最小角的和是( ) (A )90° (B )120° (C )135° (D )150°3.【解析】选B .设三边长为5x,7x,8x ,最大的角为C ,最小的角为A .由余弦定理得:()()()2225x 8x 7x 1cosB ,25x 8x2+-==⨯⨯所以B=60°,所以A+C=180°-60°=120°.4.数列{a n }中,2n a 2n 29n 3=-++,则此数列最大项的值是( )(A )103 (B )11088 (C )11038(D )108 4.【解析】选D .根据题意结合二次函数的性质可得:22n 229a 2n 29n 32(n n)322929292(n )3.48=-++=--+⨯=--++∴n=7时,a n =108为最大值.5.若△ABC 的周长等于20,面积是103,A=60°,则BC 边的长是 ( ) A .5B .6C .7D .85.解析:由1sin 2ABC S bc A ∆=得1103sin 602bc =︒,则bc=40.又a+b+c=20,所以b+c=20-a .由余弦定理得()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-, 所以()2220120a a =--,解得a=7.答案:C6.在数列{a n }中,a 1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N *),则35a a 的值是( ) (A )1516 (B )158 (C )34 (D )386.【解析】选C .当n=2时,a 2·a 1=a 1+(-1)2,∴a 2=2; 当n=3时,a 3a 2=a 2+(-1)3,∴a 3=12; 当n=4时,a 4a 3=a 3+(-1)4,∴a 4=3;当n=5时,()5354455a 23a a a 1a .3a 4=+-∴=∴=,, 7.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 7.解析:cos sin()sin ,,22A AB A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>,选C .答案:C8.在等差数列{a n }中,2(a 1+a 4+a 7)+3(a 9+a 11)=24,则此数列的前13项之和等于( ) (A )13 (B )26 (C )52 (D )1568.【解析】选B .∵2(a 1+a 4+a 7)+3(a 9+a 11)=6a 4+6a 10=24,∴a 4+a 10=4.()()1134101313a a 13a a S 26.22++∴===9.数列222222235721,,,,122334(1)n n n +⋅⋅⋅⨯⨯⨯+的前n 项的和是 ( )A . 211n -B . 211n +C . 211(1)n ++D . 211(1)n -+9.解析:因为22222111,(1)(1)n n a n n n n +==-++所以数列的前n项和2222222221111111111.1223(1)1(1)(1)n S n n n n =-+-+⋅⋅⋅+-=-=-+++ 答案:D10.已知不等式(x + y )(1x + ay )≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2B .4C .6D .810.解析:不等式(x +y )(1ax y+)≥9对任意正实数x ,y 恒成立,则1y axa x y+++≥1a +≥24(舍去),所以正实数a 的最小值为4,选B . 答案:B11.数列{a n }的通项公式a n是此数列的第 项.解析:因为a n ,所以n=9. 答案:91 4,则sin B=________12.设△ABC的内角A,B,C的对边分别为a,b,c,且a=1,b=2,cos C=.12.15 4[解析] 由余弦定理,得c2=a2+b2-2ab cos C=1+4-2×1×2×14=4,解得c=2,所以b=c,B=C,所以sin B=sin C=1-cos2C=154.13.已知点(x,y)满足x0y0x+y1≥⎧⎪≥⎨⎪≤⎩,则u=y-x的取值范围是_______.13.【解析】作出可行域如图,作出y-x=0,由A(1,0),B (0,1),故过B时u最大,u max=1,过A点时u最小,u min=-1.答案:[-1,1]14.如图,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,则BC的长为______.14.【解析】在△ABD中,设BD=x,则BA2=BD2+AD2-2BD·AD·cos∠BDA,即142=x2+102-2·10x·cos60°,整理得x2-10x-96=0,解之得x1=16,x2=-6(舍去).由正弦定理得BC BDsin CDB sin BCD ∠∠=,∴BC=16sin135︒·sin30°=.答案:15.在△ABC中,给出下列结论:①若a2>b2+c2,则△ABC为钝角三角形;②若a2=b2+c2+bc,则角A为60°;③若a2+b2>c2,则△ABC为锐角三角形;④若A∶B∶C=1∶2∶3,则a∶b∶c=1∶2∶3.其中正确结论的序号为.解析:在①中,cos A=2222b c abc+-<0,所以A为钝角,所以△ABC为钝角三角形,故①正确;在②中,b2+c2-a2=-bc,所以cos A=2222b c abc+-=-2bcbc=-12,所以A=120°,故②不正确;在③中,cos C=2222a b cab+->0,故C为锐角,但△ABC不一定是锐角三角形,故③不正确;在④中A∶B∶C=1∶2∶3,故A=30°,B=60°,C=90°,所以确.答案:①16.已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}.(1)求a,b.(2)解不等式ax2-(ac+b)x+bc<0.【解】(1)因为不等式ax2-3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,且b>1.由根与系数的关系得31,21,b a b a ⎧+=⎪⎪⎨⎪⨯=⎪⎩解得1,2.a b =⎧⎨=⎩ (2)解不等式ax 2-(ac+b )x+bc<0,即x 2-(2+c )x+2c<0,即(x-2)(x-c )<0,所以①当c>2时,不等式(x-2)(x-c )<0的解集为{x|2<x<c};②当c<2时,不等式(x-2)(x-c )<0的解集为{x|c<x<2};③当c=2时,不等式(x-2)(x-c )<0的解集为∅.17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.17.解:(1)由b sin A =3a cos B 及正弦定理a sin A =b sin B,得 sin B =3cos B ,所以tan B =3,所以B =π3. (2)由sin C =2sin A 及a sin A =csin C,得c =2a . 由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac ,将c =2a 代入得, a =3,c =23.18.(12分)设数列{a n }的前n 项和为S n =2a n -2n.(1)求a 3,a 4;(2)证明:{a n+1-2a n }是等比数列;(3)求{a n }的通项公式.(1)解:因为a 1=S 1,2a 1=S 1+2,所以a 1=2,S 1=2,由2a n =S n +2n 知:2a n+1=S n+1+2n+1=a n+1+S n +2n+1,得a n+1=S n+2n+1, ①所以a 2=S 1+22=2+22=6,S 2=8,a 3=S 2+23=8+23=16,S 3=24,a 4=S 3+24=40.(2)证明:由题设和①式得:a n+1-2a n =(S n +2n+1)-(S n +2n )=2n+1-2n =2n ,所以{a n+1-2a n }是首项为a 2-2a 1=2,公比为2的等比数列.(3)解:a n =(a n -2a n-1)+2(a n-1-2a n-2)+…+2n-2(a 2-2a 1)+2n-1a 1=(n+1)·2n-1.19. (12分)设函数()3sin cos f θθθ=+,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x,y ),且0≤θ≤π.(1)若点P 的坐标为13,22⎛⎫⎪ ⎪⎝⎭,求f (θ)的值;(2)若点P (x,y )为平面区域Ω: 1,1,1x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,试确定角θ的取值范围,并求函数f (θ)的最小值和最大值.解:(1)由点P 的坐标和三角函数的定义可得3sin ,21cos ,2θθ⎧=⎪⎪⎨⎪=⎪⎩所以31()3sin cos 3 2.2f θθθ=+=⨯+= (2)作出平面区域(即三角形区域ABC )如图,其中A (1,0),B (1,1),C (0,1),则0≤θ≤2π.又()cos 2sin .6f πθθθθ⎛⎫=+=+⎪⎝⎭. 故当62ππθ+=,即3πθ=时, max ()2f θ=; 当66ππθ+=,即θ=0时, min ()1f θ=.20.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书定价为100元时,书商能获得的总利润是多少万元?(2)每套丛书定价为多少元时,单套丛书的利润最大?20. 【解析】(1)每套丛书定价为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+105=32(元),故书商所获得的总利润为5×(100-32) =340(万元). (2)每套丛书售价定为x 元时,由150.1x 0x 0-⎧⎨⎩>>,得0<x <150. 依题意,单套丛书利润 P=x-(30+10150.1x -)=x-100150x--30, ∴P=-[(150-x )+100150x -]+120, ∵0<x <150,∴150-x >0,由(150-x )+100150x-≥)150x -=2×10=20, 当且仅当150-x =100150x-,即x=140时等号成立,此时P max =-20+120=100.答:(1)当每套丛书售价定为100元时,书商能获得总利润为340万元;(2)每套丛书售价定为140元时,单套丛书的利润取得最大值100元.21.(本小题满分14分)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值;(Ⅱ)设122111n n n n T S S S ++=++⋅⋅⋅+,求n T . 20.(本小题满分12分)解:(Ⅰ){}n b 为等差数列,设公差为155,1,15,51015,1d b S S d d ==∴=+== 1(1)1.n b n n ∴=+-⨯= …………………………………………………………………………2分 设从第3行起,每行的公比都是q ,且0q >,2294,416,2,a b q q q ===……………………4分 1+2+3+…+9=45,故50a 是数阵中第10行第5个数,而445010102160.a b q ==⨯=……………………………………………………………………7分 (Ⅱ)12n S =++…(1),2n n n ++=…………………………………………………………8分 1211n n n T S S ++∴=++…21n S + 22(1)(2)(2)(3)n n n n =++++++…22(21)n n ++ 11112(1223n n n n =-+-+++++…11)221n n +-+ 1122().121(1)(21)n n n n n =-=++++友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

2014-2015学年度高二第二学期期中考试(文科)数学试题(带答案)

2014-2015学年度高二第二学期期中考试(文科)数学试题(带答案)

2014-2015学年度⾼⼆第⼆学期期中考试(⽂科)数学试题(带答案)2014-2015学年⾼⼆第⼆学期期中考试数学试卷(⽂)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分。

第Ⅰ卷1⾄2页,第Ⅱ卷3⾄4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分。

第Ⅰ卷1⾄2页,第Ⅱ卷3⾄4页。

2. 答题前,考⽣务必将⾃⼰的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上⽆效。

第Ⅰ卷⼀、选择题:该题共12个⼩题,每个⼩题有且只有⼀个选项是正确的,每题5分,共60分。

1.已知△ABC 中,tan A =-512,则cos A 等于()A.1213B.513 C .-513 D .-12132.函数y =A sin(ωx +φ) (ω>0,|φ|<π2,x ∈R)的部分图象如图所⽰,则函数表达式为 ( )A .y =-4sin π8x +π4B .y =4sin π8x -π4C .y =-4sin π8x -π4D .y =4sin π8x +π43.若2α+β=π,则y =cos β-6sin α的最⼤值和最⼩值分别是( )A .7,5B .7,-112C .5,-112D .7,-54、已知某⼏何体的三视图如图所⽰,则该⼏何体的体积为()( )A.8π3 B .3π C.10π3 D .6π5.P 为ABC ?所在平⾯外⼀点,PB PC =,P 在平⾯ABC 上的射影必在ABC ?的()A .BC 边的垂直平分线上B .BC 边的⾼线上 C .BC 边的中线上D .BAC ∠的⾓平分线上6.有⼀块多边形的菜地它的⽔平放置的平⾯图形的斜⼆测直观图是直⾓梯形,如图所⽰45ABC ∠=2,1AB AD DC BC ,==,⊥,则这块菜地的⾯积为.()A .2+B .C .22+D . 21+7. 下列条件中,能判断两个平⾯平⾏的是()A .⼀个平⾯内的⼀条直线平⾏于另⼀个平⾯;B .⼀个平⾯内的两条直线平⾏于另⼀个平⾯C .⼀个平⾯内有⽆数条直线平⾏于另⼀个平⾯D .⼀个平⾯内任何⼀条直线都平⾏于另⼀个平⾯8.正四棱锥(顶点在底⾯的射影是底⾯正⽅形的中⼼)的体积为12,底⾯对⾓线的长为26,则侧⾯与底⾯所成的⼆⾯⾓为( ) A .30° B .45° C .60° D .90° 9.已知函数sin()y A x m ω?=++的最⼤值为4,最⼩值为0,最⼩正周期为2π,直线3x π=是其图象的⼀条对称轴,则下列各式中符合条件的解析式为()A .4sin(4)3y x π=+B .2sin(2)23y x π=++C .2sin(4)23y x π=++D .2sin(4)26y x π=++10.已知函数()cos (0)f x x x ωωω+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是()A .5[,],1212k k k Z ππππ-+∈B .511[,],1212k k k Z ππππ++∈C .[,],36k k k Z ππππ-+∈D .2[,],63k k k Z ππππ++∈11.实数x 、y 满⾜3x 2+2y 2=6x ,则x 2+y 2的最⼤值为()A 、27 B 、4 C 、29D 、512.极坐标⽅程52sin42=θρ表⽰的曲线是( )A 、圆B 、椭圆C 、双曲线的⼀⽀D 、抛物线第Ⅱ卷⼆、填空题:该题共4个⼩题,每题5分,共20分,请将答案规范书写在答题卡的相应位置。

河南省南阳市2014-2015学年高二下学期期中数学试卷(文科)

河南省南阳市2014-2015学年高二下学期期中数学试卷(文科)

河南省南阳市2014-2015学年高二下学期期中数学试卷(文科)一、选择题(每小题5分,共60分)1.(5分)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i2.(5分)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r表示变量Y与X之间的线性相关系数,r表示变量V与U之间的线性相关系21数,则()A.r<r<0 B.0<r<r C.r<0<r D.r=r 111122222342015的末两位数字为()则77=2401分)观察下列各式:则7,=49,7…=343,.3(5 A.01 B.43 C.07 D.49z=的四个命题:分)下面是关于复数4.(5 对应的点在第二象限,p:复数z12:z,=2ip2,:z的共轭复数为1+ip3.:z的虚部为﹣1p4其中真命题为(),.pp p,p D,.p,p B.pp C.A44122323骰子向A,“5分)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件5.(,B中至少有一件发生的概率是()”为事件B,则事件A上的点数是3...A B.D C6.(5分)从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)=().C..AD B.7.(5分)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,用最小二乘法建立的回归方程为=0.85x﹣85.71,),2,…,n,(,根据一组样本数据(xy)i=1ii 则下列结论中不正确的是()A.y与x具有正的线性相关关系,)回归直线过样本点的中心( B .C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg8.(5分)广州2010年亚运会火炬传递在A,B,C,D,E五个城市之间进行,各城市之间的距离(单位:百公里)见表.若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是()A B C D EA 0 5 4 5 6B 5 0 7 6 2C 4 7 0 9 8.6D 5 6 9 0 5E 6 2 8.6 5 0A.20.6 B.21 C.22 D.239.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a,a,…,a,输出A,n12B,则()A.A+B为a,a,…,a的和n12为a,a,.B…,a的算术平均数n21 C.A和B分别是a,a,…,a中最大的数和最小的数n21 D.A和B分别是a,a,…,a中最小的数和最大的数n1210.(5分)设z是复数,则下列命题中的假命题是()22<0,则z是虚数B.若z A.若z ≥0,则z是实数22<0 z是纯虚数,则z≥0 D.C.若z是虚数,则z若243,(cosx)′=﹣sinx,由归纳推理可得:若定义在)′=2x,(xR)′=4x11.(5分)观察(x 上的函数f(x)满足f(﹣x)=f(x),记g(x)为f(x)的导函数,则g(﹣x)=()A.﹣g(x)B.f(x)C.﹣f(x)D.g(x)12.(5分)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息,设定原信息为aaa,a∈{0,1}(i=0,1,2),传输信息为haaah,其11001022i中h=a⊕a,h=h⊕a.⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息201001为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.10111 B.01100 C.11010 D.00011二、填空题(每小题5分,共20分)13.(5分)观察下列等式:2=1122=﹣213 ﹣222=621+3﹣2222=﹣+310 1﹣﹣24…照此规律,第n个等式可为.z=(i是虚数单位),则|z|=14.(5分)已知复数.15.(5分)在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为.16.(5分)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A,A和A表示由甲罐取出的球是红321球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是(写出所有正确结论的编号).=;)①P(B=;P(B|A)②1③事件B与事件A相互独立;1④A,A,A是两两互斥的事件.321三、解答题2+m﹣2)i(i为何值时,复数为虚数单位)是(z=+(m1)m17.(10分)实数实数;(2)纯虚数.18.(12分)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:甲厂分组30.14)频数29 71 85 159 76 62 18(1)试分别估计两个分厂生产的零件的优质品率;(2)由于以上统计数据填下面2×2(3)列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.甲厂乙厂合计优质品非优质品合计附:.19.(12分)设直线l:y=kx+1,l:y=kx﹣1,其中实数k,k满足kk+3=0.21211221(1)证明l 与l相交;2122为定值.+b,求证3a 与ll的交点为(a,b)(2)设2120.(12分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入x(单位:千克)与i2=720.=184 ,x计算得x=80,y=20y,x单位:月储蓄y(千元)的数据资料,iiiiiix+,并判断变量xx与的线性回归方程y=之间是y(Ⅰ)求家庭的月储蓄关于月收入正相关还是负相关;(Ⅱ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.,为样本平均值.x+中,=,其中注:线性回归方程=21.(12分)已知数学、英语的成绩分别有优、良、及格、不及格四个档次,某班共60人,在每个档次的人数如表:优良及格不及格1 优1 3 1良6 1 0 7及格9 2 4 0不及格a+41 b 7(1)求数学及格且英语良的概率;(2)在数学及格的条件下,英语良的概率;(3)若数学良与英语不及格是相互独立的,求a,b的值.x2(其中a∈R,e是自然对数底数).12分)已知函数f(x)=ae ﹣x22.((1)若a=﹣2,试判断函数f(x)在区间(0,+∞)上的单调性;(2)若f(x)有两个极值点x,x(x<x),求a的取值范围;2112(3)在(2)的条件下,试证明0<f(x)<1.1河南省南阳市2014-2015学年高二下学期期中数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分)1.(5分)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用两个复数代数形式的乘法法则,以及虚数单位i的幂运算性质,运算求得结果.解答:解:(﹣1+i)(2﹣i)=﹣2+i+2i+1=﹣1+3i,故选B.点评:本题主要考查两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题.2.(5分)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r 表示变量Y与X之间的线性相关系数,r表示变量V与U之间的线性相关系21数,则()A.r<r<0 B.0<r<r C.r<0<r D.r=r 11221221考点:相关系数.专题:计算题.分析:求两组数据的相关系数的大小和正负,可以详细的解出这两组数据的相关系数,现分别求出两组数据的两个变量的平均数,利用相关系数的个数代入求出结果,进行比较.解答:解:∵变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),=11.72r=,这组数据的相关系数是∴变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),∴这组数据的相关系数是﹣0.3755,∴第一组数据的相关系数大于零,第二组数据的相关系数小于零,故选C.点评:本题考查用相关系数来衡量两个变量之间相关关系,当相关系数为正时,表示两个变量正相关,也利用散点图判断两个变量之间是否有相关关系.2342015的末两位数字为()7 ,…,7则=343,73.(5分)观察下列各式:则7=2401=49 A.01 B.43 C.07 D.49考点:归纳推理.专题:推理和证明.2015的7由题意依次求出7的乘方对应的值,归纳出末两位数出现的规律,再确定分析:末两位数.23456=117649,7 =2401,解:根据题意得,77=49,7,=343,7=16807解答:789=40353607...,7 =5764801,77=823543,4k24k14k﹣﹣的末两位数字是01,437,7的末两位数字是49,7 的末两位数字是发现:4k+1的末两位数字是49,(k=1、2、3、4、 (7)∵2015=504×4﹣1,20157∴的末两位数字为43,故选:B.点评:本题考查了归纳推理,难点在于发现其中的规律,考查观察、分析、归纳能力.z=的四个命题:分)下面是关于复数4.(5 z对应的点在第二象限,p:复数12:z,=2ip2,z 的共轭复数为1+ip:3的虚部为﹣1.p:z4其中真命题为()C.p,p D p,B ,p.A p.p.p,p 42232143考点:复数代数形式的乘除运算;复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:化简复数为a+bi的形式,即可利用复数的几何意义,基本运算判断选项即可.==﹣1z=﹣i.解答:解:复数复数z对应的点(﹣1,﹣1)是在第三象限,p不正确;122=2i,p:正确;﹣i)z =(﹣12z的共轭复数为﹣11+i,p:不正确;3z的虚部为﹣1.p:正确.4故选:C.点评:本题考查复数的基本运算,复数的基本概念的应用,考查计算能力.5.(5分)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是().D B. C A..考点:相互独立事件的概率乘法公式.专题:计算题.分析:根据题意,“事件A,B中至少有一件发生”与“事件A、B一个都不发生”互为对立(),进而可得P,由对立事件的、P(B)事件,由古典概型的计算方法,可得P(A)概率计算,可得答案.解答:解:根据题意,“事件A,B中至少有一件发生”与“事件A、B一个都不发生”互为对立事件,=,P(B)由古典概型的计算方法,可得P(A),==,﹣1=()﹣)(则P1()﹣”的概率为1“事件A,B中至少有一件发生则=;故选C.点评:本题考查相互独立事件的概率的乘法公式,注意分析题意,首先明确事件之间的相互关系(互斥、对立等).6.(5分)从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)=().D C.. A . B考点:条件概率与独立事件.专题:计算题.分析:用列举法求出事件A=“取到的2个数之和为偶数”所包含的基本事件的个数,求p=即可求得结果.)),根据条件概率公式P(B|A(A),同理求出P(AB解答:解:事件A=“取到的2个数之和为偶数”所包含的基本事件有:(1,3)、(1,5)、(3,5)、(2,4),=,A∴p()=)∴P(AB个数均为偶数”所包含的基本事件有(2,4),事件B=“取到的2=(B|A).∴P故选B.点评:此题是个基础题.考查条件概率的计算公式,同时考查学生对基础知识的记忆、理解和熟练程度.7.(5分)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,回归方程为=0.85x),用最小二乘法建立的﹣,2,…,n,根据一组样本数据(xy)(i=1ii85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系,)归直线过样本点的中心(B.回C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg考点:回归分析的初步应用.专题:阅读型.根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于分析:D回归方程只能进行预测,但不可断定.解答:解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;,),回归直线过样本点的中心(,故正确;对于B回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加对于C,∵0.85kg,故正确;时,=0.85×170﹣85.71=58.79,D,x=170cm但这是预测值,不可断定其体重为58.79kg,对于故不正确故选D.点评:本题考查线性回归方程,考查学生对线性回归方程的理解,属于中档题.8.(5分)广州2010年亚运会火炬传递在A,B,C,D,E五个城市之间进行,各城市之间的距离(单位:百公里)见表.若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是()A B C D EA 0 5 4 5 6B 5 0 7 6 2C 4 7 0 9 8.6D 5 6 9 0 5E 6 2 8.6 5 0A.20.6 B.21 C.22 D.23考点:频率分布表;统筹问题的思想及其应用的广泛性.专题:概率与统计.分析:以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的路线是中3种结果,列举出六种结果的路途长度选出最短的路途,A列出路径间三个位置的排列共有3的长度,得到结果.解答:解:∵以A为起点,E为终点,每个城市经过且只经过一次,3=6种结果,那么火炬传递的路线是中间三个位置的排列共有A3列举出六种结果的路途长度选出最短的路途,A→B→C→D→E,总长是26,A→C→D→B→E,总长是21,A→B→D→C→E,总长是28.6,A→D→B→C→E,总长是26.6,A→C→B→D→E,总长是22,A→D→C→B→E,总长是23,总上可知最短的路径是21.故选B点评:本题考查频率分布表,考查统筹问题的思想及其应用的广泛性,考查利用统计问题解决实际问题,本题采用列举法来解题.9.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a,a,…,a,输出A,n21B,则()A.A+B为a,a,…,a的和n12为a,a,…,a的算术平均数B.n12 C.A和B分别是a,a,…,a中最大的数和最小的数n21 D.A和B分别是a,a,…,a中最小的数和最大的数n12考点:循环结构.专题:算法和程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a,a,…,a中最大的数和最小的数.n21解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a,a,…,a中最大的数和最小的数n12其中A为a,a,…,a中最大的数,B为a,a,…,a中最小的数n211n2故选:C.点评:本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.10.(5分)设z是复数,则下列命题中的假命题是()22<0,则z B是实数,则z A .若≥0z .若z是虚数2≥0 D.若z 若z是虚数,则z是纯虚数,则C.2<z0考点:命题的真假判断与应用.专题:计算题.2,利用a,b的值,判断四个选项的正误即可.分析:设出复数z,求出z222+2abi,﹣b∈R,zb=a解答:解:设z=a+bi,a,2≥0,则b=0,所以z对于A,z是实数,真命题;2<0,则a=0,且b≠0,?z是虚数;所以对于B,zB为真命题;2≥0z是假命题.z是虚数,则b≠0,所以对于C,2<0z是真命题;a=0,b≠0,所以对于D,z是纯虚数,则故选C.点评:本题考查复数真假命题的判断,复数的基本运算.243,(cosx)′=﹣sinx,由归纳推理可得:若定义在)′=2x,(xR)′.11(5分)观察(x=4x 上的函数f(x)满足f(﹣x)=f(x),记g(x)为f(x)的导函数,则g(﹣x)=()A.﹣g(x)B.f(x)C.﹣f(x)D.g(x)考点:归纳推理.专题:规律型.243,(cosx)'=﹣xsinx)'=4x,…分析:由已知中(x分析其规律,我们可以归纳)'=2x,(推断出,偶函数的导函数为奇函数,再结合函数奇偶性的性质,即可得到答案.2)'=2x中,原函数为偶函数,导函数为奇函数;解:由(x 解答:43中,原函数为偶函数,导函数为奇函数;'=4xx )((cosx)'=﹣sinx中,原函数为偶函数,导函数为奇函数;…我们可以推断,偶函数的导函数为奇函数.若定义在R上的函数f(x)满足f(﹣x)=f(x),则函数f(x)为偶函数,又∵g(x)为f(x)的导函数,则g(x)奇函数故g(﹣x)+g(x)=0,即g(﹣x)=﹣g(x),故选A.点评:本题考查的知识点是归纳推理,及函数奇偶性的性质,其中根据已知中原函数与导函数奇偶性的关系,得到结论是解答本题的关键.12.(5分)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息,设定原信息为aaa,a∈{0,1}(i=0,1,2),传输信息为haaah,其100i01221中h=a⊕a,h=h⊕a.⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息200101为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.10111 B.01100 C.11010 D.00011考点:进行简单的合情推理.专题:推理和证明.分析:根据题意,只需验证是否满足h=a⊕a,h=h⊕a.经验证,A,B,C都符合.D210100中,h=h⊕a=0⊕1=1,故错误210解答:解:A选项原信息为101,则h=a⊕a=1⊕0=1,h=h⊕a=1⊕1=0,所以传输信210100息为11010,A选项不正确;B选项原信息为110,则h=a⊕a=1⊕1=0,h=h⊕a=0⊕0=0,所以传输信息为01100,B201010选项正确;C选项原信息为110,则h=a⊕a=1⊕0=1,h=h⊕a=1⊕1=0,所以传输信息为11010,C201010选项正确;D选项原信息为001,则h=a⊕a=0⊕0=0,h=h⊕a=0⊕1=1,所以传输信息为00011,D201010选项正确;故选:A.点评:本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.此题注意正确理解题意,根据要求进行计算.二、填空题(每小题5分,共20分)13.(5分)观察下列等式:2=1122=﹣3 ﹣21222=6+3﹣212222=﹣﹣1﹣24+310…个等式可为.第n 照此规律,考点:归纳推理.专题:压轴题;规律型.222+3﹣n 等式的左边是正整数的平方和或差,根据这一规律得第个等式左边为12分析:2n12﹣.再分n(﹣1)n﹣4为奇数和偶数讨论,结合分组求和法求和,最后利用字母表示+…即可.解答:解:观察下列等式:2=1122=﹣13 ﹣2222=61+3﹣22222=﹣10 1﹣﹣24+3…分n为奇数和偶数讨论:2222n12﹣(﹣11)﹣2n+3﹣4.+…个等式左边为第n2222﹣,…+=(3 ﹣4+)n当为偶数时,分组求和(1﹣2+)222222=+n.…4(2(个等式左边第n当为奇数时,n=1﹣)+3﹣)+++n=﹣个等式为综上,第n.故答案为:.既要分别看左右两边的规律,找等式的规律时,点评:本题考查规律型中的数字变化问题,还要注意看左右两边之间的联系.(i是虚数单位),则.|z|=14.(5分)已知复数z=复数求模.考点:计算题.专题:分析:通过复数的分子与分母同时求模即可得到结果.=|z|=.解答:解:=故答案为:.点评:本题考查复数的模的求法,考查计算能力.,类似4,则它们的面积比为1:115.(5分)在平面上,若两个正三角形的边长的比为:2 .:,则它们的体积比为8地,在空间内,若两个正四面体的棱长的比为1:21类比推理.考点:立体几何.专题:直线或平面,类比分析:根据平面与空间之间的类比推理,由点类比点或直线,由直线结合三角形的面积比的方法类比求四面体的体积比即由平面图形面积类比立体图形的体积,可.4,,则它们的面积比为1:2解答:解:平面上,若两个正三角形的边长的比为1:类似地,由平面图形面积类比立体图形的体积,得出:8 1:2,则它们的体积比为在空间内,若两个正四面体的棱长的比为1:.1:8故答案为:将已知的一类类比推理是指依据两类数学对象的相似性,点评:本题主要考查类比推理.找出两类事物之间的相似①数学对象的性质类比迁移到另一类数学对象上去.一般步骤:用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或②性或者一致性..猜想)个个白球和3个黑球,乙罐中有4个红球,33.16(5分)甲罐中有5个红球,2个白球和表示由甲罐取出的球是红和AA,A黑球.先从甲罐中随机取出一球放入乙罐,分别以312表示由乙罐取出的球是红球的事B球,白球和黑球的事件;再从乙罐中随机取出一球,以.件.则下列结论中正确的是②④(写出所有正确结论的编号)=);①P(B;)(B|A=P②1 A与事件相互独立;③事件B1是两两互斥的事件.,A,④AA312考点:条件概率与独立事件;互斥事件与对立事件.专题:概率与统计.分析:由题意A,A,A是两两互斥的事件,由条件概率公式求出P(B|A),P(B)1123=P(AB)+P(AB)+P(AB),对照四个命题进行判断找出正确命题,选出正确选项.321=,A)PA)===,P(,解答:解:由题意A,AA是两两互斥的事件,P(23112=)(A;3=,由此知,②=正确;P(B|A)=1=;(B|A(B|A))=,PP32而P(B)=P(AB)+P(AB)+P(AB)=P(A)P(B|A)+P(A)P(B|A)+P(A)32322111=.由此知①③B|A)+=不正确;×++ ×P(3A,A,A是两两互斥的事件,由此知④正确;312对照四个命题知②④正确;故答案为:②④.点评:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握了相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的突破点.三、解答题2+m﹣2)im(i为虚数单位)是(1m17.(10分)实数为何值时,复数)z=+(实数;(2)纯虚数.考点:复数的基本概念.专题:数系的扩充和复数.分析:(1)根据复数为实数的充要条件列出方程组,注意分母不为零,求出m的值即可;(2)根据复数为纯虚数的充要条件列出方程组,注意分母不为零,求出m的值即可.为实数的充要条件是,解得m=1,解:(1)复数z解答:…分)(5时复数所以m=1z为实数为纯虚数的充要条件是,解得m=﹣3(2)复数z,所以m=﹣3时复数z为纯虚数…(10分)点评:本题考查复数为纯虚数、实数的充要条件,牢记复数的基本概念是解题的关键,属于基础题.18.(12分)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:甲厂分组优质品360 320 680非优质品140 180 320合计500 500 1000≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”点评:独立性检验的应用的步骤为:根据已知条件将数据归结到一个表格内,列出列联表,再根据列联表中的数据,代入公式,计算出k值,然后代入离散系数表,比较即可得到答案.19.(12分)设直线l:y=kx+1,l:y=kx﹣1,其中实数k,k满足kk+3=0.21221211(1)证明l 与l相交;2122为定值.3a +b的交点为(a,b),求证(2)设l与l21考点:直线的一般式方程.专题:反证法;直线与圆.分析:(1)用反证法,假设l与l不相交,则l∥l,k=k,得出矛盾,从而证明命题222111成立;22是否为定值即可.+b的坐标满足两直线方程,求出)根据点P3a (2解答:解:(1)证明:反证法,假设是l与l不相交,21则l与l平行,有k=k,2121代入kk+3=0,得21+3=0,此时与k为实数的事实相矛盾;1从而k≠k,即l与l相交;…(6分)2112(2)因为交点P的坐标(a,b)满足,22,3a =kka=﹣b+1﹣即(b1)()2122=1;3a+b 整理,得22为定值1.…(12分)所以3a+b点评:本题考查了直线方程的应用问题,也考查了反证法的应用问题,是基础题目.20.(12分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入x(单位:千克)与i2=720.,x,y=20y,单位:月储蓄y(千元)的数据资料,x计算得x=80=184iiiiii x+,并判断变量x与关于月收入xy的线性回归方程之间是=y(Ⅰ)求家庭的月储蓄正相关还是负相关;(Ⅱ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.,为样本平均值.x+,其中中,注:线性回归方程==考点:线性回归方程.专题:计算题;概率与统计.=y=2,Ⅰ)由题意可知n=10,代入可得,b值,进而可=x=8 分析:(ii得a值,可得方程,由回归方程x的系数b的正负可判;(Ⅱ)把x=7代入回归方程求其函数值即可.=y=2,,=x=8 解:解答:(Ⅰ)由题意,n=10,ii,=2﹣0.3×=0.38=﹣0.4,∴=∴=0.3x﹣0.4,∵0.3>0,∴变量x与y之间是正相关;时,=0.3×7﹣0.4=1.7千元.(Ⅱ)x=7点评:本题考查线性回归方程的求解及应用,属基础题.21.(12分)已知数学、英语的成绩分别有优、良、及格、不及格四个档次,某班共60人,在每个档次的人数如表:优良及格不及格1 1 1 3 优6 7 1 良09 0 4 2 及格a+41不及格 b7(1)求数学及格且英语良的概率;(2)在数学及格的条件下,英语良的概率;(3)若数学良与英语不及格是相互独立的,求a,b的值.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(1)记数学及格且英语良为事件A,由题中表格知数学及格且英语良的人数为7人,根据概率公式计算即可得到答案;(2)数学及格的共有15人,其中英语良的7人,即可求出在数学及格的条件下,英语良的概率;(3)记数学良为事件B,英语不及格为事件C,分别求出P(B),P(C),再根据概率公式计算即可得到答案.解答:解:(1)记数学及格且英语良为事件A,由题中表格知数学及格且英语良的人数为7人,=…()3分)故P(A(2)数学及格的共有15人,其中英语良的7人,故数学及格的条件下,英语良的概率为…(6分)a+b+47=60,(3)表中所有数字和为,∴a+b=13=),=,记数学良为事件B,英语不及格为事件C.则P(B)P=(C3,,B与C独立,故m=(PBC)﹣=,即(C)=P(﹣=,B)PP(BC)得b=5,a=8…(12分)点评:本题考查了相互独立事件的乘法公式,考查了古典概型的概率加法公式,考查了学生的读取图表的能力,是中档题x2(其中a∈R,e是自然对数底数)(x)=aex﹣.分)已知函数22.(12f(1)若a=﹣2,试判断函数f(x)在区间(0,+∞)上的单调性;(2)若f(x)有两个极值点x,x(x<x),求a的取值范围;2112(3)在(2)的条件下,试证明0<f(x)<1.1考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)将a=﹣2代入函数f(x)的表达式,求出函数的导数,从而求出函数的单调区间;=,求出h(x)的导数,得到x有两个根,设h()h(x)的)问题转化为方程(2a==,从而求出a1ha0单调区间,得到<<()的范围;(3)先求出a的值,从而表示出f(x)的表达式,进而求出f(x)的单调区间,从而证11出结论.x2x﹣2x,)=﹣﹣x2e,f′(x解:解答:(1)a=﹣2时,f(x)=﹣2e当x∈(0,+∞)时,f′(x)<0,函数f(x)在(0,+∞)递减;x﹣2x=0的两个根,)=ae ,x是f′(xx(2)函数f()有两个极值点x,x,则x2211=,x)=,则h′(即方程)a=有两个根,设h(x令h′(x)>0,解得:x<1,令h′(x)<0,解得:x>1,∴h(x)在(﹣∞,1)单调递增,在(1,+∞)单调递减,=,)<h(要使1a=有两个根,只需0<a,);a的范围是(0 故实数(3)证明:由(2)得:函数f(x)的两个极值点x,x满足0<x <1<x,2211a=,﹣)2x=a=0得f由′(x11xf(∴﹣+2x,=a﹣= )11+2x在(0,1)递增,xf由于()=﹣11由0<x<1得:0=f(0)<f(x)<f(1)=1.11点评:本题考查了函数的单调性,极值问题,考查导数的应用,本题是一道中档题.。

河南省南阳市2015届高三上学期期中质量评估数学(文)试题 扫描版含答案

河南省南阳市2015届高三上学期期中质量评估数学(文)试题 扫描版含答案

2014年秋期高三年级文科期中考试答案一.选择题: 题目 1 2 3 4 5 6 7 8 9 10 11 12 答案 ADBADCDAACAB二.填空题:13.1 14.重心 15.4116.①②③④ 三.解答题:17.解:(I )∵f x ()为偶函数()()∴s i n s i n -+=+ωϕωϕx x 即20s i n c o s ωϕx =恒成立∴cos ϕ=0 ∵,∴02≤≤=ϕπϕπ……………………………………………………………3分 又其图象上相邻对称轴之间的距离为π ∴T =2π ∴ω=1∴f x x ()c o s = ……………………………………………………………………5分 (II )∵原式=-++=s i n c o s t a n s i n c o s22112αααα ……………………………7分 又∵,∴s i n c o s s i n c o s αααα+=+=231249 …… ………………………9分 即259s i n c o s αα=-, 故原式=-59………………………………………10分18.解:由⎩⎨⎧+=+=xx y x y 321,得0123=-+-x x x , 即0)1)(1(2=+-x x ,1=∴x ,∴交点为)2,1(.…………………………………2分 又x x f 2)('=,2)1('=∴f ,∴曲线)(x f y =在交点处的切线1l 的方程为)1(22-=-x y , 即x y 2=, ……………………5分又13)('2+=x x g . ∴4)1('=g .∴曲线)(x g y =在交点处的切线2l 的方程为)1(42-=-x y ,即24-=x y . ………………………………………………………………8分 取切线1l 的方向向量为)2,1(=a ,切线2l 的方向向量为)4,1(=b ,…………10分 则858591759||||cos =⨯=⋅=b a b a θ. ……………………………………12分19.解:(Ⅰ)由,47)43(1sin ,43cos 2=-==B B 得由ac b =2及正弦定理得 .s i n s i ns i n 2C A B = 则CA AC A C C C A A C A sin sin sin cos cos sin sin cos sin cos tan 1tan 1+=+=+22sin()sin 147.sin sin sin 7A CB B B B +==== …………………………6分(Ⅱ)由32BA BC ⋅=,得23cos =B ac ,由43cos =B ,可得ac =2,即b 2=2.…………………………………………………………8分由余弦定理B ac c a b cos 2222-+=,得5cos 2222=+=+B ac b c a , 3,9452)(222=+=+=++=+c a ac c a c a ……………………12分20.解:(Ⅰ)∵*n N ∈时,n n n a S a -=22,当2≥n 时,21112n n n a S a ---=-,…………………………………………………2分由①-②得,22111(2)(2)n n n n n n a a S a S a ----=---即2211n n n n a a a a ---=+,∵01>+-n n a a ∴)2(11≥=--n a a n n ,………………4分 由已知得,当1=n 时,21112a S a =-,∴11=a .………………………………5分故数列}{n a 是首项为1,公差为1的等差数列.∴*()N n a n n =∈. …………6分 (Ⅱ)∵*()N n a n n =∈,∴n n n n b 2)1(31⋅-+=-λ,…………7分∴111133(1)2(1)2n n n n n n n n b b λλ++-+-=-+-⋅--⋅1233(1)2n n n λ-=⨯-⋅-⋅.要使得1n n b b +>恒成立,只须113(1)()2n n λ---⋅<. …………8分(1)当n 为奇数时,即13()2n λ-<恒成立.又13()2n -的最小值为1,∴1λ<. ……9分(2)当n 为偶数时,即13()2n λ->-恒成立.又13()2n --的最大值为32-,∴32λ>- ……………………………………10分∴由(1),(2)得312λ-<<,又0λ≠且λ为整数,……………………11分∴1λ=-对所有的*N n ∈,都有1n n b b +>成立. ………………12分21.解:[)(] 1.-2f(-x),0,1x -,1,0-x )1(-x =∴∈∈则令又,)(是奇函数x f ∴f(-x)=-f(x),∴,12)()(-=-=--x x f x f ∴[).0,1,1)21()(-∈+-=x x f x.................................6分(2) f(x+4)=f(x),∴f(x)是以4为周期的周期函数, ),4,5(24log 24log 221--∈-=∴),0,1(424log 21-∈+∴211161241)21()424(log )24(log 424log 212121-=+⨯-=+-=+=∴+f f .......12分22.解:(I )ax x x x f 22131)(23++-= ,a x x x f 2)('2++-=∴ …………………2分 函数)(x f 在),32(+∞上存在单调递增区间,即导函数在),32(+∞上存在函数值大于零的部分, 0232)32()32('2>++-=∴a f 91->∴a ……………………………………6分(II))(x f 取到最小值316-,而a x x x f 2)('2++-=的图像开口向下,且对称轴方程为21=x ,02)1('>=a f ,0122)4('<-=a f则必有一点使得0'()0=f x……………………………………8分此时函数)(x f 在0[1,]x 上单调递增,在0[,4]x 单调递减.612)1(+=a f ,a f 8340)4(+-=,)1()4(f f <∴3168340)4()(min -=+-==∴a f x f , 1=∴a , …………………10分 此时,由200000'()202,1()=-++=∴==-舍去f x x x x x ,所以函数max 10()(2)3==f x f ………………………………………………………12分[],4,10∈x。

河南省实验中学2014-2015学年高二上学期期中考试 数学(文)(Word含答案)

河南省实验中学2014-2015学年高二上学期期中考试 数学(文)(Word含答案)

河南省实验中学2014——2015学年上期期中试卷高二 文科数学命题人:汪洋 审题人:李红霞(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.数列1,3,5,7,9,--……的一个通项公式为( )A .(1)(12)n n a n =--B .21n a n =-C .(1)(21)n n a n =--D .(1)(21)n n a n =-+2.不等式11<x的解集是( ) A .{}1>x x B .{}0<x x C .{}01<>x x x 或 D .{}10<<x x3.在等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于 ( )A .297B .144C .99D . 664.在△ABC 中,内角C B A ,,的对边分别为c b a ,,,若18a =,24b =,45A =︒,则这样的三角形有( )A.0个B.两个C.一个D.至多一个5.原点和点()1,1在直线0=-+a y x 的两侧,则a 的取值范围是( )A .20><a a 或B .20==a a 或C .20<<aD .20≤≤a6.已知数列{}n a 的前n 项和,3,2,1,12=-=n S n n …,那么数列{}n a ( ) A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列7.设变量y x ,满足约束条件0024236x y x y x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,则43z x y =+的最大值是( )A .7B .8C .9D .108.已知数列{}n a 满足n n a a -=+111,若211=a ,则=2014a ( ) A 、21 B 、2 C 、-1 D 、1 9.若,,a b c 为实数,则下列命题正确的是( )A .若a b >,则22ac bc >B .若0a b <<,则22a ab b >>C .若0a b <<,则11a b <D .若0a b <<,则b a a b >10.设n S 为等差数列{}n a 的前n 项的和,20141-=a ,20072005220072005S S -=,则2014S 的值为( ) A 、-2013 B 、-2014 C 、2013 D 、201411.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,B B A C 2sin 3)sin(sin =-+.若3π=C ,则=b a ( ) A.21 B.3 C.21或3 D.3或4112.命题:p 函数)3lg(-+=xa x y 在区间[)+∞,2上是增函数;命题:q )4lg(2+-=ax x y 函数的定义域为R .则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题(本大题共4小题,每小题5分,共20分)13.若0>a ,0>b ,且0)ln(=+b a ,则ba 11+的最小值是 . 14.关于x 的一元二次方程0)1(2=+--m x m mx 没有实数根,则实数m 的取值范围是 .15.设,x y 满足约束条件2208400 , 0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z abx y a b =+>>的最大值为8,则a b +的最小值为________。

2023-2024学年河南省南阳市高二(上)期中数学试卷【答案版】

2023-2024学年河南省南阳市高二(上)期中数学试卷【答案版】

2023-2024学年河南省南阳市高二(上)期中数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 过点(2,3),且倾斜角为90°,则直线l 的方程为( ) A .﹣x +y =1B .x +y ﹣5=0C .y =3D .x =22.二次函数y =ax 2(a ≠0)的图像为抛物线,其准线方程为( ) A .x =−14aB .x =−a 4C .y =−14aD .y =−a 43.已知三条直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,倾斜角分别为α,β,γ.若α<β<γ,则下列关系不可能成立的是( ) A .k 3<k 1<k 2B .k 1<k 2<k 3C .k 2<k 3<k 1D .k 3<k 2<k 14.国家体育场(鸟巢),是2008年北京奥运会的主体育场.在《通用技术》课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同,扁平程度相同的椭圆,已知大椭圆的长轴长为40cm ,短轴长为20cm ,小椭圆的短轴长为10cm ,则小椭圆的长轴长为( )cm .A .30B .20C .10√3D .105.直线y =kx +1与椭圆x 24+y 2m=1总有公共点,则m 的取值范围是( )A .(0,1)∪(1,+∞)B .[1,4)∪(4,+∞)C .(0,1)∪(1,4)D .(1,+∞)6.已知△ABC 的顶点在抛物线y 2=4x 上,若抛物线的焦点F 恰好是△ABC 的重心,则|F A |+|FB |+|FC |的值为( ) A .3B .4C .5D .67.已知实数x 、y 满足x 2+y 2=1,则|2x +y ﹣5|的最小值是( ) A .√5−1B .√5+1C .5−√5D .5+√58.如图,加斯帕尔•蒙日是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆(或双曲线)上两条相互垂直的切线的交点P 的轨迹方程为圆,该圆称为外准圆,也叫蒙日圆.双曲线C :x 24−y 2=1的蒙日圆的面积为( )A .3πB .4πC .5πD .6π二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知直线l 1:ax +2y ﹣1=0和直线l 2:x +(a +1)y ﹣1=0,下列说法不正确的是( ) A .当a =﹣2或1时,l 1∥l 2 B .当a =−23时,l 1⊥l 2C .直线l 1过定点(0,1),直线l 2过定点(1,0)D .当l 1,l 2平行时,两直线的距离为√2 10.已知方程x 27−t +y 23+t=1表示的曲线为C ,则下列四个结论中正确的是( )A .当﹣3<t <7时,曲线C 是椭圆B .当t >7或t <﹣3时,曲线C 是双曲线 C .若曲线C 是焦点在x 轴上的椭圆,则﹣3<t <2D .若曲线C 是焦点在y 轴上的双曲线,则t >7 11.P 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上的一点,O 为坐标原点,则下列说法正确的是( )A .c ≤|OP |≤aB .若∠F 1PF 2=60°,则S △F 1PF 2=√3b 2C .若存在点P ,使∠F 1PF 2=90°,则椭圆C 的离心率e ∈[√22,1)D .若PF 1的中点在y 轴上,则|PF 2|=b2a12.已知F 是抛物线C :y 2=2px 的焦点,直线AB 经过点F 交抛物线于A 、B 两点,则下列说法正确的是( )A .以AB 为直径的圆与抛物线的准线相切 B .若AF →=2FB →,则直线AB 的斜率k =3C .弦AB 的中点M 的轨迹为一条抛物线,其方程为y 2=2px ﹣p 2D .若p =4,则|AF |+4|BF |的最小值为18三、填空题(本大题共4小题,每小题5分,共20分.)13.请写出一个焦点在y 轴上,焦距为2的椭圆的标准方程 .14.P 、Q 分别是圆E :(x +9)2+(y +4)2=1与圆F :(x ﹣1)2+(y ﹣3)2=1上的动点,A 为直线y =x 上的动点,则|AP |+|AQ |的最小值为 . 15.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的焦点与椭圆x 281+y 272=1的焦点重合,离心率互为倒数,设F 1、F 2分别为双曲线C 的左、右焦点,P 为右支上任意一点,则双曲线C 的离心率为 ;|PF 1|2|PF 2|的最小值为 .16.参加数学兴趣小组的小何同学在打篮球时,发现当篮球放在地面上时,篮球的斜上方灯泡照过来的光线使得篮球在地面上留下的影子有点像数学课堂上学过的椭圆,但他自己还是不太确定这个想法,于是回到家里翻阅了很多参考资料,终于明白自己的猜想是没有问题的,而且通过学习,他还确定地面和篮球的接触点(切点)就是影子椭圆的焦点.他在家里做了个探究实验:如图所示,桌面上有一个篮球,若篮球的半径为1个单位长度,在球的右上方有一个灯泡P (当成质点),灯泡与桌面的距离为4个单位长度,灯泡垂直照射在平面的点为A ,影子椭圆的右顶点到A 点的距离为3个单位长度,则这个影子椭圆的离心率e = .四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)在平行四边形ABCD 中,A (﹣2,1),B (1,7),D (1,﹣2),点E 是线段CD 的中点. (1)求直线CD 的方程;(2)求过点E 且与直线BC 垂直的直线方程.18.(12分)已知焦点在y 轴上的双曲线的离心率为32,焦点到其中一条渐近线的距离为√5.(1)求双曲线的标准方程;(2)过双曲线的上焦点F 1的直线l 交双曲线的上支于M 、N 两点.在y 轴上是否存在定点T ,使得∠F 1TM =∠F 1TN 恒成立?若存在,求出点T 的坐标;若不存在,请说明理由. 19.(12分)已知圆C :x 2+3λx +y 2﹣λy ﹣10﹣10λ=0. (1)证明:圆C 过定点.(2)当λ=1时,是否存在斜率为1的直线l 交圆C 于A 、B 两点,使得以AB 为直径的圆恰好经过原点?若存在,求出l 的方程;若不存在,说明理由.20.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,过点F 2且垂直于x 轴的弦长为3,且_____.(从以下三个条件中任选一个,将其序号写在答题卡的横线上并作答.) ①椭圆C 的长轴长为4;②椭圆C 与椭圆x 213+y 212=1有相同的焦点;③F 1,F 2与椭圆C 短轴的一个端点组成的三角形为等边三角形. (1)求椭圆C 的标准方程;(2)若直线l 经过F 2,且与椭圆交于M ,N 两点,求△F 1MN 面积的最大值.21.(12分)已知动圆M 经过点A (2,0),且与直线x =﹣2相切.设圆心M 的轨迹为C . (1)求曲线C 的方程;(2)设P 为直线x =﹣2上任意一点,过P 作曲线C 的两条切线,切点分别为E 、F ,求证:PE ⊥PF . 22.(12分)已知两定点A (﹣3,0),B (3,0),过动点P 的两直线P A 和PB 的斜率之积为−89.设动点P 的轨迹为C . (1)求曲线C 的方程;(2)设F 1(﹣1,0),过F 1的直线l 交曲线C 于M 、N 两点(不与A 、B 重合).设直线AM 与BN 的斜率分别为k 1,k 2,证明k 1k 2为定值.2023-2024学年河南省南阳市高二(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l过点(2,3),且倾斜角为90°,则直线l的方程为()A.﹣x+y=1B.x+y﹣5=0C.y=3D.x=2解:∵直线l过点(2,3),且倾斜角为90°,∴直线l的方程为x=2.故选:D.2.二次函数y=ax2(a≠0)的图像为抛物线,其准线方程为()A.x=−14aB.x=−a4C.y=−14a D.y=−a4解:将二次函数y=ax2(a≠0)化为抛物线标准式得x2=1ay,所以准线方程为y=−14a.故选:C.3.已知三条直线l1,l2,l3的斜率分别为k1,k2,k3,倾斜角分别为α,β,γ.若α<β<γ,则下列关系不可能成立的是()A.k3<k1<k2B.k1<k2<k3C.k2<k3<k1D.k3<k2<k1解:若γ>90°>β>α,则tanβ>tanα>0>tanγ,A成立,若α<β<γ<90°,则tanα<tanβ<tanγ,B成立,若α<90°<β<γ,则tanα>0>tanγ>tanβ,C成立,故选:D.4.国家体育场(鸟巢),是2008年北京奥运会的主体育场.在《通用技术》课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同,扁平程度相同的椭圆,已知大椭圆的长轴长为40cm,短轴长为20cm,小椭圆的短轴长为10cm,则小椭圆的长轴长为()cm.A.30B.20C.10√3D.10解:扁平程度相同的椭圆,即离心率相等,大椭圆a1=20,b1=10,c1=√202−102=10√3,离心率为e1=√32,小椭圆b 2=5,离心率e 2=e 1=√32=√a 22−25a 2,解得a 2=10,故长轴长为20.故选:B .5.直线y =kx +1与椭圆x 24+y 2m=1总有公共点,则m 的取值范围是( )A .(0,1)∪(1,+∞)B .[1,4)∪(4,+∞)C .(0,1)∪(1,4)D .(1,+∞)解:直线y =kx +1恒过点(0,1),只需该点落在椭圆内或椭圆上, 即024+12m≤1,解得m ≥1,又m ≠4,则m 的取值范围是[1,4)∪(4,+∞).故选:B .6.已知△ABC 的顶点在抛物线y 2=4x 上,若抛物线的焦点F 恰好是△ABC 的重心,则|F A |+|FB |+|FC |的值为( ) A .3B .4C .5D .6解:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),抛物线y 2=4x ,则F (1,0), 因为焦点F 恰好是△ABC 的重心,所以x 1+x 2+x 3=3×1=3, 故|F A |+|FB |+|FC |=x 1+1+x 2+1+x 3+1=6. 故选:D .7.已知实数x 、y 满足x 2+y 2=1,则|2x +y ﹣5|的最小值是( ) A .√5−1B .√5+1C .5−√5D .5+√5解:x 2+y 2=1,则圆心C (0,0),半径r =1, |2x +y ﹣5|=√5|2x+y−5|√2+1,√22+12表示圆上的点到直线2x +y ﹣5=0的距离,该距离的最小值为√22+12−r =√5−1,故|2x +y ﹣5|的最小值是:√5×(√5−1)=5−√5. 故选:C .8.如图,加斯帕尔•蒙日是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆(或双曲线)上两条相互垂直的切线的交点P 的轨迹方程为圆,该圆称为外准圆,也叫蒙日圆.双曲线C :x 24−y 2=1的蒙日圆的面积为( )A .3πB .4πC .5πD .6π解:不妨设P (x 0,y 0),则过点P 的切线方程为y ﹣y 0=k (x ﹣x 0),联立{x 2a 2−y 2b 2=1y −y 0=k(x −x 0),消去y 并整理得(b 2﹣a 2k 2)x 2﹣2a 2k (y 0﹣kx 0)x −a 2[(y 0−kx 0)2+b 2],因为过点P 的切线方程与双曲线只有一个交点,所以Δ=0,解得(x 02−a 2)k 2−2x 0y 0k +y 02+b 2=0,易知k AP ,k BP 为关于k 的方程(x 02−a 2)k 2−2x 0y 0k +y 02+b 2=0的两个根,且k AP •k BP =﹣1,所以y 02+b 2x 02−a 2=−1,整理得x 02+y 02=a 2−b 2,所以点P 的轨迹方程为x 02+y 02=a 2−b 2(a >b ),可得双曲线C :x 24−y 2=1的蒙日圆的轨迹方程为x 2+y 2=3, 所以r =√3,则该蒙日圆的面积S =πr 2=3π. 故选:A .二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知直线l 1:ax +2y ﹣1=0和直线l 2:x +(a +1)y ﹣1=0,下列说法不正确的是( ) A .当a =﹣2或1时,l 1∥l 2 B .当a =−23时,l 1⊥l 2C .直线l 1过定点(0,1),直线l 2过定点(1,0)D .当l 1,l 2平行时,两直线的距离为√2解:A 中,两条直线平行时,则a (a +1)=2×1,且a ×(﹣1)≠﹣1×1,解得a =﹣2,所以A 不正确;B 中,a =−23时,a •1+2•(a +1)=−23+23=0,即两条直线垂直,所以B 正确; C 中,直线l 1:ax +2y ﹣1=0可得恒过定点(0,12),直线l 2:x +(a +1)y ﹣1=0整理可得ay +x +y ﹣1=0,恒过定点(1,0),所以C 不正确;D 中,由A 可知,两条直线平行时a =﹣2,此时直线l 1:﹣2x +2y ﹣1=0,即x ﹣y +12=0, 直线l 2:x ﹣y ﹣1=0,所以两条直线的距离d =|12−1|√1+(−1)=√24,所以D 不正确.故选:ACD . 10.已知方程x 27−t+y 23+t=1表示的曲线为C ,则下列四个结论中正确的是( )A .当﹣3<t <7时,曲线C 是椭圆B .当t >7或t <﹣3时,曲线C 是双曲线 C .若曲线C 是焦点在x 轴上的椭圆,则﹣3<t <2D .若曲线C 是焦点在y 轴上的双曲线,则t >7 解:当方程x 27−t+y 23+t=1是椭圆时,则{7−t >03+t >07−t ≠3+t,解得﹣3<t <2或2<t <7,∴A 错误,当方程x 27−t+y 23+t =1是双曲线时,则(7﹣t )(t +3)<0,解得t <﹣3或t >7,∴B 正确;若方程x 27−t +y 23+t =1是焦点在x 轴上的椭圆,则{7−t >3+t 3+t >0,解得﹣3<t <2,∴C 正确; 若方程x 27−t+y 23+t=1是焦点在y 轴上的双曲线,则 {3+t >07−t <0,解得t >7,∴D 正确.故选:BCD . 11.P 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上的一点,O 为坐标原点,则下列说法正确的是( )A .c ≤|OP |≤aB .若∠F 1PF 2=60°,则S △F 1PF 2=√3b 2C .若存在点P ,使∠F 1PF 2=90°,则椭圆C 的离心率e ∈[√22,1)D .若PF 1的中点在y 轴上,则|PF 2|=b2a解:对于A ,易知|OP |∈[b ,a ],故A 错误; 对于B ,设|PF 1|=m ,|PF 2|=n ,则m +n =2a ,根据余弦定理,(2c )2=m 2+n 2﹣2mn cos60°,解得mn =4a 2−4c 23=4b23,所以S △F 1PF 2=12mnsin60°=√3b 23,故B 错误;对于C ,若存在点P ,使∠F 1PF 2=90°, 则c ⩾b ,所以c 2⩾a 2﹣c 2,即c 2a 2⩾12,所以e ∈[√22,1),故C 正确;对于D ,若PF 1的中点在y 轴上,则PF 2⊥x 轴,所以|PF 2|=b2a,故D 正确.故选:CD .12.已知F 是抛物线C :y 2=2px 的焦点,直线AB 经过点F 交抛物线于A 、B 两点,则下列说法正确的是( )A .以AB 为直径的圆与抛物线的准线相切 B .若AF →=2FB →,则直线AB 的斜率k =3C .弦AB 的中点M 的轨迹为一条抛物线,其方程为y 2=2px ﹣p 2D .若p =4,则|AF |+4|BF |的最小值为18解:A .由抛物线的方程可得焦点F (p2,0),准线方程为:x =−p2,设A (x 1,y 1),B (x 2,y 2),则AB 的中点M (x 1+x 22,y 1+y 22),利用焦点弦的性质可得|AB |=x 1+x 2+p ,而AB 的中点M 到准线的距离d =x 1+x 22−(−p 2)=12(1+x 2+p )=12|AB |,∴以AB 为直径的圆与该抛物线的准线相切,因此A 正确;B .设直线AB 的方程为x =my +p 2,k =1m >0,联立{x =my +p2y 2=2px , 整理可得:y 2﹣2mpy ﹣p 2=0, 可得y 1+y 2=2mp ,y 1y 2=﹣p 2, ∵AF →=2FB →,∴y 1=﹣2y 2, 解得y 2=﹣2mp ,y 1=4mp , ∴﹣8m 2p 2=﹣p 2,解得m 2=18, ∴k =√1m 2=2√2,因此B 不正确; C .设M (x ,y ),结合A ,B 可得:y =y 1+y 22=mp ,x =x 1+x 22=m(y 1+y 2)2+p 2=m 2p +p 2,消去m 可得:2y 2=2px ﹣p 2,因此C 不正确; D .若p =4,则抛物线C :y 2=8x ,不妨设x 1>x 2>0,x 1x 2=(y 1y 2)264=4,∴|AF |+4|BF |=x 1+4x 2+10=4x 2+4x 2+10≥4×2√1x 2⋅x 2+10=18,当且仅当x 2=1,x 1=4时取等号,因此D 正确. 故选:AD .三、填空题(本大题共4小题,每小题5分,共20分.) 13.请写出一个焦点在y 轴上,焦距为2的椭圆的标准方程 y 22+x 21=1(答案不唯一,只要焦点在y轴上且a 2﹣b 2=1) . 解:y 22+x 21=1(答案不唯一,只要焦点在y 轴上且a 2﹣b 2=1). 故答案为:y 22+x 21=1(答案不唯一,只要焦点在y 轴上且a 2﹣b 2=1).14.P 、Q 分别是圆E :(x +9)2+(y +4)2=1与圆F :(x ﹣1)2+(y ﹣3)2=1上的动点,A 为直线y =x 上的动点,则|AP |+|AQ |的最小值为 11 . 解:由题意知E (﹣9,﹣4),F (1,3),如图,设圆E 关于y =x 的对称圆为圆G ,点Q 与点Q '关于y =x 轴对称,则圆G 的方程为(x +4)2+(y +9)2=1,G (﹣4,﹣9),所以(|AP |+|AQ |)min =(|AP |+|AQ ′|)min ≥|PQ ′|,当且仅当P ,A ,Q ′三点共线时取得最小值, 此时|PQ ′|=|FG |﹣1﹣1=√(−4−1)2+(−9−3)2−1﹣1=11,所以AP |+|AQ |的最小值为11. 故答案为:11. 15.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的焦点与椭圆x 281+y 272=1的焦点重合,离心率互为倒数,设F 1、F 2分别为双曲线C 的左、右焦点,P 为右支上任意一点,则双曲线C 的离心率为 3 ; |PF 1|2|PF 2|的最小值为 8 . 解:已知椭圆x 281+y 272=1的离心率e 1=√1−7281=13,而c =√81−72=3, 因为双曲线C 与椭圆x 281+y 272=1的离心率互为倒数,所以双曲线C 的离心率e 2=3,① 因为双曲线C 的焦点与椭圆x 281+y 272=1的焦点重合,所以双曲线C 的半焦距c =3,② 又a 2+b 2=c 2,③联立①②③,解得a =1,b =2√2,则双曲线C 的方程为x 2−y 28=1,若F 1、F 2分别为双曲线C 的左、右焦点,P 为右支上任意一点, 可得|PF 1|﹣|PF 2|=2a =2, 即|PF 1|=2+|PF 2|, 所以|PF 1|2|PF 2|=(2+|PF 2|)2|PF 2|=4+4|PF 2|+|PF 2|2|PF 2|=4|PF 2|+|PF 2|+4,因为|PF 2|≥c ﹣a =1, 所以4|PF 2|+|PF 2|+4≥2√4|PF 2|⋅|PF 2|+4=8, 当且仅当4|PF 2|=|PF 2|,即|PF 2|=2时,等号成立,则|PF 1|2|PF 2|的最小值为8.故答案为:3;8.16.参加数学兴趣小组的小何同学在打篮球时,发现当篮球放在地面上时,篮球的斜上方灯泡照过来的光线使得篮球在地面上留下的影子有点像数学课堂上学过的椭圆,但他自己还是不太确定这个想法,于是回到家里翻阅了很多参考资料,终于明白自己的猜想是没有问题的,而且通过学习,他还确定地面和篮球的接触点(切点)就是影子椭圆的焦点.他在家里做了个探究实验:如图所示,桌面上有一个篮球,若篮球的半径为1个单位长度,在球的右上方有一个灯泡P (当成质点),灯泡与桌面的距离为4个单位长度,灯泡垂直照射在平面的点为A ,影子椭圆的右顶点到A 点的距离为3个单位长度,则这个影子椭圆的离心率e =79.解:以A 为坐标原点建立平面直角坐标系,由题意可知,|NQ |=a +c ,|QR |=a ﹣c 由题意可得P (0,4),R (﹣3,0),则PR :4x ﹣3y +12=0,k PR =43, 设M (n ,1),Q (n ,0), 则M 到PR 的距离d =|4n−3+12|√4+3=1,解得n =﹣1(舍去).n =−72,则|QR |=72−3=12=a ﹣c , 又设PN :kx ﹣y +4=0,由d =|−72k−1+4|√1+k =1,得45k 2﹣84k +32=0.∴k PR •k PN =3245,则k PN =815,得x N =−152, ∴2a =152−3=92,a =94,解得c =74. ∴椭圆的离心率e =ca =79. 故答案为:79.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)在平行四边形ABCD 中,A (﹣2,1),B (1,7),D (1,﹣2),点E 是线段CD 的中点.(1)求直线CD 的方程;(2)求过点E 且与直线BC 垂直的直线方程. 解:(1)由题意可得k AB =7−11−(−2)=2,由平行四边形可得CD ∥AB ,所以直线CD 的斜率为2,所以直线CD 的方程为y ﹣(﹣2)=2(x ﹣1),即2x ﹣y ﹣4=0; (2)设所求直线为l .设点C 的坐标为(m ,n ),则DC →=(m −1,n +2), 由题意AB →=DC →,又AB →=(3,6),故{m −1=3n +2=6,解得m =4,n =4,即C (4,4), 点E 是线段CD 的中点,则E(52,1), 直线BC 的斜率为k BC =7−41−4=−1,由于直线BC 与l 垂直,故直线l 的斜率为1, 所以直线l 的方程为y −1=x −52, 即2x ﹣2y ﹣3=0.18.(12分)已知焦点在y 轴上的双曲线的离心率为32,焦点到其中一条渐近线的距离为√5.(1)求双曲线的标准方程;(2)过双曲线的上焦点F 1的直线l 交双曲线的上支于M 、N 两点.在y 轴上是否存在定点T ,使得∠F 1TM =∠F 1TN 恒成立?若存在,求出点T 的坐标;若不存在,请说明理由. 解:(1)因为焦点在y 轴上的双曲线的离心率为32,所以e =√1+b 2a2=32,①因为焦点到其中一条渐近线的距离为√5, 所以d =√a 2+b=b =√5,②联立①②,解得a =2, 则双曲线的标准方程为y 24−x 25=1;(2)易知直线l 的斜率存在,不妨设直线l 的方程为y =kx +3,M (x 1,y 1),N (x 2,y 2), 联立{y =kx +3y 24−x 25=1,消去y 并整理得(5k 2﹣4)x 2+30kx +25=0,由韦达定理得x 1+x 2=−30k 5k 2−4,x 1x 2=255k 2−4,假设在y 轴上存在定点T ,使得∠F 1TM =∠F 1TN 恒成立, 不妨设点T (0,t ),此时k TM +k TN =0, 即y 1−t x 1+y 2−t x 2=x 2(y 1−t)+x 1(y 2−t)x 1x 2=x 2(kx 1+3−t)+x 1(kx 2+3−t)x 1x 2=2k +(3−t)(x 1+x 2)x 1x 2=2k +(3−t)−30k 5k 2−4255k 2−4=0,解得t =43,则点T 的坐标为(0,43).综上,y 轴上存在点T(0,43),使∠F 1TM =∠F 1TN 恒成立. 19.(12分)已知圆C :x 2+3λx +y 2﹣λy ﹣10﹣10λ=0. (1)证明:圆C 过定点.(2)当λ=1时,是否存在斜率为1的直线l 交圆C 于A 、B 两点,使得以AB 为直径的圆恰好经过原点?若存在,求出l 的方程;若不存在,说明理由.解:(1)证明:圆C :x 2+3λx +y 2﹣λy ﹣10﹣10λ=0,即x 2+y 2﹣10+λ(3x ﹣y ﹣10)=0, 令{3x −y −10=0x 2+y 2−10=0,解得{x =3y =−1, 把(3,﹣1)代入圆C :x 2+3λx +y 2﹣λy ﹣10﹣10λ=0成立, 所以圆过定点(3,﹣1).(2)当λ=1时,圆C 的方程为:x 2+y 2+3x ﹣y ﹣20=0. 假设存在直线l 符合题意,直线l 的斜率为1,设直线l 的方程为y =x +m ,与圆C 联立{y =x +mx 2+y 2+3x −y −20=0,化简整理可得,2x 2+2(m +1)x +m 2﹣m ﹣20=0,Δ=4(m +1)2﹣4×2×(m 2﹣m ﹣20)>0①, 设A (x 1,y 1),B (x 2,y 2) x 1+x 2=﹣(m +1),x 1x 2=m 2−m−202, 若以AB 为直径的圆经过原点,则OA ⊥OB ,OA →⋅OB →=0,即x 1x 2+y 1y 2=x 1x 2+(x 1+m)(x 2+m)=2x 1x 2+m(x 1+x 2)+m 2=m m 2﹣m ﹣20﹣m (m +1)+m 2=m 2﹣2m ﹣20=0,解得m =1±√21,均满足①,故直线l 的方程为y =x +1−√21或y =x +1+√21. 20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,过点F 2且垂直于x 轴的弦长为3,且_____.(从以下三个条件中任选一个,将其序号写在答题卡的横线上并作答.) ①椭圆C 的长轴长为4;②椭圆C 与椭圆x 213+y 212=1有相同的焦点;③F 1,F 2与椭圆C 短轴的一个端点组成的三角形为等边三角形. (1)求椭圆C 的标准方程;(2)若直线l 经过F 2,且与椭圆交于M ,N 两点,求△F 1MN 面积的最大值. 解:(1)选①:由题意得{2a =42b 2a =3,解得{a =2b =√3.所以椭圆C 的方程为x 24+y 23=1.选②:椭圆x 213+y 212=1的焦点坐标为(±1,0),则c =1,又2a =4,得a =2,由a 2=b 2+c 2得,b 2=4﹣1=3, 所以椭圆C 的方程为x 24+y 23=1.选③:由题意得2b 2a=3,因为F 1,F 2与椭圆C 短轴的一个端点组成等边三角形, 所以b =√3c ,又a 2=b 2+c 2,得a =2,b =√3, 所以椭圆C 的方程为x 24+y 23=1.(2)【解法一】:由题知F 2(1,0), 设直线l 的方程为x =my +1,联立{x =my +1x 24+y 23=1,得(3m 2+4)y 2+6my ﹣9=0,设点M (x 1,y 1),N (x 2,y 2), 所以y 1+y 2=−6m 3m 2+4,y 1y 2=−93m 2+4. 所以S △F 1MN =S △MF 1F 2+S △NF 1F 2=12⋅2c|y 1−y 2|=|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√(−6m 3m 2+4)2−−363m 2+4=12√m 2+13m 2+4, 设t =√m 2+1≥1,则S △F 1MN =12t 3t 2+1=123t+1t,因为函数y =3t +1t在t ∈[1,+∞)上单调递增, 所以函数y =123t+1t在t ∈[1,+∞)上单调递减, 所以当t =1时,y max =123×1+1=3(此时m =0,直线为x =1), 所以△F 1MN 面积的最大值为3. 【解法二】:由题知F 2(1,0),当直线l 的斜率不存在时,直线l 的方程为x =1,此时M (1,32),N (1,−32)或M (1,−32),N (1,32),所以|MN |=3,所以△F 1MN 的面积为12|F 1F 2|⋅|MN|=3,当直线l 的斜率存在时,设直线l 的方程为y =k (x ﹣1), 联立{y =k(x −1)x 24+y 23=1,得(3+4k 2)x 2﹣8k 2x +4k 2﹣12=0,设点M (x 1,y 1),N (x 2,y 2), 所以x 1+x 2=8k23+4k 2,x 1x 2=4k 2−123+4k 2,所以y 1+y 2=−6k3+4k 2,y 1y 2=−9k23+4k2,所以S △F 1MN =S △MF 1F 2+S △NF 1F 2=12⋅2c|y 1−y 2|=|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√(−6k 3+4k2−4⋅−9k23+4k2)=12√k 2(k 2+1)3+4k 2,设t =3+4k 2>3,则k 2=t−34,所以S =12√(t−34)2−t−34t 2=3√1−2t −3t2(其中0<1t <13),所以当1t→0时,S →3,综上所述:△F 1MN 面积的最大值为3.21.(12分)已知动圆M 经过点A (2,0),且与直线x =﹣2相切.设圆心M 的轨迹为C . (1)求曲线C 的方程;(2)设P 为直线x =﹣2上任意一点,过P 作曲线C 的两条切线,切点分别为E 、F ,求证:PE ⊥PF . 解:(1)因为动圆M 经过点A (2,0),且与直线x =﹣2相切, 所以|MA |=|x +2|,即点M 到点A (2,0)的距离与到直线x =﹣2的距离相等,由抛物线定义知圆心M 的轨迹C 为抛物线,且焦点为(2,0),准线方程为x =﹣2, 所以曲线C 的方程为y 2=8x ;(2)证明:易知过点P 的切线斜率存在,且不为0; 因为P 为直线x =﹣2上任意一点,不妨设P (﹣2,t ),切线方程为x +2=m (y ﹣t ),联立{x +2=m(y −1)y 2=8x ,消去x 并整理得y 2﹣8my +8mt +16=0,此时Δ=64m 2﹣4(8tm +16)=64m 2﹣32tm ﹣64=0, 因为过点P 存在两条切线,所以关于m 的方程有两个不相等的实数根m 1,m 2, 由韦达定理得m 1m 2=﹣1,不妨设切线PE 、PF 的斜率分别为k 1,k 2, 此时k 1k 2=1m 1⋅1m 2=−1,故PE ⊥PF .22.(12分)已知两定点A (﹣3,0),B (3,0),过动点P 的两直线P A 和PB 的斜率之积为−89.设动点P 的轨迹为C . (1)求曲线C 的方程;(2)设F 1(﹣1,0),过F 1的直线l 交曲线C 于M 、N 两点(不与A 、B 重合).设直线AM 与BN 的斜率分别为k 1,k 2,证明k 1k 2为定值.解:(1)不妨设点P (x ,y ),因为过动点P 的两直线P A 和PB 的斜率之积为−89, 所以k PA ⋅k PB =yx+3⋅yx−3=−89, 整理得x 29+y 28=1(x ≠±3);(2)证明:不妨设直线l 的方程为x =my ﹣1,M (x 1,y 1),N (x 2,y 2), 联立{x =my −1x 29+y 28=1,消去x 并整理得(8m 2+9)y 2﹣16my ﹣64=0,由韦达定理得y 1+y 2=16m 8m 2+9,y 1y 2=−648m 2+9, 则k 1k 2=y 1x 1+3⋅x 2−3y 2=x 2y 1−3y 1x 1y 2+3y 2=(my 2−1)y 1−3y 1(my 1−1)y 2+3y 2=my 1y 2−4y 1my 1y 2+2y 2=−64m8m 2+9−4y 1−64m 8m 2+9+2(16m8m 2+9−y 1)=−64m8m 2+9−4y 1−32m8m 2+9+2y 1=2.综上,k 1k 2为定值2.。

4—15学上学期高二期中考试数学(附答案) (1)

4—15学上学期高二期中考试数学(附答案) (1)

汇文中学2014-2015学年度第一学期期中考试高二数学试卷第一卷一、填空题:(本大题共8小题,每题5分,共40分。

请将答案填在答卷上.........) 1.抛物线24y x =的焦点坐标为 ▲ . 2.“2x >”是“1x >”的 ▲ 条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中的某一个) 3.在平面直角坐标系中,若点(,1)a -在直线210x y -+=的上方(不含边界), 则实数a 的取值范围是 ▲ .4.已知函数()21f x x =+,则()f x 在区间[0,2]上的平均变化率为 ▲ .5.双曲线221416x y -=的渐近线方程为 ▲ . 6.设变量x ,y 满足约束条件311x y x y y +≤⎧⎪-≥-⎨⎪≥⎩,则目标函数z =2x +y 的最大值为 ▲ .7.一物体做加速直线运动,假设t s 时的速度为2()3v t t =+,则2t =时物体的加速度为 ▲ .8x a <+在区间[1,1]-上恒成立,则实数a 的取值范围是 ▲ . 二、解答题:(本大题共4道题,满分60分。

答题应有必要的步骤和推理过程..............) 9.(本题满分14分)已知p :x R ∀∈,不等式2302x mx -+>恒成立,q :椭圆22113x y m m+=--的焦点在x 轴上.若命题p q ∧为真命题,求实数m 的取值范围.10.(本题满分14分)已知函数2()f x x =.(1)若曲线()f x 的一条切线的斜率是2,求切点坐标; (2)求()f x 在点(1,(1))f --处的切线方程.11.(本题满分16分)已知一个圆经过直线l :240x y ++=与圆C :222410x y x y ++-+=的两个 交点,并且面积有最小值,求此圆的方程.12.(本题满分16分)如图,F 是中心在原点、焦点在x 轴上的椭圆C 的右焦点,直线l :x =4是椭圆C 的 右准线,F 到直线l 的距离等于3. (1)求椭圆C 的方程;(2)点P 是椭圆C 上动点,PM ⊥l ,垂足为M .是否存在点P ,使得△FPM 为等腰 三角形?若存在,求出点P 的坐标;若不存在,请说明理由.第二卷一、填空题:(本大题共6小题,每题5分,共30分。

2014-2015年河南省南阳市高三上学期数学期末试卷(文科)与解析

2014-2015年河南省南阳市高三上学期数学期末试卷(文科)与解析

2014-2015学年河南省南阳市高三(上)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知M={y|y=x2},N={y|x2+y2=2},则M∩N=()A.{(1,1),(﹣1,1)}B.{1}C.[0,1]D.2.(5分)在复平面内,复数Z=+i2012对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知命题p:∀x>1,x2>1,那么¬p是()A.∃x≤1,x2≤1B.∀x>1,x2≤1C.∃x>1,x2≤1D.∀x<1,x2≤14.(5分)已知等比数列{a n},a4+a8=π,则a6(a2+2a6+a10)的值为()A.π2B.πC.4D.﹣9π5.(5分)一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为()A.B.C.D.6.(5分)阅读如图所示的程序框图,如果输出的函数值在区间[,]内,则输入的实数x的取值范围是()A.(﹣∞,﹣2)B.[﹣2,﹣1]C.[﹣1,2]D.(2,+∞)7.(5分)能够把圆O:x2+y2=16的周长和面积同时分为相等的两部分的函数称为圆O的“和谐函数”,下列函数不是圆O的“和谐函数”的是()A.f(x)=4x3+x B.C.D.f(x)=e x+e﹣x8.(5分)已知△ABC中,AB=AC=4,BC=,点P为BC边所在直线上的一个动点,则满足()A.最大值为16B.最小值为4C.为定值8D.与P的位置有关9.(5分)在△ABC中,已知2acosB=c,sinAsinB(2﹣cosC)=sin2+,则△ABC 为()A.等边三角形B.等腰直角三角形C.锐角非等边三角形D.钝角三角形10.(5分)如图,F1,F2是双曲线C:﹣=1(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点,若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()A.B.C.2D.11.(5分)给出以下五个结论:①函数f(x)=x﹣()x的零点在区间(,)内;②平面内的动点P到点F(﹣2,3)和到直线l:2x+y+1=0的距离相等,则点P的轨迹为抛物线;③∀x>0,不等式2x+≥4成立的充要条件a≥2;④若将函数f(x)=sin(2x﹣)的图象向右平移φ(φ>0)个单位后变为偶函数,则φ的最小值是;⑤过M(2,0)的直线l与椭圆+y2=1交于P1,P2两点,线段P1P2中点为P,设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于﹣,其中正确结论的个数是()A.2B.3C.4D.512.(5分)定义域为R的函数f(x),满足f(0)=1,f′(x)<f(x)+1,则不等式f(x)+1<2e x的解集为()A.{x∈R|x>1}B.{x∈R|0<x<1}C.{x∈R|x<0}D.{x∈R|x>0}二、填空题(共4小题,每小题5分,满分20分)13.(5分)设S n为公差不为0的等差数列{a n}的前n项和,若S9=3a8,则=.14.(5分)若直线l是曲线C:y=斜率最小的切线,则直线l与圆的位置关系为.15.(5分)已知椭圆=1(a>b>0),A(0,4)为长轴的一个端点,弦BC过椭圆的中心O,且=0,||=2||,则其焦距为.16.(5分)过平面区域内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,则当α最小时cosα=.三、解答题(共8小题,满分70分)17.(12分)已知向量=(sinx,﹣1),=(cosx,﹣),函数f(x)=(+)•﹣2(1)求函数f(x)的最小正周期T及单调减区间;(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=2,c=4,且f(A)=1.求A,b和△ABC的面积.18.(12分)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(Ⅰ)求频率分布直方图中[80,90)间的矩形的高为多少?(Ⅱ)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率;(Ⅲ)依据上频率分布直方图,求该班数学成绩的平均分数估计是多少.19.(12分)如图五面体中,四边形CBB1C1为矩形,B1C1⊥平面ABB1N,四边形ABB1N为梯形,且AB⊥BB1,BC=AB=AN==4.(1)求证:BN⊥平面C1B1N;(2)求此五面体的体积.20.(12分)设函数f(x)=lnx+,m∈R.(1)若函数g(x)=f′(x)﹣只有一个零点,求m的取值范围;(2)若对于任意b>a>0,<1恒成立,求m的取值范围.21.(12分)已知抛物线的顶点在坐标原点,焦点为F(1,0),点P是点F关于y轴的对称点,过点P的直线交抛物线于A,B两点.(1)试问在x轴上是否存在不同于点P的一点T,使得TA,TB与x轴所在的直线所成的锐角相等,若存在,求出定点T的坐标,若不存在说明理由.(2)若△AOB的面积为,求向量的夹角.22.(10分)如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC•AE=DC•AF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;(Ⅱ)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.23.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.24.已知函数f(x)=|x﹣a|﹣|x+3|,a∈R.(Ⅰ)当a=﹣1时,解不等式f(x)≤1;(Ⅱ)若当x∈[0,3]时,f(x)≤4,求a的取值范围.2014-2015学年河南省南阳市高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知M={y|y=x2},N={y|x2+y2=2},则M∩N=()A.{(1,1),(﹣1,1)}B.{1}C.[0,1]D.【解答】解:∵M={y|y=x2}═{y|y≥0},N={y|x2+y2=2}={y|﹣≤y≤},∴M∩N={y|y≥0}∩={y|﹣≤y≤}={y|≥y≥0},故选:D.2.(5分)在复平面内,复数Z=+i2012对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵i4=1,∴i2012=(i4)503=1.∴复数Z=+i2012=+1=+1=对应的点位于第一象限.故选:A.3.(5分)已知命题p:∀x>1,x2>1,那么¬p是()A.∃x≤1,x2≤1B.∀x>1,x2≤1C.∃x>1,x2≤1D.∀x<1,x2≤1【解答】解:因为全称命题的否定是特称命题.所以,命题p:∀x>1,x2>1,那么¬p是∃x>1,x2≤1.故选:C.4.(5分)已知等比数列{a n},a4+a8=π,则a6(a2+2a6+a10)的值为()A.π2B.πC.4D.﹣9π【解答】解:设等比数列{a n}的公比为q,由a4+a8=π得,,所以a6(a2+2a6+a10)=====π2,故选:A.5.(5分)一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为()A.B.C.D.【解答】解:由三视图可知:该几何体是一个如图所示的三棱锥(图中红色部分),它是一个正四棱锥的一半,其中底面是一个两直角边都为6的直角三角形,高EF=4.设其外接球的球心为O,O点必在高线EF上,外接球半径为R,则在直角三角形AOF中,AO2=OF2+AF2=(EF﹣EO)2+AF2,即R2=(4﹣R)2+(2)2,解得:R=故选:C.6.(5分)阅读如图所示的程序框图,如果输出的函数值在区间[,]内,则输入的实数x的取值范围是()A.(﹣∞,﹣2)B.[﹣2,﹣1]C.[﹣1,2]D.(2,+∞)【解答】解:分析程序中各变量、各语句的作用再根据流程图所示的顺序,可知:该程序的作用是计算分段函数f(x)=的函数值.又∵输出的函数值在区间[,],即[2﹣2,2﹣1]内,∴x∈[﹣2,﹣1].故选:B.7.(5分)能够把圆O:x2+y2=16的周长和面积同时分为相等的两部分的函数称为圆O的“和谐函数”,下列函数不是圆O的“和谐函数”的是()A.f(x)=4x3+x B.C.D.f(x)=e x+e﹣x【解答】解:由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.A中,f(0)=0,且f(x)为奇函数,故f(x)=4x3+x为“和谐函数”;B中,f(0)=ln=ln1=0,且f(﹣x)=ln=ln=﹣ln=﹣f(x),所以f(x)为奇函数,所以f(x)=ln为“和谐函数”;C中,f(0)=tan0=0,且f(﹣x)=tan=﹣tan=﹣f(x),所以f(x)为奇函数,故f(x)=tan为“和谐函数”;D中,f(0)=e0+e﹣0=2,所以f(x)=e x+e﹣x的图象不过原点,故f(x))=e x+e﹣x 不为“和谐函数”;故选:D.8.(5分)已知△ABC中,AB=AC=4,BC=,点P为BC边所在直线上的一个动点,则满足()A.最大值为16B.最小值为4C.为定值8D.与P的位置有关【解答】解:取BC的中点D,则AD==2,由平行四边形法则,=2,∴=2•=2×||×||cos∠PAD=2||2=2×4=8.故选:C.9.(5分)在△ABC中,已知2acosB=c,sinAsinB(2﹣cosC)=sin2+,则△ABC 为()A.等边三角形B.等腰直角三角形C.锐角非等边三角形D.钝角三角形【解答】解:将已知等式2acosB=c,利用正弦定理化简得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A与B都为△ABC的内角,∴A﹣B=0,即A=B,已知第二个等式变形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,则△ABC为等腰直角三角形.故选:B.10.(5分)如图,F1,F2是双曲线C:﹣=1(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点,若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()A.B.C.2D.【解答】解:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,∵|AB|2+|BF2|2=|AF2|2,∴∠ABF2=90°,又由双曲线的定义得:|BF1|﹣|BF2|=2a,|AF2|﹣|AF1|=2a,∴|AF1|+3﹣4=5﹣|AF1|,∴|AF1|=3.∴|BF1|﹣|BF2|=3+3﹣4=2a,∴a=1.在Rt△BF1F2中,|F1F2|2=|BF1|2+|BF2|2=62+42=52,又|F1F2|2=4c2,∴4c2=52,∴c=.∴双曲线的离心率e==.故选:B.11.(5分)给出以下五个结论:①函数f(x)=x﹣()x的零点在区间(,)内;②平面内的动点P到点F(﹣2,3)和到直线l:2x+y+1=0的距离相等,则点P的轨迹为抛物线;③∀x>0,不等式2x+≥4成立的充要条件a≥2;④若将函数f(x)=sin(2x﹣)的图象向右平移φ(φ>0)个单位后变为偶函数,则φ的最小值是;⑤过M(2,0)的直线l与椭圆+y2=1交于P1,P2两点,线段P1P2中点为P,设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于﹣,其中正确结论的个数是()A.2B.3C.4D.5【解答】解:①由函数f(x)=x﹣()x,可知:函数在R上单调递增,因此最多有一个零点,而=﹣<0,=﹣>0,∴<0,因此函数的零点在区间(,)内,正确;②由于点F(﹣2,3)在直线l:2x+y+1=0上,因此其轨迹为过点F(﹣2,3)且与直线l垂直的一条直线,故不正确;③当a>0时,∀x>0,不等式2x+≥=≥4⇔a≥2,正确;④若将函数f(x)=sin(2x﹣)的图象向右平移φ(>0)个单位后变为=为偶函数,则2φ+=(k∈Z),因此φ的最小值是,正确;⑤设P1(x1,y1),P2(x2,y2),P(x0,y0),则=1,=1,则+(y1+y2)(y1﹣y2)=0,∴x0+2y0k1=0,,∴k1k2等于﹣,正确.综上可得:①③④⑤正确.故选:C.12.(5分)定义域为R的函数f(x),满足f(0)=1,f′(x)<f(x)+1,则不等式f(x)+1<2e x的解集为()A.{x∈R|x>1}B.{x∈R|0<x<1}C.{x∈R|x<0}D.{x∈R|x>0}【解答】解:构造函数∵f'(x)<f(x)+1,∴g'(x)<0,故g(x)在R上为减函数,而g(0)=2不等式f(x)+1<2e x化为g(x)<g(0),解得x>0,故选:D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设S n为公差不为0的等差数列{a n}的前n项和,若S9=3a8,则= 15.【解答】解:由题意得,S9=3a8,所以=3a8,由等比数列的性质得9a5=3a8,即3a5=a8,同理可得,===15,故答案为:15.14.(5分)若直线l是曲线C:y=斜率最小的切线,则直线l与圆的位置关系为相切.【解答】解:由题意得,y′=3x2+1≥1,则直线l的斜率为1,此时x=0,故切点坐标为p(0,1),∴直线l的方程为:y﹣1=x,即x﹣y+1=0,则圆的圆心到直线的距离d=,故此直线与此圆相切,故答案为:相切.15.(5分)已知椭圆=1(a>b>0),A(0,4)为长轴的一个端点,弦BC过椭圆的中心O,且=0,||=2||,则其焦距为.【解答】解:因为=0,||=2||,所以AC⊥BC,OC=AC,因为OA=4,所以C(2,2),代入椭圆方程可得,所以b2=,所以c==,所以2c=.故答案为:.16.(5分)过平面区域内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,则当α最小时cosα=.【解答】解:如图阴影部分表示,确定的平面区域,当P离圆O最远时α最小,此时点P坐标为:(﹣4,﹣2),记∠APO=β,则α=2β,则sinβ=,则cosα=cos2β=1﹣2sin2β=1﹣2×()2,计算得cosα=,故答案为:.三、解答题(共8小题,满分70分)17.(12分)已知向量=(sinx,﹣1),=(cosx,﹣),函数f(x)=(+)•﹣2(1)求函数f(x)的最小正周期T及单调减区间;(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=2,c=4,且f(A)=1.求A,b和△ABC的面积.【解答】解析:(1)∵,,∴()=•(sinx,﹣1)===+2,∴=.∴.由,解得.∴单调递减区间是.(2)∵f(A)=1,∴,∵A为锐角,∴,解得A=;由正弦定理得,∴==1,C∈(0,π),∴.∴,∴=2.∴.18.(12分)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(Ⅰ)求频率分布直方图中[80,90)间的矩形的高为多少?(Ⅱ)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率;(Ⅲ)依据上频率分布直方图,求该班数学成绩的平均分数估计是多少.【解答】解:(Ⅰ)由茎叶图可知:[50,60)有2个,又在频率分布直方图中可知[50,60)的频率为P1=0.008×10=0.08,故总人数为N=(人).在[60,70)有7人,故频率.在[70,80)有10人,频率在[90,100)有2人,频率.故在[80,90)的频率P4=1﹣0.08﹣0.28﹣0.4﹣0.08=0.16.所以[80,90)矩形的高为h=.(Ⅱ)[80,90)的人数为:25×0.016=4(人),又[90,100)的人数为2人,故至少有一份分数在[90,100)之间的概率为:.(Ⅲ)所以该班数学成绩的平均分数估计为73.8分.19.(12分)如图五面体中,四边形CBB1C1为矩形,B1C1⊥平面ABB1N,四边形ABB1N为梯形,且AB⊥BB1,BC=AB=AN==4.(1)求证:BN⊥平面C1B1N;(2)求此五面体的体积.【解答】解:(1)证明:连NC,过N作NM⊥BB1,垂足为M,∵B1C1⊥平面ABB1N,BN⊂平面ABB1N,∴B1C1⊥BN,…(2分)又,BC=4,AB=4,BM=AN=4,BA⊥AN,∴,=,∵,∴BN⊥B1N,…(4分)∵B1C1⊂平面B1C1N,B1N⊂平面B1C1N,B1N∩B1C1=B1∴BN⊥平面C1B1N…(6分)(2)连接CN,,…(8分)又B1C1⊥平面ABB1N,所以平面CBB1C1⊥平面ABB1N,且平面CBB1C1∩ABB1N=BB1,NM⊥BB1,NM⊂平面B1C1CB,∴NM⊥平面B1C1CB,…(9分)…(11分)此几何体的体积…(12分)20.(12分)设函数f(x)=lnx+,m∈R.(1)若函数g(x)=f′(x)﹣只有一个零点,求m的取值范围;(2)若对于任意b>a>0,<1恒成立,求m的取值范围.【解答】解:(1)∵函数f(x)=lnx+,(x>0),∴g(x)=f′(x)﹣=﹣﹣=,(x>0),若g(x)只有一个零点,则h(x)=﹣x3+3x﹣3m,(x>0)只有一个零点,∵h′(x)=﹣3x2+3=0时,x=1,或x=﹣1(舍去),故当x=1时,h(x)取极大值﹣3m+2,若h(x)=﹣x3+3x﹣3m只有一个零点,则﹣3m+2>0,解得:m<(2)若对于任意b>a>0,<1恒成立,则f′(x)=﹣=<1在(0,+∞)上恒成立,即x2﹣x+m>0在(0,+∞)上恒成立,由y=x2﹣x+m的图象是开口朝上,且以直线x=为对称轴的抛物线,故>0,解得:m>.21.(12分)已知抛物线的顶点在坐标原点,焦点为F(1,0),点P是点F关于y轴的对称点,过点P的直线交抛物线于A,B两点.(1)试问在x轴上是否存在不同于点P的一点T,使得TA,TB与x轴所在的直线所成的锐角相等,若存在,求出定点T的坐标,若不存在说明理由.(2)若△AOB的面积为,求向量的夹角.【解答】解:(1)由题意知:抛物线方程为:y2=4x且P(﹣1,0)设A(x1,y1),B(x2,y2),设直线l的方程为x=my﹣1,代入y2=4x得y2﹣4my+4=0,△=16m2﹣16>0,得m2>1,假设存在T(a,0)满足题意,则k AT+k BT====0.∴8m﹣4m(1+a)=0,∴a=1,∴存在T(1,0)(2)S=||||sinθ=,△AOB∴||||=,=x1x2+y1y2=+y1y2==5,∴cos∠AOB==sin∠AOB,∴tan∠AOB=1,∴∠AOB=.22.(10分)如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC•AE=DC•AF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;(Ⅱ)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.【解答】(I)证明:∵CD为△ABC外接圆的切线,∴∠BCD=∠A,由题设知:=,故△CDB∽△AEF,∴∠DBC=∠EFA.∵B,E,F,C四点共圆,∴∠CFE=∠DBC,故∠EFA=∠CFE=90°∴∠CBA=90°,因此CA是△ABC外接圆的直径.(2)解:连接CE,∵∠CBE=90°,∴过B,E,F,C四点的圆的直径为CE,由DB=BE,有CE=DC,又BC2DB•BA=2DB2,∴CA2=4DB2+BC2=6DB2,而DC2=DB•DA=3DB2,故B,E,F,C四点的圆的面积与△ABC的外接圆面积的比值为.23.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.【解答】解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.24.已知函数f(x)=|x﹣a|﹣|x+3|,a∈R.(Ⅰ)当a=﹣1时,解不等式f (x )≤1;(Ⅱ)若当x ∈[0,3]时,f (x )≤4,求a 的取值范围.【解答】解:(Ⅰ)当a=﹣1时,不等式为|x +1|﹣|x +3|≤1.当x ≤﹣3时,不等式化为﹣(x +1)+(x +3)≤1,不等式不成立;当﹣3<x <﹣1时,不等式化为﹣(x +1)﹣(x +3)≤1,解得﹣≤x <﹣1; 当x ≥﹣1时,不等式化为(x +1)﹣(x +3)≤1,不等式必成立. 综上,不等式的解集为[﹣,+∞).…(5分) (Ⅱ)当x ∈[0,3]时,f (x )≤4即|x ﹣a |≤x +7, 由此得a ≥﹣7且a ≤2x +7.当x ∈[0,3]时,2x +7的最小值为7, 所以a 的取值范围是[﹣7,7].…(10分)赠送—高中数学知识点【2.1.1】指数与指数幂的运算 (1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n a n 是偶数时,正数a 的正的n n a 表示,负的n 次方根用符号n a -0的n 次方根是0;负数a 没有n 次方根.n a n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0) nn a a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质 (4)指数函数 函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a >01a <<定义域R值域(0,)+∞xa y =xy(0,1)O1y =xa y =xy (0,1)O 1y =过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质函数 名称 对数函数定义 函数log (0a y x a =>且1)a ≠叫做对数函数图象1a >01a <<定义域 (0,)+∞ 值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=。

2014-2015高二(上)数学期中试卷及答案

2014-2015高二(上)数学期中试卷及答案

2014-2015学年第一学期高二期中考试数学试题一、填空题:本大题共14小题,每小题5分,共70分1.把命题“012,0200<+-∈∃x x R x ”的否定写在横线上__________. 2的倾斜角是 .3.已知一个球的表面积为264cm π,则这个球的体积为4. “两条直线不相交”是“两条直线是异面直线”的 条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中的一个)5.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +(a 2-1)=0平行,则实数a =________. 6.若圆的方程为x 2+y 2+kx +2y +k 2=0,则当圆的面积最大时,圆心坐标为________. 7.已知圆锥的底面半径是3,高为4,这个圆锥的侧面积是________. 8.经过点(2,1)A 且到原点的距离等于2的直线方程是____________.9.设,αβ为使互不重合的平面,,m n 是互不重合的直线,给出下列四个命题: ①//,,//m n n m αα⊂若则 ②,,//////m n m n ααββαβ⊂⊂若,,则 ③//,,//m n m n αβαβ⊂⊂若,则 ④若,,,,m n n m n αβαβαβ⊥⋂=⊂⊥⊥则; 其中正确命题的序号为 .10. 圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为32,则圆C 的标准方程为 .11. 在正三棱柱111C B A ABC -中,各棱长均相等,C B BC 11与的交点为D ,则AD 与平面C C BB11所成角的大小是_______.12.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是13.如图是一个正方体的表面展开图,A 、B 、C 均为棱的中点,D 是顶点,则在正方体中,异面直线AB 和CD 的夹角的余弦值为 。

河南省南阳市高二数学上学期期中试卷(含解析)

河南省南阳市高二数学上学期期中试卷(含解析)

2015-2016学年河南省南阳市高二(上)期中数学试卷一、选择题1.在等差数列{a n}中,a1=21,a7=18,则公差d=( )A.B.C.﹣D.﹣2.在△ABC中,若sinA=cosB=,则∠C=( )A.45° B.60° C.30° D.90°3.已知a,b为非零实数,且a<b,则下列命题成立的是( )A.a2<b2B.a2b<ab2C.2a﹣2b<0 D.>4.设等比数列{a n}的公比q=2,前n项和为S n,则=( )A.2 B.4 C.D.5.如果方程x2+(m﹣1)x+m2﹣2=0的两个实根一个小于﹣1,另一个大于1,那么实数m的取值范围是( )A.﹣<m<B.﹣2<m<0 C.﹣2<m<1 D.0<m<16.已知数列{a n}是等差数列,数列{b n}是等比数列,其公比q≠1,且b i>0(i=1,2,3,…),若a1=b1,a11=b11,则( )A.a6=b6 B.a6>b6C.a6<b6D.a6>b6或a6<b67.平面区域如图所示,若使目标函数z=x+ay(a>0)取得最大值的最优解有无穷多个,则a的值是( )A.B.1 C.D.48.等差数列{a n}的公差d<0,且a12=a112,则数列{a n}的前n项和S n取得最大值时的项数n 是( )A.5 B.6 C.5或6 D.6或79.若关于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4内有解,则实数a的取值范围是( ) A.a<﹣4 B.a>﹣4 C.a>﹣12 D.a<﹣1210.△ABC中,AB=,AC=1,∠B=30°,则△ABC的面积等于( )A.B.C.D.11.已知a>0,b>0,,若不等式2a+b≥4m恒成立,则m的最大值为( ) A.10 B.9 C.8 D.712.设等差数列{a n}(n∈N+)的前n项和为S n,该数列是单调递增数列,若S4≥10,S5≤15,则a4的取值范围是( )A.(] B.(] C.(﹣∞,4] D.(3,+∞)二、填空题13.设公比为q的等比数列{a n}的前n项和为S n,若S n+1、S n、S n+2成等差数列,则q=__________.14.在约束条件下,目标函数z=ax+by(a>0,b>0)的最大值为1,则ab的最大值等于__________.三、解答题(共7小题,满分80分)15.如图,在△ABC中,∠ABC=90°,,BC=1,P为△ABC内一点,∠BPC=90°(Ⅰ)若,求PA;(Ⅱ)若∠APB=150°,求tan∠PBA.16.已知数列{a n}满足数列{b n}的前n项和S n=n2+2n.(1)求数列{a n},{b n}的通项公式;(2)设c n=a n b n,求数列{c n}的前n项和T n.17.已知关于x的不等式ax2+5x+c>0的解集为{x|<x<},(Ⅰ)求a,c的值;(Ⅱ)解关于x的不等式ax2+(ac+b)x+bc≥0.18.已知三角形ABC中,A为锐角,且b=2asinB(1)求A,(2)若a=7,三角形ABC的面积为10,求b+c的值.19.某造纸厂拟建一座平面图形为矩形且面积为162 平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400 元/米,中间两道隔墙建造单价为248 元/米,池底建造单价为80 元/米2,水池所有墙的厚度忽略不计.(1 )试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2 )若由于地形限制,该池的长和宽都不能超过16 米,试设计污水池的长和宽,使总造价最低.20.三角形ABC中,a(cosB+cosC)=b+c,(1)求证A=(2)若三角形ABC的外接圆半径为1,求三角形ABC周长的取值范围.21.设数列{a n}的前n项的和S n=a n﹣×2n+1+(n=1,2,3,…)(Ⅰ)求首项a1(Ⅱ)证明数列{a n+2n}是等比数列并求a n.2015-2016学年河南省南阳市高二(上)期中数学试卷一、选择题1.在等差数列{a n}中,a1=21,a7=18,则公差d=( )A.B.C.﹣D.﹣【考点】等差数列的通项公式.【专题】等差数列与等比数列.【分析】利用等差数列的通项公式即可得出.【解答】解:由等差数列的通项公式可得a7=a1+6d,∴18=21+6d,解得d=.故选:D.【点评】本题考查了等差数列的通项公式,属于基础题.2.在△ABC中,若sinA=cosB=,则∠C=( )A.45° B.60° C.30° D.90°【考点】运用诱导公式化简求值.【专题】转化思想;综合法;三角函数的求值.【分析】由条件求得B的值,再求得A的值,利用三角形的内角和公式求得C的值.【解答】解:△ABC中,若sinA=cosB=,则∠B=60°,∴∠A=30°,∠C=90°,故选:D.【点评】本题主要考查特殊角的三角函数的值,三角形的内角和公式,属于基础题.3.已知a,b为非零实数,且a<b,则下列命题成立的是( )A.a2<b2B.a2b<ab2C.2a﹣2b<0 D.>【考点】不等式的基本性质.【专题】计算题.【分析】根据函数y=2x在定义域R上是个增函数,可以得到2a<2b .通过举反例说明A、B、D不正确.【解答】解:A 不正确,如 a=﹣3,b=﹣1,显然a2<b2不成立.B 不成立,如a=﹣3,b=1时,显然a2b<ab2不成立.D不正确,如 a=﹣3,b=1时,>显然不成立.∵函数y=2x在定义域R上是个增函数,∴2a<2b,∴2a﹣2b<0,故选 C.【点评】本题考查不等式的基本性质,利用了函数y=2x在定义域 R 上是个增函数这个结论.4.设等比数列{a n}的公比q=2,前n项和为S n,则=( )A.2 B.4 C.D.【考点】等比数列的前n项和.【专题】计算题;等差数列与等比数列.【分析】由等比数列的通项公式和求和公式,代入要求的式子化简可得.【解答】解:由等比数列的求和公式和通项公式可得:==,故选:C.【点评】本题考查等比数列的通项公式和求和公式,属基础题.5.如果方程x2+(m﹣1)x+m2﹣2=0的两个实根一个小于﹣1,另一个大于1,那么实数m的取值范围是( )A.﹣<m<B.﹣2<m<0 C.﹣2<m<1 D.0<m<1【考点】一元二次方程的根的分布与系数的关系.【专题】函数的性质及应用.【分析】令f(x)=x2+(m﹣1)x+m2﹣2,则由题意利用二次函数的性质求得实数m的取值范围.【解答】解:令f(x)=x2+(m﹣1)x+m2﹣2,则由题意可得,求得 0<m<1,故选:D.【点评】本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.6.已知数列{a n}是等差数列,数列{b n}是等比数列,其公比q≠1,且b i>0(i=1,2,3,…),若a1=b1,a11=b11,则( )A.a6=b6 B.a6>b6C.a6<b6D.a6>b6或a6<b6【考点】等比数列的通项公式;等差数列的通项公式.【专题】计算题.【分析】由题意可得 a1+a11=b1+b11=2a6,再由 b1+b11>2=2b6,从而得出结论.【解答】解:由题意可得 a1+a11=b1+b11=2a6.∵公比q≠1,b i>0,∴b1+b11>2=2b6,∴2a6>2b6,即 a6>b6,故选B.【点评】本题主要考查等差数列的定义和性质,等比数列的定义和性质,基本不等式的应用,属于基础题.7.平面区域如图所示,若使目标函数z=x+ay(a>0)取得最大值的最优解有无穷多个,则a的值是( )A.B.1 C.D.4【考点】正切函数的图象.【专题】三角函数的图像与性质.【分析】对目标函数z=x+ay(a>0)变形为y=﹣x+,依题意可得﹣=k AB=﹣,于是可求得a的值.【解答】解:∵z=x+ay(a>0),∴y=﹣x+,∵目标函数z=x+ay(a>0)取得最大值的最优解有无穷多个,∴﹣=k AB==﹣,∴a=,故选:A.【点评】本题考查线性规划问题,依题意得到得﹣=k AB=﹣是关键,考查转化思想.8.等差数列{a n}的公差d<0,且a12=a112,则数列{a n}的前n项和S n取得最大值时的项数n 是( )A.5 B.6 C.5或6 D.6或7【考点】等差数列的前n项和;等差数列的通项公式.【专题】计算题.【分析】由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.【解答】解:由,知a1+a11=0.∴a6=0,故选C.【点评】本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.9.若关于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4内有解,则实数a的取值范围是( ) A.a<﹣4 B.a>﹣4 C.a>﹣12 D.a<﹣12【考点】一元二次不等式的应用.【专题】计算题.【分析】先将原不等式2x2﹣8x﹣4﹣a>0化为:a<2x2﹣8x﹣4,设y=2x2﹣8x﹣4,y=a,只须a小于y=2x2﹣8x﹣4在1<x<4内的最大值时即可,从而求得实数a的取值范围.【解答】解:原不等式2x2﹣8x﹣4﹣a>0化为:a<2x2﹣8x﹣4,只须a小于y=2x2﹣8x﹣4在1<x<4内的最大值时即可,∵y=2x2﹣8x﹣4在1<x<4内的最大值是﹣4.则有:a<﹣4.故选A.【点评】本小题主要考查一元二次不等式的应用等基础知识,考查等价化归与转化思想.属于基础题.10.△ABC中,AB=,AC=1,∠B=30°,则△ABC的面积等于( )A.B.C.D.【考点】解三角形.【专题】计算题.【分析】由AB,AC及cosB的值,利用余弦定理即可列出关于BC的方程,求出方程的解即可得到BC的长,然后利用三角形的面积公式,由AB,BC以及sinB的值即可求出△ABC的面积.【解答】解:由AB=,AC=1,cosB=cos30°=,根据余弦定理得:AC2=AB2+BC2﹣2AB•BCcosB,即1=3+BC2﹣3BC,即(BC﹣1)(BC﹣2)=0,解得:BC=1或BC=2,当BC=1时,△ABC的面积S=AB•BCsinB=××1×=;当BC=2时,△ABC的面积S=AB•BCsinB=××2×=,所以△ABC的面积等于或.故选D【点评】此题考查学生灵活运用余弦定理及三角形的面积公式化简求值,是一道中档题.11.已知a>0,b>0,,若不等式2a+b≥4m恒成立,则m的最大值为( )A.10 B.9 C.8 D.7【考点】基本不等式在最值问题中的应用.【专题】计算题;不等式的解法及应用.【分析】利用2a+b=4(2a+b)(),结合基本不等式,不等式2a+b≥4m恒成立,即可求出m的最大值.【解答】解:∵a>0,b>0,∴2a+b>0∵,∴2a+b=4(2a+b)()=4(5+)≥36,∵不等式2a+b≥4m恒成立,∴36≥4m,∴m≤9,∴m的最大值为9,故选:B.【点评】本题主要考查了恒成立问题与最值的求解的相互转化,解题的关键是配凑基本不等式成立的条件.12.设等差数列{a n}(n∈N+)的前n项和为S n,该数列是单调递增数列,若S4≥10,S5≤15,则a4的取值范围是( )A.(] B.(] C.(﹣∞,4] D.(3,+∞)【考点】等差数列的性质;数列的函数特性.【专题】计算题.【分析】根据等差数列是一个等差数列,给出两个前n项和,写出求前n项和的公式,根据不等式的基本性质和等差数列的性质整理出结果.【解答】解:∵等差数列{a n是单调递增数列,若S4≥10,S5≤15,∴4a1+6d≥10 ①5a1+10d≤15 ②(﹣1)①+②a5≤50<d≤1,由②得,a3≤3,∴故选A.【点评】本题考查等差数列的性质和不等式的性质,本题解题的关键是列出不等式组,解出要用的值的范围,本题是一个简单的综合题目.二、填空题13.设公比为q的等比数列{a n}的前n项和为S n,若S n+1、S n、S n+2成等差数列,则q=﹣2.【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】通过记等比数列{a n}的通项为a n,利用S n﹣S n+1=S n+2﹣S n即﹣a n•q=a n•q+a n•q2,计算即得结论.【解答】解:记等比数列{a n}的通项为a n,则a n+1=a n•q,a n+2=a n•q2,又∵S n+1、S n、S n+2成等差数列,∴S n﹣S n+1=S n+2﹣S n,即﹣a n•q=a n•q+a n•q2,∴q2+2q=0,∴q=﹣2,故答案为:﹣2.【点评】本题考查等差数列、等比数列的性质,注意解题方法的积累,属于中档题.14.在约束条件下,目标函数z=ax+by(a>0,b>0)的最大值为1,则ab的最大值等于.【考点】简单线性规划.【专题】压轴题;数形结合;不等式的解法及应用.【分析】画出满足约束条件的可行域,再根据目标函数z=ax+by(a>0,b>0)的最大值为1,求出a,b的关系式,利用基本不等式,可求ab的最大值.【解答】解:约束条件对应的平面区域如图3个顶点是(1,0),(1,2),(﹣1,2),由图易得目标函数在(1,2)取最大值1,此时a+2b=1,∵a>0,b>0,∴由不等式知识可得:1≥∴ab,当且仅当a=,b=时,取等号∴ab的最大值等于故答案为:【点评】本题考查线性规划知识,考查数形结合的数学思想.用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键.三、解答题(共7小题,满分80分)15.如图,在△ABC中,∠ABC=90°,,BC=1,P为△ABC内一点,∠BPC=90°(Ⅰ)若,求PA;(Ⅱ)若∠APB=150°,求tan∠PBA.【考点】余弦定理;正弦定理.【专题】解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA 中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.16.已知数列{a n}满足数列{b n}的前n项和S n=n2+2n.(1)求数列{a n},{b n}的通项公式;(2)设c n=a n b n,求数列{c n}的前n项和T n.【考点】数列的求和;等差数列的通项公式;等比数列的通项公式;数列递推式.【专题】计算题;等差数列与等比数列.【分析】(1)利用等比数列的通项公式可求a n,利用n≥2时,b n=s n﹣s n﹣1,b1=s1可求b n (2)由(1)可知求c n=a n b n,然后利用错位相减求和方法即可求解【解答】解(1)∵∴数列{a n}是以1为首项以3为公办的等比数列∴∵S n=n2+2n当n≥2时,b n=s n﹣s n﹣1=n2+2n﹣(n﹣1)2+2(n﹣1)=2n+1当n=1时,b1=s1=3适合上式∴b n=2n+1(2)由(1)可知,c n=a n b n=(2n+1)•3n﹣1∴T n=3•1+5•3+7•32+…+(2n+1)•3n﹣13T n=3•3+5•32+…+(2n+1)•3n两式相减可得,﹣2T n=3+2(3+32+33+…+3n﹣1)﹣(2n+1)•3n=3=2n•3n∴【点评】本题主要考查了利用数列的递推公式求解数列的通项及错位相减求和方法的应用,要注意掌握该求和方法17.已知关于x的不等式ax2+5x+c>0的解集为{x|<x<},(Ⅰ)求a,c的值;(Ⅱ)解关于x的不等式ax2+(ac+b)x+bc≥0.【考点】一元二次不等式的解法.【专题】不等式的解法及应用.【分析】(Ⅰ)根据韦达定理即可求出a,c的值,(Ⅱ)需要分类讨论,然后求出解集即可.【解答】解:(Ⅰ)由题得a<0且,是方程ax2+5x+c=0的两个实数根则=﹣,=,解得a=﹣6,c=﹣1,(Ⅱ)由a=﹣6,c=﹣1,原不等式化为﹣x2+(6+b)x﹣b≥0,即(6x﹣b)(x﹣1)≤0.①当即b>6时,原不等式的解集为[1,];②当=1即b=6时,原不等式的解集为{1};③当1即b<6时,原不等式的解集为[,1];综上所述:当即b>6时,原不等式的解集为[1,];当b=6时,原不等式的解集为{1};当b<6时,原不等式的解集为[,1];【点评】本题主要考查了不等式的解法,属于基础题.18.已知三角形ABC中,A为锐角,且b=2asinB(1)求A,(2)若a=7,三角形ABC的面积为10,求b+c的值.【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】﹙1﹚由正弦定理化简已知结合sinB≠0,可得sinA=且A为锐角,即可解得A的值.(2)利用三角形面积公式解得:bc=40,由余弦定理即可求得b+c的值.【解答】解:﹙1﹚由正弦定理知a=2RsinA,b=2RsinB,∴×2RsinB=2×2RsinAsinB,sinB≠0,∴sinA=且A为锐角,∴A=60°(2)∵S=bcsinA=bc×=10,∴即解得:bc=40,∴由余弦定理可求得:49=b2+c2﹣2bccosA=(b+c)2﹣3bc=(b+c)2﹣120,∴b+c=13.【点评】本题主要考查了正弦定理,余弦定理,三角形面积公式的综合应用,属于基本知识的考查.19.某造纸厂拟建一座平面图形为矩形且面积为162 平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400 元/米,中间两道隔墙建造单价为248 元/米,池底建造单价为80 元/米2,水池所有墙的厚度忽略不计.(1 )试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2 )若由于地形限制,该池的长和宽都不能超过16 米,试设计污水池的长和宽,使总造价最低.【考点】函数模型的选择与应用.【专题】应用题;函数思想;数学模型法;函数的性质及应用.【分析】(1)污水处理池的底面积一定,设宽为x米,可表示出长,从而得出总造价f(x),利用基本不等式求出最小值;(2)由长和宽的限制条件,得自变量x的范围,判断总造价函数f(x)在x的取值范围内的函数值变化情况,求得最小值.【解答】解:(1)设污水处理池的宽为x米,则长为米.则总造价f(x)=400×(2x+2×)+248×2x+80×162=1296x++12960=1296(x+)+12960≥1296×2×+12960=38880(元),当且仅当x=(x>0),即x=10时取等号.∴当长为16.2 米,宽为10 米时总造价最低,最低总造价为38 880 元.(2)由限制条件知,∴10≤x≤16设g(x)=x+(10≤x≤16).g(x)在[10,16]上是减函数,∴当x=16时,g(x)有最小值,即f(x)有最小值.∴当长为16 米,宽为10米时,总造价最低.【点评】本题考查了建立函数解析式,利用基本不等式求函数最值的能力,还考查了函数的单调性和运算能力.20.三角形ABC中,a(cosB+cosC)=b+c,(1)求证A=(2)若三角形ABC的外接圆半径为1,求三角形ABC周长的取值范围.【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】(1)由余弦定理化简已知整理可得:(b+c)(a2﹣b2﹣c2)=0,由b+c>0,可得a2=b2+c2,即可解得A=.(2)利用正弦定理可得a=2,b+c=2sin(B+),结合范围0,可得2<b+c,从而可求三角形ABC周长的取值范围.【解答】解:(1)证明:∵a(cosB+cosC)=b+c,∴由余弦定理可得:a+a=b+c,∴整理可得:(b+c)(a2﹣b2﹣c2)=0,∵b+c>0,∴a2=b2+c2,∴A=,得证.(2)∵三角形ABC的外接圆半径为1,A=,∴a=2,∴b+c=2(sinB+cosB)=2sin(B+),∵0,<B+<,∴2<b+c,∴4<a+b+c≤2,∴三角形ABC周长的取值范围是:(4,2+2].【点评】本题主要考查了三角函数恒等变换的应用,考查了正弦定理,余弦定理,勾股定理,正弦函数的图象和性质,属于基本知识的考查.21.设数列{a n}的前n项的和S n=a n﹣×2n+1+(n=1,2,3,…)(Ⅰ)求首项a1(Ⅱ)证明数列{a n+2n}是等比数列并求a n.【考点】数列的求和;数列递推式.【专题】转化思想;数学模型法;等差数列与等比数列.【分析】(I)S n=a n﹣×2n+1+(n=1,2,3,…),当n=1时,a1=S1=﹣+,解得a1.(II)当n≥2时,S n﹣1=﹣+,化为:a n=4a n﹣1+2n.变形为=,即可得出.【解答】(I)解:∵S n=a n﹣×2n+1+(n=1,2,3,…),∴当n=1时,a1=S1=﹣+,解得a1=2.(II)证明:当n≥2时,S n﹣1=﹣+,可得a n=a n﹣×2n+1+﹣(﹣+),化为:a n=4a n﹣1+2n.∴=,∴数列{a n+2n}是等比数列,首项为4,公比为4.∴a n+2n=4n,∴a n=4n﹣2n.【点评】本题考查了递推关系的应用、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.。

河南省南阳市部分示范高中高二数学上学期期中试题 文(扫描版)新人教A版

河南省南阳市部分示范高中高二数学上学期期中试题 文(扫描版)新人教A版

河南省南阳市部分示范高中2013-2014学年高二上学期期中考试南阳市2013年秋期高二期中考试数学试题(文)答案一、选择题 CBCDD CAAAB DC 二、填空题 .13.7 14.3315.(1,2) 16.4 三、解答题17. 解:(1) 3m =时,原不等式即220x x -->0)2)(1(>-+∴x x1,2x x <->解得或∴不等式的解集为:(,1)(2,)-∞-+∞U .——————————5分(2)由题,对于任意的实数x ,不等式210x x m --+>恒成立,0)1(41<--=∆∴m解得,43<m ∴实数m 的取值范围为:3(,)4-∞.——————————10分18. 解:(1))6(326)232(61-=-+=-+n n n a a a ,161=-a 。

所以{}6-n a 是以1为首项,32为公比的等比数列。

111)32()32)(6(6--=-=-n n n a a ,6)32(1+=-n n a ————6分(2)设{}n a 的公差为d 。

由2321+=+n n a a 得2321+=-n n a a 。

两式相减得)(3211-+-=-n n n n a a a a 即032=∴=d d d ,所以2321+==+n n n a a a ,得6=n a ——————————12分19.解:(1)由正弦定理,得C A A C cos sin sin sin ⋅-=⋅ 因为C C A A cos sin 0sin ,0-=∴>∴<<π 由1tan 0cos ,0-=∴≠∴<<C C C π则43π=C ——————————5分 (2)1)6sin(125,664,0<+∴⎪⎭⎫ ⎝⎛∈+∴⎪⎭⎫⎝⎛∈πππππA A A由(1)知A B -=+ππ)43(, 于是 A A B A cos sin 3)43cos(sin 3+=+-π =2)6sin(2<+πA∴这样的三角形不存在。

2014-年高二上学期数学文科期中联考试卷(附答案)

2014-年高二上学期数学文科期中联考试卷(附答案)

2014-年高二上学期数学文科期中联考试卷(附答案)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.如果,则下列结论一定正确的是()A.B.C.D.2.在△中,角、、所对的边分别为、、,且满足,则角的大小为()A.120°B.60°C.150°D.30°3.若等差数列的前5项和,且,则=()A.3B.7C.8D.94.在△中,角、、所对的边分别为、、,且三角形面积为,则的值为()A.B.48C.D.165.已知等比数列的前项和,则实数的值为()A.-2B.-1C.2D.0.56.已知实数满足约束条件,则的最大值为()A.80B.C.25D.7.若,则的最大值为()A.B.C.D.以上都不对8.在△中,角、、所对的边分别为、、,且满足=1,=2,=120°,则的值为()A.B.C.D.9.已知等比数列,是其前项和,若,则的值为()A.27B.21C.18D.1510.△的三个内角、、满足,则△()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形二、填空题(本大题共4小题,每小题4分,共16分。

)13.关于的不等式的解集为。

14.△中,,且,则边上的中线的长为。

15.等差数列中,使得前项和取到最小值的的值为。

16.对于一个数列,把它相连两项、的差记为,得到一个新数列,这个新数列称为数列的一阶差数列;数列的相连两项、的差记为,得到一个新数列,这个数列称为数列的二阶差数列。

已知数列的首项为3,它的一阶差数列是首项为3的等差数列,它的二阶差数列是首项为3的常数列,则数列的通项公式为。

三、解答题(本大题共6小题,共74分。

解答应写出文字说明、证明过程或演算步骤。

)17.(本小题12分)在△中,角、、所对的边分别为、、,,且满足、是方程的两根。

(I)求角的大小和边的长度;(Ⅱ)求△的面积。

河南省南阳市高二上学期期末考试数学(文)试题 扫描版含答案.pdf

河南省南阳市高二上学期期末考试数学(文)试题 扫描版含答案.pdf

2013年秋期高二(文科)期终考试参考答案
18、解:p真: (3)
q真: (6)
依题p或q为真,p且q为假,则p与q一真一假。

从而或
即或 (10)
故所求的范围为 (12)
19、解:(1)依题

(6)
(2)由(1)△ABC中,
其中
从而的最大值为 (12)
20、解:(1)∵动圆过点F(2,0)且与直线x=-2相切,
∴动圆的圆心轨迹为抛物线 (6)
(2)法(一)
设直线AB方程为,
联立方程组且得
∵ ∴-y1=2y2

∴直线AB的方程为或者 (12)
法(二)
如图
依题设,则
Rt△ABC中
又 故直线AB斜率,
根据对称性易知也合题意
故所求直线方程为 (12)
21、解:( 1) (6)
(2)设
代入椭圆方程得:
>0得
(8)
∵直线PA,PB关于轴对称


得k=b, 当k=b时,△>0
则直线过定点(-1,0) (12)
(2)
由(1)知,当时,一定符合题意;
当时,的单调增区间为
依题只需
综上,的范围为 (12)
B’
C
B
O
F A A’ x y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年河南省南阳市高二(上)期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项符合要求.1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2) B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]2.(5分)复数z1=3+i,z2满足z1•z2=4﹣2i(i为虚数单位),则z2在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)各项为正的等比数列{a n}中,a4与a14的等比中项为2,则log2a7+log2a11=()A.4 B.3 C.2 D.14.(5分)已知向量的模为2,=(1,﹣2),条件p:向量的坐标为(4,2),条件q:⊥,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件5.(5分)设函数f(x)=bsinx的图象在点A(,f())处的切线与直线x ﹣2y+3=0平行,若a n=n2+bn,则数列{}的前2014项和S2014的值为()A.B.C.D.6.(5分)已知(x,y)满足,则k=的最大值等于()A.B.C.1 D.7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)在R上是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)8.(5分)函f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sinωx的图象,则只要将f(x)的图象()A.向右平个单位长度B.向右平个单位长度C.向左平个单位长度D.向左平个单位长度9.(5分)定义在R上的可导函数f(x),当x∈(1,+∞)时,f(x)+f′(x)<xf′(x)恒成立,a=f(2),b=f(3),c=(+1)f(),则a,b,c的大小关系为()A.c<a<b B.b<c<a C.a<c<b D.c<b<a10.(5分)若正数x,y满足+=5,则3x+4y的最小值是()A.B.C.5 D.611.(5分)已知O为△ABC内任意的一点,若对任意k∈R有|﹣k|≥||,则△ABC一定是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定12.(5分)已知曲线方程f(x)=sin2x+2ax(a∈R),若对任意实数m,直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是()A.(﹣∞,﹣1)∪(﹣1,0)B.(﹣∞,﹣1)∪(0,+∞)C.(﹣1,0)∪(0,+∞) D.a∈R且a≠0,a≠﹣1二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)如果log a4b=﹣1,则a+b的最小值为.14.(5分)O为△ABC所在平面内的一点,若,则O必是△ABC 的.(填写“内心”、“重心”、“垂心”、“外心”之一)15.(5分)已知正项数列{a n}中,a1=1,a2=,(n≥2),则a6=.16.(5分)给出下列四个命题:①∀x∈R,e x≥ex;②∃x0∈(1,2),使得(x02﹣3x0+2)e x0+3x0﹣4=0成立;③在△ABC中,若tanA+tanB+tanC>0,则△ABC是锐角三角形;④已知长方体的长、宽、高分别为a,b,c,对角线长为l,则l3>a3+b3+c3;其中正确命题的序号是.三、解答题:本大题共6小题,共70分.解答应写出必要文字说明、证明过程或演算步骤.17.(10分)已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π.(Ⅰ)求函数f(x)的表达式.(Ⅱ)若sinα+f(α)=,求的值.18.(12分)设曲线f(x)=x2+1和g(x)=x3+x在其交点处两切线的夹角为θ,求cosθ.19.(12分)已知△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,.(Ⅰ)求的值;(Ⅱ)设的值.20.(12分)设数列{a n}的各项都是正数,且对任意n∈N*,都有a n2=2S n﹣a n,其中S n为数列{a n}的前n项和.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=3n+(﹣1)n﹣1•λ•2an(λ为非零整数,n∈N*),试确定λ的值,使得>b n成立.对任意n∈N*,都有b n+121.(12分)已知定义域为R的函数f(x)为奇函数,且满足f(x+4)=f(x),当x∈[0,1]时,f(x)=2x﹣1.(1)求f(x)在[﹣1,0)上的解析式;(2)求f(24)的值.22.(12分)设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值.2014-2015学年河南省南阳市高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项符合要求.1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2) B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.2.(5分)复数z1=3+i,z2满足z1•z2=4﹣2i(i为虚数单位),则z2在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵z1=3+i,z2满足z1•z2=4﹣2i,∴z2====1﹣i所对应的点(1,﹣1)在第四象限.故选:D.3.(5分)各项为正的等比数列{a n}中,a4与a14的等比中项为2,则log2a7+log2a11=()A.4 B.3 C.2 D.1【解答】解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为2,∴a4•a14=(2)2=8,∵a4•a14=(a9)2,∴a9=2,∴log2a7+log2a11=log2a7a11=log2(a9)2=3,故选:B.4.(5分)已知向量的模为2,=(1,﹣2),条件p:向量的坐标为(4,2),条件q:⊥,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件【解答】解:若向量的坐标为(4,2),则•=4﹣2×2=4﹣4=0,此时⊥,即充分性成立.若⊥,设=(x,y),则x﹣2y=0,即x=2y,∵向量的模为2,∴x2+y2=20,由,解得或,即=(4,2)或(﹣4,﹣2),即必要性不成立,故p是q的充分不必要条件,故选:A.5.(5分)设函数f(x)=bsinx的图象在点A(,f())处的切线与直线x ﹣2y+3=0平行,若a n=n2+bn,则数列{}的前2014项和S2014的值为()A.B.C.D.【解答】解:∵f(x)=bsinx,∴f′(x)=bcosx,则f′()=bcos=,∵图象在点A(,f())处的切线与直线x﹣2y+3=0平行,∴切线斜率k==,解得b=1.∴a n=n2+bn=a n=n2+n=n(n+1),则==﹣,∴数列{}的前2014项和S2014的值为1﹣=1﹣,故选:D.6.(5分)已知(x,y)满足,则k=的最大值等于()A.B.C.1 D.【解答】解:k的几何意义为点P(x,y)到定点A(﹣1,0)的斜率,作出不等式组对应的平面区域如图:则由图象可知AB的斜率最大,其中B(0,1),此时k=,故选:C.7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)在R上是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)【解答】解:由解析式可知,当x≤0时,f(x)=cosx,为周期函数,当x>0时,f(x)=x2+1,是二次函数的一部分,∴函数不是偶函数,不具有周期性,不是单调函数,对于D,当x≤0时,值域为[﹣1,1],当x>0时,值域为(1,+∞),∴函数的值域为[﹣1,+∞).故选:D.8.(5分)函f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sinωx的图象,则只要将f(x)的图象()A.向右平个单位长度B.向右平个单位长度C.向左平个单位长度D.向左平个单位长度【解答】解:设f(x)的周期为T,根据函数的图象,可得=﹣=,得T=π,由=π,可得ω=2.∵A>0,函数的最小值为﹣1,∴A=1.函数表达式为f(x)=sin(2x+φ),又∵当x=时,函数有最小值,∴2+φ=﹣(k∈Z),解之得φ=﹣(k∈Z),∵|φ|<,∴取k=1,得φ=,因此,函数的表达式为f(x)=sin(2x+)=sin[2(x+)],由此可得函数g(x)=sin2x=f(x﹣),∴将函数f(x)的图象右移个单位,即可得到g(x)=sin2x的图象.故选:A.9.(5分)定义在R上的可导函数f(x),当x∈(1,+∞)时,f(x)+f′(x)<xf′(x)恒成立,a=f(2),b=f(3),c=(+1)f(),则a,b,c的大小关系为()A.c<a<b B.b<c<a C.a<c<b D.c<b<a【解答】解:∵x∈(1,+∞)时,f(x)+f′(x)<xf′(x)∴f′(x)(x﹣1)﹣f(x)>0∴[]′>0∴g(x)=在(1,+∞)上单调增∵∴g()<g(2)<g(3)∴∴∴c<a<b故选:A.10.(5分)若正数x,y满足+=5,则3x+4y的最小值是()A.B.C.5 D.6【解答】解:由于正数x,y满足+=5,则3x+4y=(3x+4y)()=++≥+2+2×=5,当且仅当=,即y=2x,即+=,∴x=,y=时取等号.故3x+4y的最小值是5,故选:C.11.(5分)已知O为△ABC内任意的一点,若对任意k∈R有|﹣k|≥||,则△ABC一定是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定【解答】解:从几何图形考虑:|﹣k|≥||的几何意义表示:在BC上任取一点E,可得k=,∴|﹣k|=|﹣|=||≥||,又点E不论在任何位置都有不等式成立,∴由垂线段最短可得AC⊥EC,即∠C=90°,则△ABC一定是直角三角形.故选:A.12.(5分)已知曲线方程f(x)=sin2x+2ax(a∈R),若对任意实数m,直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是()A.(﹣∞,﹣1)∪(﹣1,0)B.(﹣∞,﹣1)∪(0,+∞)C.(﹣1,0)∪(0,+∞) D.a∈R且a≠0,a≠﹣1【解答】解:∵对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线∴曲线y=f(x)的切线的斜率不可能为﹣1即f'(x)=2sinxcosx+2a=﹣1无解∵0≤sin2x+1=﹣2a≤2∴﹣1≤a≤0时2sinxcosx+2a=﹣1有解∴对任意实数m直线l:x+y+m=0都不是曲线y=f(x)的切线,则a的取值范围是a<﹣1或a>0故选:B.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)如果log a4b=﹣1,则a+b的最小值为1.【解答】解:由log a4b=﹣1,得:a>0,b>0,,即ab=.所以a+b.当且仅当a=b=时上式取“=”.所以a+b的最小值为1.故答案为1.14.(5分)O为△ABC所在平面内的一点,若,则O必是△ABC 的重心.(填写“内心”、“重心”、“垂心”、“外心”之一)【解答】解:取BC中点D,连接并延长OD至E,使DE=OD 于是四边形BOCE 是平行四边形,∵=,又,∴==2,∴A,O,D,E四点共线,即AD是中线,同理延长BO交AC于F,则F也为中点,∴O是重心.故答案为:重心15.(5分)已知正项数列{a n}中,a1=1,a2=,(n≥2),则a6=.【解答】解:∵a1=1,a2=,(n≥2),∴﹣=﹣,∴数列{}为等差数列,首项为1,公差d=﹣=4﹣1=3,∴=1+3(n﹣1)=3n﹣2,∴=16,∵{a n}正项数列,∴a6=,故答案为:16.(5分)给出下列四个命题:①∀x∈R,e x≥ex;②∃x0∈(1,2),使得(x02﹣3x0+2)e x0+3x0﹣4=0成立;③在△ABC中,若tanA+tanB+tanC>0,则△ABC是锐角三角形;④已知长方体的长、宽、高分别为a,b,c,对角线长为l,则l3>a3+b3+c3;其中正确命题的序号是①②③④.【解答】解:①,令f(x)=e x﹣ex,则f′(x)=e x﹣e,当x≥1时,f′(x)≥0,f(x)=e x﹣ex在[1,+∞)上单调递增;当x<1时,f′(x)<0,f(x)=e x﹣ex在(﹣∞,1)上单调递减;∴当x=1时,f(x)=e x﹣ex取得极小值,也是最小值,又f(1)=e1﹣e=0,∴∀x∈R,e x≥ex,①正确;②,∵(x02﹣3x0+2)e x0+3x0﹣4=0,∴e x0==,当<x<2时,>0,即∃x0∈(1,2),使得(x02﹣3x0+2)e x0+3x0﹣4=0成立,②正确;③,在△ABC中,∵tanA+tanB+tanC=tan(A+B)(1﹣tanAtanB)+tanC=﹣tanC(1﹣tanAtanB)+tanC=tanAtanBtanC>0,∴tanA>0,tanB>0,tanC>0,∴△ABC是锐角三角形,③正确;④,∵l3﹣a3﹣b3﹣c3=(a2+b2+c2)•l﹣a3﹣b3﹣c3=a2(l﹣a)+b2(l﹣b)+c2(l﹣c)>0,∴l3>a3+b3+c3,④正确.故答案为:①②③④.三、解答题:本大题共6小题,共70分.解答应写出必要文字说明、证明过程或演算步骤.17.(10分)已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π.(Ⅰ)求函数f(x)的表达式.(Ⅱ)若sinα+f(α)=,求的值.【解答】解:(I)∵f(x)为偶函数∴sin(﹣ωx+ϕ)=sin(ωx+ϕ)即2sinωxcosϕ=0恒成立∴cosϕ=0,又∵0≤ϕ≤π,∴(3分)又其图象上相邻对称轴之间的距离为π∴T=2π∴ω=1∴f(x)=cosx(6分)(II)∵原式=(10分)又∵,∴(11分)即,故原式=(12分)18.(12分)设曲线f(x)=x2+1和g(x)=x3+x在其交点处两切线的夹角为θ,求cosθ.【解答】解:由,得x3﹣x2+x﹣1=0,即(x﹣1)(x2+1)=0,∴x=1,∴交点为(1,2).又f'(x)=2x,∴f'(1)=2,∴曲线y=f(x)在交点处的切线l1的方程为y﹣2=2(x﹣1),即y=2x,又g'(x)=3x2+1.∴g'(1)=4.∴曲线y=g(x)在交点处的切线l2的方程为y﹣2=4(x﹣1),即y=4x﹣2.取切线l 1的方向向量为,切线l2的方向向量为,则.19.(12分)已知△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,.(Ⅰ)求的值;(Ⅱ)设的值.【解答】解:(Ⅰ)由,由b2=ac及正弦定理得sin2B=sinAsinC.于是=.(6分)(Ⅱ)由.由余弦定理:b2=a2+c2﹣2ac•cosB,又b2=ac=2,cosB=,得a2+c2=b2+2ac•cosB=2+4×=5,则(a+c)2=a2+c2+2ac=5+4=9,解得:a+c=3.(12分)20.(12分)设数列{a n}的各项都是正数,且对任意n∈N*,都有a n2=2S n﹣a n,其中S n为数列{a n}的前n项和.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=3n+(﹣1)n﹣1•λ•2an(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有b n>b n成立.+1【解答】解:(Ⅰ)∵n∈N*时,,…①当n≥2时,,…②…(2分)由①﹣②得,即,>0,∵a n+a n﹣1∴a n﹣a n=1(n≥2),…(4分)﹣1由已知得,当n=1时,,∴a1=1.…(5分)故数列{a n}是首项为1,公差为1的等差数列.∴.…(6分)(Ⅱ)∵,∴,…(7分)∴=2×3n﹣3λ•(﹣1)n﹣1•2n.>b n恒成立,要使得b n+1只须.…(8分)(1)当n为奇数时,即恒成立.又的最小值为1,∴λ<1.…(9分)(2)当n为偶数时,即恒成立.又的最大值为,∴…(10分)∴由(1),(2)得,又λ≠0且λ为整数,…(11分)>b n成立.…(12分)∴λ=﹣1对所有的n∈N*,都有b n+121.(12分)已知定义域为R的函数f(x)为奇函数,且满足f(x+4)=f(x),当x∈[0,1]时,f(x)=2x﹣1.(1)求f(x)在[﹣1,0)上的解析式;(2)求f(24)的值.【解答】解:(1)令x∈[﹣1,0),则﹣x∈(0,1],∴f(﹣x)=2﹣x﹣1.又∵f(x)是奇函数,∴f(﹣x)=﹣f(x),∴﹣f(x)=f(﹣x)=2﹣x﹣1,∴.(2)∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴,∴,∴.22.(12分)设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值.【解答】解:(1)f′(x)=﹣x2+x+2af(x)在存在单调递增区间∴f′(x)≥0在有解∵f′(x)=﹣x2+x+2a对称轴为∴递减∴f′(x)≤f′()=+2a,由0≤+2a,解得a≥﹣.检验a=﹣时,f(x)的增区间为(,),故不成立.故a>﹣.(2)当0<a<2时,△>0;f′(x)=0得到两个根为;(舍)∵∴时,f′(x)>0;时,f′(x)<0当x=1时,f(1)=2a+;当x=4时,f(4)=8a<f(1)当x=4时最小∴=解得a=1所以当x=时最大为。

相关文档
最新文档