第2章正弦交流电路_02
大学物理学第2章正弦交流电路_02
解法2: 利用相量图分析求解
设 U AB为参考相量,
I1 10A
I2 100 5 5
2 2
j10Ω
I
I1
A
A
I 1 超前 U AB 90
10 2A,
I2
C1
B
5Ω j5Ω
V
画相量图如下:
I 2滞后UAB 45°
由相量图可求得: I =10 A
UL= I XL =100V U L超前I 90°
I1 Z2 j400 I 0.5 33 A Z1 Z 2 100 j200 j400
0.89 - 59.6 A
同理:
I
I2
Z1 I Z1 Z 2
100 j200 0.5 33 A 100 j200 j400 0.5 93.8 A
UL
I1 100 10
U
由相量图可求得: V =141V
45° I 45°
I2
U AB
10 2
2.5 正弦稳态电路的功率
2.5.1 功率
一、瞬时功率
I +
i = Im sinωt U u = Umsin (ωt + ) - p = u i = UmImsin(ωt + ) sinωt = U I cos + U I cos ( 2ωt + )
S =√P2 + Q2 = 190 V· A
例2 如图所示是测量电感线圈参数R和L的实验电路,已知电 压表的读数为50V,电流表的读数为1A,功率表的读数为30W, 电源的频率f=50Hz。试求R和L的值。 ﹡ I 解:根据图中3个仪表的读数, A W ﹡ + 可先求得线圈的阻抗 电 R 感 Z | Z | R jL V U 线 圈 L U | Z | 50 I 功率表读数表示线圈吸收的有功功率,故有 P UI cos 30W 30 arctan( ) 53.130 UI 从而求得
电工电子技术-第2章 正弦交流电路
•
I m = 14.1∠36.9°A
其有效值相量为:I• = 10∠36.9°A
由于一个电路中各正弦量都是同频率的,所以相量只需 对应正弦量的两要素即可。即模值对应正弦量的最大值或 有效值,幅角对应正弦量的初相。
i u u、i 即时对应! R
电流、电压的瞬时值表达式
设 i Im sin t u、i 同相!
则 u ImR sin t Um sin t
u、i最大值或有效值之间符
合欧姆定律的数量关系。
Um ImR
或
U IR
•
相量关系式
•
I
U
U0
U
0 I0
RRR
相量图
U
I
(2)电阻元件上的功率关系
3
C -4
D
D 3 j4 第四象限 D 5 arctan 4
3
上式中的j 称为旋转因子,一个复数乘以j相当于在复
平面上逆时针旋转90°;除以j相当于在复平面上顺时针
旋转90°。
※数学课程中旋转因子是用i表示的,电学中为了区别 于电流而改为j。
正弦量的相量表示法
与正弦量相对应的复数形式的电压和电流称为相量。为
乘、除时用极坐标形式比较方便。
在复数运算当中,一定要根据复数所在象
限正确写出幅角的值。如:
+j
B4
A
A 3 j4 第一象限 A 553.1arctan 4 3
B 3 j4 第二象限 B 5180 arctan 4
-3 0
3
+1
3
电工电子技术第2章
第2章 正弦交流电路
在交流电路中,因各电流和电压多 +j A 为同一频率的正弦量,故可用有向线段 b r 来表示正弦量的最大值(有效值) Im 、 ψ Um(I、U)和初相ψ ,称为正弦量的相量。 O a +1 在正弦量的大写字母上打“•”表示,如 图2-5 有向线段的表示正弦量 幅值电流、电压相量用 I m、 m表示,有 U • U 效值电流、电压相量用 I 、 表示。将电 U • 路中各电压、电流的相量画在同一坐标 φ I ψ 中,这样的图形称为相量图。 ψ 同频率的u和i可用图2-6相量图表示。 图2-6 u和i的相量图 即 超前 Iφ°,I或 U滞后φ°。 U
第2章 正弦交流电路
2.1
正弦交流电的基本概念
正弦交流电压和电流的大小和方向都按正弦规律 作周期性变化,波形如图2-1a。
u U m s in ( t u ) i I m s in ( t i )
(2-1)
为便于分析,在电路中电压参考方向用“+”、“–” 标出,电流参考方向用实线箭头表示;电压、电流实 际方向用虚线箭头表示如图2-1b、c所示
第2章 正弦交流电路
u Im O φ Ψu Ψi i Um
u
i
t
T
图2-2 u和i相位不等的正弦量波形图
当φ=0º 时,称u、I同相;当φ=180º 时,称u比i反相; 当φ=±90º 时,称u与i正交 。 u i u i
u i
ui
u
i
t
u
i
O a) 同相
t O
b) 反相
O c)正交
t
图2-3 正弦量的同相、反相和正交
第2章 正弦交流电路
第2章正弦交流电-2.2单一元件正弦交流电路
③由于电压的初相为45°,而电流的初相为−45º,故电压和电流的 相量图如图所示。 1 U I =— 1 ×100×10=500(var) ④Q=UI=— m m 2 2
相量图
2.2单一元件正弦交流电路电阻 Nhomakorabea路电感电路
电容电路
1 电容元件
(1)电容参数C
q q=Cu 或 C=— u 电容量的单位是F(法[拉])。 具有参数C的电路元件称电容元件,简称电容。
相量图
③电压、电流的相量图如图所示。
2.2单一元件正弦交流电路
电阻电路
电感电路
电容电路
1 电感元件
(1) 电感参数L
Ψ Ψ=LI 或 L=— I
电感元件
式中,磁链与电流的比值L叫做线圈的电感量,电感量的单位为H(亨[利])。 具有L参数的电路元件称电感元件,简称电感。 空心线圈的电感量是一个常数,与通过的电流大小无关,这种电感叫做线性电感。线性 电感的大小只与线圈的形状、尺寸、匝数有关。一般而言,线圈直径的截面积越大,匝数越 密,电感量越大。
p>0,吸收能量
p<0,释放能量
2.2单一元件正弦交流电路
电阻电路
电感电路
电容电路
2 电感交流电路
例题:已知加在L=10mH电感线圈两端的正弦交流电压u=100sin(1000t+45º)V,求:①感抗XL; ②线圈中的电流最大值Im和线圈中的电流i;③作电路中电压与电流的相量图;④无功功率Q。 解:①感抗XL=ωL=1000×10×10−3=10Ω Um 100V ②Im=—= ———=10(A) XL 10Ω φi=φu−90º=45º−90º=−45º i=10sin(1000t−45º)(A)
电工第2章 正弦交流电路
图2-2 正弦交流电波形图
2.1 正弦交流电量及基本概念
(1)最大值 又称为幅值,是正弦量的最大值,用带右下标m的大写 字母表示,如Im、Um、Em分别表示正弦电流、正弦电压、正弦电动 势的最大值。 (2)角频率ω 在单位时间内正弦量所经历的电角度,用ω表示,其单 位为弧度每秒(rad/s)。正弦交流电变化一次所需的时间,称为周期T, 其单位为秒(s),正弦量在单位时间内变化的次数,称为频率f, 其单位为赫[兹](Hz)。
图2-9 纯电阻电路
2.3 单一参数元件的正弦交流电路
(2) 有效值关系 由电流与电压的幅值关系Im= Um /R,两端同除 以 ,可得它们的有效值关系为U=IR (3) 相量关系 因为电流i和电压u均为同频率的正弦量。 相量形式为 2.电阻元件的功率 (1) 瞬时功率 在关联参考方向下,电阻元件的 瞬时功率(用小写字母p表示):
图2-4 两正弦量的同相与反相
2.1 正弦交流电量及基本概念
例2.1 已知正弦量u=220sin(314t + 30°)V, 试求正弦量的三要素、有效值及变化周期。 解:对照式(2-1),可知三要素:
2.1 正弦交流电量及基本概念
例2.2 已知正弦电压u和正弦电流i1、i2的瞬时表达式为u = 310sin(ωt -45°)V,,i2=28.2sin(ωt +45°)A,试以电压u为参考量重新写出u和 电流i1、i2的瞬时值表达式。 解:以电压u为参考量, 则电压u的表达式为 由于i1、i2与u的相位差为
2.2 正弦交流电的相量表示方法
2.2.2 正弦量的相量表示法 正弦量和相量是一一对应关系(注意:正弦量和相量不是相等
关系!)。在复平面中,例如相量可用长度为 ,与实轴正向的夹 角为ψ的矢量表示。这种表示相量的图形称为相量图。如图2-7所示
第2章_正弦交流电路
ψ
+
90
°
- jA
- jA = 1 - 90° × r ψ = r ψ − 90°
三. 正弦量的相量表示法 相量:表示正弦量的复数。 相量:表示正弦量的复数。
相量表示方法: 相量表示方法: 设正弦量: 设正弦量: i = I msin( ω t + ψi )
大写字母上打点, 大写字母上打点,表示相量 模 =正弦量的最大值 & 最大值相量 Im = Imejψi = Im ψi 辐角= 辐角=正弦量的初相角 有效值相量
i1 i3 i2
i2 =
2 I 2 sin ( ω t + ψ 2 ), 求 i3 = i1 + i2
结论: 同频正弦量运算后仍得到同频的正弦量。 结论:●同频正弦量运算后仍得到同频的正弦量。 直接进行正弦量的运算很繁琐。 ●直接进行正弦量的运算很繁琐。 解决办法:把正弦量用相量(复数)表示, 解决办法:把正弦量用相量(复数)表示,先进行复数 运算,求出相量解, 运算,求出相量解,再根据相量解写出正弦量瞬时值表 达式。这种分析方法称为相量法。 达式。这种分析方法称为相量法 相量法。
正弦量的波形
i
Im
ψ
ωt
i = I m sin(ω t + ψ )
幅值(最大值) I m : 幅值(最大值) 角频率(弧度/ ω : 角频率(弧度/秒)
特征量: 特征量:
ψ : 初相角
2.1.1 正弦量的三要素
1. 幅度(最大值): 幅度(最大值) 最大的瞬时值,对确定的正弦量而言是一个常 最大的瞬时值, 量。最大值必须用带下标m的大写字母表示。 最大值必须用带下标m的大写字母表示。 如:Um、Im。
超前i (1)ϕ >0, u超前 , 超前 滞后u 或i滞后 滞后
第二章正弦交流电路
第2章 正弦交流电路判断题正弦交流电的基本概念1.若电路的电压为)30sin(︒+=t U u m ω,电流为)45sin(︒-=t I i m ω, 则u 超前i的相位角为75°。
[ ]答案:V2.如有电流t i 100sin 261=A,)90100sin(282︒+=t i A,则电流相量分别是︒=0/61I &A,︒=90/82I &A。
所以二者的电流相量和为:21I I I &&&+= [ ] 答案:V3.若电路的电压为u =I m sin(ωt+30°),电流为i =I m sin(ωt-45°),则u 超前i 的相位角为15°。
[ ]答案:X4.正弦量的三要素是指其最大值、角频率和相位。
[ ]答案:X5.正弦量可以用相量表示,因此可以说,相量等于正弦量。
[ ]答案:X6.任何交流电流的最大值都是有效值的2倍。
[ ]答案:X7.正弦电路中,相量不仅表示正弦量,而且等于正弦量。
[ ]答案:X正弦量的相量表示法1.如有电流t i 100sin 261=A,)90200sin(282︒+=t i A,则电流相量分别是︒=0/61I &A,︒=90/82I &A。
所以二者的电流相量和为:21I I I &&&+= 。
[ ] 答案:X单一参数的正弦交流电路1.电容元件的容抗是电容电压与电流的瞬时值之比。
[ ]答案:X2.在电感元件的电路中,电压相位超前于电流90º,所以电路中总是先有电压后有电流。
[ ]答案:X3.电感元件的感抗是电感电压与电流的瞬时值之比。
[ ]答案:X4.电感元件的感抗是电感电压与电流的有效值之比。
[ ]答案:V5.直流电路中,电容元件的容抗为零,相当于短路。
[ ]答案:X6.直流电路中,电感元件的感抗为无限大,相当于开路。
[ ]答案:X7.直流电路中,电容元件的容抗为无限大,相当于开路。
《电工学》教案02正弦交流电路
7. 掌握三相四线制供电系统中单相及三相负载的正确联接方法,理解中线的作用;
8. 掌握对称三相电路电压、电流及功率的计算。
2.1 正弦电压与电流
1. 正弦电流及其三要素
随时间按正弦规律变化的电流称为正弦电流,同样地有正弦电压等。这些按正弦规律变
化的物理量统称为正弦量。
设图 2.1 中通过元件的电流 i 是正弦电流,其参考方向如图所示。正弦电流的一般表达
式为:
i (t)= I m sin(ωt+ψ)
图 2.1 电路元件
图 2.2 正弦电流波形图
它表示电流 i 是时间 t 的正弦函数,不同的时间有不同的量值,称为瞬时值,用小写字
母表示。电流 i 的时间函数曲线如图 2.2 所示,称为波形图。
I m 为正弦电流的最大值(幅值),即正弦量的振幅,用大写字母加下标 m 表示正弦量 的最大值,例如 I m 、U m 、 Em 等,它反映了正弦量变化的幅度。( t +ψ)随时间变化,称
少角度或时间,以角度表示时为ψ1-ψ2,若以时间表示,则为(ψ1-ψ2)/ω。如果两个正弦 电流的相位差为 12 = ,则称这两个正弦量为反相。如果 12 = 2 ,则称这两个正弦量为正
交。
图 2.4 正弦量的相位关系
3. 有效值
周期电流 i 流过电阻 R 在一个周期所产生的能量与直流电流 I 流过电阻 R 在时间 T 内所
从以上分析可知:
(1) 电感两端的电压与电流同频率;
(2) 电感两端的电压在相位上超前电流 90°;
(3) 电感两端的电压与电流有效值(或最大值)之比为 L。
令
X L = L =2 f L
X L 称为感抗,它用来表示电感元件对电流阻碍作用的一个物理量。它与角频率成正比。
电工技术第2章
2.R L C串联电路的复阻抗
Z R j( X L XC ) R jX
Z
X XL XC
Z R2 X 2 R2 (X L XC )2
arctan X arctan X L XC
R
R
23
三、相量图
U U R U L U C
.
IR
jXL
+
.
+
U
-
R
+
U
-
L
U
jX C
Z 50 53.1
i 4.4 2 sin(314t 73.1)A
26
例2: 已知:电流表读数 A1 =6A,A2 =8A,
电压读数 U =100V
求:A 的读数。
.
I
A
+
.
U
.
I1
A1
-
R
.
I2
A2
jw L
解:设U 为参考相量,U 1000V
第2章 正弦交流稳态电路
重点:
1. 正弦量的三要素 2. 正弦量的相量表示法 3. 电路元件电压电流关系的相量形式 4. RLC元件的正弦交流电路、复阻抗 5. 三种功率的定义和计算 6. 提高功率因数的并联电容器补偿法
1
§2-1 正弦量的基本概念
一、正弦量的定义
i
按正弦规律变化的量。
Im
例:i(t)=Imsin(wt+i )
i 2I sin (w t i ) Im[ 2Ie ji e jwt ]
实域 正弦时间函数
复域
一一对应
复常数函数
(包含有效值、初相)
i 2I sin (w t i )
I Ieji Ii Ι i
电工电子技术及应用第2章
弦量;只有同频率的正弦量其相量才能相互运算,
才能画在同一个复平面上。
画在同一个复平面上表示相量的图称为相量图。
相量与正弦量的关系
U U
对应关系
Umsin( t )
不相等!!
例2-9
已知正弦电压、电流为 u 220 2 sin(t π )V,
i
+ +
R
i
us
u
π
2π
o
t
T
a)
b)
图2-1
Байду номын сангаас 一、正弦量的三要素
1.振幅值(最大值) 正弦量在任一时刻的值称为瞬 时值,用小写字母表示, 如
u
i、 u
, 分别表示电流及
u1 u2
电压的瞬时值。正弦量瞬时值
中的最大值称为振幅值也叫最 大值或峰值,用大写字母加下
o
Um2
Um1
t
图2-2
标m表示,如Im、Um , 分别表
6.55 j2.45 6.99 159.5
A B 685 11 130 0.52 j5.98 (7.07 j8.43)
7.59 j14.41 16.2962.2
例2-8
已知复数 A 4 j3 B 3 j4 ,求AB和A/B。
起点不同,正弦量的初相不同,因此初相与计时
起点的选择有关。我们规定初相|ψ |不超过π 弧 度,即-π ≤ψ ≤π 。图2-3所示是不同初相时的 几种正弦电流的波形图。
在选定参考方向下,已知正弦量的解析 式为 i 10sin( 314t 240 )A 。试求正弦量的 振幅、频率、周期、角频率和初相。
第2章 正弦交流电路
eU Em sin t eV Em sin(t 120 ) eW Em sin(t 120 )
(2-31)
相应的波形图、相量图如图2-16(a)、 (b)所示。
图2-16 三相对称电动势
2.三相电源的星形联结
(1)星形联结
把上述三相绕组的末端U2、V2和W2连在一 起,就构成星形联结,如图2-17所示。
UR U 311 2 V 220V
【例2-4】
根据式(2-10),电流有效值为
P 100W IR 0.455A U R 220V
2.2.2 纯电感电路
1.电压和电流的关系
纯电感电路如图2-10(a)所示,电感电
流与电压参考方向一致,设电感电流为
iL 2 I L sin t
2.3.1 电压和电流关系 2.3.2 电路的功率和能量转换
2.3.1 电压和电流关系
RLC串联电路如图2-12所示,取电压和电 流的参考方向一致。 为便于分析,电路中各量均采用相量表 示,各元件也采用相量化模型。
图2-12 RLC串联电路
用相量法分析电路如下。
(1)作相量图
图2-13 相量图
(2)求相量和
IL IP
【例2-8】三相电源作星形联结,线电压是 380V,负载是额定电压为220V的电灯组,问: (1)三相负载采用什么联结方式; (2)若三相负载的等效电阻 R1=R2=R3=510 , 求相电流、线电流和中线电流; (3)若三相负载的等效电阻分别为 R1=510 , R2=510,R3=2k,求中线电流。
QC UC IC 50 0.157 var 7.85var
当 f 5 000Hz 时,
XC IC 1 1 3.19 2π fC 2 3.14 5 000 10 106
第二章 正弦交流电路
u1 u2
2U1 sin t 1
2U 2 sin t 2
u u1 u2
2U1 sin t 1 2U 2 sin t 2 2U sin t
幅度、相位变化 频率不变
结论:因角频率()不变,所以以下讨论同 频率正弦波时, 可不考虑,主要研究幅度 与初相位的变化。
电容的相量欧姆定律
总结:R、L、C相量形式的欧姆定律
、I 表示, 在正弦交流电路中,若正弦量用相量 U
电路参数用复数阻抗( R R、L jX L、C jX C ) 表示,则复数形式的欧姆定律和直流电路中的形式相 似。
RI U R jLI jX I U L L 1 j jX I U I C C C
R、L、C正弦交流电路的分析计算小结
电路 电路图 基本 参数 (正方向) 关系
i 复数 阻抗 设 电压、电流关系 瞬时值 有效值 相量图 相量式 功率 有功功率 无功功率
u 2U sin t
I
U IR
U
R
u
u iR
R
则
I R U
UI
0
i 2I sin t
设
u、 i 同相
du iC dt
2U sin t
du iC 2UC cos t dt 2U C sin(t 90 )
特点:
1. 频率相同
2. 相位相差 90°(u 落后 i 90° )
u
i
I
UC
90
t
U
U
u 2U sin t
i 2U C sin(t 90 )
U I XL
电工学第2章正弦交流电路PPT课件
p=ui=Um sin(ωt+90°) Imsinωt
=UmIm cosωtsinωt =UIsin2ωt
电感元件的功率波形
上式表明, 电感元件的瞬时功率是一个幅值为UI 并以2ω的角频率随时间而变化的正弦量。瞬时功率 的变化曲线如右图所示。
26
当p>0时,表明电感元件吸收能量并作负载 使用,即将电能转换成磁场能量储存起来;
1. 相位角(或相位)——(ωt +ψi) 2. 初相位——t=0时的相位角,即ωt +ψi|t=0=ψi
初相位不同,正弦波的起始点不同,如下图所 示。
(a)ψi=0
(b)ψi>0
(c)ψi<0
由于正弦量是周期性变化量,其值经2π后又重复,所
以一般取主值,| ψi |≤π。
8
2.1.3 初相位
在一个正弦交流电路中, 电压u和电流i的频率是相同的, 但初相位却可以不同。设:
19
在电阻元件的交流电路中,电压u与电流i 相 位相同、频率相同。其波形图、相量图如下所示:
根据 i=Imsinωt ;u=iR=ImRsinωt
可知电压幅值: Um=Im R;
U=I R
如果用相量来表 示电压与电流的
•
•
U
•
Um
•
R
或
••
U IR
关系,则有: I I m
20
瞬时功率:p=ui= Umsinωt Imsinωt=UmImsin²ωt
③指数形式可改写为极坐标形式:
A=r
三种复数式可以互相转换。复数的加减运 算可用直角坐标式;复数的乘除运算用指数形 式或极坐标形式则比较方便。
13
e e 例如: 设A1= a1+jb1 =r1 j 1 ;A2= a2+jb2 =r2 j 2
电路 第二章 正弦交流电路2
归纳上述的讨论可知;由于任一瞬时电感元件上的电压u 正比于电流的变化率△i/△t,因此在相位上电感电压超前 电流900,即u比i早1/4周期达到最大值或零值。
电感元件上u、i的波形,如图 (b)所示。显然,电感元 件上的电压和电流为同频率的正弦量。
(二)大小关系
将式(2—13)的正弦电流代入式(2—14),经过数学 运算可得到电感电压的表达式为 u=ωLImcosωt =Umsin(ωt+900)
U =U R+UL十U C=I R+j IXL-jIXC
=I [(R+j(XL-XC )= Z
上RL式C称串为联相电量路形对式正的弦欧电姆流定的阻律碍。作式用中。的它Z=概R括+j了(X前L-述X电c)反阻映、了感 抗及容抗的性质。它是一个复数,故称为复阻抗。
为X为超见LU前,电>了X电L阻方c与,U流端便便c电反作9可0相压图0画;,相,U出它量在cR为们,L串电C的它联串容相与电联端量电路电电和流中路压为I同的一相U相相量般x=;量,选UU图它电LL为+,滞流U电如后I作c感称图电为端为流(b参电电)。9考压抗0图0相相端。中量量电由,,,压图U设它相可1R6
流容则上它的元式表Xωc表件中示1=cω达上,1电ωc=1式电U容c =称m为压元1/I为/m与(件=i=容电2U对πω抗/流If交CC,之U)流用m间电c符o的的s号ω大阻tX小=碍c表关I作m示系s用in,为(。ω即ωt若+C9频U0m0率)=由Ifm的此单可位得为出赫电,
电容C的单位为法,则容抗Xc的单位为欧。
Xc=U/I 这就是电容元件上电压和电流之间的有效值关系。 容抗Xc的大小与电容C和频率f成反比。频率f越高,电容C
电工学第二章 正弦交流电
O
ωt
电压与电流同相 u i u i O
ψ1 ψ 2 0
ψ 1 ψ 2 180
电压与电流反相 u i u i O
ωt
ωt
注意: ① 两同频率的正弦量之间的相位差为常数, 与计时的选择起点无关,仅取决于两者的初相位。
i
O
i1
i2
t
② 不同频率的正弦量比较无意义。
例1
已知:
幅度:
i sin 1000 t 30 A
I 1 2 0 . 707 A
I m 1A
频率:
1000 rad/s
f
2
1000 2
159 Hz
初相位:
30
例2:
i1 I m1 sin t 90 i2 I m2 sin t 90
小写
u i O p
2
i u
ωt p
p ui
U m I m sin ω t
1 2 U m I m (1 cos 2 ω t )
O
ω t
结论: p 0
(耗能元件),且随时间变化。
(2) 平均功率(有功功率)P 瞬时功率在一个周期内的平均值
P
大写
i
+
1 T 1
0
T 0
p dt
I 2 11 60 A
I I1 I 2 12.7 30A 11 60A
12.7( cos 30 j sin 30 )A 11( cos 60 j sin 60 )A
第2章正弦交流电-2.5三相交流电路
2.5三相交流电路
三相电源的连接
三相负载的连接
三相电路的功率
如果三相电路为对称电路,则表明各相负载的有功功率相等,则有 P=3UPIPcosφP
同单相交流电路一样,三相对称负载的无功功率和视在功率分别为
2.5三相交流电路
三相电源的连接
三相负载的连接
三相电路的功率
例题:一台三相电炉,其每相电阻R=10Ω。试问:①当电源线电压为380V时,接成三角形和 星形时各从电网取用多少功率?②在220V线电压下,接成三角形消耗的功率是多少?
单相负载:负载只需由三相电源中一相电源供电即可工作, 通常功率较小的负载均为单相负载,如照明灯、电风扇、洗衣 机、电冰箱、电视机、小功率电炉、电焊机等。为了使三相电 源供电均衡,这种负载要大致平均分配到三相电源的三相上。 这类负载的每相阻抗一般不相等,属于不对称三相负载。
典型的三相负载联结如图所示。
2.5三相交流电路
三相电源的连接
三相负载的连接
1 星形(Y形)联结
(1) 电压和电流之间的关系
三相电源的负端(末端)连接成一点N,N称为中性点,简称 中点,俗称零点。三相电源的正端(首端)引出与负载相接,从电 源正端引出的三根供电线称为相线或端线,俗称火线,用L1、L2、 L3分别表示。从中点N引出的供电线称中性线,俗称零线,用N表 示。在应用最多的低压供电系统中,中点通常是接地的,因而中线 又俗称地线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ϕ -阻抗角
阻抗代数式为 Z= R + j X = R + j (XL-XC)
阻抗:│Z│=√ R2 + X2 阻抗 =U/I 阻抗角: 阻抗角: ϕ = arctan (X / R) =ψu-ψi 相量图: 相量图: U = UR + UL + UC
UL U C U │Z│ UX = UL + UC X I UR 0< ϕ < 90° < ° 感性电路 电压三角形
所以 V 读数为141V 读数为141V
解法2: 解法 利用相量图分析求解
& 为参考相量, 设 UAB为参考相量,
I 1 = 10A
I2 = 100 5 +5
2 2
& j10Ω I
& I1
A
A
& I2
C1
B
& & I1 超前 UAB 90°
= 10 2A,
5Ω j5Ω
V
画相量图如下: 画相量图如下:
2.4 串并联交流电路
2.4.1 阻抗的概念 u = uR + uL + uC + u − i R L C +u − R + uL − +u − C
根据KVL 根据
U = UR + UL + UC = RI + j XLI-j XC I - =[R + j ( XL-XC )]I [ ] =[R + j ( XL-XC )]I [ ] 阻抗: 阻抗 Z Z = R + j (XL-XC)
例4 下图电路中已知:I1=10A、UAB =100V,求:总电压表和 下图电路中已知: 、 , & I1 的读数。 总电流表 的读数。
j10Ω
解法1: 解法 用相量计算 & 为参考相量, 设 UAB为参考相量,
& 即 U AB = 100 0 ° V
A A V
& I
& I2
C1
B
5Ω j5Ω
& 则 I 2 = 100 /( 5 + j5) = 10 2 − 45 ° A
U1
− +
U
Z2 -
−
U2
2)阻抗的并联 )
KCL: I = I1 + I2 U I= U + Z Z1 2 ( 1 + 1 )U= U I= Z Z Z2 1 Z = Z1∥Z2 其中: 其中:Z1 = R1 + j XL Z2 = R2 − j XC
+ I U L − Z1 Z2 C I1 R1 I2 R2
例2 如图所示是测量电感线圈参数R和L的实验电路,已知电 如图所示是测量电感线圈参数R 的实验电路, 压表的读数为50V 电流表的读数为1A 功率表的读数为30W 50V, 1A, 30W, 压表的读数为50V,电流表的读数为1A,功率表的读数为30W, 电源的频率f=50Hz。试求R 的值。 电源的频率f=50Hz。试求R和L的值。 ﹡ I 根据图中3个仪表的读数 个仪表的读数, 解:根据图中 个仪表的读数 A W ﹡ 电 + 可先求得线圈的阻抗 感 R 线 Z =| Z | ∠φ = R + jωL V U 圈 L U | Z |= = 50Ω I 功率表读数表示线圈吸收的有功功率, 功率表读数表示线圈吸收的有功功率,故有 P = UI cosφ = 30W 30 φ = arccos( ) = 53.130 UI 从而求得
I + U − − R +U −
R
+
√ R2 + (XL − XC )2 = √ R2 + XL2
故 (XL – XC )2 = XL2
UC UL +− jXL −jXC
S
× 因 XC ≠ 0,求得 XC = 2 XL = 2×4 Ω = 8 Ω , | Z | =√ R 2 + XL2 = √ 32 + 42 Ω = 5 Ω U I= | Z | = 2.4 A
X:电抗 :
= R + j X =√R2 + X2 arctan (X / R)
& & 相量形式的欧姆定律 U = ZI
阻抗的定义: 阻抗的定义: 的定义
一个含线性电阻、电感和电容等 一个含线性电阻、电感和电容等 含线性电阻 元件, 不含独立电源的一端口网络 元件,但不含独立电源的一端口网络 N0,其端口的电压相量 与电流相量 其端口的电压相量U与电流相量 与电流相量I 的比值定义为该端口的阻抗Z, 的比值定义为该端口的阻抗 ,即
例1 已知 U = 12 V, R = 3 Ω ,XL = 4 Ω。 求:(1) XC , ) 为何值时( ),开关 闭合前后, 为何值时( XC≠ 0 ),开关 S 闭合前后,电流 I 的有效 值不变。这时的电流是多少? ) 为何值时, 值不变。这时的电流是多少? (2) XC 为何值时,开关 S 最大,这时的电流是多少? 闭合前电流 I 最大,这时的电流是多少? [解] (1) 开关闭合前后电流 解 ) I 有效值不变,则开关闭合 有效值不变, 前后电路的阻抗模相等。 前后电路的阻抗模相等。
例2 已知 u = 220 2 sin ω t V, R = 50 Ω, R1 = 100Ω, X L = 200 Ω, XC = 400 Ω 已知: & I 求: i, i 1 , i 2 解: ° V Z1 = R 1+ j X L = (100 + j200) Ω
+
i
R L C
+ − +
uR uL
u
−
− + uC −
阻抗三角形
ϕ
R UC
U =│Z│I UR = R I UX = X I = (XL − XC) I
UL UC U UR UC I
UL
ϕ
UR
I UX= UL+ UC
UC UL
U
ϕ =0° °
电路呈阻性
− 90°< ϕ <90° ° ° 电路呈容性
I = 0.86 39.6 A + U = 220 0 − jXC − R1
I2 = 1.36 − 75.7 A 40 Ω j157 Ω
I1 = 1.90 80 A R2 20 Ω − j114 Ω jXL
方法 2 由支路功率求总功率 P = P1 + P2 = U1 I1 cosϕ 1+ U2 I2 cosϕ 2 ={220 × 1.9 × cos ( 0 − 80 ) + { 220 × 1.36 × cos [0 − ( − 75.7 )]}W } = (72 + 74) W = 146 W Q = Q1 + Q2 = P1 tanϕ1 + P2 tan ϕ2 = ( − 411 + 290) var = − 121 var S =√P2 + Q2 = 190 V·A
& I 1 = 10 90 ° A = j10 A & & & I = I 1 + I 2 = 10 0 ° A
& & U L = I ( j10 )V = j100 V
所以A 10安 所以A读数为 10安
& & & U = U L + U AB = 100 + j100V = 100 2 45 ° V
+ 50Ω 100Ω & U & & j200Ω I1 I2 - j400Ω
-
所以 i = 0.5 2 sin (ωt − 33°)A i1 = 0.89 2 sin (ωt − 59.6°)A i2 = 0.5 2 sin (ωt + 93.8°)A
例3 电路如图所示,图中各仪表均为交流电流表,其读数是 电路如图所示,图中各仪表均为交流电流表, 电流表的有效值。已知A 的读数为8A 8A, 的读数为60A 60A, 电流表的有效值。已知A1的读数为8A,A2的读数为60A,A3的 读数为66A 求电流表A 66A。 的读数,并画出相量图。 读数为66A。求电流表A和A4的读数,并画出相量图。 I4 I 解:由于电路为并联电 A A4 A3 路,则可设 I3 + A1 A2 US= US 0 V 1 US I1 I j L ω R j L 2 ω 则由已知条件得 I1= 8 0 A, 2= 60 -90 A,I3= 66 90 A , I , 根据KCL有 有 根据 I4= I2+I3= 60 -90 +66 90 =6 90 A I= I1+I4= 8 0 +6 90 =10 36.9 A 故表A的读数为 的读数为6A。 故表 的读数为10A,表A4的读数为 。 的读数为 , 的读数为 相量图如图。 相量图如图。 I2 I2 I4 I I1 US I3
[解] 方法 1 由总电压总电流求总功率 解 P = U I cosϕ = 220×0.86×cos ( 0 − 39.6 ) W = 146 W × × Q = U I sin ϕ = 220×0.86×sin ( 0 − 39.6 ) var = − 121 var × × S = U I = 220×0.86 V·A = 190 V·A ×
& I2滞后 & AB 45° U
由相量图可求得: 由相量图可求得: I =10 A
& UL= I XL =100V UL超前& 90° I
& UL
& I1 100 10
& U
& 45° ° I 45° °
& I2
& U AB
由相量图可求得: 由相量图可求得: V =141V