第二章正弦交流电路
第2章 正弦稳态电路的分析
u
l
L是一个与i、ψ无关的常数。若线圈中含有铁磁物质,则 L与i、ψ有关,不是常数。 线圈的电感与线圈的形状,几何尺寸,匝数以及周 围物质的导磁性质有关,即 SN 2 L l l为密绕长线圈的长度(m),截面为S(m2), 匝数为N,μ为介质的磁导率。
2.自感电动势
i(t)变化
ψ变化
产生eL(t)
波形图中 正半周 u > 0 , i > 0 (正值),说明实际方向与参考方向相同 负半周 u < 0 , i <0 (负值),说明实际方向与参考方向相反
+
u
_
i,u T Um O
波形: Im
wt
可见:没有设定参考方向,正负值就没有意义,波形图也表达不出 它们的变化规律
2.1.2 正弦交流电量的三要素:
u U m cos( t + ) w U m e j (wt + )的实部 正弦电压u正好等于复数
u Re [U m e j (wt + ) ] Re [U m e jwt e j ] e jwt ] (令U U e j ) Re [U m m m
现在就把பைடு நூலகம்U m U m e j U m 称为正弦电压u的最大值相量
除法:模相除,角相减。
正弦交流电量的表示法 1、瞬时表达式(即时间的正弦或余弦函数式) 2、波形图(即时间的正弦或余弦函数曲线) 3、相量法(用复数表示正弦电量的方法) (1)复数与正弦量的关系
U m e j (wt + ) U m [cos(wt + ) + j sin(wt + )]
特殊相位关系:
u, i
u i O u, i u O u, i u iw t
大学物理学第2章正弦交流电路_02
解法2: 利用相量图分析求解
设 U AB为参考相量,
I1 10A
I2 100 5 5
2 2
j10Ω
I
I1
A
A
I 1 超前 U AB 90
10 2A,
I2
C1
B
5Ω j5Ω
V
画相量图如下:
I 2滞后UAB 45°
由相量图可求得: I =10 A
UL= I XL =100V U L超前I 90°
I1 Z2 j400 I 0.5 33 A Z1 Z 2 100 j200 j400
0.89 - 59.6 A
同理:
I
I2
Z1 I Z1 Z 2
100 j200 0.5 33 A 100 j200 j400 0.5 93.8 A
UL
I1 100 10
U
由相量图可求得: V =141V
45° I 45°
I2
U AB
10 2
2.5 正弦稳态电路的功率
2.5.1 功率
一、瞬时功率
I +
i = Im sinωt U u = Umsin (ωt + ) - p = u i = UmImsin(ωt + ) sinωt = U I cos + U I cos ( 2ωt + )
S =√P2 + Q2 = 190 V· A
例2 如图所示是测量电感线圈参数R和L的实验电路,已知电 压表的读数为50V,电流表的读数为1A,功率表的读数为30W, 电源的频率f=50Hz。试求R和L的值。 ﹡ I 解:根据图中3个仪表的读数, A W ﹡ + 可先求得线圈的阻抗 电 R 感 Z | Z | R jL V U 线 圈 L U | Z | 50 I 功率表读数表示线圈吸收的有功功率,故有 P UI cos 30W 30 arctan( ) 53.130 UI 从而求得
电工电子技术-第2章 正弦交流电路
•
I m = 14.1∠36.9°A
其有效值相量为:I• = 10∠36.9°A
由于一个电路中各正弦量都是同频率的,所以相量只需 对应正弦量的两要素即可。即模值对应正弦量的最大值或 有效值,幅角对应正弦量的初相。
i u u、i 即时对应! R
电流、电压的瞬时值表达式
设 i Im sin t u、i 同相!
则 u ImR sin t Um sin t
u、i最大值或有效值之间符
合欧姆定律的数量关系。
Um ImR
或
U IR
•
相量关系式
•
I
U
U0
U
0 I0
RRR
相量图
U
I
(2)电阻元件上的功率关系
3
C -4
D
D 3 j4 第四象限 D 5 arctan 4
3
上式中的j 称为旋转因子,一个复数乘以j相当于在复
平面上逆时针旋转90°;除以j相当于在复平面上顺时针
旋转90°。
※数学课程中旋转因子是用i表示的,电学中为了区别 于电流而改为j。
正弦量的相量表示法
与正弦量相对应的复数形式的电压和电流称为相量。为
乘、除时用极坐标形式比较方便。
在复数运算当中,一定要根据复数所在象
限正确写出幅角的值。如:
+j
B4
A
A 3 j4 第一象限 A 553.1arctan 4 3
B 3 j4 第二象限 B 5180 arctan 4
-3 0
3
+1
3
电工第2章 正弦交流电路
图2-2 正弦交流电波形图
2.1 正弦交流电量及基本概念
(1)最大值 又称为幅值,是正弦量的最大值,用带右下标m的大写 字母表示,如Im、Um、Em分别表示正弦电流、正弦电压、正弦电动 势的最大值。 (2)角频率ω 在单位时间内正弦量所经历的电角度,用ω表示,其单 位为弧度每秒(rad/s)。正弦交流电变化一次所需的时间,称为周期T, 其单位为秒(s),正弦量在单位时间内变化的次数,称为频率f, 其单位为赫[兹](Hz)。
图2-9 纯电阻电路
2.3 单一参数元件的正弦交流电路
(2) 有效值关系 由电流与电压的幅值关系Im= Um /R,两端同除 以 ,可得它们的有效值关系为U=IR (3) 相量关系 因为电流i和电压u均为同频率的正弦量。 相量形式为 2.电阻元件的功率 (1) 瞬时功率 在关联参考方向下,电阻元件的 瞬时功率(用小写字母p表示):
图2-4 两正弦量的同相与反相
2.1 正弦交流电量及基本概念
例2.1 已知正弦量u=220sin(314t + 30°)V, 试求正弦量的三要素、有效值及变化周期。 解:对照式(2-1),可知三要素:
2.1 正弦交流电量及基本概念
例2.2 已知正弦电压u和正弦电流i1、i2的瞬时表达式为u = 310sin(ωt -45°)V,,i2=28.2sin(ωt +45°)A,试以电压u为参考量重新写出u和 电流i1、i2的瞬时值表达式。 解:以电压u为参考量, 则电压u的表达式为 由于i1、i2与u的相位差为
2.2 正弦交流电的相量表示方法
2.2.2 正弦量的相量表示法 正弦量和相量是一一对应关系(注意:正弦量和相量不是相等
关系!)。在复平面中,例如相量可用长度为 ,与实轴正向的夹 角为ψ的矢量表示。这种表示相量的图形称为相量图。如图2-7所示
第二章正弦交流电的表示方法
I
U
电工电子技术
(2)电阻元件上的功率关系
1)瞬时功率 p
瞬时功率用小写!
i I m sin ( t )
uip
则 p u i U m sin t I m sin t u U m sin ( t ) U m I m sin 2 t
p
u
0
i
ωt
结论:1. p随时间变化 2. p≥0;耗能元件,吸收电能,转换为热能
最大值 频率 初相角
第一篇
电工电子技术
一、解析式表示法
例1:已知某正弦交流电流的最大值是 2 A,频率为 50 Hz,初 相位为 60 ,写出该电流的解析式,并求t=0时的瞬时值。 Im=2A ;
ω 2πf 2 50π 100π rad / s
60
i0
则它的解析式是: i = Imsin( t i0) = 2sin(100π t 60) A t=0s时的电流瞬时值是: i = 2sin(100π ×0 60°) = 2sin(60) =2× 3 = 3 A
答:初相位是2π /3 rad,t=0.5s时的瞬时值是1.59A。
电工电子技术 五、正弦交流电的表示方法
前提: 在分析正弦交流电路时,同一电路中的 所有电压、电流都是同频率的正弦量, 且频率与电源的频率相同。 因此: 一个正弦量由最大值(或有效值)和初 相位两个要素也能确定。 描述正弦交流电的有向线段称为相量。
电工电子技术
参数
见书32页
2、电容
(1)电容是表征电容器容纳电荷本领的物 理量,用字母C表示,单位是F(法拉)。 1F=106μF=1012pF (2)电容的大小与极板间的介电常数ε, 电容极板的正对面积S,电容极板的距离d有 关。
汽车电工电子技术---正弦交流电路
正弦交流电路
第二章 正弦交流电路
• 在研究电能的不同形式上,人们常用图形来表示电动势、电压 和电流随时间的变化规律,这种图形称为波形图。图2-1是几种 电能形式的波形图。
• 直流电路中所讨论的电压和电流,其大小和方向(或极性)都 是不随时间变化的,如图2-1(a)所示。凡大小和方向随时间 周期性变化的电动势、电压和电流,统称为交流电。其波形如 图2-1(b)、(c)、(d)所示。随时间按正弦规律变化的交 流电称为正弦交流电,其波形如图2-1(b)所示。
• 正弦交流电是电能生产、输送、分配和使用的主要形 式。正弦交流电获得广泛应用的原因是:
• 第一:交流电易于产生、传输和转换,从而具有成本 低廉的优势;
• 第二,就用电设备看,由三相交流电源供电的三相异 步电动机结构简单、价格便宜、使用维护方便,是使 用最多的动力设备;
• 第三,在需要使用直流电的地方,可以用整流设备将 交流电变为直流电。因此学习和研究正弦交流电具有 重要的现实意义。
• (3)电容的无功功率
• 电容与电源之间的功率交换也用无功功率表示,其大小为
Q
UI
I 2 XC
U2 XC
• 电容的无功功率单位也是乏(Var)。
• 四、串联交流电路
• 实际交流电路,往往不是单一参数组成,而是由二个或三个参 数组成。例如像电动机和继电器这类电感性电路,当其线圈内 阻不可忽略时,线圈的电感和内阻便同时存在;又如一些电子 设备中多含有电阻、电感和电容。电阻、电感和电容串接在交 流电路上,就组成了RLC串联电路,如图2-9(a)所示。
• 下面我们以单相交流电讨论正弦交流电的产生和变化规律。如图 2-3(b)所示,以发电机转子的轴心o为原点,建立直角坐标。轴 与发电机的中性面重合。当线圈以角速度逆时针方向转动时,线 圈ab平面与y轴重合的瞬间,正弦电动势e有最大值Em或最小值Em,当线圈ab平面与轴重合的瞬间,正弦电动势e为零。
第2章 正弦交流电路
同相反相的概念
同相:相位相同,相位差为零。 反相:相位相反,相位差为180°。 下面图中是三个正弦电流波形。 i1与 i2 同相, i1与 i3反相。
i
i1 i2
O
i3
ωt
总 结
描述正弦量的三个特征量:
幅值、频率、初相位
9
电气与自动化工程学院
2.2 正弦量的相量表示法
正弦量的表示方法:
★ 三角函数式: i
相位 表示正弦量的变化进程,也称相位角。 初相位 t =0时的相位。
i I m sint 相位: t 初相位: 0
i I m sin t
相位:
i
O
t
i
t
说 明
初相位:
ψ
t
初相位给出了观察正弦波的起点或参考点。
7
电气与自动化工程学院
相位差
两个同频率的正弦量的相位之差或初相位之差称为相位差。 正弦交流电路中电压和电流的频率是相同的,但初相不 一定相同,设电路中电压和电流为:
26
电气与自动化工程学院
2.3.3 电容元件的交流电路 电压电流关系
对于电容电路:
dq du i C dt dt
i
+
如果电容两端加正弦电压:
u
_
C
u Um sin t
则:
注意u 和i的参考方向!
dU m sint i C CUm cost CUm sin t 90 I m sin t 90 dt
2.1.1 频率和周期
正弦量变化一次所需要的时间(秒)称为周期(T)。 每秒内变化的次数称为频率( f ),单位是赫兹(Hz)。
u i
频率是周期的倒数:
电路 第二章 正弦交流电路(1)
所以交流电的有效值就是与它热效应相等的直流电的数值, 它们之间的关系由焦耳-楞次定律确定。为了区别,交流电 流、电压和电动势的有效值分别用大写字母I、U、E表示。 设正弦电流i=Imsin(ωt+ψ),通过计算可知,正弦电流的有 效值是其最大值的1/√2倍,如图2—9(c)所示,即 I=Im/√2 =0.707Im (2—9) 同理,正弦电压和电动势的有效值分别为 U=Um/√2 ; E=Um/√2 在工程上,主要使用有效值,今后不加特别声明,交流电 的大小均指有效值。从交流电流表和电压表上读取的数值也 是有效值。电气设备所标明的交流电压、电流数值也都是有 效值。可以证明有效值为正弦量在一个周期内的方均根值, 即它不随时间变化,因此,和最大值比较,有效值更为实用。
15
相量也可以用复平面上的有向线段来表示。如图所示。这种 用来表示相量的图形,叫相量图,相量图与力学和物理学中 的向量图相似。但是,相量表示的是随时间作正弦变动的函 数,而向量指的是力、电 场强度等空间向量。 2 因为实际工程中,常采用正弦量的有效值,而且最大值与 有效值之间有着固定的 2关系,所以有效值相量应用较多。 它等于最大值相量除以 2 ,即 U=Um/ 2 同理 I=Im/ 2
上式表明,为了保证电动势的频率稳定,必须保 持发电机转速稳定。 周期T、频率f及角频率ω反映了正弦量随时间作 ω 周期性交变的快慢。各国在电力工业上所用交流 电的频率都规定了各自的标准。我国和有些国家 电力工业的标准频率为50Hz,称为工频。一般我 们讲交流电时,如果不加说明,指的就是50Hz的 工频。还有一些国家工频采用60Hz。
采用适当的磁极形状,使电枢表面的磁感应强度B 沿圆周按正弦规律分布,如图 (a)所示。由于铁芯 的磁导率远大于空气的磁导率,故磁力线的方向 与铁芯表面垂直。在磁极之间的分界面O~O',B= 0,称为磁中性面。在磁极的轴线上,磁感应强度 具有最大值Bm 。设线圈的一条有效边AA'(切割磁 力线的部分)和转轴所组成的平面,与磁中性面的 夹角为α,则AA'边所处位置的磁感应强度为(见图 2—2) B=Bmsinα 当电枢被原动机拖动,在磁场中以逆时 针方向作 等速旋转时,电枢线圈有效 边因切 割磁力线而产生感 应电动势。其表达式为 e=Emsinωt (2—1)
第二章正弦交流电路
第2章 正弦交流电路判断题正弦交流电的基本概念1.若电路的电压为)30sin(︒+=t U u m ω,电流为)45sin(︒-=t I i m ω, 则u 超前i的相位角为75°。
[ ]答案:V2.如有电流t i 100sin 261=A,)90100sin(282︒+=t i A,则电流相量分别是︒=0/61I &A,︒=90/82I &A。
所以二者的电流相量和为:21I I I &&&+= [ ] 答案:V3.若电路的电压为u =I m sin(ωt+30°),电流为i =I m sin(ωt-45°),则u 超前i 的相位角为15°。
[ ]答案:X4.正弦量的三要素是指其最大值、角频率和相位。
[ ]答案:X5.正弦量可以用相量表示,因此可以说,相量等于正弦量。
[ ]答案:X6.任何交流电流的最大值都是有效值的2倍。
[ ]答案:X7.正弦电路中,相量不仅表示正弦量,而且等于正弦量。
[ ]答案:X正弦量的相量表示法1.如有电流t i 100sin 261=A,)90200sin(282︒+=t i A,则电流相量分别是︒=0/61I &A,︒=90/82I &A。
所以二者的电流相量和为:21I I I &&&+= 。
[ ] 答案:X单一参数的正弦交流电路1.电容元件的容抗是电容电压与电流的瞬时值之比。
[ ]答案:X2.在电感元件的电路中,电压相位超前于电流90º,所以电路中总是先有电压后有电流。
[ ]答案:X3.电感元件的感抗是电感电压与电流的瞬时值之比。
[ ]答案:X4.电感元件的感抗是电感电压与电流的有效值之比。
[ ]答案:V5.直流电路中,电容元件的容抗为零,相当于短路。
[ ]答案:X6.直流电路中,电感元件的感抗为无限大,相当于开路。
[ ]答案:X7.直流电路中,电容元件的容抗为无限大,相当于开路。
正弦交流电路_单一参数的正弦交流电路
iL
+
uL
L
−
u 波 形 图0
i
U•
相
t
量 图
I• 0°
第二章 正弦交流电路
2.2 单一参数的正弦交流电路
(2)大小关系
uL L Im sin( t 90 ) U m sin( t 90 )
最大值: U m L I m 有效值: U ω L I
定义: X L L ——感抗
第二章 正弦交流电路
2.2 单一参数的正弦交流电路
(3)相量关系 I I 0 U U 9 0 X L I 90 0 X L 90 I 0 jX L I
U jX L I j L I
u
i
0
t
第二章 正弦交流电路
2.功率 (1)瞬时功率
p ui
U m I m s in t s in t 90
(能量的吞吐)。
0
t
p
第二章 正弦交流电路
2.2 单一参数的正弦交流电路
(3)无功功率 为了同电感的无功功率相
p u i UI sin 2t
比较,设电流 i I m s in t
u
i
为参考量,则: u U m sin( t 90 )
p uHale Waihona Puke U I sin 2 t0
t
储放 储放储放 能能 能能能能
p
0
t
u
i
第二章 正弦交流电路
2.2 单一参数的正弦交流电路
2. 功率
平均功率(有功功率) P 1 T pdt U I I 2 R U 2
T0
R
平均功率衡量电路 中所消耗的电能, 也称有功功率。
正弦交流电路_正弦交流电路的频率特性;串联谐振
希望保留的频率范围称为通带 希望抑制的频率范围称为阻带
U
i
+
( j
−
)
选频 网络
U
+ o−(
j
)
第二章 正弦交流电路
( ) arctan( ) 0
T ( j )
1
0.707 通
阻
带
带
T ( j ) 0 ( )
2
0
0
( )
0
T ( j ) 0.707 ( )
4
0 4
0 ——截止(转折)频率
2
第二章 正弦交流电路
2.5 交流电路的频率特性
2.高通滤波电路
C
传递函数
T ( j )
第二章 正弦交流电路
2.5 交流电路的频率特性
2.5.1 频率特性的概念和传递函数 1.频率特性(频率响应):
幅频特性: 电压或电流的大小与频率的关系。 相频特性: 电压或电流的相位与频率的关系。
+
U i ( j )
−
RLC
电路
+
U o ( j )
−
第二章 正弦交流电路
2.5 交流电路的频率特性
−
jC
T ( j )
1
1 j
0
幅
1
arctan
1 ( )2
0
0
相
0
1 RC
频 T ( j )
1
频 ( ) arctan( )
电工学 第二章正弦交流电路
(1-2)
. 一、正弦量的三要素
二、同频率正弦量的相位差
三、正弦量的有效值
(1-3)
一、正弦量的三要素
i = Im sin (wt + j ) i
Im
j
wt Im:电流幅值(最大值)
三要素
w: 角频率(弧度/秒)
.
U Z = I
j = j u - ji
结论:Z的模为电路总电压和总电流有效值之比, 而Z的幅角则为总电压和总电流的相位差。
(1-46)
Z 和电路性质的关系
Z = R+ j (XL- XC )
阻抗角
j = ju- ji = arctg
(1-39)
以电流为 参考量时
正 误 判 断
在电阻电路中:
瞬时值
有效值
U I= R
?
U i= R
?
u ? i = R
(1-40)
正 误 判 断
在电感电路中:
u i= XL
?
U I= ωL
u i= ωL
?
?
& U = XL & I
U = jω L I
?
?
(1-41)
第四节
RLC串、并联电路及功率因数的提高 一、RLC串联的正弦交流电路
& I U=&R
& I & U
(1-25)
相量图
总结功率关系
因为:
i= Im sinwt u =Ri=R Im sinwt p=u·=R·2=u2/R i i
小写,瞬时值功率
所以:
i
u
wt
第2章 正弦交流电路
eU Em sin t eV Em sin(t 120 ) eW Em sin(t 120 )
(2-31)
相应的波形图、相量图如图2-16(a)、 (b)所示。
图2-16 三相对称电动势
2.三相电源的星形联结
(1)星形联结
把上述三相绕组的末端U2、V2和W2连在一 起,就构成星形联结,如图2-17所示。
UR U 311 2 V 220V
【例2-4】
根据式(2-10),电流有效值为
P 100W IR 0.455A U R 220V
2.2.2 纯电感电路
1.电压和电流的关系
纯电感电路如图2-10(a)所示,电感电
流与电压参考方向一致,设电感电流为
iL 2 I L sin t
2.3.1 电压和电流关系 2.3.2 电路的功率和能量转换
2.3.1 电压和电流关系
RLC串联电路如图2-12所示,取电压和电 流的参考方向一致。 为便于分析,电路中各量均采用相量表 示,各元件也采用相量化模型。
图2-12 RLC串联电路
用相量法分析电路如下。
(1)作相量图
图2-13 相量图
(2)求相量和
IL IP
【例2-8】三相电源作星形联结,线电压是 380V,负载是额定电压为220V的电灯组,问: (1)三相负载采用什么联结方式; (2)若三相负载的等效电阻 R1=R2=R3=510 , 求相电流、线电流和中线电流; (3)若三相负载的等效电阻分别为 R1=510 , R2=510,R3=2k,求中线电流。
QC UC IC 50 0.157 var 7.85var
当 f 5 000Hz 时,
XC IC 1 1 3.19 2π fC 2 3.14 5 000 10 106
电工学第2章正弦交流电路PPT课件
p=ui=Um sin(ωt+90°) Imsinωt
=UmIm cosωtsinωt =UIsin2ωt
电感元件的功率波形
上式表明, 电感元件的瞬时功率是一个幅值为UI 并以2ω的角频率随时间而变化的正弦量。瞬时功率 的变化曲线如右图所示。
26
当p>0时,表明电感元件吸收能量并作负载 使用,即将电能转换成磁场能量储存起来;
1. 相位角(或相位)——(ωt +ψi) 2. 初相位——t=0时的相位角,即ωt +ψi|t=0=ψi
初相位不同,正弦波的起始点不同,如下图所 示。
(a)ψi=0
(b)ψi>0
(c)ψi<0
由于正弦量是周期性变化量,其值经2π后又重复,所
以一般取主值,| ψi |≤π。
8
2.1.3 初相位
在一个正弦交流电路中, 电压u和电流i的频率是相同的, 但初相位却可以不同。设:
19
在电阻元件的交流电路中,电压u与电流i 相 位相同、频率相同。其波形图、相量图如下所示:
根据 i=Imsinωt ;u=iR=ImRsinωt
可知电压幅值: Um=Im R;
U=I R
如果用相量来表 示电压与电流的
•
•
U
•
Um
•
R
或
••
U IR
关系,则有: I I m
20
瞬时功率:p=ui= Umsinωt Imsinωt=UmImsin²ωt
③指数形式可改写为极坐标形式:
A=r
三种复数式可以互相转换。复数的加减运 算可用直角坐标式;复数的乘除运算用指数形 式或极坐标形式则比较方便。
13
e e 例如: 设A1= a1+jb1 =r1 j 1 ;A2= a2+jb2 =r2 j 2
第2章 正弦交流电路(RL部分)
压频率2倍的正弦量。
(2)平均功率
P = 0
表明:电容器也是储能元件,当电容器 充电时,它从电源吸收能量,当电容器放电 时,则将能量送回电源。 (3)无功功率 Q C = U CI = I 2X C
2.4 电阻、电感的串联电路
纯电感电路实际上是不存在的,实 际线圈可用一个纯电阻R与纯电感L串 联的等效电路来代替。
2.电阻电路的功率 (1)瞬时功率 定义:电阻在任一瞬时取用的功率,表 达式为: p=ui=UmImsin2ω t 可见:p≥0,表明电阻任一时刻都在向 电源取用功率,起负载作用。
(2)平均功率(有功功率) 为便于计算,用平均功率来计算交流电
路中的功率。
定义:瞬时功率在一个周期内的平均值。
表达式为:
电流与总电压之间的相位差: φ =arctan(UL/UR)=arctan(XL/R)
φ =arccos(UR/U )=arccos(R/Z)
上式说明:φ 角大小取决于电路的电阻R
和感抗XL的大小,与电流、电压的大小无关
。
2.4.4 功率、功率三角形 1.有功功率P 在交流电路中,电阻消耗的功率叫有功 功率。 P =I2R =URI =UIcosφ 式中,cosφ 称为电路的功率因数,它是 交流电路运行状态的重要数据之一。功率因 数的大小由负载性质决定。
无功功率的单位是乏(var)。
【例2.6】一个线圈电阻很小,可略去 不计。电感L=35mH。求该线圈在50 Hz和
1000 Hz的交流电路中的感抗各为多少。若
接在U=220V,ƒ=50 Hz的交流电路中,电流
I,有功功率P、无功功率Q又是多少?
解: (1)ƒ = 50 Hz时,
电工学I(电路与电子技术)[第二章正弦交流电路]山东大学期末考试知识点复习
第二章正弦交流电路2.1.1 正弦量的三要素及表示方法(1)正弦交流电路:如果在线性电路中施加正弦激励(正弦交流电压源或正弦交流电流源),则电路中的所有响应在电路达到稳态时,也都是与激励同频率的正弦量,这样的电路称为正弦交流电路。
(2)正弦交流电压或正弦交流电流等物理量统称为正弦量,它们的特征表现在变化的快慢、大小及初值3个方面,分别由频率(或周期)、幅值(或有效值)和初相位来确定。
所以称频率、幅值(或有效值)和初相位为正弦量的三要素。
(3)因为正弦量具有3个要素,它们完全可以表达对应的正弦量的特点和共性。
所以,只要能够反映出正弦的三要素,就可以找到多种表示正弦量的方法,其常见的表示方法如下。
①三角函数表示法和正弦波形图示法,比如正弦电压u=U m sin(ωt+φ),其正弦波形如图2.1所示,但是正弦量的这两种表示方法都不利于计算。
②旋转矢量表示法,由于复平面上一个逆时针方向旋转的复数能够反映出正弦量的3个要素,因此可用来表示正弦量。
③相量及相量图表示法,由于正弦交流电路中的激励和响应均为同频率的正弦量,故可在已知频率的情况下,只研究幅值和初相位的问题。
这样,不仅可以用旋转矢量表示正弦量,而且也能把正弦量表示成复数(该复数与一个正弦量对应,称为相量)。
图2.1所示正弦电压的幅值相量和有效值相量分别为2.1.2 电路基本定律的相量形式将正弦量用相量表示有利于简化电路的分析和计算,其中电路分析的基本定律在频域中也是成立的,即为表2.1的电路基本定律的相量形式。
当用相量来表示正弦电压与电流,用复阻抗来表示电阻、电感和电容时,正弦交流电路的分析与计算也就类似于直流电路,复阻抗的串并联等效、支路电流法、叠加定理和戴维宁定理等分析方法均可应用。
为了研究复杂正弦交流电路中激励与响应之间的关系,以及研究电路中能量的转换与功率问题,就必须首先掌握单一参数(电阻、电感、电容)元件在正弦交流电路中的特性(见表2.2),以作为分析复杂正弦交流电路的基础。
电工学第二章 正弦交流电
O
ωt
电压与电流同相 u i u i O
ψ1 ψ 2 0
ψ 1 ψ 2 180
电压与电流反相 u i u i O
ωt
ωt
注意: ① 两同频率的正弦量之间的相位差为常数, 与计时的选择起点无关,仅取决于两者的初相位。
i
O
i1
i2
t
② 不同频率的正弦量比较无意义。
例1
已知:
幅度:
i sin 1000 t 30 A
I 1 2 0 . 707 A
I m 1A
频率:
1000 rad/s
f
2
1000 2
159 Hz
初相位:
30
例2:
i1 I m1 sin t 90 i2 I m2 sin t 90
小写
u i O p
2
i u
ωt p
p ui
U m I m sin ω t
1 2 U m I m (1 cos 2 ω t )
O
ω t
结论: p 0
(耗能元件),且随时间变化。
(2) 平均功率(有功功率)P 瞬时功率在一个周期内的平均值
P
大写
i
+
1 T 1
0
T 0
p dt
I 2 11 60 A
I I1 I 2 12.7 30A 11 60A
12.7( cos 30 j sin 30 )A 11( cos 60 j sin 60 )A
第2章正弦交流电-2.5三相交流电路
2.5三相交流电路
三相电源的连接
三相负载的连接
三相电路的功率
如果三相电路为对称电路,则表明各相负载的有功功率相等,则有 P=3UPIPcosφP
同单相交流电路一样,三相对称负载的无功功率和视在功率分别为
2.5三相交流电路
三相电源的连接
三相负载的连接
三相电路的功率
例题:一台三相电炉,其每相电阻R=10Ω。试问:①当电源线电压为380V时,接成三角形和 星形时各从电网取用多少功率?②在220V线电压下,接成三角形消耗的功率是多少?
单相负载:负载只需由三相电源中一相电源供电即可工作, 通常功率较小的负载均为单相负载,如照明灯、电风扇、洗衣 机、电冰箱、电视机、小功率电炉、电焊机等。为了使三相电 源供电均衡,这种负载要大致平均分配到三相电源的三相上。 这类负载的每相阻抗一般不相等,属于不对称三相负载。
典型的三相负载联结如图所示。
2.5三相交流电路
三相电源的连接
三相负载的连接
1 星形(Y形)联结
(1) 电压和电流之间的关系
三相电源的负端(末端)连接成一点N,N称为中性点,简称 中点,俗称零点。三相电源的正端(首端)引出与负载相接,从电 源正端引出的三根供电线称为相线或端线,俗称火线,用L1、L2、 L3分别表示。从中点N引出的供电线称中性线,俗称零线,用N表 示。在应用最多的低压供电系统中,中点通常是接地的,因而中线 又俗称地线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S=UI=10×1.24=12.4 VA pf=cosθ=cos29.74°=0.8683
7.功率因数的提高 P =Scosθ=UIcosθ ①S一定, cosθ大, P大, 充分利用电源的容量 ②P、U一定, cosθ大, I=P/(Ucosθ)小, 线路损耗小 ③对RL电路, 要提高cosθ, 减少θ,并联合适的C
第二章正弦交流电路
2.6 正弦交流电路中的功率
2.7 电路谐振
二.阻抗电路中的功率
设 u(t) 2U sint V i(t) 2I sin(t ) A
1.瞬时功率
p(t) ui 2UI sint sin(t ) UI[cos cos(2t )]
①p以2ω作正弦交变 ②p>0:ui同向,电源 电路
4.视在功率 单位: VA
P=UIcosθ
Q=UIsinθ
定义 S=UI 为视在功率
则 P=Scosθ
Q=Ssinθ P2+Q2=S2 5.功率因数 λ=cosθ=P/S
θ: 功率因数角(阻抗角, 相位差角)
-90°<θ<90°时, cosθ> 0
θ>0: 感性 记作 λ = cosθ = C (滞后)
C
2
P fU
2
tg1
tg
40 2 3.14 50
2202
2.04
0.48
4.05
F
P UI cos
40 220 I 0.9
I 0.2A
§2.7 电路谐振
动态电路中, U与 I同相位
电路呈纯电阻性
U ZI I YU
Z=R+jX=z/θ Y=G+jB=y/φ
U与I同相位
求Z,令X=0 或θ=0 或 求Y,令B=0 或φ=0
而: P=U2G ≠I2/G
P=UIcosθ =URI=I2R=U2G
3.无功功率 单位:var Q=UIsinθ Q > 0 : 感性电路 Q < 0 : 容性电路 θ =ψu-ψi
UX =Usinθ
U=zI
Q=UIsinθ =UXI
=zI2sinθ =I2X (X=Im[Z])
Q=UIsinθ =UXI=I2X
二. 并联谐振
1
Y=────+jωC
R+jωL
R
ωL
=──────+j(ωC-──────)
R2+ω2 L2
R2+ω2 L2
: 谐振条件
解得:
o
1 LC
1 R2C L
: 谐振角频率
fo
2
1 LC
1 R2C L
: 谐振频率
令 L
C
: 特性阻抗
o
1 LC1R 2ρ < R, ωO为虚数, 不可能谐振
p<0:ui反向, 电源 电路 p=0: u=0或i=0
2.平均功率 单位: w P=UIcosθ θ =ψu-ψi
P > 0 : 有功功率
UR =Ucosθ
U=zI
P=UIcosθ =URI
=zI2cosθ =I2R (R=Re[Z])
注意: P ≠U2/R
∵I=U/z ∴ P=(U2/z)cosθ ≠U2/R
一., 串联谐振
⑴等效阻抗 1
Z=R+jωL-j── ωC
⑵
1
ωL-──=0 :谐振条件
ωC
o
1 LC
:谐振角频率
fo
2
1 LC
:谐振频率
⑶谐振特点
①X = 0, θ= 0, z = R (最小, 纯电阻性)
XL oL
L LC
L C
XC
1 oC
LC C
L C
XL XC 0
L C
θ<0: 容性 记作 λ = cosθ = C (超前)
功率守恒
电路
P 0 Q 0 S~ 0 S 0
单口网络
P Pk Q Qk S~ S~k S Sk
无源单口网络
P PR Q QL QC
例.uS(t) 10 2 sin2t V, 求 P、Q、S、pf
解. U=10 V j4(4-j4) Z=3+─────=7+j4=8.06/29.74° Ω j4+4-j4 U 10 I=─=───=1.24 A P UI cos 101.24cos 29.74o 10.8w z 8.06
①求pf=cosθ1 ②并C, 使cosθ2= 0.9, 求C,I
解.①并上C以前
P
40
cosθ1=──=─────=0.44 A UI 220×0.41
②并上C后: cosθ1 =0.44 , θ1 =63.9 。 , tg θ1 =2.04 cosθ =0.9 , θ1 =25.8。 , tg θ =0.48
P=UI1cosθ1=UIcosθ I1cosθ1
①I=───── cosθ
P=UI1cosθ1=Uicosθ
P
P
I1=──── I=────
Ucosθ1
Ucosθ
IC=I1sinθ1-Isinθ Psinθ1 Psinθ
=──── - ──── Ucosθ1 Ucosθ P =─(tgθ1-tgθ)=ωCU=2πfCU U P
作业: 2-30 2-32
P S=───
cosθ
Q S2 P2
QC=Q-QL
fo
2
1 LC
练习
在图示电路中,已知 u =220 2 sin314t V,求 i1、i2、i 及
电路的功率P、Q、S。
I
解:
求U电路 的22功0率0:V
② C=─2π─f─U─2 (tgθ1-tgθ)
其中 θ1: 并联电容C之前电路的功率因数角 θ : 并联电容C之后电路的功率因数角
例:设有一40W的日光灯接在220V, 50Hz电源上的电流为0.41A, 问功率因数为多少? 为使其功率因数提高到0.9, 应并一 多大的电容, 此时电流为多少?
已知:P= 40 W, U=220 V, f=50 Hz, I1=0.41 A
RLC电路的特性阻抗
②I=US/R 最大 ③UR=RI=US
ωOL
UL =ωOL·I=──·US
R
1
1/ωOC
UC=──·I=────·US
ωOC
R
UL=UC≠ 0
UL UC 0
④品质因数(Q值, 共振系数)
ωOL 1/ωOC
ρ
Q=──=─────=─
R
R
R
谐振时: UL=UC=QUS (电压谐振)
ρ = R, ωO= 0, 无所谓谐振
ρ > R, ωO> 0, 可能谐振
令
k
1
R
2
: 修正系数
ρ/R 2
3
4
5
10 100
k 0.866 0.943 0.968 0.990 0.995 0.999
工程允许误差5% 当ρ/R > 4 时,
o
1 LC
谐振阻抗:
接电流源(晶体管)输出电压高 电力系统中要避免谐振 电子系统中利用谐振