中考专题复习课时41.轴对称与中心对称
2021年中考数学专题复习:轴对称与中心对称(含答案)
2020-2021中考专题复习:轴对称与中心对称一、选择题1. 如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()2. 如图,线段AB与A'B'(AB=A'B')不关于直线l成轴对称的是()3. 如图,在△ABC中,∠ACB=90°,∠B=22.5°,AB边的垂直平分线交BC于点D,则下列结论中错误的是()A.∠ADC=45°B.∠DAC=45°C.BD=AD D.BD=DC4. 在汉字“生活中的日常用品”中,是轴对称图形的有()A.2个B.3个C.4个D.5个5. 如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA长为半径画弧①;步骤2:以点B为圆心,BA长为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.则下列叙述正确的是()A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC·AHD.AB=AD6. 如图,已知菱形ABCD与菱形EFGH关于直线BD上的某个点中心对称,则点B的对称点是()A.点E B.点FC.点G D.点H7. 把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图0)的对应点所具有的性质是()A.对应点所连线段与对称轴垂直B.对应点所连线段被对称轴平分C.对应点所连线段都相等D.对应点所连线段互相平行8. 把一张长方形纸片按图2①②所示的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是图3中的()二、填空题9. 若点A(x+3,2y+1)与点A′(y-5,1)关于原点对称,则点A的坐标是________.10. 如图,在△ABC中,已知AC=3,BC=4,点D为边AB的中点,连接CD,过点A作AE⊥CD于点E,将△ACE沿直线AC翻折到△ACE'的位置.若CE'∥AB,则CE'=.11. 如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE 折叠,使点C落在AB边上的F处,则CE的长为.12. 如图,直线a,b垂直相交于点O,曲线C是以点O为对称中心的中心对称图形,点A的对称点是点A′,AB⊥a于点B,A′D⊥b于点D.若OB=3,OD=2,则阴影部分的面积为________.13. 在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是________.14. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.15. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).16. 现要在三角地带ABC内(如图)建一座中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请你确定这座中心医院的位置.三、解答题17. 已知:如图,AB=AC,DB=DC,点E在直线AD上.求证:EB=EC.18. 如图,在正方形网格中,△ABC的三个顶点都在格点上,点A,B,C的坐标分别为(-2,4),(-2,0),(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O对称的△A1B1C1;(2)平移△ABC,使点A移动到点A2(0,2)的位置,画出平移后的△A2B2C2,并写出点B2,C2的坐标;(3)在△ABC,△A1B1C1中,△A2B2C2与________成中心对称,其对称中心的坐标为________.19. 如图1,△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.20. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG 的周长为16,GE=3,求AC的长.21. 如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.(1)如图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF =3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M 处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长.22. 如图,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.2020-2021中考专题复习:轴对称与中心对称-答案一、选择题1. 【答案】B[解析]∵∠ADC=2∠B,且∠ADC=∠B+∠BCD,∴∠B=∠BCD,∴点D在线段BC的垂直平分线上,故选B.2. 【答案】A[解析] 选项A中,A'B'是由线段AB平移得到的,所以线段AB与A'B'不关于直线l成轴对称.3. 【答案】D[解析] ∵AB的垂直平分线交BC于点D,∴AD=BD,故C正确;∵AD=BD,∴∠B=∠BAD=22.5°.∴∠ADC=45°,故A正确;∠DAC=90°-∠ADC=90°-45°=45°,故B正确.故选D.4. 【答案】B[解析] 根据轴对称图形的定义,在汉字“生活中的日常用品”中,是轴对称图形的有“中”“日”“品”3个.故选B.5. 【答案】A[解析] 如图,连接CD,BD.∵CA=CD,BA=BD,∴点C,B都在线段AD的垂直平分线上.∴BH垂直平分线段AD.故选A.6. 【答案】D[解析] 由于点B,D,F,H在同一条直线上,根据中心对称的定义可知,只能是点B和点H是对称点,点F和点D是对称点.故选D.7. 【答案】B[解析] 连接BB'交对称轴于点O,过点B作BM⊥对称轴,垂足为M,过点B'作B'N⊥对称轴,垂足为N,由轴对称的性质及平移的性质可得BM=B'N.又因为∠BOM=∠B'ON,∠BMO=∠B'NO=90°,所以△BOM≌△B'ON.所以OB=OB'.同理其他对应点也有这样的结论.8. 【答案】C二、填空题9. 【答案】(6,-1) [解析] 依题意,得⎩⎨⎧x +3=-(y -5),2y +1=-1,解得⎩⎨⎧x =3,y =-1.∴点A 的坐标为(6,-1).10. 【答案】[解析]如图,作CH ⊥AB 于H.由翻折可知:∠AE'C=∠AEC=90°,∠ACE=∠ACE', ∵CE'∥AB ,∴∠ACE'=∠CAD ,∴∠ACD=∠CAD ,∴DC=DA.∵AD=DB ,∴DC=DA=DB ,∴∠ACB=90°,∴AB==5,∵·AB ·CH=AC ·BC ,∴CH=, ∴AH==,∵CE'∥AB ,∴∠E'CH +∠AHC=180°, ∵∠AHC=90°,∴∠E'CH=90°, ∴四边形AHCE'是矩形, ∴CE'=AH=,故答案为.11. 【答案】[解析]设CE=x ,则BE=6-x.由折叠的性质可知,EF=CE=x ,DF=CD=AB=10,在Rt △DAF 中,AD=6,DF=10,∴AF=8, ∴BF=AB -AF=10-8=2,在Rt △BEF 中,BE 2+BF 2=EF 2,即(6-x )2+22=x 2,解得x=,故答案为.12. 【答案】6[解析] 如图,过点A ′作A ′B ′⊥a ,垂足为B ′,由题意可知,①与②关于点O 中心对称,所以阴影部分的面积可以看作四边形A ′B ′OD 的面积.又A′D⊥b于点D,直线a,b互相垂直,可得四边形A′B′OD是矩形,所以其面积为3×2=6.13. 【答案】(-2,2)[解析] ∵点P(4,2),∴点P到直线x=1的距离为4-1=3.∴点P关于直线x=1的对称点P′到直线x=1的距离为3.∴点P′的横坐标为1-3=-2.∴对称点P′的坐标为(-2,2).14. 【答案】3[解析] ∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE =1.∵DE是AB的垂直平分线,∴AD=BD.∴∠B=∠DAB.∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B.∵∠C=90°,∴∠CAD+∠DAB+∠B=90°.∴∠B=30°.∴BD=2DE=2.∴BC=BD+CD=2+1=3.15. 【答案】③16. 【答案】解:作线段AB的垂直平分线EF,作∠BAC的平分线AM,EF与AM 相交于点P,则点P处即为这座中心医院的位置.三、解答题17. 【答案】证明:连接BC.∵AB=AC,DB=DC,∴直线AD是线段BC的垂直平分线.又∵点E在直线AD上,∴EB=EC.18. 【答案】解:(1)△ABC关于原点O对称的△A1B1C1如图所示.(2)平移后的△A2B2C2如图所示,其中点B2的坐标为(0,-2),点C2的坐标为(-2,-1).(3)△A1B1C1(1,-1)19. 【答案】解:(1)∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°.∵DE⊥AB,∴∠AED=90°.∴∠EDA=90°-25°=65°.(2)证明:∵DE⊥AB,∴∠AED=90°=∠ACB.∵AD平分∠BAC,∴∠DAE=∠DAC.又∵AD=AD ,∴△AED ≌△ACD.∴AE=AC ,DE=DC.∴点A ,D 都在线段CE 的垂直平分线上.∴直线AD 是线段CE 的垂直平分线.20. 【答案】解:∵DE 垂直平分线段AB ,GF 垂直平分线段BC ,∴EB=EA ,GB=GC.∵△BEG 的周长为16,∴EB+GB+GE=16.∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16.∴AC+2GE=16.∵GE=3,∴AC=10.21. 【答案】(1)如解图①,∵折叠后点A 落在AB 边上的点D 处,解图①∴EF ⊥AB ,△AEF ≌△DEF ,∴S △AEF =S △DEF ,∵S 四边形ECBF =3S △EDF ,∴S 四边形ECBF =3S △AEF ,∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴14△△AEF ACB S S ,∵∠EAF =∠BAC ,∠AFE =∠ACB =90°,∴△AEF ∽△ABC , ∴2△△()AEF ACB S AE ABS =, ∴214()=,AE AB 在Rt △ACB 中,∠ACB =90°,AC =4,BC =3,∴AB 2=AC 2+BC 2,即AB =42+32=5,∴(AE 5)2=14,∴AE =52;(2)①四边形AEMF 是菱形.证明:如解图②,∵折叠后点A 落在BC 边上的点M 处,∴∠CAB =∠EMF ,AE =ME ,又∵MF ∥CA ,∴∠CEM =∠EMF ,∴∠CAB =∠CEM ,∴EM ∥AF ,∴四边形AEMF 是平行四边形,而AE =ME ,∴四边形AEMF 是菱形,解图②②如解图②,连接AM ,与EF 交于点O ,设AE =x ,则AE =ME =x ,EC =4-x , ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°,∴Rt △ECM ∽Rt △ACB ,∴EC AC =EM AB ,∵AB =5,∴445-,x x =解得x =209, ∴AE =ME =209,EC =169,在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2,即CM 22EM EC -=(209)2-(169)2=43,∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF ,∴S AEMF 菱形=4S △AOE =2OE ·AO ,在Rt △AOE 和Rt △ACM 中,∵tan ∠EAO =tan ∠CAM ,∴OE AO =CM AC ,∵CM =43,AC =4,∴AO =3OE ,∴S AEMF 菱形=6OE 2,又∵S AEMF 菱形=AE ·CM ,∴6OE 2=209×43,解得OE =2109,∴EF =2OE =4109.22. 【答案】(1)①如图2,当E 在OA 上时,由12y x b =-+可知,点E 的坐标为(2b ,0),OE =2b .此时S =S △ODE =112122OE OC b b ⋅=⨯⨯=. ②如图3,当E 在AB 上时,把y =1代入12y x b =-+可知,点D 的坐标为(2b -2,1),CD =2b -2,BD =5-2b .把x =3代入12y x b =-+可知,点E 的坐标为3(3,)2b -,AE =32b -,BE =52b -.此时 S =S 矩形OABC -S △OAE - S △BDE -S △OCD=1315133()()(52)1(22)22222b b b b -⨯-----⨯⨯- 252b b =-+. (2)如图4,因为四边形O 1A 1B 1C 1与矩形OABC 关于直线DE 对称,因此DM =DN ,那么重叠部分是邻边相等的平行四边形,即四边形DMEN 是菱形. 作DH ⊥OA ,垂足为H .由于CD =2b -2,OE =2b ,所以EH =2.设菱形DMEN 的边长为m .在Rt △DEH 中,DH =1,NH =2-m ,DN =m ,所以12+(2-m )2=m 2.解得54m =.所以重叠部分菱形DMEN 的面积为54.图2 图3 图4考点伸展把本题中的矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形(如图5),那么这个菱形的最小面积为1,如图6所示;最大面积为53,如图7所示.图5 图6 图7。
【精编版】中考数学轴对称与中心对称专题复习讲义
苏科版中考数学轴对称与中心对称专题一、选择题1.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,若∠AOB =15°,则∠AOB ′的度数是( )A .25°B .30°C .35°D .40°2.(2022湖北黄石一模)如图,在矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( )A.258 cmB.254 cmC.252 cm D .8 cm3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED′等于( ).A.︒50 B 、︒55 C 、︒60 D 、︒654.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =2 3,则四边形MABN 的面积是( )A .6 3B .12 3C .18 3D .24 3二、填空5.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△C B A 11,连结1AA ,若11B AA ∠=15°,则∠B 的度数是6.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0)、),(01x ,且1<1x <2,与y轴交于的正半轴的交点在(0,2)的下方。
下列结论:①a <b <0;②2a+c >0;③4a-2b+c >0;④2a -b+1>0,其中正确结论个数是A .1个B .2个C .3个D .4个填空题1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是__________.2.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ′BC ′的位置,且点A ,C 仍落在格点上,则线段AB 扫过的图形的面积是 __________平方单位(结果保留π).3如图,矩形纸片ABCD ,AB =2,∠ADB =30°,沿对角线BD 折叠(使△ABD 和△EBD •落在同一平面内),则A 、E 两点间的距离为________.4 如图,正方形ABCD 和正方形AEFG ,边AE 在边AB 上,AB =2AE =2.将正方形AEFG 绕点A 逆时针旋转60°,BE 的延长线交直线DG 于点P ,旋转过程中点P 运动的路线长为 .5 如图,在正方形ABCD 中,E 是AB 上一点,BE =2,AE =3BE ,P 是AC 上一动点,则PB +PE 的最小值是_______.C BA EG D F6.如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.三、解答:1、如图,在∠ABC内有一点P,问:(1)能否在BA,BC边上各找到一点M,N,使△PMN的周长最短?若能,请画图说明;若不能,请说明理由;(2)若∠ABC=40°,在(1)问的条件下,能否求出∠MPN的度数?若能,请求出它的数值;若不能,请说明理由.2去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河同一侧的张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴,建立平面直角坐标系(如图6-1-20),两村的坐标分别为A(2,3),B(12,7).(1)若从节约经费考虑,水泵站建在距离大桥O多远的地方,可使所用输水管最短?(2)水泵站建在距离大桥O多远的地方,可使它到张村、李村的距离相等?3、如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP 与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.4.如图,抛物线y=x2﹣2mx﹣3m2(m为常数,m>0),与x轴相交于点A、B,与y轴相交于点C,(1)用m的代数式表示:点C坐标为,AB的长度为;(2)过点C作CD∥x轴,交抛物线于点D,将△ACD沿x轴翻折得到△AEM,延长AM 交抛物线于点N,①求的值;②若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使△AQN的面积最大?如果存在,求t的值;如果不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.6、在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为22的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与A G在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,将线段DG与线段BE相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.答案:选择题:1、B2、B3、4、、605、︒6、C填空题π1、613π2、4 34、2 35、6、作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值,根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON ′中,M′N′=32+12=10,故答案为107、解答题:1、解:(1)如图D27,作P点关于AB,BC两边的对称点E,F,连接E,F;与AB,BC交于点M,N,连接PM,PN,△PMN的周长最短.因为EM=PM,PN=FN,NM=NM,PM +PN+MN=EM+FN+MN=EF的长(两点之间,线段最短).(2)能.∵∠ABC=40°,∴∠EPF=140°.又∵∠PMN=∠EPM+∠MEP=2∠EPM,∠PNM=∠FPN+∠NFP=2∠FPN,∴∠PMN+∠PNM=2(∠EPM+∠FPN).∴180°-∠MPN=2(140°-∠MPN).∴∠MPN=100°.2.解:(1)如图D28,作点B关于x轴的对称点E,连接AE,则点E为(12,-7).设直线AE 的函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧ 2k +b =3,12k +b =-7.解得⎩⎪⎨⎪⎧k =-1,b =5. ∴直线AE 的解析式为y =-x +5.当y =0时,x =5.所以,当水泵站应建在距离大桥5千米的地方时,可使所用输水管道最短.图D28(2)如图D28作线段AB 的垂直平分线GF ,交AB 于点F ,交x 轴于点G ,设点G 的坐标为(x,0).在Rt △AGD 中,AG 2=AD 2+DG 2=9+(x -2)2.在Rt △BCG 中,BG 2=BC 2+GC 2=49+(12-x )2.∵AG =BG ,∴9+(x -2)2=49+(12-x )2.解得x =9.∴水泵站建在距离大桥9千米的地方,可使它到张村、李村的距离相等.3、(1)证明:如图,连接OE .∵CD 是圆O 的直径,∴∠CED=90°.∵OC=OE ,∴∠1=∠2.又∵∠PED=∠C ,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE ⊥EP ,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)证明:∵AB 、CD 为⊙O 的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED 平分∠BEP ;(3)解:设EF=x ,则CF=2x ,∵⊙O 的半径为5,∴OF=2x ﹣5,在RT △OEF 中,OE 2=OF 2+EF 2,即52=x 2+(2x ﹣5)2, 解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8, ∴DF=CD ﹣CF=10﹣8=2,∵AB 为⊙O 的直径,∴∠AEB=90°,∵AB=10,BE=8,∴A E =6 ∵∠BEP=∠A ,∠EFP=∠AEB=90°,∴△AEB ∽△EFP , ∴=,即=,∴PF=,∴PD=PF ﹣DF=﹣2=.4、解:(1)令x=0,则y=﹣3m 2,即C 点的坐标为(0,﹣3m 2), ∵y=x 2﹣2mx ﹣3m 2=(x ﹣3m )(x+m ),∴A (﹣m ,0),B (3m ,0),∴AB=3m ﹣(﹣m )=4m ,故答案为:(0,﹣3m 2),4m ;(2)①令y=x 2﹣2mx ﹣3m 2=﹣3m 2,则x=0(舍)或x=2m ,∴D(2m,﹣3m2),∵将△ACD沿x轴翻折得到△AEM,∴D、M关于x轴对称,∴M(2m,3m2),设直线AM的解析式为y=kx+b,将A、M两点的坐标代入y=kx+b得:,解得:,∴直线AM的解析式为:y=mx+m2,联立方程组:,解得:(舍)或,∴N(4m,5m2),∴;②如图:∵AB=4,∴m=1,∴抛物线的解析式为y=x2﹣2x﹣3,直线AM的解析式为y=x+1,∴P(t,t+1),Q(t,t2﹣2t,﹣3),N(4,5),A(﹣1,0),B(3,0)设△AQN的面积为S,则:S===,∴t=,S最大.5、解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).6、(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90∘,AG=AE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90∘,∴∠AEB+∠ADG=90∘,在△EDH中,∠AEB+∠ADG+∠DHE=180∘,∴∠DHE=90∘,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90∘,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90∘,∵BD为正方形ABCD的对角线,∴∠MDA=45∘,在Rt△AMD中,∠MDA=45∘,∴cos45∘=DMAD,∵AD=2,∴DM=AM=2√,在Rt△AMG中,根据勾股定理得:GM=AG2−AM2−−−−−−−−−−√=6√,∵DG=DM+GM=2√+6√,∴BE=DG=2√+6√;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.轴对称知识点总结:【知识脉络】【基础知识】Ⅰ. 轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.Ⅱ. 作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).Ⅲ. 等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. Ⅳ. 最短路径一.图形旋转1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角;在平面内,将一个图形一个定点转动一定的角度,这样的图形运动称为图形的旋转。
2020届中考数学总复习讲义课件:第九单元 第31课时 轴对称与中心对称
【解析】 如答图,连结 CC′,交 BD 于点 M,过点 D 作 DH⊥BC′于点 H,
跟踪训练 2 答图 ∵AD=AC′=2,D 是 AC 边上的中点, ∴DC=AD=2,
由翻折知△BDC≌△BDC′,BD 垂直平分 CC′, ∴DC=DC′=2,BC=BC′,CM=C′M, ∴AD=AC′=DC′=2, ∴△ADC′为等边三角形, ∴∠ADC′=∠AC′D=∠C′AC=60°, ∵DC=DC′, ∴∠DCC′=∠DC′C=12×60°=30°, 在 Rt△C′DM 中,∠DC′C=30°,DC′=2,
3.[2020·原创]如图 31-13,已知菱形 ABCD 的周长为 16,面积为 8 3,E 为 AB 的中点,若 P 为对角线 BD 上一动点,则 EP+AP 的最小值为____2__3_____.
图 31-13
【解析】 如答图,作 CE′⊥AB 于 E′,交 BD 于 P′,连结 AC,AP′.∵菱形 ABCD 的周长为 16,面积为 8 3,
【知识拓展】
轴对称
轴对称图形
轴对称是指两个全等图形之间的相互 轴对称图形是指具有轴对称性
区别
位置关系
质的一个图形
把轴对称的两个图形看成一个整体, 轴对称图形中对称的两个部分
联系
就是轴对称图形
的关系就是轴对称
2.中心对称与中心对称图形 中心对称图形:如果一个图形绕着一个点旋转 180°后,所得到的图形能够和原来 的 图 形 互 相 ____重___合____ , 那 么 这 个 图 形 叫 做 中 心 对 称 图 形 , 这 个 点 叫 做 _对___称___中__心__. 中心对称:把一个图形绕着一个点 O 旋转 180°后,能够与另外一个图形 _互___相__重___合__,那么就说这两个图形关于这个点 O 成中心对称. 中心对称图形的性质:对称中心平分连结两个对称点的线段.
中考数学一轮复习:图形的轴对称与中心对称
A.3
B.4
C.5
D.6
解析:由折叠知 BE=EF=3,则 EC=5.故 CF= EC2-EF2=4.设 AB=x,则 AF=x, AC=x+4,∴x2+82=(x+4)2.∴x=6.
答案:D
二、填空题 3. 如图, D 是AB边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC上的F 处.若∠B=50°,则∠BDF=________.
解析:由题意得AD=DF,又AD=DB,∴DB=DF,∴∠DBF=∠DFB=50°, ∴∠BDF=80°.
答案:80°
4.如图,△ABC 的顶点都在正方形网格格点上,点 A 的坐标为(-1,4).将△ABC 沿 y 轴翻折到第一象限,则点 C 的对应点 C′的坐标是(3,1).
三、解答题 5.如图,在 10× 10 的正方形网格中,每个小正方形的边长都为 1,网格中有一个格点 △ABC(即三角形的顶点都在格点上 ).
解析:∵四边形 ABCD 是正方形,∴∠ABC=90° .由轴对称可知:∠DBF=∠CBF, 1 ∠ABE=∠DBE,∴∠EBF= ∠ABC=45° . 2
答案:C
一、选择题 1. 如图,在下列四个图案中既是轴对称图形,又是中心对称图形的是(
)
答案:B
2.如图,在矩形纸片 ABCD 中,已知 AD=8,折叠纸片使 AB 边与对角线 AC 重合,点 B 落在 F 处,折痕为 AE,且 EF=3,则 AB 的长为( )
知识点二
中心对称图形和中心对称
1.在平面内,一个图形绕某个点旋转 180° ,能与原来的图形重合,这个图形叫做中心 对称图形,这个点叫做它的对称中心,旋转前后图形上能够重合的点叫做对称点. 2.在平面内,一个图形绕某一定点旋转 180° ,它能够与另一个图形重合,就说这两个 图形关于这个点成中心对称, 这个点叫做对称中心, 旋转后两个图形上能够重合的点叫做关 于对称中心的对称点. 3.中心对称与中心对称图形的区别与联系 区别:(1)中心对称是指两个图形的位置关系,而中心对称图形是指具有某种性质的一 类图形;(2) 成中心对称的两个图形的对称点分别在两个图形上,而中心对称图形的对称点 在同一个图形上. 联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把成中心对称 的两个图形看成一个整体,则成为中心对称图形.
2012年中考数学复习方案(苏科版)第33课时 轴对称与中心对称
│ 考点聚焦
(2)成中心对称的两个图形, 对称点的连线都经过对称中心并且被对 称中心 ________ 平分 . 4.中心对称图形的判别 如果两个图形的对应点连成的线段都是经过某一点,并且被这一点
中心对称 平分,那么这两个图形一定关于这一点成 ______________ .
[辨析] 中心对称与中心对称图形的区别与联系 (1)区别:①图形个数不同.中心对称涉及两个图形,是指两个全等 图形之间的相互位置关系;而中心对称图形只对一个图形而言,是指具 有特殊形状的一个图形 . ②对称点位置不同. 成中心对称的两个图形中, 其中一个图形上的所有点关于对称中心的对称点都在另一个图形上,反 之亦然;而中心对称图形上所有点关于对称中心的对称点都在这个图形 本身上.
│ 轴对称与中心对称
·江苏科技版
│ 考点聚焦 考点聚焦
考点1 中心对称与中心对称图形
1.中心对称 把一个图形绕着某一个点旋转 180° ,如果它能与另一个图形 重合 ,那么就说这两个图形关于这个点成中心对称,该点叫 ________ 对称中心 . 做 _____________ 2.中心对称图形 重合 ,我们把 把一个图形绕着中心旋转 180° 后能与自身 ________ 这个图形叫做中心对称图形,这个中心点叫做 _____________ 对称中心 . 3.中心对称图形的性质 全等 形. (1)成中心对称的两个图形是 ________
三 条对称轴,分别是三边上的垂直 4.等边三角形: 有________
平分线;
·江苏科技版
│ 考点聚焦
5.等腰梯形:有________ 条对称轴,是通过两底中点的 一 直线; 6.矩形:有 ________ 两 条对称轴,分别是经过两组对边中 点的直线; 7.菱形:有 ________ 两 条对称轴,分别是两条对角线所在 的直线; 8.正方形:有 ________ 四 条对称轴,分别是经过两组对边 中点的两条直线和两条对角线所在的直线; 9.正 n 边形:有________ 条对称轴. n 10 . 圆: 有 ________ 无数 条对称轴,经过圆心的任意一条直 线都是圆的对称轴.
中考数学复习 第八单元 视图、投影与变换 第32课时 轴对称与中心对称
【解析】 (1)点D及四边形ABCD另两条边如右图 所示. (2)得到的四边形A′B′C′D′如右图所示.
经典考题
经典考题
【例3】(2016年江西)如图,Rt△ABC中,∠ACB=90°, 将Rt△ABC向下翻折,使点A与点C重合,折痕为DE. 求证:DE∥BC.
【解析】 方法一:∵△ADE与△CDE关于直线DE对称,点A与点C是对称点, ∴DE⊥AC,∴∠AED=90°(或∠CED=90°).又∵∠ACB=90°, ∴∠AED=∠ACB(或∠CED+∠ACB=180°),∴DE∥BC. 方法二:翻折后,∠AED与∠CED重合, ∴∠AED=∠CED.∵∠AED+∠CED=180°, ∴∠AED=∠CED=12×180°=90°.又∵∠ACB=90°,
中心对称
中心对称 中心对称图形
要点梳理
8.2.1 中心对称与中心对称图形
要点梳理
(1)中心对称:把一个图形绕着某一个点旋转180°,如果它能与 另一个图形重合,那么就说这两个图形关于这个点成中心对称,该 点叫做对称中心. (2)中心对称图形:把一个图形绕着某一点旋转180°后能与自身 重合,我们把这个图形叫做中心对称图形,这个点叫做对称中心.
【例2】(2016年安徽)如图,在边长为1个单位长度的小正方形组 成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四 边形ABCD是一个轴对称图形,其对称轴为直线AC. (1)试在图中标出点D,并画出该四边形的另两条边; (2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形 A′B′C′D′.
要点梳理
(3)中心对称图形的性质 ①关于中心对称的两个图形是全等形. ②关于中心对称的两个图形,对称点的连线都经过对称中心并且被 对称中心平分. (4)中心对称图形的判别:如果两个图形的对应点连成的线段都 是经过某一点,并且被这一点平分,那么这两个图形一定关于这一 点成中心对称.
中考数学复习轴对称与中心对称
图 27-1 本题主要考查了轴对称图形和中心对称图形 解 析 的概念.A 是轴对称图形,B 既是轴对称图形又是中心对称 图形;C 是中心对称图形;D 是中心对称图形.故选 B.
皖考解读
考点聚焦
皖考探究
当堂检测
1.(2013· 浙江杭州)下列“表情图”中,属于轴对称图形的 是( D )
2.(2013· 浙江宁波)下列电视台的台标,是中心对称图形的
第27课时┃ 轴对称与中心对称
当 堂 检 测
1.下列图形中,既是中心对称图形又是轴对称图形 的是( D ) A.等边三角形 B.平行四边形 C.梯形 D.矩形
等边三角形是轴对称图形;平行四边形是中 心对称图形;梯形为等腰梯形时是轴对称图形;矩形既是 轴对称图形又是中心对称图形.
解 析
皖考解读
考点聚焦
A.78°
图 27-3 B.75° C.60°
D.45°
皖考解读
考点聚焦
皖考探究
当堂检测
14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,使点
A落在BC边上的F处.若∠B=50°,则∠BDF=________度.
【答案】80
(2012 中考题 ) 如图,在直角坐标系中,将矩形 OAB C 沿 OB 对折,使点 A 落在点 A 1 处,已知 OA = 3,AB = 1, 则点 A 1 的坐标是 ________.
皖考解读
考点聚焦
皖考探究
当堂检测
第27课时┃ 轴对称与中心对称
3.如图 27-5,点 O 是矩形 ABCD 的中心,E 是 AB 上的点,沿 CE 折叠后,点 B 恰好与点 O 重合,若 BC=3, 2 3 . 则折痕 CE 的长为________
中考数学考点34图形的对称、平移与位似总复习(解析版)
图形的对称、平移与位似【命题趋势】在中考.这是必考内容.主要考查形式包括:单纯判断对称图形的识别;利用对称图形的性质求点坐标;利用折叠的对称性性质的相关计算与证明。
【中考考查重点】一、轴对称图形与中心对称图形 二、图形的平移 三、图形的旋转四、位似考点:轴对称图形与轴对称轴对称图形轴对称图 形定 义如果一个图形沿着某条直线对折后.直线两旁的部分能够完全重合.那么这个图形就叫做轴对称图形.这条直线叫做对称轴如果两个图形对折后.这两个图形能够完全重合.那么我们就说这两个图形成轴对称.这条直线叫做对称轴性 质对应线段相等 AB =ACAB =A ′B ′.BC =B ′C ′.AC =A ′C ′ 对应角相等∠B =∠C∠A =∠A ′.∠B =∠B ′.∠C =∠C ′对应点所连的线段被对称轴垂直平分区 别 (1)轴对称图形是一个具有特殊形状的图形.只对一个图形而言; (2)对称轴不一定只有一条 (1)轴对称是指两个图形的位置关系.必须涉及两个图形; (2)只有一条对称轴关 系(1)沿对称轴对折.两部分重合; (2)如果把轴对称图形沿对称轴分成“两个图形”.那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折.两个图形重合;(2)如果把两个成轴对称的图形拼在一起.看成一个整体.那么它就是一个轴对称图形1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称.折叠前后的两图形全等.对应边和对应角相等.3.作某点关于某直线的对称点的一般步骤1)过已知点作已知直线(对称轴)的垂线.标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段.那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤1)作出图形的关键点关于这条直线的对称点;2)把这些对称点顺次连接起来.就形成了一个符合条件的对称图形.1.(2021•黄石)下列几何图形中.是轴对称图形但不是中心对称图形的是()A.梯形B.等边三角形C.平行四边形D.矩形【答案】B【解答】解:A.梯形不一定是轴对称图形.不是中心对称图形.故此选项不合题意;B.等边三角形是轴对称图形.不是中心对称图形.故此选项符合题意;C.平行四边形不是轴对称图形.是中心对称图形.故此选项不合题意;D.矩形既是轴对称图形.又是中心对称图形.故此选项不合题意;故选:B.2.(2021•天津)在一些美术字中.有的汉字是轴对称图形.下面4个汉字中.可以看作是轴对称图形的是()A.B.C.D.【答案】A【解答】解:A.是轴对称图形.故此选项符合题意;B.不是轴对称图形.故此选项不合题意;C.不是轴对称图形.故此选项不合题意;D.不是轴对称图形.故此选项不合题意;故选:A.3.(2021•河北)如图.直线l.m相交于点O.P为这两直线外一点.且OP=2.8.若点P 关于直线l.m的对称点分别是点P1.P2.则P1.P2之间的距离可能是()A.0B.5C.6D.7【答案】B【解答】解:连接OP1.OP2.P1P2.∵点P关于直线l.m的对称点分别是点P1.P2.∴OP1=OP=2.8.OP=OP2=2.8.OP1+OP2>P1P2.0<P1P2<5.6.故选:B.考点:图形的平移1.定义:在平面内.一个图形由一个位置沿某个方向移动到另一个位置.这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素:一是平移的起点.二是平移的方向.三是平移的距离.3.性质:1)平移前后.对应线段平行且相等、对应角相等;2)各对应点所连接的线段平行(或在同一条直线上)且相等;3)平移前后的图形全等.4.作图步骤:1)根据题意.确定平移的方向和平移的距离;2)找出原图形的关键点;3)按平移方向和平移距离平移各个关键点.得到各关键点的对应点;4)按原图形依次连接对应点.得到平移后的图形.4.(2021•金华)如图.菱形ABCD的边长为6cm.∠BAD=60°.将该菱形沿AC方向平移2 cm得到四边形A′B′C′D′.A′D′交CD于点E.则点E到AC的距离为cm.【答案】2【解答】解:如图.连接BD.过点E作EF⊥AC于点F.∵四边形ABCD是菱形.∴AD=AB.BD⊥AC.∵∠BAD=60°.∴三角形ABD是等边三角形.∵菱形ABCD的边长为6cm.∴AD=AB=BD=6cm.∴AG=GC=3(cm).∴AC=6(cm).∵AA′=2(cm).∴A′C=4(cm).∵AD∥A′E.∴=.∴=.∴A′E=4(cm).∵∠EA′F=∠DAC=DAB=30°.∴EF=A′E=2(cm).故答案为:2.考点:图形的旋转1.定义:在平面内.一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度.这样的图形运动叫旋转.这个定点叫做旋转中心.转过的这个角叫做旋转角.2.三大要素:旋转中心、旋转方向和旋转角度.3.性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.4.作图步骤:1)根据题意.确定旋转中心、旋转方向及旋转角;2)找出原图形的关键点;3)连接关键点与旋转中心.按旋转方向与旋转角将它们旋转.得到各关键点的对应点;4)按原图形依次连接对应点.得到旋转后的图形.【注意】旋转是一种全等变换.旋转改变的是图形的位置.图形的大小关系不发生改变.所以在解答有关旋转的问题时.要注意挖掘相等线段、角.因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.5.(2021•苏州)如图.在方格纸中.将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B.则下列四个图形中正确的是()A.B.C.D.【答案】B【解答】解:A选项是原图形的对称图形.故A不正确;B选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B.故B正确;C选项旋转后的对应点错误.即形状发生了改变.故C不正确;D选项是按逆时针方向旋转90°.故D不正确;故选:B.6.(2021•邵阳)如图.在△AOB中.AO=1.BO=AB=.将△AOB绕点O逆时针方向旋转90°.得到△A′OB′.连接AA′.则线段AA′的长为()A.1B.C.D.【答案】B【解答】解:由旋转性质可知.OA=OA'=1.∠AOA'=90°.则△AOA'为等腰直角三角形.∴AA'===.故选:B.7.(2021•衡阳)如图.点E为正方形ABCD外一点.∠AEB=90°.将Rt△ABE绕A点逆时针方向旋转90°得到△ADF.DF的延长线交BE于H点.(1)试判定四边形AFHE的形状.并说明理由;(2)已知BH=7.BC=13.求DH的长.【答案】(1)矩形AFHE是正方(2)DH=12+5=17【解答】解:(1)四边形AFHE是正方形.理由如下:∵Rt△ABE绕A点逆时针方向旋转90°得到△ADF.∴Rt△ABE≌Rt△ADF.∴∠AEB =∠AFD =90°. ∴∠AFH =90°. ∵Rt △ABE ≌Rt △ADF . ∴∠DAF =∠BAE , 又∵∠DAF +∠F AB =90°. ∴∠BAE +∠F AB =90°. ∴∠F AE =90°.在四边形AFHE 中.∠F AE =90°.∠AEB =90°.∠AFH =90°. ∴四边形AFHE 是矩形. 又∵AE =AF .∴矩形AFHE 是正方形;(2)设AE =x .则由(1)以及题意可知:AE =EH =FH =AF =x ,BH =7,BC =AB =13,在Rt △AEB 中.AB 2=AE 2+BE 2. 即132=x 2+(x +7)2, 解得:x =5,∴BE =BH +EH =5+7=12, ∴DF =BE =12, 又∵DH =DF +FH . ∴DH =12+5=17.考点:中心对称图形与中心对称中心对称图形中心对称图 形定 义如果一个图形绕某一点旋转180°后能与它自身重合.我们就把这个图形叫做中心对称图形.这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合.我们就把这两个图形叫做成中心对称 性 质对应点 点A 与点C .点B 与点D点A 与点A ′.点B 与点B ′.点C 与点C ′对应线段AB =CD . AD =BCAB =A ′B ′.BC =B ′C ′.AC =A ′C ′对应角∠A=∠C∠B=∠D∠A=∠A′.∠B=∠B′.∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”.则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”.则“整体”成为中心对称图形常见的中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.注意:图形的“对称”“平移”“旋转”这些变化,是图形运动及延伸的重要途径,研究这些变换中的图形的“不变性”或“变化规律”.8.(2021•山西)为推动世界冰雪运动的发展.我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动.以下是部分参选作品.其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解答】解:A.不是轴对称图形.也不是中心对称图形.故此选项不合题意;B.既是轴对称图形又是中心对称图形.故此选项符合题意;C.是轴对称图形.不是中心对称图形.故此选项不合题意;D.不是轴对称图形.也不是中心对称图形.故此选项不合题意.故选:B.9.(2021•广安)下列几何体的主视图既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解答】解:A、主视图是等腰三角形.是轴对称图形.不是中心对称图形.故不合题意;B、主视图是是矩形.是轴对称图形.也是中心对称图形.故符合题意;C、主视图是等腰梯形.是轴对称图形.不是中心对称图形.故不合题意;D、主视图是等腰三角形.是轴对称图形.不是中心对称图形.故不合题意;故选:B.考点:图形的位似(1)如果两个多边形不仅相似.而且对应顶点的连线相交于一点.这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:①对应角相等.对应边之比等于位似比;②位似图形上任意一对对应点到位似中心的距离之比等于位似比.10.(2021•东营)如图.△ABC中.A、B两个顶点在x轴的上方.点C的坐标是(1.0).以点C为位似中心.在x轴的下方作△ABC的位似图形△A'B'C.并把△ABC的边长放大到原来的2倍.设点B的横坐标是a.则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2【答案】A【解答】解:设点B′的横坐标为x.则B、C间的水平距离为a﹣1.B′、C间的水平距离为﹣x+1.∵△ABC放大到原来的2倍得到△A′B′C.∴2(a﹣1)=﹣x+1.解得:x=﹣2a+3.故选:A.11.(2021•绥化)如图所示.在网格中.每个小正方形的边长均为1个单位长度.把小正方形的顶点叫做格点.O为平面直角坐标系的原点.矩形OABC的4个顶点均在格点上.连接对角线OB.(1)在平面直角坐标系内.以原点O为位似中心.把△OAB缩小.作出它的位似图形.并且使所作的位似图形与△OAB的相似比等于;(2)将△OAB以O为旋转中心.逆时针旋转90°.得到△OA1B1.作出△OA1B1.并求出线段OB旋转过程中所形成扇形的周长.【答案】(1)略(2)4+π.【解答】解:(1)如图.△OA′B′或△OA″B″即为所求.(2)如图.△OA1B1即为所求.OB==2.线段OB旋转过程中所形成扇形的周长=2×2+=4+π.1.(2021•渭南模拟)下列关于“健康防疫“标志的图中是轴对称图形的是()A.B.C.D.【答案】C【解答】解:A.不是轴对称图形.故本选项不符合题意;B.不是轴对称图形.故本选项不符合题意;C.是轴对称图形.故本选项符合题意;D.不是轴对称图形.故本选项不符合题意.故选:C.2.(2022•重庆模拟)在平面直角坐标系中.将点A(a.1﹣a)先向左平移3个单位得点A1.再将A1向上平移1个单位得点A2.若点A2落在第三象限.则a的取值范围是()A.2<a<3B.a<3C.a>2D.a<2或a>3【答案】A【解答】解:点A(a.1﹣a)先向左平移3个单位得点A1.再将A1向上平移1个单位得点A2(a﹣3.1﹣a+1).∵点A′位于第三象限.∴.解得:2<a<3.故选:A.3.(2021•烟台模拟)如图是一块矩形ABCD的场地.长AB=99米.宽AD=41米.从A.B两处入口的路宽都为1米.两小路汇合处路口宽为2米.其余部分种植草坪面积为()A.3783米2B.3880米2C.3920米2D.4000米2【答案】B【解答】解:由题意得:(99﹣2)×(41﹣1)=97×40=3880(平方米).∴种植草坪面积为3880平方米.故选:B.4.(2022•贵阳模拟)如图.△ABC与△DEF是位似图形.点O为位似中心.已知BO:OE =2:1.则△ABC与△DEF的面积比是()A.2:1B.3:1C.4:1D.5:1【答案】C【解答】解:∵△ABC与△DEF位似.∴△ABC∽△FED.AB∥ED.∴△OAB∽△ODE.∴==2.∴=()2=4.即△ABC与△DEF的面积比是:4:1.故选:C.5.(2021•永川区模拟)如图.在平面直角坐标系中.每个小方格的边长均为1.△AOB与△A'OB'是以原点O为位似中心的位似图形.且相似比为3:2.点A.B都在格点上.则点B′的坐标是()A.(﹣2.1)B.(﹣2.)C.(﹣2.)D.(﹣2.)【答案】B【解答】解:由题意得:△A′OB′与△AOB的相似比为2:3.又∵B(3.﹣2)∴B′的坐标是[3×(﹣).﹣2×(﹣)].即B′的坐标是(﹣2.).故选:B.6.(2022•遵义模拟)2022年新年贺词中提到“人不负青山.青山定不负人”.下列四个有关环保的图形中.是轴对称图形.但不是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A.既不是轴对称图形.又不是中心对称图形.故本选项不符合题意;B.既是轴对称图形.又是中心对称图形.故本选项不符合题意;C.既不是轴对称图形.又不是中心对称图形.故本选项不符合题意;D.是轴对称图形.不是中心对称图形.故本选项符合题意;故选:D.7.(2022•平凉模拟)如图.将平行四边形ABCD沿对角线AC折叠.使点B落在点B'处.若∠1=∠2=36°.∠B为()A.36°B.144°C.108°D.126°【答案】D【解答】解:根据翻折可知:∠B′AC=∠BAC.∵四边形ABCD是平行四边形.∴DC∥AB.∴∠BAC=∠DCA.∴∠BAC=∠DCA=∠B′AC.∵∠1=∠B′AC+∠DCA.∴∠1=2∠BAC=36°.∴∠BAC=18°.∴∠B=180°﹣∠BAC﹣∠2=180°﹣18°﹣36°=126°.故选:D.8.(2022•平凉模拟)如图.在四边形ABCD中.∠ABC=30°.将△DCB绕点C顺时针旋转60°后.点D的对应点恰好与点A重合.得到△ACE.AB=5.BC=9.则BD=.【答案】【解答】解:连接BE.如图.∵△DCB绕点C顺时针旋转60°后.点D的对应点恰好与点A重合.得到△ACE.∴∠BCE=60°.CB=CE.BD=AE.∴△BCE为等边三角形.∴BE=BC=9.∠CBE=60°.∵∠ABC=30°.∴∠ABE=90°.在Rt△ABE中.AE===.∴BD=.故答案为:.9.(2022•灞桥区校级一模)如图.D是等边三角形ABC外一点.AD=3.CD=2.当BD长最大时.△ABC的面积为.【答案】【解答】解:如图1.以CD为边作等边△DCE.连接AE.∵BC=AC.CD=CE.∠BCA=∠DCE=60°.∴∠BCD=∠ACE.在△BCD和△ACE中..∴△BCD≌△ACE(SAS).∴BD=AE.在△ADE中.∵AD=3.DE=CD=2.∴AE≤AD+DE.∴AE≤5.∴AE的最大值为5.∴BD的最大值为5.此时点D在AE上.如图2.过点A作AF⊥BD于F.∵△BCD≌△ACE.∴∠BDC=∠E=60°.∴∠ADF=60°.∵AF⊥BD.∴∠DAF=30°.∴DF=AD=.AF=DF=.∴BF=.∴AB2=AF2+BF2=19.∴△ABC的面积=AB2=.故答案为:.1.(2021•枣庄)将如图的七巧板的其中几块.拼成一个多边形.为轴对称图形的是()A.B.C.D.【答案】D【解答】解:A.不是轴对称图形.故本选项不合题意;B.不是轴对称图形.故本选项不合题意;C.不是轴对称图形.故本选项不合题意;D.是轴对称图形.故本选项符合题意;故选:D.2.(2021•济宁)一个圆柱体如图所示.下面关于它的左视图的说法其中正确的是()A.既是轴对称图形.又是中心对称图形B.既不是轴对称图形.又不是中心对称图形C.是轴对称图形.但不是中心对称图形D.是中心对称图形.但不是轴对称图形【答案】A【解答】解:圆柱体的左视图是长方形.而长方形既是轴对称图形.也是中心对称图形.故选:A.3.(2021•自贡)下列图形中.是轴对称图形且对称轴条数最多的是()A.B.C.D.【答案】D【解答】解:A.是轴对称图形.共有1条对称轴;B.不是轴对称图形.没有对称轴;C.不是轴对称图形.没有对称轴;D.是轴对称图形.共有2条对称轴.故选:D.4.(2021•重庆)如图.△ABC与△DEF位似.点O是它们的位似中心.其中OE=2OB.则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【答案】A【解答】解:∵△ABC与△DEF位似.∴△ABC∽△DEF.BC∥EF.∴△OBC∽△OEF.∴==.即△ABC与△DEF的相似比为1:2.∴△ABC与△DEF的周长之比为1:2.故选:A.5.(2021•台州)如图.将长、宽分别为12cm.3cm的长方形纸片分别沿AB.AC折叠.点M.N恰好重合于点P.若∠α=60°.则折叠后的图案(阴影部分)面积为()A.(36)cm2B.(36)cm2C.24cm2D.36cm2【答案】A【解答】解:根据翻折可知.∠MAB=∠BAP.∠NAC=∠P AC.∴∠BAC=∠P AB+∠P AC=(∠MAB+∠BAP+∠NAC+∠P AC)=180°=90°.∵∠α=60°.∴∠MAB=180°﹣∠BAC﹣∠α=180°﹣90°﹣60°=30°.∴AB==6(cm).AC==2(cm).∴阴影部分的面积=S长方形﹣S△ABC=12×3﹣6×=(36﹣6)(cm2).故选:A.6.(2021•江西)如图.将▱ABCD沿对角线AC翻折.点B落在点E处.CE交AD于点F.若∠B=80°.∠ACE=2∠ECD.FC=a.FD=b.则▱ABCD的周长为.【答案】4a+2b【解答】解:∵∠B=80°.四边形ABCD为平行四边形.∴∠D=80°.由折叠可知∠ACB=∠ACE.又AD∥BC.∴∠DAC=∠ACB.∴∠ACE=∠DAC.∴△AFC为等腰三角形.∴AF=FC=a.设∠ECD=x.则∠ACE=2x.∴∠DAC=2x.在△ADC中.由三角形内角和定理可知.2x+2x+x+80°=180°.解得:x=20°.∴由三角形外角定理可得∠DFC=4x=80°.故△DFC为等腰三角形.∴DC=FC=a.∴AD=AF+FD=a+b.故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=4a+2b.故答案为:4a+2b.7.(2021•重庆)如图.三角形纸片ABC中.点D.E.F分别在边AB.AC.BC上.BF=4.CF =6.将这张纸片沿直线DE翻折.点A与点F重合.若DE∥BC.AF=EF.则四边形ADFE 的面积为.【答案】5【解答】解:∵纸片沿直线DE翻折.点A与点F重合.∴DE垂直平分AF.∴AD=DF.AE=EF.∵DE∥BC.∴DE为△ABC的中位线.∴DE=BC=(BF+CF)=×(4+6)=5.∵AF=EF.∴△AEF为等边三角形.∴∠F AC=60°.在Rt△AFC中.∵tan∠F AC=.∴AF==2.∴四边形ADFE的面积为:DE×AF=×5×2=5.故答案为:5.8.(2021•天津)如图.在△ABC中.∠BAC=120°.将△ABC绕点C逆时针旋转得到△DEC.点A.B的对应点分别为D.E.连接AD.当点A.D.E在同一条直线上时.下列结论一定正确的是()A.∠ABC=∠ADC B.CB=CD C.DE+DC=BC D.AB∥CD【答案】D【解答】解:由旋转的性质得出CD=CA.∠EDC=∠BAC=120°.∵点A.D.E在同一条直线上.∴∠ADC=60°.∴△ADC为等边三角形.∴∠DAC=60°.∴∠BAD=60°=∠ADC.∴AB∥CD.故选:D.9.(2021•吉林)如图.在平面直角坐标系中.点A的坐标为(0.3).点B的坐标为(4.0).连接AB.若将△ABO绕点B顺时针旋转90°.得到△A′BO′.则点A′的坐标为.【答案】(7.4)【解答】解:作A'C⊥x轴于点C.由旋转可得∠O'=90°.O'B⊥x轴.∴四边形O'BCA'为矩形.∴BC=A'O'=OA=3.A'C=O'B=OB=4.∴点A'坐标为(7.4).故答案为:(7.4).10.(2021•上海)定义:在平面内.一个点到图形的距离是这个点到这个图上所有点的最短距离.在平面内有一个正方形.边长为2.中心为O.在正方形外有一点P.OP=2.当正方形绕着点O旋转时.则点P到正方形的最短距离d的取值范围为.【答案】2﹣≤d≤1【解答】解:如图:设AB的中点是E.OP过点E时.点O与边AB上所有点的连线中.OE 最小.此时d=PE最大.OP过顶点A时.点O与边AB上所有点的连线中.OA最大.此时d=P A最小.如图①:∵正方形ABCD边长为2.O为正方形中心.∴AE=1.∠OAE=45°.OE⊥AB.∴OE=1.∵OP=2.∴d=PE=1;如图②:∵正方形ABCD边长为2.O为正方形中心.∴AE=1.∠OAE=45°.OE⊥AB.∴OA=.∵OP=2.∴d=P A=2﹣;∴d的取值范围为2﹣≤d≤1.故答案为:2﹣≤d≤1.11.(2021•南京)如图.将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置.使点B′落在BC上.B′C′与CD交于点E.若AB=3.BC=4.BB′=1.则CE的长为.【答案】【解答】解:法一、如图.过点A作AM⊥BC于点M.过点B作BN⊥AB′于点N.过点E作EG⊥BC.交BC的延长线于点G.由旋转可知.AB=AB′=3.∠ABB′=∠AB′C′.∴∠ABB′=∠AB′B=∠AB′C′.∵BB′=1.AM⊥BB′.∴BM=B′M=.∴AM==.∵S△ABB′==.∴××1=•BN×3.则BN=.∴AN===.∵AB∥DC.∴∠ECG=∠ABC.∵∠AMB=∠EGC=90°.∴△AMB∽△EGC.∴===.设CG=a.则EG=a.∵∠ABB′+∠AB′B+∠BAB′=180°.∠AB′B+∠AB′C′+∠C′B′C=180°.又∵∠ABB′=∠AB′B=∠AB′C′.∴∠BAB′=∠C′B′C.∵∠ANB=∠EGC=90°.∴△ANB∽△B′GE.∴===.∵BC=4.BB′=1.∴B′C=3.B′G=3+a.∴=.解得a=.∴CG=.EG=.∴EC===.故答案为:.法二、如图.连接DD'.由旋转可知.∠BAB′=∠DAD′.AB′=AB=3.AD′=AD=4.∴△BAB′∽△DAD′.∴AB:BB′=AD:DD′=3:1.∠AD′D=∠AB′B=∠B.∴DD′=.又∵∠AD′C′=∠AB′C′=∠B.∠AD′D=∠B=∠AB′B.∴∠AD′C′=∠AD′D.即点D′.D.C′在同一条直线上.∴DC′=.又∠C′=∠ECB′.∠DEC′=∠B′EC.∴△CEB′∽△C'ED.∴B′E:DE=CE:C′E=B′C:DC′.即B′E:DE=CE:C′E=3:.设CE=x.B'E=y.∴x:(4﹣y)=y:(3﹣x)=3:.∴x=.故答案为:.法三、构造相似.如图.延长B′C到点G.使B′G=B′E.连接EG.∴∠B′EG=∠B′GE.由旋转可知.AB=AB′.∴∠B=∠AB′B=∠AB′C′.∴∠BAB′=∠EB′G.∴∠B=∠G.又AB∥CD.∴∠ECG=∠B=∠G.∴△ABB′∽△B′EG∽△ECG.∴.设CG=m.∴EC=3m.∴B′G=3+m.∴.解得m=.∴3m=.故答案为:.解法四:如图.过点C作CF∥C′D′.交B′C′于点F.∵AB=AB′.∴∠B=∠AB′B.由∵∠AB′C′=∠B.由三角形内角和可知.∠FB′C=∠BAB′.∵AB′∥FC.∴∠B′CF=∠AB′B.由∵AB=3.BB′=1.BC=4.∴AB=B′C.∴△ABB′≌△B′CF.∴FC=B′B=1.由旋转可知.△ABB′∽△ADD′.∴.∴DD′=∴C′D=.又由CF∥C′D.∴△C′DE∽△FCE.∴=.∴=.∴.∴EC=.故答案为:.12.(2020•南通)矩形ABCD中.AB=8.AD=12.将矩形折叠.使点A落在点P处.折痕为DE.(1)如图①.若点P恰好在边BC上.连接AP.求的值;(2)如图②.若E是AB的中点.EP的延长线交BC于点F.求BF的长.【答案】(1)==.(2)BF=3【解答】解:(1)如图①中.取DE的中点M.连接PM.∵四边形ABCD是矩形.∴∠BAD=∠C=90°.由翻折可知.AO=OP.AP⊥DE.∠2=∠3.∠DAE=∠DPE=90°.在Rt△EPD中.∵EM=MD.∴PM=EM=DM.∴∠3=∠MPD.∴∠1=∠3+∠MPD=2∠3.∵∠ADP=2∠3.∴∠1=∠ADP.∵AD∥BC.∴∠ADP=∠DPC.∴∠1=∠DPC.∵∠MOP=∠C=90°.∴△POM∽△DCP.∴===.∴==.解法二:证明△ABP和△DAE相似.==.(2)如图②中.过点P作GH∥BC交AB于G.交CD于H.则四边形AGHD是矩形.设EG=x.则BG=4﹣x∵∠A=∠EPD=90°.∠EGP=∠DHP=90°.∴∠EPG+∠DPH=90°.∠DPH+∠PDH=90°.∴∠EPG=∠PDH.∴△EGP∽△PHD.∴====.∴PH=3EG=3x.DH=AG=4+x.在Rt△PHD中.∵PH2+DH2=PD2.∴(3x)2+(4+x)2=122.解得x=(负值已经舍弃).∴BG=4﹣=.在Rt△EGP中.GP==.∵GH∥BC.∴△EGP∽△EBF.∴=.∴=.∴BF=3.1.(2022•碑林区校级一模)下列几何图形中.是中心对称图形的是()A.角B.等边三角形C.扇形D.平行四边形【答案】D【解答】解:A.角不是中心对称图形.故此选项不合题意;B.等边三角形不是中心对称图形.故此选项不合题意;C.扇形不是中心对称图形.故此选项不合题意;D.平行四边形是中心对称图形.故此选项符合题意.故选:D.2.(2021•历下区校级模拟)如图.点A.B的坐标分别为(1.2)、(4.0).将△AOB沿x 轴向右平移.得到三角形CDE.已知DB=1.则点C的坐标为()A.(5.2)B.(4.2)C.(5.3)D.(4.3)【答案】B【解答】解:∵B的坐标为(4.0).∴OB=4.∵DB=1.∴OD=4﹣1=3.∴△AOB向右平移了3个单位长度.∵点A的坐标为(1.2).∴点C的坐标为:(4.2).故选:B.3.(2021•开封一模)如图.在平面直角坐标系xOy中.将四边形ABCD先向上平移.再向左平移得到四边形A1B1C1D1.已知A1(﹣3.5).B1(﹣4.3).A(3.3).则点B坐标为()A.(1.2)B.(2.1)C.(1.4)D.(4.1)【答案】B【解答】解:由题意A1(﹣3.5)向右平移6个单位.再向下平移2个单位得到A(3.3).∴B1(﹣4.3)向右平移6个单位.再向下平移2个单位得到B(2.1).故选:B.4.(2021•市南区校级一模)已知平面直角坐标系中两点A(﹣1.0)、B(1.2).连接AB.平移线段AB得到线段A1B1.若A点对应的点是A1(2.﹣1).则B点对应的点是B1的坐标为()A.(4.3)B.(﹣2.3)C.(4.1)D.(﹣2.1)【答案】C【解答】解:∵A(﹣1.0)平移后对应点A1的坐标为(2.﹣1).∴A点的平移方法是:先向右平移3个单位.再向下平移1个单位.∴B点的平移方法与A点的平移方法是相同的.∴B(1.2)平移后的坐标是:(4.1).故选:C.5.(2021•河北模拟)如图.用平移三角尺的方法可以检验出图中平行线共有()A.3对B.4对C.5对D.6对【答案】D【解答】解:如图.由平移的性质得.AD∥BE.AD∥CF.BE∥CF.AB∥DE.BC∥EF.AC∥DF.共六对.故选:D.6.(2021•鹿城区校级三模)如图.在直角坐标系中.△OAB的顶点为O(0.0).A(6.3).B (6.6).以点O为位似中心.在第一象限内作与△OAB的位似比为的位似图形△OCD.则点C的坐标为()A.(1.2)B.(2.1)C.(2.2)D.(3.6)【答案】B【解答】解:∵以点O为位似中心.在第一象限内作与△OAB的位似比为的位似图形△OCD.A(6.3).∴点C的坐标为(6×.3×).即(2.1).故选:B.7.(2021•孝义市二模)如图所示是利用图形的位似绘制的一幅“小鱼”图案.其中O 为位似中心.且OA=2OD.若图案中鱼身(△ABC)的面积为S.则鱼尾(△DEF)的面积为()A.B.S C.S D.S【答案】C【解答】解:∵△ABC与△DEF是以O为位似中心位似图形.OA=2OD.∴△ABC∽△DEF.且相似比为2.∴=22=4.∵△ABC的面积为S.∴△DEF的面积S.故选:C.8.(2021•荔湾区一模)如图.在矩形ABCD中.AB=2.BC=6.E是BC的中点.将△ABE 沿直线AE翻折.点B落在点F处.连结CF.则tan∠ECF的值为()A.B.C.D.【答案】A【解答】解:∵BC=6.E是BC的中点.∴BE=3.由翻折变换的性质得:△AFE≌△ABE.∴∠AEF=∠AEB.∴EF=CE.∴∠EFC=∠ECF.∵∠BEF=∠EFC+∠ECF.∴∠AEB=∠ECF.∴tan∠ECF=tan∠AEB=.故选:A.9.(2022•安徽一模)如图.正方形ABCD的边长为5.E为BC上一点.且BE=2.F为AB 边上的一个动点.连接EF.以EF为边向右侧作等边△EFG.连接CG.则CG的最小值为()A.2B.2.5C.3D.3.5【答案】D【解答】解:由题意可知.点F是主动点.点G是从动点.点F在线段上运动.点G也一定在直线轨迹上运动.将△EFB绕点E旋转60°.使EF与EG重合.得到△EFB≌△EHG.∴BE=EH.∠BEH=60°.∠GHE=90°.∴△EBH为等边三角形.点G在垂直于HE的直线HN上.作CM⊥HN.则CM即为CG的最小值.作EP⊥CM.可知四边形HEPM为矩形.∴∠PEC=180°﹣∠PEH﹣∠BEH=180°﹣90°﹣60°=30°.∴PC=CE.则CM=MP+CP=HE+EC=2+=.故选:D.10.(2022•重庆模拟)在△ABC中.∠BAC=90°.点O是斜边BC上的一点.连接AO.点D是AO上一点.过点D分别作DE∥AB.DF∥AC.交BC于点E、F.(1)如图1.若点O为斜边BC的中点.求证:点O是线段EF的中点.(2)如图2.在(1)的条件下.将△DEF绕点O顺时针旋转任意一个角度.连接AD.CF.请写出线段AD和线段CF的数量关系.并说明理由.(3)如图3.若点O是斜边BC的三等分点.且靠近点B.当∠ABC=30°时.将△DEF 绕点O顺时针旋转任意一个角度.连接AD、BE、CF.请求出的值.【答案】(1)略(2)略(3)【解答】(1)证明:∵∠BAC=90°.点O为斜边BC的中点.∴BO=AO=OC.∴∠ABO=∠BAO.∠ODF=∠OFD.∵DE∥AB.DF∥AC.∴∠OED=∠OBA.∠ODE=∠OAB.∠ODF=∠OAC.∠OFD=∠OCA.∴∠OED=∠ODE.∠ODF=∠OFD.∴EO=DO.FO=DO.∴EO=FO.∴点O是线段EF的中点;(2)AD=CF.理由如下:∵将△DEF绕点O顺时针旋转任意一个角度.∴OD=OF.∠AOD=∠COF.又∵AO=CO.∴△AOD≌△COF(SAS).∴AD=CF;(3)如图1.旋转前.∵DE∥AB.∴.∴.如图3.旋转后.∵将△DEF绕点O顺时针旋转任意一个角度.∴∠AOD=∠BOE.∴△AOD∽△BOE.∴=.如图3.过点A作AH⊥BC于H.设AC=2x.∵∠ABC=30°.∠BAC=90°.∴∠ACH=60°.BC=4x.∵AH⊥BC.∴∠CAH=30°.∴CH=AC=x.AH=CH=x.∵点O是斜边BC的三等分点.∴BO=x.CO=.∴OH=.∴AO===x.∴==.。
中考复习之轴对称与中心对称
第32讲┃ 归类示例
此类作图问题的关键是根据轴对称与中心对称坐标特 征求出对称点的坐标.的拓展创新
教材母题 北师大版八上P95问题解决第13题 如图32-4,甲、乙两个单位分别位于一条封闭街道的 两旁,现准备合作修建一座过街天桥,问:
图32-4 (1)桥建在何处才能使由甲到乙的路线最短?注意,桥 必须与街道垂直. (2)桥建在何处才能使甲、乙到桥的距离相等?
两个 区 轴对称是指______全等图形之 别 间的相互位置关系
第32讲┃ 考点聚焦
联系
轴对称 的性质
①如果把成轴对称的两个图形看成一个整体 (一个图形),那么这个图形是轴对称图形; ②如果把一个轴对称图形中对称的部分看成 是两个图形,那么它们成轴对称 (1)对称点的连线被对称轴________ 垂直平分 (2)对应线段________ 相等 对称轴 (3)对应线段或延长线的交点在________上 (4)成轴对称的两个图形________ 全等
第32讲┃ 归类示例 ► 类型之二 图形的折叠与轴对称
命题角度: 图形的折叠与轴对称的关系.
[2013· 北京] 如图 32-2,在△ABC 中,∠C=90°, 将△ABC 沿直线 MN 翻折后, 顶点 C 恰好落在 AB 边上的点 D 处,已知 MN∥AB,MC=6,NC=2 3,则四边形 MABN 的 面积是 A.6 3 C.18 3 B.12 3 D.24 3 图 32-2 ( C )
图32-3
第32讲┃ 归类示例
[解析] (1)根据关于 y 轴对称的点的横坐标互为相反数,纵 坐标相等,找出点 P′的位置,然后以 3 为半径画圆即可;再根 据直线与圆的位置关系解答; (2)设直线 PP′与 MN 相交于点 Q,在 Rt△QP′N 中,利用 勾股定理求出 QN 的长度,在 Rt△QPN 中,利用勾股定理列式 计算即可求出 PN 的长度.
2021年中考数学 专题冲刺:轴对称与中心对称(含答案)
2021中考数学专题冲刺:轴对称与中心对称一、选择题1. 下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()2. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()3. 如图所示的图案中,是中心对称图形的是()4. 在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则() A.m=3,n=2 B.m=-3,n=2C.m=2,n=3 D.m=-2,n=-35. 将一张长与宽的比为2∶1的长方形纸片按图①②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④中的纸片展开铺平,所得到的图案是()6. 如图,四边形ABCD与四边形FGHE关于一个点中心对称,则这个点是() A.O1B.O2C.O3D.O47. 如图,在△ABC中,点D在BC上,将点D分别以AB,AC为对称轴,画出对称点E,F,并连接AE,AF.根据图中标示的角度,∠EAF的度数为()A.113°B.124°C.129°D.134°8. 如图,△ABC中,点D在BC上,∠B=62°,∠C=53°,将点D分别以AB,AC所在直线为对称轴,画出对称点E,F,并连接AE,AF,则∠EAF的度数为()A.124°B.115°C.130°D.106°二、填空题9. 如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE 折叠,使点C落在AB边上的F处,则CE的长为.10. 如图,直线a,b垂直相交于点O,曲线C是以点O为对称中心的中心对称图形,点A的对称点是点A′,AB⊥a于点B,A′D⊥b于点D.若OB=3,OD=2,则阴影部分的面积为________.11. 已知点P (x ,y )的坐标满足等式(x -2)2+|y -1|=0,且点P 与点P ′关于y 轴对称,则点P ′的坐标为________.12. 若将等腰直角三角形AOB 按图所示的方式放置,OB =2,则点A 关于原点对称的点的坐标为________.13. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n 边形有 条对称轴.14. 定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰三角形ABC 中,∠A =80°,则它的特征值k =________.15. 如图,在△ABC 中,AC=BC=2,AB=1,将它沿AB 翻折得到△ABD ,则四边形ADBC 的形状是 形,点P ,E ,F 分别为线段AB ,AD ,DB 上的任意一点,则PE+PF 的最小值是 .16. (2019•黄冈)如图,AC BD ,在AB 的同侧,288AC BD AB ===,,,点M 为AB 的中点,若120CMD ∠=︒,则CD 的最大值是__________.三、解答题17. 已知:如图,AB=AC ,DB=DC ,点E 在直线AD 上.求证:EB=EC.18. 如图,在矩形ABCD 中,点E 在AD 上,EC 平分∠BED .(1)试判断△BEC 是不是等腰三角形,并说明理由;(2)在原图中画△FCE ,使它与△BEC 关于CE 的中点O 中心对称,此时四边形BCFE 是什么特殊平行四边形?请说明理由.19. [材料阅读]在平面直角坐标系中,以任意两点P (x 1,y 1),Q (x 2,y 2)为端点的线段的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.[运用](1)已知点A (-2,1)和点B (4,-3),则线段AB 的中点坐标是________;已知点M (2,3),线段MN 的中点坐标是(-2,-1),则点N 的坐标是________. (2)已知平面上四点A (0,0),B (10,0),C (10,6),D (0,6).直线y =mx -3m +2将四边形ABCD 分成面积相等的两部分,则m 的值为________.(3)在平面直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D ,可使以点A ,B ,C ,D 为顶点的四边形为平行四边形,求点D 的坐标.20. 如图,在△ABC中,∠ACB=90°,BE 平分∠ABC 交AC 于点E ,DE 垂直平分AB 交AB 于点D.求证:BE+DE=AC.21. 如图1,△ABC 中,∠ACB=90°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E.(1)若∠BAC=50°,求∠EDA 的度数; (2)求证:直线AD 是线段CE 的垂直平分线.22. 如图1,将△ABC 纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰△BED 和等腰△DHC 的底边上的高线EF 、HG 折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段________,________;S 矩形AEFG ∶S ▱ABCD =________.(2)▱ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若EF =5,EH =12,求AD 的长.(3)如图4,四边形ABCD 纸片满足AD ∥BC ,AD <BC ,AB ⊥BC ,AB =8,CD =10.小明把该纸片折叠,得到叠合正方形...,请你帮助画出叠合正方形的示意图,并求出AD ,BC 的长.图1 图2 图3 图42021中考数学专题冲刺:轴对称与中心对称-答案一、选择题1. 【答案】D2. 【答案】C3. 【答案】D4. 【答案】B[解析] ∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.5. 【答案】A6. 【答案】A[解析] 如图,连接HC和DE交于点O1.7. 【答案】D[解析] 连接AD.∵点D分别以AB,AC为对称轴,画出对称点E,F,∴∠EAB=∠BAD,∠FAC =∠CAD.∵∠B=62°,∠C=51°,∴∠BAC=∠BAD+∠CAD=67°.∴∠EAF=2∠BAC=134°.8. 【答案】C[解析] 连接AD,如图.∵点D分别以AB,AC所在直线为对称轴,画出对称点E,F,∴∠EAB=∠BAD,∠F AC=∠CAD.∵∠B=62°,∠C=53°,∴∠BAC=∠BAD+∠DAC=180°-62°-53°=65°.∴∠EAF=2∠BAC=130°.故选C.二、填空题9. 【答案】[解析]设CE=x,则BE=6-x.由折叠的性质可知,EF=CE=x,DF=CD=AB=10,在Rt△DAF中,AD=6,DF=10,∴AF=8,∴BF=AB-AF=10-8=2,在Rt△BEF中,BE2+BF2=EF2,即(6-x)2+22=x2,解得x=,故答案为.10. 【答案】6[解析] 如图,过点A′作A′B′⊥a,垂足为B′,由题意可知,①与②关于点O中心对称,所以阴影部分的面积可以看作四边形A′B′OD的面积.又A′D⊥b于点D,直线a,b互相垂直,可得四边形A′B′OD是矩形,所以其面积为3×2=6.11. 【答案】(-2,1)[解析] ∵(x-2)2≥0,|y-1|≥0,又(x-2)2+|y-1|=0,∴x -2=0且y-1=0,即x=2,y=1.∴点P的坐标为(2,1).那么点P关于y轴的对称点P′的坐标为(-2,1).12. 【答案】(-1,-1)[解析] 如图,过点A作AD⊥OB于点D.∵△AOB是等腰直角三角形,OB=2,∴OD=AD=1,∴A(1,1),∴点A关于原点对称的点的坐标为(-1,-1).13. 【答案】解:如图.故填3,4,5,6,n.14. 【答案】85或14[解析] ①当∠A为顶角时,等腰三角形两底角的度数为180°-80°2=50°,∴特征值k=80°50°=85.②当∠A为底角时,顶角的度数为180°-80°-80°=20°,∴特征值k=20°80°=14.综上所述,特征值k为85或14.15. 【答案】菱[解析]∵AC=BC,∴△ABC是等腰三角形.将△ABC沿AB翻折得到△ABD,∴AC=BC=AD=BD,∴四边形ADBC是菱形.∵△ABC沿AB翻折得到△ABD,∴△ABC与△ABD关于AB成轴对称.如图所示,作点E关于AB的对称点E',连接PE',根据轴对称的性质知AB垂直平分EE',∴PE=PE',∴PE+PF=PE'+PF,当E',P,F三点共线,且E'F⊥AC时,PE+PF有最小值,该最小值即为平行线AC与BD间的距离.作CM⊥AB于M,BG⊥AD于G,由题知AC=BC=2,AB=1,∠CAB=∠BAD,∴cos ∠CAB=cos ∠BAD ,即=,∴AG=, 在Rt △ABG 中,BG===,由对称性可知BG 长即为平行线AC ,BD 间的距离, ∴PE +PF 的最小值=.16. 【答案】14【解析】如图,作点A 关于CM 的对称点A',点B 关于DM 的对称点B'.∵120CMD ∠=︒,∴60AMC DMB ∠+∠=︒, ∴60CMA'DMB'∠+∠=︒, ∴60A'MB'∠=︒, ∵MA'MB'=,∴A'MB'△为等边三角形,∵14CD CA'A'B'B'D CA AM BD ≤++=++=, ∴CD 的最大值为14,故答案为:14.三、解答题17. 【答案】证明:连接BC.∵AB=AC ,DB=DC ,∴直线AD 是线段BC 的垂直平分线. 又∵点E 在直线AD 上,∴EB=EC.18. 【答案】解:(1)△BEC 是等腰三角形. 理由:∵在矩形ABCD 中,AD ∥BC ,∴∠DEC =∠BCE .∵EC 平分∠BED ,∴∠DEC =∠BEC , ∴∠BEC =∠BCE ,∴BC =BE , ∴△BEC 是等腰三角形.(2)连接BO 并延长至点F ,使OF =OB ,连接FE ,FC ,△FCE 即为所求.四边形BCFE 是菱形.理由: ∵OB =OF ,OE =OC , ∴四边形BCFE 是平行四边形. 又∵BC =BE , ∴▱BCFE 是菱形.19. 【答案】解:(1)(1,-1) (-6,-5) (2)12(3)设点D 的坐标为(x ,y).若以AB 为对角线,AC ,BC 为邻边的四边形为平行四边形,则AB ,CD 的中点重合,∴⎩⎪⎨⎪⎧1+x 2=-1+32,4+y 2=2+12,解得⎩⎨⎧x =1,y =-1;若以BC 为对角线,AB ,AC 为邻边的四边形为平行四边形,则AD ,BC 的中点重合,∴⎩⎪⎨⎪⎧-1+x 2=3+12,2+y 2=1+42,解得⎩⎨⎧x =5,y =3;若以AC 为对角线,AB ,BC 为邻边的四边形为平行四边形,则BD ,AC 的中点重合,∴⎩⎪⎨⎪⎧3+x 2=-1+12,1+y 2=2+42,解得⎩⎨⎧x =-3,y =5.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).20. 【答案】证明:∵∠ACB=90°,∴AC ⊥BC.又∵DE ⊥AB ,BE 平分∠ABC ,∴CE=DE.∵DE 垂直平分AB ,∴AE=BE.∵AC=AE+CE ,∴BE+DE=AC.21. 【答案】解:(1)∵∠BAC=50°,AD 平分∠BAC ,∴∠EAD=∠BAC=25°.∵DE ⊥AB ,∴∠AED=90°.∴∠EDA=90°-25°=65°.(2)证明:∵DE ⊥AB ,∴∠AED=90°=∠ACB.∵AD 平分∠BAC ,∴∠DAE=∠DAC.又∵AD=AD ,∴△AED ≌△ACD.∴AE=AC ,DE=DC.∴点A ,D 都在线段CE 的垂直平分线上.∴直线AD 是线段CE 的垂直平分线.22. 【答案】【思维教练】(2)AD=DH+AH,由折叠性质和全等三角形得出DH=HN,FN=AH,即AD=FH,由叠合矩形的概念可知∠FEH=90°,利用勾股定理求出AD;(3)观察图形的特点,可以考虑从CD的中点横向和竖向折叠或从分别从每个角的位置向内折叠构成矩形,利用构成的直角三角形求解得出结果.解:(1)AE,GF;1∶2(2分)(2)∵四边形EFGH是叠合矩形,∠FEH=90°,又EF=5,EH=12.∴FH=EF2+EH2=52+122=13.(4分)由折叠的轴对称性可知,DH=HN,AH=HM,CF=FN.易证△AEH≌△OGF,∴CF=AH.(5分)∴AD=DH+AH=HN+FN=FH=13.(6分)(3)本题有以下两种基本折法,如解图1,解图2所示.(作出一种即可)1 2按解图1的折法,则AD=1,BC=7;按解图2的折法,则AD=134,BC=374.(10分)。
初中中考复习之轴对称和中心对称(含答案)
中考复习之轴对称和中心对称一、选择题: 1.下列标志中,可以看作是中心对称图形的是【 】2.在下列图形中,为中心对称图形的是【 】A .等腰梯形B .平行四边形C .正五边形D .等腰三角形 3.下列图形中,是轴对称图形的是【 】 A . B . C . D .4.下列图形中,既是轴对称图形又是中心对称图形的是【 】5.下列图形中是轴对称图形的是【 】 A . B . C . D .6.下列平面图形,既是中心对称图形,又是轴对称图形的是【 】A .等腰三角形B .正五边形C .平行四边形D .矩形7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是【 】A .B .C .D .(D ) (C ) (B ) (A )9.下列图形中不是中心对称图形的是【】A.矩形B.菱形C.平行四边形D.正五边形10.下列图案中,属于轴对称图形的是【】A. B.C.D.11.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是【】A.①B.②C.③D.④12.下列交通标志图案是轴对称图形的是【】A.B.C.D.13.在下列四个汽车标志图案中,是中心对称图形的是【】A.B. C.D.14.下列图形中,中心对称图形是【】15.下列图案是轴对称图形的是【】A. B. C. D.17.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.平行四边形 B.等边三角形 C.等腰梯形 D.正方形18.下列图形中是轴对称图形的是【】19.下列几何图形中,既是轴对称图形又是中心对称图形的是【】A.等边三角形B.矩形C.平行四边形D.等腰梯形20.下列两个电子数字成中心对称的是【】21.下列图形中,是.中心对称图形,但不是..轴对称图形的是【】22.下列图形中,有且只有两条对称轴的中心对称图形是【】.A .正三角形 B.正方形 C.圆 D.菱形23.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是【】A. B. C. D.24.下列图形:①等腰梯形,②菱形,③函数1y=x的图象,④函数y=kx+b(k≠0)的图象,其中既是轴对称图形又是中心对称图形的有【】 A.①② B.①③ C.①②③ D.②③④A. B. C. D.26.下列图形中,既是轴对称图形,又是中心对称图形的是【】.A.等腰三角形B.平行四边形C.正方形D.等腰梯形27.下列平面图形中,既是轴对称图形,又是中心对称图形的是【】A. B. C. D.28.下列图案中是中心对称图形但不是轴对称图形的是【】A.B.C.D.29.岳阳楼是江南三大名楼之一,享有“洞庭天下水,岳阳天下楼”的盛名,从图中看,你认为它是【】A.轴对称图形 B.中心对称图形C.既是轴对称图形,又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形30.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是【】31.下列图形中,既是轴对称图形又是中心对称图形的是【】A.等边三角形 B.平行四边形 C.正方形 D.等腰梯形32.下列图形中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.33.把等腰△ABC沿底边BC翻折,得到△DBC,那么四边形ABDC【】A.是中心对称图形,不是轴对称图形B.是轴对称图形,不是中心对称图形C.既是中心对称图形,又是轴对称图形D.以上都不正确34.下列图形中,既是轴对称图形又是中心对称图形的有【】A. 4个B. 3个C. 2个D. 1个35.下列几何图形中,对称性与其它图形不同的是【】36.下列历届世博会会徽的图案是中心对称图形的是【】A. B. C. D.37.下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有【】A.1种B.2种C.3种D.4种38.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.39.下列图形是中心对称图形的是【】A. B. C. D.40.下列图形中,既是轴对称图形又是中心对称图形的是【】41.下列交通标志是轴对称图形的是【】A. B. C. D.42.下列各图,不是轴对称图形的是【】43.下列图案是一副扑克牌的四种花色,其中既是轴对称图形又是中心对称图形的是【】A. B. C. D.44.下列图形是中心对称图形的是【】A. B. C. D.45.下列图形中既是中心对称图形,又是轴对称图形的是【】A.正三角形B.平行四边形C.等腰梯形D.正方形46.下列图形中,既是轴对称图形又是中心对称图形的有【】A.4个B.3个C.2个D.1个47.下列图形中,是中心对称图形的是【】A. B. C. D.48.下列图形中是中心对称图形是【】A.B.C.D.49.下列图形中,既是轴对称图形又是中心对称图形的共有【】A.1个 B.2个 C .3个 D.4个50.下列图形中,既是轴对称图形,又是中心对称图形的是【】A. B. C . D.51.如图,所给图形中是中心对称图形但不是轴对称图形的是【】A .B.C.D.52.下列图形即使轴对称图形又是中心对称图形的有:【】①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形A.1个B.2个C.3个D.4个53.下面四个标志图是中心对称图形的是【】A B C D54.在下列平面图形中,是中心对称图形的是【】A. B. C. D.55.娜娜有一个问题请教你,下列图形中对称轴只有两条的是【】56.下列图形中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.57.下列四幅图案中,既是轴对称图形又是中心对称图形的是【】A. B. C. D.58.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是【】A. B. C. D.59.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.60.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为【】A.130° B.120° C.110° D.100°61.下列图形中,既是轴对称图形,又是中心对称图形的是【】A. B. C. D.62.下列哪个函数的图象不是中心对称图形【 】A.y 2x =-B. 3y x= C .()2y x 2=- D.y 2x = 63.下列图形是中心对称图形的是【 】.(A) (B) (C) (D)64.下列图形既是轴对称图形,又是中心对称图形的是【 】A .B .C .D .二、填空题:1.点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA 十QB 的值最小的点,则OP OQ ⋅= .2.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .3.在四边形ABCD 中,AB=CD ,要使四边形ABCD 是中心对称图形,只需添加一个条件,这个条件可以是 .(只要填写一种情况)4.如图,MN 为⊙O 的直径,A 、B 是O 上的两点,过A 作AC⊥MN 于点C ,过B 作BD⊥MN 于点D ,P 为DC 上的任意一点,若MN =20,AC =8,BD =6,则PA +PB 的最小值是 。
2020中考数学专题复习:图形和变换(轴对称、轴对称图形)(共29张PPT)
3- 2
例题6.
A O
Q
F
B E
综合提优
①求证:DQ=AE;②推断:GF:AE的值;
D
G
C
综合提优
A
D BC:AB=k(k为常数).探究GF与AE之间的数量
关系,并说明理由;
MO
F
B
E
G P
C
A
5X
O2 10 F 3 10 x
4X 5X
拓展应用:在(2)的条件下,连接CP,当k= 2 D 时,若tan∠CGP= 3 ,GF=2 10 ,求CP的长.3
2. 下列图形中,为轴对称图形的是( D )
基础训练
3.(2017黑龙江哈尔滨)下列图形中,既是轴对称图形
又是中心对称图形的是 ( D )
基础训练
4.如图所示,在Rt△ABC中,
∠C= 90°,以顶点A为圆心,适当
长为半径画弧,分别交AC,AB
于点M、N,再分别以点M,N为
圆心,大于0.5MN的长为半径画
例题讲解
∵以△ADE、△AD′E,关于直线AE 成轴对称图形∴AD=AD′, ∵在△ABD和△ACD′中
∴△ABD≌△ACD′(sss)
(2)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′, ∴∠BAC=∠DAD′=120°, ∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形 △AD′E, ∴∠DAE=∠D′AE= ∠DAD′=60°,即∠DAE=60°
E是边CD上一点,连接AE.折叠该纸片,使点A落在AE
上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.
若DE=5,则GE的长为
.
例题讲解
12
由折叠及轴对称的性质可知, △ABF≌△GBF,BF垂直平分AG,
备战中考数学分点透练真题图形的对称、平移、旋转与位似(解析版)
第二十五讲图形的对称、平移、旋转与位似命题点1 轴对称图形与中心对称图形类型一轴对称图形与中心对称图形的识别1.(2021•黄石)下列几何图形中,是轴对称图形但不是中心对称图形的是()A.梯形B.等边三角形C.平行四边形D.矩形【答案】B【解答】解:A.梯形不一定是轴对称图形,不是中心对称图形,故此选项不合题意;B.等边三角形是轴对称图形,不是中心对称图形,故此选项符合题意;C.平行四边形不是轴对称图形,是中心对称图形,故此选项不合题意;D.矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;故选:B.2.(2021•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】A【解答】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.3.(2021•山西)为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会,在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解答】解:A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既是轴对称图形又是中心对称图形,故此选项符合题意;C.是轴对称图形,不是中心对称图形,故此选项不合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:B.4.(2021•枣庄)将如图的七巧板的其中几块,拼成一个多边形,为轴对称图形的是()A.B.C.D.【答案】D【解答】解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项符合题意;故选:D.5.(2021•济宁)一个圆柱体如图所示,下面关于它的左视图的说法其中正确的是()A.既是轴对称图形,又是中心对称图形B.既不是轴对称图形,又不是中心对称图形C.是轴对称图形,但不是中心对称图形D.是中心对称图形,但不是轴对称图形【答案】A【解答】解:圆柱体的左视图是长方形,而长方形既是轴对称图形,也是中心对称图形,故选:A.6.(2021•广安)下列几何体的主视图既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解答】解:A、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;B、主视图是是矩形,是轴对称图形,也是中心对称图形,故符合题意;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故不合题意;D、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;故选:B.7.(2021•自贡)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.【答案】D【解答】解:A.是轴对称图形,共有1条对称轴;B.不是轴对称图形,没有对称轴;C.不是轴对称图形,没有对称轴;D.是轴对称图形,共有2条对称轴.故选:D.类型二与轴对称有关的判断8.(2021•嘉兴)将一张三角形纸片按如图步骤①至④折叠两次得图⑤,然后剪出图⑤中的阴影部分,则阴影部分展开铺平后的图形是()A.等腰三角形B.直角三角形C.矩形D.菱形【答案】D【解答】解:如图,由题意可知,剪下的图形是四边形BACD,由折叠可知CA=AB,∴△ABC是等腰三角形,又△ABC和△BCD关于直线BC对称,∴四边形BACD是菱形,故选:D.9.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°【答案】A【解答】解:如图,在矩形ABCD中,AD∥BC,∴∠DEF=∠EFG=64°,∠EGB=∠DEG,由折叠可知∠GEF=∠DEF=64°,∴∠DEG=128°,∴∠EGB=∠DEG=128°,故选:A.10.(2021•河北)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P 关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.7【答案】B【解答】解:连接OP1,OP2,P1P2,∵点P关于直线l,m的对称点分别是点P1,P2,∴OP1=OP=2.8,OP=OP2=2.8,OP1+OP2>P1P2,0<P1P2<5.6,故选:B.11.(2021•台州)如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.(36)cm2B.(36)cm2C.24cm2D.36cm2【答案】A【解答】解:根据翻折可知,∠MAB=∠BAP,∠NAC=∠P AC,∴∠BAC=∠P AB+∠P AC=(∠MAB+∠BAP+∠NAC+∠P AC)=180°=90°,∵∠α=60°,∴∠MAB=180°﹣∠BAC﹣∠α=180°﹣90°﹣60°=30°,∴AB==6(cm),AC==2(cm),∴阴影部分的面积=S长方形﹣S△ABC=12×3﹣6×=(36﹣6)(cm2),故选:A.12.(2021•衡阳)如图,矩形纸片ABCD,AB=4,BC=8,点M、N分别在矩形的边AD、BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①四边形CMPN是菱形;②点P 与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③【答案】C【解答】解:∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故①正确;如图1,当点P与A重合时,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB²+BN²=AN²,即4²+x²=(8﹣x)²,解得x=3,∴CN=8﹣3=5,∵AB=4,BC=8,∴AC==4,∴CQ=AC=2,∴QN==,∴MN=2QN=2,故②不正确;由题知,当MN过点D时,CN最短,如图2,四边形CMPN的面积最小,此时S=S菱形CMPN=×4×4=4,当P点与A点重合时,CN最长,如图1,四边形CMPN的面积最大,此时S=×5×4=5,∴4≤S≤5正确,故选:C.13.(2021•海南)如图,在矩形ABCD中,AB=6,AD=8,将此矩形折叠,使点C与点A 重合,点D落在点D′处,折痕为EF,则AD′的长为,DD′的长为.【答案】6,【解答】解:∵四边形ABCD是矩形,∴CD=AB=6,∵AD′=CD,∴AD′=6;连接AC,∵AB=6,BC=AD=8,∠ABC=90°,∴AC===10,∵∠BAF=∠D′AE=90°,∴∠BAE=∠D′AF,在△BAE和△D′AF中,∴△BAE≌△D′AF(ASA),∴D′F=BE,∠AEB=∠AFD′,∴∠AEC=∠D′FD,由题意知:AE=EC;设BE=x,则AE=EC=8﹣x,在Rt△ABE中,∠B=90°,由勾股定理得:(8﹣x)2=62+x2,解得:x=,∴BE=,AE=8﹣=,∴=,∴=,∵∠AD′F=∠D′AE=90°,∴D′F∥AE,∵DF∥EC,∴△DD′F∽△CAE,∴==,∴DD′=×10=,故答案为6,.14.(2021•江西)如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为.【答案】4a+2b【解答】解:∵∠B=80°,四边形ABCD为平行四边形.∴∠D=80°.由折叠可知∠ACB=∠ACE,又AD∥BC,∴∠DAC=∠ACB,∴∠ACE=∠DAC,∴△AFC为等腰三角形.∴AF=FC=a.设∠ECD=x,则∠ACE=2x,∴∠DAC=2x,在△ADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得:x=20°.∴由三角形外角定理可得∠DFC=4x=80°,故△DFC为等腰三角形.∴DC=FC=a.∴AD=AF+FD=a+b,故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=4a+2b.故答案为:4a+2b.15.(2021•重庆)如图,三角形纸片ABC中,点D,E,F分别在边AB,AC,BC上,BF =4,CF=6,将这张纸片沿直线DE翻折,点A与点F重合.若DE∥BC,AF=EF,则四边形ADFE的面积为.【答案】5【解答】解:∵纸片沿直线DE翻折,点A与点F重合,∴DE垂直平分AF.∴AD=DF,AE=EF.∵DE∥BC,∴DE为△ABC的中位线.∴DE=BC=(BF+CF)=×(4+6)=5.∵AF=EF,∴△AEF为等边三角形.∴∠F AC=60°.在Rt△AFC中,∵tan∠F AC=,∴AF==2.∴四边形ADFE的面积为:DE×AF=×5×2=5.故答案为:5.16.(2021•河南)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB =90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A 落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为.【答案】或2﹣【解答】解:①点D′恰好落在直角三角形纸片的AB边上时,设A′C交AB边于点E,如图,由题意:△ADC≌△A′DC≌△A′D′C,A′C垂直平分线段DD′.则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠ACB=90°,∠B=30°,AC=1,∴BC=AC•tan A=1×tan60°=.AB=2AC=2,∵,∴CE=.∴A′E=A′C﹣CE=1﹣.在Rt△A′D′E中,∵cos∠D′A′E=,∴,∴A′D′=2A′E=2﹣.②点D′恰好落在直角三角形纸片的BC边上时,如图,由题意:△ADC≌△A′DC≌△A′D′C,∠ACD=∠A′CD=∠A′CD′=∠ACB =30°;则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠D′A′C=60°,∠A′CD′=30°,∴∠A′D′C=90°,∴A′D′=′C=.综上,线段A′D′的长为:或2﹣.故答案为:或2﹣.17.(2020•南通)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.【答案】(1)==.(2)BF=3【解答】解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.解法二:证明△ABP和△DAE相似,==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.18.(2021•青海)在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作60°,30°,15°等大小的角,可以采用如下方法:操作感知:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1 ).第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).猜想论证:(1)若延长MN交BC于点P,如图3所示,试判定△BMP的形状,并证明你的结论.拓展探究:(2)在图3中,若AB=a,BC=b,当a,b满足什么关系时,才能在矩形纸片ABCD 中剪出符合(1)中结论的三角形纸片BMP?【答案】(1)△BMP是等边三角(2)b≥a【解答】解:(1)△BMP是等边三角形,理由如下:如图3,连接AN,由折叠的性质可得AE=BE,EF⊥AB,AB=BN,∠ABM=∠NBM,∠BAM=∠BNM=90°,∴AN=BN,∴AN=BN=AB,∴△ABN是等边三角形,∴∠ABN=60°,∴∠ABM=∠NBM=30°=∠PBN,∴∠BMN=∠BPM=60°,∴△BMP是等边三角形;(2)∵AB=a,∠ABM=30°,∴BM==a,∵△BMP是等边三角形,∴BP=BM=a,∵在矩形纸片ABCD中剪出符合(1)中结论的三角形纸片BMP,∴BC≥BP,∴b≥a.命题点3 图形的平移及其相关计算19.(2021•长春)如图,在平面直角坐标系中,等腰直角三角形AOB的斜边OA在y轴上,OA=2,点B在第一象限.标记点B的位置后,将△AOB沿x轴正方向平移至△A1O1B1的位置,使A1O1经过点B,再标记点B1的位置,继续平移至△A2O2B2的位置,使A2O2经过点B1,此时点B2的坐标为.【答案】(3,1)【解答】解:如图所示,过点B作BP⊥y轴于点P,∵△ABO是等腰直角三角形,OA=2,∴AP=OP=1,∠AOB=45°,∴△BPO是等腰直角三角形,∴BP=PO=1,由题意知点B2的坐标为(3,1),故答案为:(3,1).20.(2021•金华)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为cm.【答案】2【解答】解:如图,连接BD,过点E作EF⊥AC于点F,∵四边形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等边三角形,∵菱形ABCD的边长为6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴=,∴=,∴A′E=4(cm),∵∠EA′F=∠DAC=DAB=30°,∴EF=A′E=2(cm).故答案为:2.命题点4 图形的旋转及其相关计算21.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.【答案】B【解答】解:A选项是原图形的对称图形,故A不正确;B选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,故B正确;C选项旋转后的对应点错误,即形状发生了改变,故C不正确;D选项是按逆时针方向旋转90°,故D不正确;故选:B.22.(2021•邵阳)如图,在△AOB中,AO=1,BO=AB=.将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连接AA′.则线段AA′的长为()A.1B.C.D.【答案】B【解答】解:由旋转性质可知,OA=OA'=1,∠AOA'=90°,则△AOA'为等腰直角三角形,∴AA'===.故选:B.23.(2021•河南)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为()A.(2,0)B.(2,0)C.(2+1,0)D.(2+1,0)【答案】B【解答】解:延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,如图,∵A(1,2),∴AD=1,OD=2,∴OA=.由题意:△OA′D′≌△OAD,∴A′D′=AD=1,OA′=OA=,OD′=OD=2,∠A′D′O=∠ADO=90°,∠A′OD′=∠DOD′.则OD′⊥A′E,OA平分∠A′OE,∴△A′OE为等腰三角形.∴OE=OA′=,ED′=A′D′=1.∵EO⊥OC,OD′⊥EC,∴△OED′∽△CEO.∴.∴.∴OC=2.∴C(2,0).故选:B.24.(2021•天津)如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是()A.∠ABC=∠ADC B.CB=CD C.DE+DC=BC D.AB∥CD【答案】D【解答】解:由旋转的性质得出CD=CA,∠EDC=∠BAC=120°,∵点A,D,E在同一条直线上,∴∠ADC=60°,∴△ADC为等边三角形,∴∠DAC=60°,∴∠BAD=60°=∠ADC,∴AB∥CD,故选:D.25.(2021•吉林)如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为.【答案】(7,4)【解答】解:作A'C⊥x轴于点C,由旋转可得∠O'=90°,O'B⊥x轴,∴四边形O'BCA'为矩形,∴BC=A'O'=OA=3,A'C=O'B=OB=4,∴点A'坐标为(7,4).故答案为:(7,4).26.(2021•上海)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP=2,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为.【答案】2﹣≤d≤1【解答】解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,OP过顶点A时,点O与边AB上所有点的连线中,OA最大,此时d=P A最小,如图①:∵正方形ABCD边长为2,O为正方形中心,∴AE=1,∠OAE=45°,OE⊥AB,∴OE=1,∵OP=2,∴d=PE=1;如图②:∵正方形ABCD边长为2,O为正方形中心,∴AE=1,∠OAE=45°,OE⊥AB,∴OA=,∵OP=2,∴d=P A=2﹣;∴d的取值范围为2﹣≤d≤1.故答案为:2﹣≤d≤1.27.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.【答案】【解答】解:法一、如图,过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.由旋转可知,AB=AB′=3,∠ABB′=∠AB′C′,∴∠ABB′=∠AB′B=∠AB′C′,∵BB′=1,AM⊥BB′,∴BM=B′M=,∴AM==,∵S△ABB′==,∴××1=•BN×3,则BN=,∴AN===,∵AB∥DC,∴∠ECG=∠ABC,∵∠AMB=∠EGC=90°,∴△AMB∽△EGC,∴===,设CG=a,则EG=a,∵∠ABB′+∠AB′B+∠BAB′=180°,∠AB′B+∠AB′C′+∠C′B′C=180°,又∵∠ABB′=∠AB′B=∠AB′C′,∴∠BAB′=∠C′B′C,∵∠ANB=∠EGC=90°,∴△ANB∽△B′GE,∴===,∵BC=4,BB′=1,∴B′C=3,B′G=3+a,∴=,解得a=.∴CG=,EG=,∴EC===.故答案为:.法二、如图,连接DD',由旋转可知,∠BAB′=∠DAD′,AB′=AB=3,AD′=AD=4,∴△BAB′∽△DAD′,∴AB:BB′=AD:DD′=3:1,∠AD′D=∠AB′B=∠B,∴DD′=,又∵∠AD′C′=∠AB′C′=∠B,∠AD′D=∠B=∠AB′B,∴∠AD′C′=∠AD′D,即点D′,D,C′在同一条直线上,∴DC′=,又∠C′=∠ECB′,∠DEC′=∠B′EC,∴△CEB′∽△C'ED,∴B′E:DE=CE:C′E=B′C:DC′,即B′E:DE=CE:C′E=3:,设CE=x,B'E=y,∴x:(4﹣y)=y:(3﹣x)=3:,∴x=.故答案为:.法三、构造相似,如图,延长B′C到点G,使B′G=B′E,连接EG,∴∠B′EG=∠B′GE,由旋转可知,AB=AB′,∴∠B=∠AB′B=∠AB′C′,∴∠BAB′=∠EB′G,∴∠B=∠G,又AB∥CD,∴∠ECG=∠B=∠G,∴△ABB′∽△B′EG∽△ECG,∴,设CG=m,∴EC=3m,∴B′G=3+m,∴,解得m=,∴3m=.故答案为:.解法四:如图,过点C作CF∥C′D′,交B′C′于点F,∵AB=AB′,∴∠B=∠AB′B,由∵∠AB′C′=∠B,由三角形内角和可知,∠FB′C=∠BAB′,∵AB′∥FC,∴∠B′CF=∠AB′B,由∵AB=3,BB′=1,BC=4,∴AB=B′C,∴△ABB′≌△B′CF,∴FC=B′B=1,由旋转可知,△ABB′∽△ADD′,∴,∴DD′=∴C′D=,又由CF∥C′D,∴△C′DE∽△FCE,∴=,∴=,∴,∴EC=.故答案为:.28.(2021•新疆)如图,已知正方形ABCD边长为1,E为AB边上一点,以点D为中心,将△DAE按逆时针方向旋转得△DCF,连接EF,分别交BD,CD于点M,N.若,则sin∠EDM=.【答案】【解答】解:如图,过点E作EG⊥BD于点G,设AE=2x,则DN=5x,由旋转性质得:CF=AE=2x,∠DCF=∠A=90°,∵四边形ABCD是正方形,∴∠DCB=90°,∠ABC=90°,∠ABD=45°,∴∠DCB+∠DCF=180°,∠DCB=∠ABC,∴点B,C,F在同一条直线上,∵∠DCB=∠ABC,∠NFC=∠EFB,∴△FNC∽△FEB,∴,∴,解得:x1=﹣1(舍去),x2=,∴AE=2×=,∴ED===,EB=AB﹣AE=1﹣=,在Rt△EBG中,EG=BE•sin45°=×=,∴sin∠EDM===,故答案为:.29.(2021•衡阳)如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知BH=7,BC=13,求DH的长.【答案】(1)矩形AFHE是正方(2)DH=12+5=17【解答】解:(1)四边形AFHE是正方形,理由如下:∵Rt△ABE绕A点逆时针方向旋转90°得到△ADF,∴Rt△ABE≌Rt△ADF,∴∠AEB=∠AFD=90°,∴∠AFH=90°,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE,又∵∠DAF+∠F AB=90°,∴∠BAE+∠F AB=90°,∴∠F AE=90°,在四边形AFHE中,∠F AE=90°,∠AEB=90°,∠AFH=90°,∴四边形AFHE是矩形,又∵AE=AF,∴矩形AFHE是正方形;(2)设AE=x.则由(1)以及题意可知:AE=EH=FH=AF=x,BH=7,BC=AB=13,在Rt△AEB中,AB2=AE2+BE2,即132=x2+(x+7)2,解得:x=5,∴BE=BH+EH=5+7=12,∴DF=BE=12,又∵DH=DF+FH,∴DH=12+5=17.命题点5 图形的位似及其相关计算30.(2021•东营)如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2【答案】A【解答】解:设点B′的横坐标为x,则B、C间的水平距离为a﹣1,B′、C间的水平距离为﹣x+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(a﹣1)=﹣x+1,解得:x=﹣2a+3,故选:A.31.(2021•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【答案】A【解答】解:∵△ABC与△DEF位似,∴△ABC∽△DEF,BC∥EF,∴△OBC∽△OEF,∴==,即△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长之比为1:2,故选:A.命题点6 网络作图及其相关计算32.(2021秋•牧野区校级期中)如图,在每个小正方形的边长为1个单位的网格中,△ABC 的顶点均在格点(网格线的交点)上.(1)将△ABC向右平移5个单位得到△A1B1C1,画出△A1B1C1;(2)将(1)中的△A1B1C1绕点C1逆时针旋转90°得到△A2B2C1,画出△A2B2C1;(3)连接A1B2,则A1B2=.【答案】(1)如图(2)A1B2==3(3)3.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C1即为所求;(3)连接A1B2,A1B2==3,故答案为:3.33.(2021•安徽)如图,在每个小正方形的边长为1个单位的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)将△ABC向右平移5个单位得到△A1B1C1,画出△A1B1C1;(2)将(1)中的△A1B1C1绕点C1逆时针旋转90°得到△A2B2C1,画出△A2B2C1.【答案】(1)略(2)略【解答】解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C1即为所求作.34.(2021•绥化)如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,O为平面直角坐标系的原点,矩形OABC的4个顶点均在格点上,连接对角线OB.(1)在平面直角坐标系内,以原点O为位似中心,把△OAB缩小,作出它的位似图形,并且使所作的位似图形与△OAB的相似比等于;(2)将△OAB以O为旋转中心,逆时针旋转90°,得到△OA1B1,作出△OA1B1,并求出线段OB旋转过程中所形成扇形的周长.【答案】(1)略(2)4+π.【解答】解:(1)如图,△OA′B′或△OA″B″即为所求.(2)如图,△OA1B1即为所求.OB==2,线段OB旋转过程中所形成扇形的周长=2×2+=4+π.。
沪教版初中总复习专题训练中考总复习:图形的变换--知识讲解(基础)
沪教版初中数学中考总复习知识点梳理重点题型(常考知识点)巩固练习中考总复习:图形的变换--知识讲解(基础)【考纲要求】1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【考点梳理】考点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.【要点诠释】(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【要点诠释】(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.考点二、轴对称变换1.轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3.轴对称作图步骤①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.考点三、旋转变换1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.2.旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.3.旋转作图步骤①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.4.中心对称与中心对称图形中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心对称的对称点.中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫中心对称图形.5.中心对称作图步骤①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.【要点诠释】图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.【典型例题】类型一、平移变换1.如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为____________.【思路点拨】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【答案与解析】∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;【总结升华】此题主要考查了平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.举一反三:【变式】(2015•顺义区一模)如图,平行四边形ABCD中,点E是AD边上一点,且CE⊥BD于点F,将△DEC沿从D到A的方向平移,使点D与点A重合,点E平移后的点记为G.(1)画出△DEC平移后的三角形;(2)若BC=,BD=6,CE=3,求AG的长.【答案】解:(1)△AGB为△DEC平移后的三角形,如下图所示;(2)∵△AGB为△DEC平移后的三角形,∴BG=CE=3,BG∥CE,∵CE⊥BD,∴BG⊥BD.在Rt△BDG中,∵∠GBD=90°,BG=3,BD=6,∴DG==3,∵四边形ABCD是平行四边形,∴AD=BC=2,∴AG=DG﹣AD=3﹣2=.2.如图(1),已知的面积为3,且现将沿CA方向平移CA长度得到.(1)求所扫过的图形面积;(2)试判断,AF与BE的位置关系,并说明理由;(3)若求AC的长.【思路点拨】(1)根据平移的性质及平行四边形的性质可得到S△EFA=S△BAF=S△ABC,从而便可得到四边形CEFB 的面积;(2)由已知可证得平行四边形EFBA为菱形,根据菱形的对角线互相垂直平分可得到AF与BE的位置关系为垂直;(3)作BD⊥AC于D,结合三角形的面积求解.【答案与解析】(1)由平移的性质得AF∥BC,且AF=BC,△EFA≌△ABC∴四边形AFBC为平行四边形S△EFA=S△BAF=S△ABC=3∴四边形EFBC的面积为9;(2)BE⊥AF证明:由(1)知四边形AFBC为平行四边形∴BF∥AC,且BF=AC又∵AE=CA∴BF∥AE且BF=AE∴四边形EFBA为平行四边形又已知AB=AC∴AB=AE∴平行四边形EFBA为菱形∴BE⊥AF;(3)如上图,作BD⊥AC于D∵∠BEC=15°,AE=AB∴∠EBA=∠BEC=15°∴∠BAC=2∠BEC=30°∴在Rt△BAD中,AB=2BD设BD=x,则AC=AB=2x∵S△ABC=3,且S△ABC=AC•BD=•2x•x=x2∴x2=3∵x为正数∴x=∴AC=2.【总结升华】此题主要考查了全等三角形的判定,平移的性质,菱形的性质等知识点的综合运用及推理计算能力.类型二、轴对称变换3(2016•贵阳模拟)(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,,求证:∠B=30°,请你完成证明过程.(2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.(3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.【思路点拨】(1)Rt△ABC中,根据sinB═=,即可证明∠B=30°;(2)求出∠FA′D的度数,利用翻折变换的性质可求出∠ADG的度数,在Rt△A'FD中求出A'F,得出A'E,在Rt△A'EG中可求出A'G,利用翻折变换的性质可得出AG的长度.(3)先判断出AD=AC,得出∠ACD=30°,∠DAC=60°,从而求出AD的长度,根据翻折变换的性质可得出∠DAF=∠FAO=30°,在Rt△ADF中求出DF,继而得出FO,同理可求出EO,再由EF=EO+FO,即可得出答案.【答案与解析】(1)证明:Rt△ABC中,∠C=90°,,∵sinB==,∴∠B=30°;(2)解:∵正方形边长为2,E、F为AB、CD的中点,∴EA=FD=×边长=1,∵沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,∴A′D=AD=2,∴=,∴∠FA′D=30°,可得∠FDA′=90°﹣30°=60°,∵A沿GD折叠落在A′处,∴∠ADG=∠A′DG,AG=A′G,∴∠ADG===15°,∵A′D=2,FD=1,∴A′F==,∴EA′=EF﹣A′F=2﹣,∵∠EA′G+∠DA′F=180°﹣∠GA′D=90°,∴∠EA′G=90°﹣∠DA′F=90°﹣30°=60°,∴∠EGA′=90°﹣∠EA′G=90°﹣60°=30°,则A′G=AG=2EA′=2(2﹣);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,=tan30°,则AD=DC•tan30°=6×=2,∵∠DAF=∠FAO=∠DAO==30°,∴=tan30°=,∴DF=AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.【总结升华】本题考查了翻折变换的知识,涉及了含30°角的直角三角形的性质、平行四边形的性质,综合考察的知识点较多,注意将所学知识融会贯通.举一反三:【变式】(2016·松北区模拟)如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50°.若将其右下角向内这出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=度.【答案】∵∠CPR=∠B=×120°=60°,∠CRP=∠D=×50°=25°,∴∠C=180°-60°-25°=95°.4. 如图1,矩形纸片ABCD的边长分别为a,b(a<b).将纸片任意翻折(如图2),折痕为PQ.(P在BC上),使顶点C落在四边形APCD内一点C′,PC′的延长线交直线AD于M,再将纸片的另一部分翻折,使A落在直线PM上一点A′,且A′M所在直线与PM•所在直线重合(如图3),折痕为MN.(1)猜想两折痕PQ,MN之间的位置关系,并加以证明.(2)若∠QPC的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕PQ,•MN间的距离有何变化?请说明理由.(3)若∠QPC的角度在每次翻折的过程中都为45°(如图4),每次翻折后,非重叠部分的四边形MC′QD,及四边形BPA′N的周长与a,b有何关系,为什么?(1)(2)(3)(4)【思路点拨】(1)猜想两直线平行,由矩形的对边平行,得到一组内错角相等,翻折前后对应角相等,那么可得到PQ与MN被MP所截得的内错角相等,得到平行.(2)作出两直线间的距离.∵PM长相等,∠NPM是不变的,所以利用相应的三角函数可得到两直线间的距离不变.(3)由特殊角得到所求四边形的形状,把与周长相关的边转移到同一线段求解.【答案与解析】(1)PQ∥MN.∵四边形ABCD是矩形,∴AD∥BC,且M在AD直线上,则有AM∥BC.∴∠AMP=∠MPC.由翻折可得:∠MPQ=∠CPQ=∠MPC,∠NMP=∠AMN=∠AMP,∴∠MPQ=∠NMP,故PQ∥MN.(2)两折痕PQ,MN间的距离不变.过P作PH⊥MN,则PH=PM•sin∠PMH,∵∠QPC的角度不变,∴∠C′PC的角度也不变,则所有的PM都是平行的.又∵AD∥BC,∴所有的PM都是相等的.又∵∠PMH=∠QPC,故PH的长不变.(3)当∠QPC=45°时,四边形PCQC′是正方形,四边形C′QDM是矩形.∵C′Q=CQ,C′Q+QD=a,∴矩形C′QDM的周长为2a.同理可得矩形BPA′N的周长为2a,∴两个四边形的周长都为2a,与b无关.【总结升华】翻折前后对应角相等,对应边相等,应注意使用相应的三角函数,平行线的判断,特殊四边形的判定.类型三、旋转变换【高清课堂图形的变换例4】5.已知O是等边三角形ABC内一点,∠AOB=110°,∠BOC=135°,试问:(1)以OA,OB,OC为边能否构成一个三角形?若能,求出该三角形各角的度数;若不能,请说明理由;(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时,以OA,OB,OC为边的三角形是一个直角三角形?【思路点拨】因为△ABC是等边三角形,所以可以运用旋转将△BCO转至△ACD.【答案与解析】(1)以OC为边作等边△OCD,连AD.∵△ABC是等边三角形∴∠BCO=∠ACD (∠BCO+∠ACO=60°,∠ACD+∠ACO=60°)∵ BC=AC,OC=CD∴△BCO≌△ACD (SAS)∴ OB=AD,∠ADC=∠BOC又∵OC=OD∴△OAD是以线段OA,OB,OC为边构成的三角形∵∠AOB=110°, ∠BOC=135°∴∠AOC=115°∴∠AOD=115°-60°=55°∵∠ADC=135°∴∠ADO=135°-60°=75°∴∠OAD=180°-55°-75°=50°∴以线段OA,OB,OC为边构成的三角形的各角是50°、55°、75°.(2)∠AOB+∠AOC+∠BOC=∠AOB+∠AOC+∠ADC=∠AOB+(∠AOD+∠DOC)+(∠ADO+∠CDO)=∠110°+(∠AOD+60°)+(∠ADO+60°) =360°∴∠AOD+∠ADO=130°∴∠OAD=50°当∠AOD是直角时,∠AOD=90°,∠AOC=90°+60°=150°,∠BOC=100°;当∠ADO是直角时,∠ADC=90°+60°=150°,∠BOC=150°.【总结升华】此题主要运用旋转的性质、等边三角形的判定、勾股定理的逆定理等知识,渗透分类讨论思想.6 . 如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当=30°时,求证:△AOE1为直角三角形.【思路点拨】(1)要证AE1=BF1,就要首先考虑它们是全等三角形的对应边;(2)要证△AOE1为直角三角形,就要考虑证∠E1AO=90°.【答案与解析】(1)AE1=BF1,证明如下:∵O为正方形ABCD的中心,∴OA=OB=OD.∴OE=OF .∵△E1OF1是△EOF绕点O逆时针旋转角得到,∴OE1=OF1.∵ ∠AOB=∠EOF=900,∴ ∠E1OA=900-∠F1OA=∠F1OB.在△E1OA和△F1OB中,,∴△E1OA≌△F1OB(SAS).∴AE1=BF1.(2)取OE1中点G,连接AG.∵∠AOD=900,=30°,∴ ∠E1OA=900-=60°.∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°.∴ AG=GE1,∴∠GAE1=∠GE1A=30°.∴∠E1AO=90°.∴△AOE1为直角三角形.【总结升华】正方形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的判定. 举一反三:【变式】如图,P为正方形ABCD内一点,若PA=a,PB=2a,PC=3a(a>0).(1)求∠APB的度数;(2)求正方形ABCD的面积.【答案】(1)将△ABP绕点B顺时针方向旋转90°得△CBQ.则△ABP≌△CBQ且PB⊥QB.于是PB=QB=2a,.在△PQC中,∵,.∴.∴.∵△PBQ是等腰直角三角形,∴∠BPQ=∠BQP=45°.故∠APB=∠CQB=90°+45°=135°.(2)∵∠APQ=∠APB+∠BPQ=135°+45°=180°,∴三点A、P、Q在同一直线上.在Rt△AQC中,.∴正方形ABCD的面积.。
中考复习第30课时轴对称与中心对称课件
第30课时┃ 轴对称与中心对称
考 点 聚 焦
考点1 轴对称
1.下列图形中,不是轴对称图形的是( C )
考点聚焦
豫考探究
当堂检测
第30课时┃ 轴对称与中心对称
2.如图30-2,直线l是四边形ABCD的对称轴,有下面的结论: ①AB=AD;②BO=DO;③BD⊥AC;④△ABC≌△ADC. 其中正确的结论有 ①②③④ .(填序号)
2.[2012· 乐山] 如图30-9,在10×10的 正方形网格中,每个小正方形的边长 都为1,网格中有一个格点△ABC(即 三角形的顶点都在格点上 ). (1)在图中作出△ABC关于直线l对称的 △A1B1C1;(要求:A与A1,B与B1,C与C1相对应) (2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.
(3)拓展延伸 如图④:点P是四边形ABCD内一点,分别在边AB、BC上作出 点 .. M、点N,使PM+PN的值最小,保留作图痕迹,不写作法.
考点聚焦 豫考探究
当堂检测
第30课时┃ 轴对称与中心对称
解
(1) 3.
因为BP+PE=CE=AD= AB2-BD2= 22-12= 3; (2) 2 ;作B点关于CD的对称点B′,连接OA、OB′、AB′,则 OA2+OB′2 =
考点聚焦
豫考探究
当堂检测
第30课时┃ 轴对称与中心对称 解
(1)如图,△A1B1C1是△ABC关于直线l的对称图形.
(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高 是4. 1 1 ∴S四边形BB1C1C= (BB1+CC1)×4= ×(4+2)×4=12. 2 2
考点聚焦
豫考探究
中考数学点对点-轴对称与中心对称图形问题(解析版)
专题35 轴对称与中心对称图形问题专题知识点概述1.对称轴:把一个图形沿某条直线对折,如果它与另一个图形重合,就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2.轴对称图形:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
3.轴对称的性质:(1)关于某条直线成轴对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
(4)轴对称图形上对应线段相等、对应角相等。
4.中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
这个点就是它的对称中心。
例题解析与对点练习【例题1】(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A. B.C.D.【答案】C【解析】根据轴对称图形的概念对各选项分析判断利用排除法求解.A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不合题意.【对点练习】(2019山东东营)下列图形中,是轴对称图形的是()【答案】D【解析】观察图形,选项D中图形是轴对称图形,有3条对称轴,其他图形都不是轴对称图形.故选D.【例题2】(2020武汉模拟)下列图形中是中心对称图形的是()【答案】D【解析】根据中心对称图形是图形沿对称中心旋转180度后与原图重合的图形。
所给图形中只有D绕着中心旋转180°后能与自身重合,故选D。
【对点练习】下列图形是中心对称图形的是()A B C D【答案】A.【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.A.∵该图形旋转180°后能与原图形重合,∴该图形是中心对称图形;B.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;C.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;D.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形.专题点对点强化训练1.(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C.D.【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,不合题意;D.既是中心对称图形,又是轴对称图形,符合题意.2.下列图案中,属于轴对称图形的是()【答案】D.【解析】根据轴对称图形的定义:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.四个选项只有选项D符合要求,故答案选D.3.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.用字母表示数 C.随机性D.数形结合【答案】A【解析】用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的轴对称性。
2020中考数学知识点总结:轴对称与中心对称
2020中考数学知识点总结:轴对称与中心对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时41.轴对称与中心对称
【课前热身】
1. 下列几何图形中,一定是轴对称图形的有 ( ).
A. 2个
B. 3个
C. 4个
D. 5个 2. 下面四张扑克牌中,图案属于中心对称的是图中的( )
3. 下列图形中,既是轴对称图形,又是中心对称图形的是( )
A .等腰梯形
B .平行四边形
C .正三角形
D .矩形
4. 如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )
A.①③
B. ①④
C.②③
D.②④
【考点链接】
1. 如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是 ,这条直线就是它的 .
2. 如果一个图形沿一条直线折叠,如果它能与另一个图形 ,那么这两个图形成 ,这条直线就是 ,折叠后重合的对应点就是 .
3. 如果两个图形关于 对称,那么对称轴是任何一对对应点所连线段的 .
4. 把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做 图形,这个点就是它的 .
5. 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .
6. 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.
7. 两个点关于原点对称时,它们的坐标符号 ,即点),(y x P 关于原点的对称点
1P 为
.
A.B.C.D.② ③ ④
【典例精析】
例1 如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形
的边(包括顶点)上,且四边形的顶点在方格的顶点上.
(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形; (2)在图乙中作出的四边形是轴对称图形但不是中心对称图形; (3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.
例2 如图,在直角坐标系xOy 中, A(一l ,5),B(一3,0),C (一4,3).
(1) 在右图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′;
(2) 如果ABC △中任意一点M 的坐标为()x y ,,那么它的对应点N 的坐标
是 .
例3 下列图形中,是轴对称图形但不是中心对称图形的是( ) A .正三角形 B .菱形 C .直角梯形 D .正六边形
【中考演练】
1. 下列各图中,为轴对称图形的是( )
2. 如图是一个中心对称图形,A 为对称
中心,若∠C = 90°, ∠B = 30°,BC =1,则BB '的长为( )
A .4
B .
33 C .332 D .3
3
4 3. 如图是奥运会会旗杆标志图
案,它由五个半径相同的圆组成,象 征着五大洲体育健儿团结拼搏,那么
B
A .
B .
C .
D .
这个图案( )
A .是轴对称图形
B .是中心对称图形
C .不是对称图形
D .既是轴对称图形又是中心对称图形
4. 小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是 ( )
A. B. C. D.
5. 若将图2中的每个字母都看成独立的图案,则这七个图案中是中心对称图形的有
( )
A.1个
B.2个
C.3个
D.4个 6. 下列图形中既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D .
课时42.平移与旋转
【课前热身】
1. 下列四个图案中,可能通过右图平移得到的是( )
2. 将左图所示的图案按顺时针方向旋转90°后可以得到的图案是( )
3. 如图,OAB △绕点O 逆时针旋转80到OCD △的位置,已知
45AOB ∠=,则AOD ∠等于( )
A .55
B .45
C .40
D .
35
4. 将线段AB 平移1cm ,得到线段A B '',则对应点A 与A '的距离为 cm .
A .
B .
C .
D . A.
B.
C.
D.
【考点链接】
1. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为______,它是
由移动的和所决定.
2. 平移的特征是:经过平移后的图形与原图形的对应线段,对应,
图形的与都没有发生变化,即平移前后的两个图形;
且对应点所连的线段.
3. 图形旋转的定义:把一个图形的图形变换,叫做旋转,
叫做旋转中心,叫做旋转角.
4. 图形的旋转由、和所决定.其中①旋转
在旋转过程中保持不动.②旋转分为时针和时针. ③旋转一般小于360º.
5. 旋转的特征是:图形中每一点都绕着旋转了的角度,对应点到旋
转中心的相等,对应相等,对应相等,图形的都没有发生变化.也就是旋转前后的两个图形 .
【典例精析】
例1在下面的格点图中,每个小正方形的边长均为1个单位,请按下列要求画出图形:(1)画出图①中阴影部分关于O点的中心对称图形;
(2)画出图②中阴影部分向右平移9个单位后的图形;
(3)画出图③中阴影部分关于直线AB的轴对称图形
.
(图①)(图②)(图③)
例2如图是由若干个边长为1
的小正方形组成的网格,在图中作出
将五角星ABCDE向其东北方向平移
【中考演练】
1. 如图,将三角尺ABC(其中
∠ABC=60°,∠C=90°)绕B点按顺时
针方向转动一个角度到A1BC1的位置,
使得点A,B,C1在同一条直线上,那么
这个角度等于()
(第9题)
1
A
1 A
A .120°
B .90°
C .60°
D .30° 2. 如图所示是重叠的两个直角
三角形.将其中一个直角三角形沿BC 方
向平移得到DEF △.如果8cm AB =,4cm BE =,
3cm DH =,则图中阴影部分面积为
2cm .
3. △ABC 在平面直角坐标系中的位置如图所示.
(1)将△ABC 向右平移6个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;并写出点C 1的坐标;
(2)将△ABC 绕原点O 旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.
4. 在平面直角坐标系中,ΔABC 的三个顶点的位置如图所示, 点A ′的坐标是(一2,
2) ,现将△ABC 平移.使点A 变换为点A ′, 点B ′、C ′分别是B 、C 的对应点. (1)
请画出平移后的像///A B C ∆ (不写画法) ,并直接写出点/B 、/C 的坐标: /B ( )、/C ( ) .
(2) 若ΔABC 内部一点P 的坐标为(a ,b ),则点P 的对应点/P 的坐标是 .
(甲)
A
C
E D
B B
(乙) A
E 1
C D 1
O
F
﹡5.把一副三角板如图甲放置,其中90ACB DEC ==∠∠,45A =∠,30D =∠,斜边
6cm AB =,7cm DC =.把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙).这时AB 与CD 1相交于点O ,与D 1 E 1 相交于点F . (1)求1OFE ∠的度数; (2)求线段AD 1的长;
(3)若把三角形D 1 C E 1 绕着点C 顺时针再旋转30°得△D 2 C E 2 ,这时点B 在
△D 2 C E 2的内部、外部、还是边上?说明理由.。