轴对称专题复习
阶段专题复习:轴对称平移与旋转
汇报人:2023-11-29•轴对称平移•轴对称旋转•综合应用题目•实战技巧与注意事项录轴对称平移01将图形沿着一条直线对折,如果直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线就是它的对称轴。
定义轴对称图形的对称轴两侧是全等的,其对应点到对称轴的距离相等。
性质定义与性质通过应用轴对称平移可以创建新的几何形状或图案。
例如,可以将一个三角形或正方形沿着其对称轴进行平移,以形成一个新的多边形。
在几何形状中的应用轴对称平移在图案设计中具有广泛应用。
通过平移可以重复图案或生成新的复杂图案。
例如,可以将一个简单的图形或字母沿着一条直线进行平移,以形成重复的纹理或艺术作品。
在图案设计中的应用轴对称平移的应用给出一个图形和其经过轴对称平移后的图形,让判断这两个图形是否全等。
判断题作图题应用题给定一个图形,要求使用轴对称平移来创建一个新的图形。
将轴对称平移应用到实际问题中,例如建筑设计、服装设计等领域。
030201常见题型解析轴对称旋转02如果一个图形绕某一点旋转180度后,与另一个图形重合,那么这两个图形关于这个点对称,这个点叫做对称中心。
旋转前后,图形的形状和大小保持不变,但位置发生改变。
定义与性质性质定义0102轴对称旋转的应用在解决实际问题中,轴对称旋转可以用来寻找图形的中心点,从而更好地解决问题。
在几何图形中,轴对称旋转经常被用来证明图形的对称性。
判断是否为轴对称图形。
这类题目需要学生通过观察图形的特点,判断是否满足轴对称图形的定义。
类型一寻找对称中心。
这类题目需要学生通过观察图形,找到图形的对称中心。
类型二利用轴对称旋转解决实际问题。
这类题目需要学生利用轴对称旋转的性质,解决实际问题。
类型三常见题型解析综合应用题03题目背景与问题建模介绍轴对称、平移和旋转的基本概念和应用。
问题通过具体题目,让学生了解如何利用轴对称、平移和旋转解决实际问题。
步骤2. 分析已知条件和未知量。
4. 执行计算或推理,得出结论。
《易错题》初中八年级数学上册第十三章《轴对称》知识点复习(专题培优)
一、选择题1.如图,在△ABD 中,分别以点A 和点D 为圆心,大于12AD 的长为半径画弧,两弧相交于点M 、N ,作直线MN 分别交BD 、AD 于点C 、E .若AE=5cm ,△ABC 的周长=15cm ,则△ABD 的周长是( )A .35cmB .30cmC .25cmD .20cm C解析:C【分析】 利用线段的垂直平分线的性质即可解决问题.【详解】解:∵MN 垂直平分线段AD ,∴AC=DC ,AE+ED=AD=10cm ,∵AB+BC+AC=15cm ,∴AB+BC+DC=15cm ,∴△ABD 的周长=AB+BC+DC+AD=15+10=25cm ,故选:C .【点睛】本题考查了作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1-B .1C .0D .2021- A解析:A【分析】 关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案.【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020.解得a=2018,b=-2019,∴()()()202120212021=2018201911a b +-=-=- 故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,E F 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大D解析:D【分析】 先根据等边三角形的性质可得60ABC ACB BAC ∠=∠=∠=︒,从而可得120EBD DCF ∠=∠=︒,再根据等腰三角形的性质、角的和差可得BAD E CDF ∠=∠=∠,然后根据三角形全等的判定定理与性质可得BE CD =,从而可得BED 周长为BE BD DE BC AD ++=+,最后根据点到直线的距离即可得出答案.【详解】 ABC 是等边三角形,60ABC ACB BAC ∴∠=∠=∠=︒,120EBD DCF ∴∠=∠=︒,DF AD =,CAD F ∴∠=∠,又6060BAD CAD BAC CDF F ACB ∠+∠=∠=︒⎧⎨∠+∠=∠=︒⎩, BAD CDF ∴∠=∠,DE AD =,BAD E ∴∠=∠,E CDF ∴∠=∠,在BDE 和CFD △中,EBD DCF E CDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE CFD AAS ∴≅,BE CD ∴=,则BED 周长为BE BD DE CD BD AD BC AD ++=++=+,在点D 从B 运动到C 的过程中,BC 长不变,AD 长先变小后变大,其中当点D 运动到BC 的中点位置时,AD 最小,∴在点D 从B 运动到C 的过程中,BED 周长的变化规律是先变小后变大,故选:D .【点睛】本题考查了等腰三角形的性质、等边三角形的性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.4.如图,点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,若ODE 的周长为9cm ,那么BC 的长为( )A .8cmB .9cmC .10cmD .11cm B解析:B【分析】 由OB ,OC 分别是△ABC 的∠ABC 和∠ACB 的平分线和OD ∥AB 、OE ∥AC 可推出BD=OD ,OE=EC ,从而得出BC 的长等于△ODE 的周长即可.【详解】解:∵OD ∥AB ,OE ∥AC ,∴∠ABO=∠BOD ,∠ACO=∠EOC ,∵点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,∴∠ABO=∠OBD ,∠ACO=∠OCE ;∴∠OBD =∠BOD ,∠EOC=∠OCE ;∴BD=OD ,CE=OE ;∴△ODE 的周长=OD+DE+OE=BD+DE+EC= BC∵ODE 的周长为9cm ,∴BC=9cm .故选:B .【点睛】 此题考查了平行线性质,角平分线定义以及等腰三角形的判定定理,熟练掌握相关知识是解题的关键,难度中等.5.如图,在ABC 中,AB AC =,108BAC ∠=︒,72ADB ∠=︒,DE 平分ADB ∠,图中等腰三角形的个数是( )A .3B .4C .5D .6C解析:C【分析】利用等腰三角形的性质“等边对等角”,求出角的度数,再根据“等角对等边”证明三角形是等腰三角形.【详解】解:∵AB AC =, ∴ABC 是等腰三角形,∵108BAC ∠=︒, ∴180108362B C ︒-︒∠=∠==︒, ∵72ADB ∠=︒, ∴18072BAD B ADB ∠=︒-∠-∠=︒,∴ADB BAD ∠=∠,∴AB BD =,∴ABD △是等腰三角形,∵1087236DAC BAC BAD ∠=∠-∠=︒-︒=︒,∴DAC C ∠=∠,∴AD CD =,∴ACD △是等腰三角形,∵DE 平分ADB ∠, ∴1362ADE BDE ADB ∠=∠=∠=︒, ∴18072AED ADE DAE ∠=︒-∠-∠=︒, ∴AED DAE ∠=∠, ∴DE DA =, ∴ADE 是等腰三角形, ∵BDE B ∠=∠, ∴BE DE =, ∴BED 是等腰三角形,一共有5个等腰三角形.故选:C .【点睛】本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定. 6.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40C解析:C【分析】 当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想. 7.已知点(),3M a ,点()2,N b 关于x 轴对称,则2020()a b +的值( ) A .3-B .1-C .1D .3C 解析:C【分析】根据关于坐标轴对称的规律,关于谁对称谁不变,另一个坐标变为相反数即可获得a 和b 的值,然后即可得解.【详解】∵点(),3M a ,点()2,N b 关于x 轴对称∴2a =,3b =-∴()()20182018231a b +=-= 故选:C . 【点睛】本题考查了在坐标平面直角坐标系中关于x 轴对称的点的坐标的变化规律,点(),x y 关于x 轴对称的点的坐标为()x y -,,熟记规律即可得到正确答案.8.以下说法正确的是( )A .三角形中 30°的对边等于最长边的一半B .若a + b = 3,ab = 2,则a - b = 1C .到三角形三边所在直线距离相等的点有且仅有一个D .等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线D 解析:D【分析】对每个选项一一分析即可得到正确答案.【详解】解:A 、错误,正确的说法是:含30°的直角三角形中 30°的对边等于最长边的一半; B 、错误,例如a =1,b=2,满足a + b = 3 , ab = 2,但不满足a - b = 1;C 、错误,到三角形三边所在直线距离相等的点有4个,在三角形内部的有一个,是三个内角角平分线的交点,在三角形的外部还有三个,是三角形的外角角平分线的交点;D、正确,等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线,都在等腰三角形的底边的垂直平分线上,故选:D.【点睛】本题考查了含30°的直角三角形的性质,等腰三角形的性质,三角形的角平分线的性质,熟练掌握相关图形的性质是解决本题的关键.9.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②BP垂直平分CE;③PG=AG;④CP平分∠DCB;其中,其中说法正确的有()A.1个B.2个C.3个D.4个D解析:D【分析】①根据角平分线的定义与三角形外角的性质可证此结论;②利用等腰三角形“三线合一”可证明此结论;③根据角平分线定义与平行线性质可得∠APG=∠BAP,再利用等腰三角形的判定可证此结论;④如下图,由角平分线的性质定理可得PM=PN,PM=PO,则PN =PO,即可证明结论.【详解】解:∵AP平分∠BAC,PB平分∠CBE,∴∠CAB=2∠PAB,∠CBE=2∠PBE,∵∠CBE=∠CAB+∠ACB,∠PBE=∠PAB+∠APB,即∠CBE=∠CAB+2∠APB,∴∠ACB=2∠APB.故①正确;∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一).故②正确;∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴PG =AG .故③正确;如图,过点P 作PM ⊥AE 于点M ,PN ⊥AD 于点N ,PO ⊥BC 于点O ,∵AP 平分∠BAC ,PB 平分∠CBE ,∴PM=PN ,PM=PO ,∴PN =PO ,∴CP 平分∠DCB .故④正确.故选:D .【点睛】本题考查了角平分线的判定与性质、平行线的性质、等腰三角形的性质与判定,熟练掌握相关知识并能灵活运用所学知识进行论证是解题的关键.10.如图,在Rt △ABC 中,∠BAC =90°,∠ACB =45°,点D 是AB 中点,AF ⊥CD 于点H ,交BC 于点F ,BE ∥AC 交AF 的延长线于点E ,给出下列结论:①∠BAE =∠ACD ,②△ADC ≌△BEA ,③AC =AF ,④∠BDE =∠EDC ,⑤BC ⊥DE .上述结论正确的序号是( )A .①②⑤B .②④⑤C .①②④D .①②③A解析:A【分析】 由90BAE FAC ∠+∠=︒,90ACD FAC ,得出BAE ACD ∠=∠,①正确;由ASA 证明ADC BEA ∆≅∆,②正确;由AC AB AF ,得出③不正确;由全等三角形的性质得出AD BE =,由AD BD =,得出BE BD =,45BDE EDC ,④不正确;由等腰直角三角形的三线合一性质得出⑤正确;即可得出结论.【详解】90BAC ∠=︒,45ACB ∠=︒,ABC ∴是等腰直角三角形,90BAE FAC ∠+∠=︒,AB AC ∴=,45CBA ACB ,AF CD ⊥,90AHC ∴∠=︒,90ACD FAC ,BAE ACD ∴∠=∠,①正确;//BE AC ,180ABE BAC ,90ABE ∴∠=︒,在ADC ∆和BEA ∆中,90CADABE ACAB ACD BAE()ADCBEA ASA ,②正确; AC AB AF ,∴③不正确; ADC BEA , AD BE ∴=,点D 是AB 中点,AD BD ∴=,BE BD ∴=,45BDE EDC ,④不正确;90ABE ∠=︒,BE BD =,45CBA ∠=︒,45EBP ,即BP 平分ABE ∠,△BDE 为等腰直角三角形,∴根据“三线合一”可得BC ⊥DE ,⑤正确.故选:A .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟悉相关性质是解题的关键.二、填空题11.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.【分析】按程序先作y 轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P 变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成解析:(2,2017)--【分析】按程序先作y 轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P 变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】解:完成1次图形变换,点P (2,3)关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.12.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形,且△AOP的面积为16,则满足条件的P点个数是______.10【分析】使△AOP为等腰三角形只需分两种情况考虑:OA当底边或OA当腰当OA是底边时有2个点;当OA是腰时有8个点即可得出答案【详解】∵A(80)∴OA=8设△AOP的边OA上的高是h则×8×h解析:10【分析】使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,有2个点;当OA是腰时,有8个点,即可得出答案.【详解】∵A(8,0),∴OA=8,设△AOP的边OA上的高是h,则12×8×h=16,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①以A 为圆心,以8为半径画弧,交直线a 和直线b 分别有两个点,即共4个点符合, ②以O 为圆心,以8为半径画弧,交直线a 和直线b 分别有两个点,即共4个点符合, ③作AO 的垂直平分线分别交直线a 、b 于一点,即共2个点符合,其中,没有重复的点,∴4+4+1+1=10.故选:B .【点睛】本题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论. 13.如图,在ABC 和ADE 中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,其中点C ,D ,E 在同一条直线上,连接BD ,BE .以下四个结论:①ACE DBC ∠=∠;②45ACE DBC ∠+∠=︒;③BD CE ⊥;④BD CE =.一定正确的是______.②③④【分析】根据题意易证△ABD ≌△ACE 根据三角形全等的性质及余角的性质角的和差关系可进行判断进而得出正确答案【详解】解:∠DAC=∠DAC △ABD ≌△ACEBD=CE ∠ABD=∠ACE④正确;解析:②③④【分析】根据题意易证△ABD ≌△ACE ,根据三角形全等的性质及余角的性质、角的和差关系可进行判断,进而得出正确答案.【详解】 解:90BAC DAE ∠=∠=︒,∠DAC=∠DAC ,∴BAD CAE ∠=∠,AB AC =,AD AE =,∴△ABD ≌△ACE ,∴BD=CE ,∠ABD=∠ACE ,④正确;∵AB AC =,90BAC ∠=︒,∴∠ABC=∠ACB=45°,即∠ABC=∠ABD+∠DBC=45°,∴45ACE DBC ∠+∠=︒,②正确;∵90BAC ∠=︒,∴∠ABC+∠ACB=90°,∴∠DBC+∠DCB=90°,∴BD ⊥CE ,③正确;∴由题意可知ACE DBC ∠=∠不一定成立,综上所述:②③④正确;故答案为:②③④.【点睛】本题主要考查全等三角形的性质与判定及直角三角形的性质,熟练掌握全等三角形的性质与判定及直角三角形的性质是解题的关键.14.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90°∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4 ∵48OA =∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.15.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,从左起第1个等边三角形的边长记为1a ,第2个等边三角形的边长记为2a ,以此类推.若11OA =,则2021a =____.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2即:a1=1a2=2a3解析:20202【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2,即:a 1=1,a 2=2,a 3=4,a 4=8,,进而得出答案.【详解】∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2=2,A 3B 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,即:a 1=1,a 2=2,a 3=4,a 4=8,,以此类推:a n =2n-1.∴2021a =20202,故答案是:20202. .【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,直角三角形30度角的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.16.如图,已知点D 、点E 分别是边长为2a 的等边三角形ABC 的边BC AB 、的中点,连接,AD 点F 为AD 上的一个动点,连接,EF BF 、若,AD b =则BEF 的周长的最小值是__________.【分析】过C 作CE ⊥AB 于E 交AD 于F 连接BF 则BF+EF 最小证△ADB ≌△CEB 得CE=AD=b 即BF+EF=b 再根据等边三角形的性质可得BE=a 从而可得结论【详解】解:过C 作CE ⊥AB 于E 交AD解析:+a b【分析】过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,则BF+EF 最小,证△ADB ≌△CEB 得CE=AD=b ,即BF+EF=b ,再根据等边三角形的性质可得BE=a ,从而可得结论.【详解】解:过C作CE⊥AB于E,交AD于F,连接BF,∵△ABC是等边三角形,∴BE=12AB a=∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵ADB CEBABD CBE AB CB∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADB≌△CEB(AAS),∴CE=AD=b,即BF+EF=b,∴BEF的周长的最小值为BE+CF=a+b,故答案为:a+b.【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.17.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是________.6【分析】连接OD由题意可知OP=DP=OD即△PDO为等边三角形所以∠OPA =∠PDB =∠DPA=60°推出△OPA ≌△PDB 根据全等三角形的对应边相等知OA =BP =3则AP =AB−BP =6【详解解析:6【分析】连接OD .由题意可知OP =DP =OD ,即△PDO 为等边三角形,所以∠OPA =∠PDB =∠DPA=60°,推出△OPA ≌△PDB ,根据全等三角形的对应边相等知OA =BP =3,则AP =AB−BP =6.【详解】解:如图,连接OD ,∵PO =PD ,∴OP =DP =OD ,∴△PDO 为等边三角形,即∠DPO =60°,∵等边△ABC ,∴∠A =∠B =60°,AC =AB =9,∴∠OPA =180°−60°−∠DPA=120°−∠DPA∠PDB =180°−∠DPA−60°=120°−∠DPA∴∠OPA=∠PDB ,∴ 在△OPA 和△PDB 中,A B OPA PDB PO PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OPA ≌△PDB (AAS ),∵AO =3,∴AO =PB =3,∴AP =6.故答案是:6.【点睛】本题主要考查全等三角形的判定和性质、等边三角形的性质,关键在于求证△OPA ≌△PDB .18.如图,点D 是ABC ∠内一点,点E 在射线BA 上,且15DBE BDE ∠=∠=︒,//DE BC ,过点D 作DF BC ⊥,垂足为点F ,若BE a =,则DF =___________(用含a 的式子表示).【分析】作DH ⊥AB 根据直角三角形的性质求出DH 根据平行线的性质角平分线的性质解答【详解】解:作DH ⊥AB 于H ∵∴∠DEH=∠DBE+∠BDE=30°∴DH=∵DE ∥BC ∴∠DBF=∠BDE ∴∠DB 解析:12a 【分析】作DH ⊥AB ,根据直角三角形的性质求出DH ,根据平行线的性质,角平分线的性质解答.【详解】解:作DH ⊥AB 于H ,∵15DBE BDE ∠=∠=︒∴∠DEH=∠DBE+∠BDE=30°,DE BE a ==∴DH=11=22DE a , ∵DE ∥BC ,∴∠DBF=∠BDE , ∴∠DBF=∠DBH ,又DF ⊥BC ,DH ⊥AB ,∴DF=DH=12a , 故答案为:12a . 【点睛】本题考查的是角平分线的性质,直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.19.已知等边三角形ABC .如图,(1)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点; (2)作直线MN 交AB 于点D ;(3)分别以点A ,C 为圆心,大于12AB 的长为半径作弧,两弧相交于H ,L 两点; (4)作直线HL 交AC 于点E ; (5)直线MN 与直线HL 相交于点O ;(6)连接OA ,OB ,OC .根据以上作图过程及所作图形,下列结论:①2OC OD =;②2AB OA =;③OA OB OC ==;④120DOE ∠=︒,正确的是____________.①③④【分析】根据题意可得点O 是三边中垂线的交点从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可【详解】由题可得点O 为等边三角形ABC 三边中垂线的交点即:MN ⊥ABHL ⊥AC ∴根据等边三角形 解析:①③④【分析】根据题意可得点O 是三边中垂线的交点,从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可.【详解】由题可得点O 为等边三角形ABC 三边中垂线的交点,即:MN ⊥AB ,HL ⊥AC , ∴根据等边三角形的性质可得:∠DAO=∠EAO=30°,AD=AE ,∴△ADO ≌△AEO ,∴OD=OE ,又根据中垂线的性质得∠EAO=∠ECO=30°,∴在Rt △COE 中,OC=2OE ,∴OC=2OD ,故①正确;在Rt △ABE 中,显然AB=2AE ,而OA >AE ,∴AB≠2OA ,故②错误;根据中垂线性质可得OA=OB ,OA=OC ,∴OA=OB=OC ,故③正确;在四边形ADOE 中,∠ADO=∠AEO=90°,∠DAE=60°,∴∠DOE=360°-90°×2-60°=120°,故④正确;故答案为:①③④.【点睛】本题考查等边三角形的性质以及垂直平分线的画法和性质,以及全等三角形判定与性质,理解题意中所作图形的本质是解题关键.20.如图①,点D 为一等腰直角三角形纸片的斜边AB 的中点,E 是BC 边上的一点,将这张纸片沿DE 翻折成如图②,使BE 与AC 边相交于点F ,若图①中AB =2,则图②中△CEF 的周长为______________.【分析】如图作DM ⊥AC 于MDH ⊥BC 于HDN ⊥EB 于N 连接DF 首先证明△DFB ≌△DFC 推出CF=BF 可得再利用勾股定理求解即可得到答案【详解】解:如图作DM ⊥AC 于MDH ⊥BC 于HDN ⊥EB 于N 解析:2【分析】如图,作DM ⊥AC 于M ,DH ⊥BC 于H ,DN ⊥EB 于N ,连接DF .首先证明△DFB ≌△DFC ,推出CF=BF ,可得()CEF C EF CF EC EF FB EC =++=++=EB EC EB EC CB ''+=+=,再利用勾股定理求解B C '即可得到答案.【详解】解:如图,作DM ⊥AC 于M ,DH ⊥BC 于H ,DN ⊥EB 于N ,连接DF .∵,90CA CB ACB ''=∠=︒,AD B D '=,∴CD DB AD DB '===,45DCB DCA '∠=∠=︒,45B B '∠=∠=︒.∴DH DM =,,B DE BDE '≌,DH DN ∴=,DH DM DN ∴==∴DFM DFN ∠=∠,∵∠BFM=∠EFC ,∴∠DFB=∠DFC ,在△DFB 和△DFC 中,B DCF DFB DFC DF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DFB ≌△DFC ,∴CF=BF ,∵()CEF C EF CF EC EF FB EC =++=++=EB EC EB EC CB ''+=+=, ∵2AB '=,∴224B C AC '+=,,B C AC '= 2.B C '∴= (负根舍去)2.CEF C ∴=故答案为: 2.【点睛】本题考查翻折变换,等腰直角三角形的性质,全等三角形的判定和性质,角平分线的判定,勾股定理的应用,直角三角形斜边上的中线等于斜边的一半,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.三、解答题21.如图,△ABC 是边长为12cm 的等边三角形,动点M 、N 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动.(1)若点M 的运动速度是2cm/s ,点N 的运动速度是4cm/s ,当N 到达点C 时,M 、N 两点都停止运动,设运动时间为t (s ),当t=2时,判断△BMN 的形状,并说明理由; (2)当它们的速度都是2cm/s ,当点M 到达点B 时,M 、N 两点停止运动,设点M 的运动时间为t (s ),则当t 为何值时,△MBN 是直角三角形?解析:(1)△BMN 是等边三角形,见解析;(2)当t=2或t=4时,△BMN 是直角三角形.【分析】(1)先由等边三角形的性质解得,当t=2时,AM =4,BN=8,继而证明BM=BN ,再根据等边三角形的判定解题即可;(2)若△MBN 是直角三角形,则∠BNM=90°或∠BMN=90°,根据直角三角形含30°角的性质列方程解题即可.【详解】解:(1)△BMN 是等边三角形当t=2时,AM =4,BN=8,∵△ABC 是等边三角形且边长是12∴BM=12-4=8,∠B=60°∴BM=BN∴△BMN 是等边三角形;(2)△BMN 中,BM=12-2t ,BN=2t①当∠BNM=90°时,∠B=60°∴∠BMN=30° ∴12BN BM = ∴12(122)2t t =-∴t=2②当∠BMN=90°时,∠B=60°∴∠BNM=30°∴12BM BN = ∴112222t t -=⨯ ∴t=4综上:当t=2或t=4时,△BMN 是直角三角形.【点睛】本题考查直角三角形的判定、等边三角形的判定与性质、几何动点与一元一次方程等知识,涉及含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.如图,△ABC 是等边三角形,E 、F 分别是边AB 、AC 上的点,且AE =CF ,且CE 、BF 交于点P ,且EG ⊥BF ,垂足为G .(1)求证:∠ACE =∠CBF ;(2)若PG =1,求EP 的长度.解析:(1)见解析;(2)PE=2【分析】(1)证明△ACE≌△CBF(SAS),即可得到∠ACE=∠CBF;(2)利用由(1)知∠ACE=∠CBF,求出∠BPE=60°,又EG⊥BF,即∠PGE=90°,得到∠GEP=30°,根据在直角三角形中,30°所对的直角边等于斜边的一半,可求出EP 的长.【详解】(1)证明:∵△ABC是等边三角形,∴AC=BC,∠A=∠BCF=60°,AB=AC,在△ACE与△BCF中,AC=BC,∠A=∠BCF,AE=CF,∴△ACE≌△CBF(SAS),∴∠ACE=∠CBF;(2)解:∵由(1)知,∠ACE=∠CBF,又∠ACE+∠PCB=∠ACB=60°,∴∠PBC+∠PCB=60°,∴∠BPE=60°,∵EG⊥BF,即∠PGE=90°,∴∠GEP=30°,∴在Rt△PGE中,PE=2PG,∵PG=1,∴PE=2.【点睛】本题考查了全等三角形的性质定理与判定定理、等边三角形的性质,含30度的直角三角形的性质,解决本题的关键是证明△ACE≌△CBF.23.如图,网格中小正方形的边长为1,(1)画出△ABC关于x轴对称的△A1B1C1(其中A1、B1、C1分别为A、B、C的对应点);(2)△ABC的面积为;点B到边AC的距离为;(3)在x轴上是否存在一点M,使得MA+MB最小,若存在,请直接写出MA+MB的最小值;若不存在,请说明原因解析:(1)见解析;(2)112,113434;(3)存在,17 【分析】 (1)根据对称点的坐标规律,关于x 轴对称的点,横坐标相同,纵坐标互为相反数,找出对称点,顺次连接即可;(2)利用△ABC 所在矩形面积减去周围三角形面积,计算后即可得出答案,点B 到边AC 的距离即为△ABC 的AC 边上的高,利用勾股定理求得AC 的长,再根据已求得的△ABC 的面积从而求解结果;(3)根据两点之间线段最短,利用轴对称的性质先作点A 关于x 轴的对称点A ',连接A 'B 与x 轴相交于点M ,此时MA +MB 最小,且最小值为线段A 'B 的长度,利用勾股定理计算即可.【详解】 解:(1)如图所示,△A 1B 1C 1即为所求.(2)S △ABC =11111451235342222⨯-⨯⨯-⨯⨯-⨯⨯=. 设点B 到边AC 的距离为h ,∵网格中小正方形的边长为1, ∴AC 223534+=∵11122ABC Sh AC ==, 即1113422h =, 解得113434h =. 故答案为:1121134 (3)如图,在x 轴上存在一点M ,使得MA +MB 最小,作点A 关于x 轴的对称点A ',连接A 'B 与x 轴相交于一点,此交点即为点M ,由两点之间线段最短可得,此时MA +MB 最小.根据轴对称的性质可得:MA =MA ', ∴22'4117MA MB A B +==+=.【点睛】此题考查了轴对称变换、三角形面积的计算等知识,掌握轴对称与坐标变换并根据题意得出对应点位置是解题关键.24.如图,在四边形ABCD 中,//AB CD ,ABC ∠的平分线交CD 的延长线于点E ,F 是BE 的中点,连接CF 并延长交AD 于点G .(1)求证:BCG DCG ∠=∠.(2)若50CGD ︒∠=,58ABC ︒∠=,求ADE ∠的度数.解析:(1)见解析;(2)111ADE ︒∠=.【分析】(1)根据BE 平分ABC ∠,得到12ABF CBF ABC ∠=∠=∠,由 AB CD ∥,可证得BCE 是等腰三角形,根据F 为BE 的中点,可证BCG DCG ∠=∠;(2)根据AB CD ∥,58ABC ︒∠=,可得 122BCD ︒∠=,利用CG 平分BCD ∠,求得1612GCD BCD ︒∠=∠=,根据 50CGD ︒∠=,ADE CGD GCD ∠=∠+∠,可求得 111ADE ∠=︒.【详解】解:(1)∵BE 平分ABC ∠,∴12ABF CBF ABC ∠=∠=∠. ∵AB CD ∥,∴ABF E ∠=∠,∴CBF E ∠=∠,∴BC =CE , ∴BCE 是等腰三角形.∵F 为BE 的中点,∴CF 平分BCD ∠,即BCG DCG ∠=∠.(2)∵AB CD ∥, ∴180ABC BCD ∠+∠=︒.∵58ABC ︒∠=,∴122BCD ︒∠=.∵CG 平分BCD ∠,∴1612GCD BCD ︒∠=∠=. ∵50CGD ∠=︒,ADE CGD GCD ∠=∠+∠,∴111ADE ∠=︒.【点睛】本题考查了等腰三角形的判定和性质,平行线的性质,三角形外角的性质等等知识点,判断出△BCE 是等腰三角形是解题的关键.25.如图,在所给平面直角坐标系(每小格均为边长是1个单位长度的正方形)中完成下列各题.(1)已知()6,0A -,()2,0B -,()4,2C -,画出ABC 关于y 轴对称的图形△111A B C △,并写出1B 的坐标;(2)在y 轴上画出点P ,使PA PC +最小;(3)在(1)的条件下,在y 轴上画出点M ,使11MB MC -最大.解析:(1)见解析;B 1(2,0);(2)见解析;(3)见解析【分析】(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短即可;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边即可.【详解】解:(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0),如图;B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短,则PA+PC=PA+PC 1=AC 1,则点P 为所求,如图;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边,11MB MC -最大=C 1B 1,如图.【点睛】 本题考查轴对称作图,线段公里,三角形三边关系,掌握轴对称作图,线段公里,三角形三边关系是解题关键.26.如图,在ABC ∆中,60B ∠=︒,点M 从点B 出发沿线段BC 方向,在线段BC 上运动.在点M 运动的过程中,连结AM ,并以AM 为边在线段BC 上方,作等边AMN ∆,连结CN .(1)当_________BAM ∠=时,2AB BM =;(2)请添加一个条件:_________,使得ABC ∆为等边三角形;当ABC ∆为等边三角形时,求证:CN CM AC +=;解析:(1)30;(2)AB=AC;证明详见解析.【分析】(1)根据含30°角的直角三角形的性质解答即可;(2)利用等边三角形的判定即可解答;利用等边三角形的性质和全等三角形的判定证得△BAM≌△CAN(SAS),利用全等三角形的性质即可求证结论.【详解】(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM;故答案为30;(2)添加一个条件AB=AC,可得△ABC为等边三角形;故答案为AB=AC;①∵△ABC与△AMN是等边三角形,∴BC=AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,即∠BAM=∠CAN,∴△BAM≌△CAN(SAS),∴BM=CN,∴BM+CM=CN+CM即BC=AC=CN+CM.【点睛】本题考查等边三角形的判定及性质、全等三角形的判定及性质、含30°角的直角三角形的性质,解题的关键是熟练掌握所学知识.27.如图,在ABC ∆中,AB AC =.(1)尺规作图:作边AB 的垂直平分线,交AB 于点D ,交AC 于点E ,连结BE ;(保留作图痕迹,不写作法)(2)若6AB =,4BC =,求BEC ∆的周长.解析:(1)见详解;(2)10.【分析】(1)分别以A 、B 两点为圆心,以大于12AB 长度为半径画弧,在AB 两边分别相交于两点,然后过这两点作直线即为AB 的垂直平分线;(2)由中垂线的性质得AE =BE ,根据△EBC 的周长=BE +CE +BC =AE +CE +BC =AC +BC ,进而可得答案.【详解】(1)如图所示:(2)∵6AB =,∴6AC AB ==,∵DE 是AB 的垂直平分线,∴AE=BE ,∴BEC ∆的周长=BC+CE+BE=BC+CE+AE=BC+AC=4+6=10.【点睛】本题考查了线段的垂直平分线的性质及等腰三角形的性质及基本作图,解题的关键是掌握垂直平分线上的点到线段两端点的距离相等.28.已知,如图ABC ,AE 平分BAC ∠,EF AB ⊥,垂足为F ,点F 在AB 的延长线上,EG AC ⊥,垂足为点G ,ED 垂直平分BC ,D 为垂足,连结BE ,CE . 求证:BEF CEG △≌△.解析:见解析【分析】利用角平分线的性质得出EF EG =,再利用线段垂直平分线的性质得出BE CE =,最后证明Rt △BEF ≌Rt △CEG 即可.【详解】证明:AE ∵平分FAC ∠,EF AF ⊥,EG AC ⊥,EF EG ∴=, DE 垂直平分BC ,BE CE ∴=,EF AF ⊥,EG AC ⊥,90BFE CGE ∴∠=∠=︒,在Rt BEF 和Rt CEG △中,BE CE EF EG =⎧⎨=⎩Rt Rt (HL)BEF CEG ∴△≌△.【点睛】本题考查了全等三角形的判定与性质, 角平分线的性质及线段垂直平分线的性质,解题的关键是灵活运用性质解决问题.。
小学六年级下册小升初数学专题复习 图形的运动 轴对称 知识归纳 典例精析 拔高训练
1.轴对称的性质:像窗花一样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点.把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴.2.性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.分析:依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,据此即可进行解答.解:据分析可知:如果把一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.故答案为:一条直线、完全重合、轴对称图形.点评:此题主要考查轴对称图形的意义.1.对称轴的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴.2.找到对应点的连线,如果连线的中点都在一条直线上,说明是其图形的对称轴.3.掌握一般图形的对称轴数目和位置对于快速判断至关重要.例1:下列图形中,()的对称轴最多.A、正方形B、等边三角形C、等腰三角形D、圆形分析:依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以作出正确选择.解:(1)因为正方形沿两组对边的中线及其对角线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,两组对边的中线及其对角线就是其对称轴,所以正方形有4条对称轴;(2)因为等边三角形分别沿三条边的中线所在的直线对折,对折后的两部分都能完全重合,则等边三角形是轴对称图形,三条边的中线所在的直线就是对称轴,所以等边三角形有3条对称轴;(3)因为等腰梯形沿上底与下底的中点的连线对折,对折后的两部分都能完全重合,则等腰梯形是轴对称图形,上底与下底的中点的连线就是其对称轴,所以等腰梯形有1条对称轴;(4)因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.所以说圆的对称轴最多.故选:D.点评:解答此题的主要依据是:轴对称图形的概念及特征.例2:下列图形中,对称轴条数最多的是()分析:先找出对称轴,从而得出对称轴最多的图形.解:A:根据它的组合特点,它有4条对称轴;B:这是一个正八边形,有8条对称轴;C:这个组合图形有3条对称轴;D:这个图形有5条对称轴;故选:B.点评:此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.三、轴对称图形的辨识知识归纳1.轴对称图形的概念:如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.2.学过的图形中,线段、角、等腰三角形、等边三角形、长方形、正方形、等腰梯形、圆形、扇形都是轴对称图形,各自有不同数目的对称轴.常考题型例:如图的交通标志中,轴对称图形有()A、4B、3C、2D、1 分析:依据轴对称图形的定义即可作答.解:图①、③沿一条直线对折后,直线两旁的部分能够互相重合,所以图①、③是轴对称图形;图②、④无论沿哪一条直线对折后,直线两旁的部分都不能够互相重合,所以它们不是轴对称图形.如图的交通标志中,轴对称图形有2个.故选:C.点评:此题主要考查轴对称图形的定义.¤¤拔拔高高训训练练备备考考一.选择题(共6小题)1.下面图形中,不是轴对称图形的是()A.正方形B.长方形C.平行四边形D.圆2.下列交通标志中,()是轴对称图形。
苏科版八上数学期末复习专题:轴对称图形
2021~2022学年苏科版八上数学期末复习专题:轴对称图形【知识整理】1、线段垂直平分线性质:线段垂直平分线上的点到线段两端的距离相等;判定:到线段两端距离相等的点在这条线段的垂直平分线上。
2、角平分线性质:角平分线上的点到角两边的距离相等;如图,OC是Z AOB的平分线,D是OC上一点,DE丄OA于点E,DF丄OB于点F,则DE=DF。
判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
3、等腰三角形概念:有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另外一条边叫做底性质:①等腰三角形的两个底角相等;几何语言:•.•AB=AC・\Z B=Z C②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(简称“三线合一”)几何语言:•.•AB=AC,DBAD=DCAD(AD平分Z BAC)A ADDBC,BD=CDA判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
几何语言:•.•ZB=ZC.\AB=AC4、等边三角形概念:三条边相等的三角形叫做等边三角形或正三角形性质:三边相等,三个内角都等于60°。
判定:①有三条边相等的三角形是等边三角形;几何语言:•.•AB=AC=BC .•.△ABC 是等边三角形② 有三个角相等的三角形是等边三角形;几何语言:•.•ZA=ZB=ZC .△ABC 是等边三角形③ 有一个角等于60°的等腰三角形是等边三角形。
几何语言:•.•AB=AC ,Z B=60°・.△ABC 是等边三角形45、直角三角形① 直角三角形斜边上的中线等于斜边的一半;几何语言:•・•在RtO ABC 中,Z C=90°,D 为AB 中点/.CD =1AB2② 30°角所对的直角边等于斜边的一半。
几何语言:•・•在RtO ABC 中,Z C=90°,Z A=30°・.BC=1AB2 □勾股定理:直角三角形两直角边的平方和等于斜边的平方。
中考数学专题复习练习:轴对称与轴对称图形
典型例题一例01.下列图形中,不是轴对称图形的是( )(A )有两个角相等的三角形(B )有一个内角是的直角三角形︒45(C )有一个内角是,另一个内角为的三角形︒30︒120(D )有一个角是的直角三角形︒30分析:在(A )中,有两个角相等的三角形一定是等腰三角形,而等腰三角形一定是轴对称图形,它的对称轴为底边上的高(或底边上的中线或顶角的平分线). 而(B )和(C )中的两个三角形同样也是等腰三角形,所以也是轴对称图形. 那么(D )中三角形的三个内角各不相等,不是等腰三角形,所以(D )不是轴对称图形.解答:选(D )说明:在三角形中,只有等腰三角形才是轴对称图形,而不是等腰三角形的三角形就一定不是轴对称图形.典型例题二例02.已知:直线MN ,同侧两点A 、B (如图)求作:点P ,使P 在MN 上,并且最小.BP AP +作法 1.作点A 关于直线MN 的对称点.A '2.连结交MN 于PA A '点P 就是所求作的点.说明 这类问题经常遇到,可以和生活中的问题结合衍生出许多应用问题,但本质都是这道题.典型例题三例03.在图(a )中,分别作出点P 关于OA 、OB 的对称点,,连结交OA 1P 2P 21P P 于M ,交OB 于N ,若,则的周长为多少?cm P P 521=PMN ∆作法:略.解答:如图(b )所示,∵,P 关于OA 对称,1P ∴PMM P =1同理可得.PN N P =2∴的周长PMN ∆MN PN PM ++=N P MN M P 21++=cmP P 521==∴的周长为. PMN ∆cm 5 说明 准确作图是关键.典型例题四例04.已知:(如图)四边形ABCD 和过点D 的直线MN ,求作:四边形,使四边形与四边形ABCD 关于MN 对称.D C B A ''''D C B A ''''作法 1.作,垂足为E ;延长BE 到,使,得到点B 的对称MN BE ⊥B 'BE E B ='点.2.同法作点A 和点C 的对称点.C A ''3.因为D 在对称轴MN 上,所以点D 的对称点重合.D '4.连结、、.B A ''C B ''D C ''四边形即为所求.D C B A '''' 说明 关键是掌握概念和基本作图.典型例题五例05.有一条小河(如图所示),两岸有A 、B 两地,要设计道路并在河上垂直于河岸架一座桥,用来连接A 、B 间路线怎样走,桥应架在何处,才能使A 到B 的距离最短.分析:桥梁无论架在何处均垂直于河岸,因此桥梁的长度是定值,决定路程长度的关键是选取建桥点的位置,相对应地在河岸A 地同测取一点,使B 与河岸距离等于与河B 'B '岸到桥头的距离之和,于是,这个总是转化为“直线同侧有两点A 、,欲在直线上求一B '点,使这一点与A 、距离之和最短.B '已知:如图,河岸AB 两地求作:线段CD ,使CD 与、均互相垂直,并且最小.1l 2l BD CD AC ++作法:(1)作,与、分别交点、E ,并且1l B B ⊥'1l 2l E 'BEE B =''(2)在上取一点使(或者找到点关于的对称点)E E 'B ''E B E B ''='''B '1l B ''(3)连结,与交于C 点,作,与交于D 点,CD 即为所求作的线段.B A ''l 2l CD ⊥2l 典型例题六例06.如图所示,P 是平分线AD 上一点,P 与A 不重合,.BAC ∠AB AC >求证:ABAC PB PC -<-分析:用对称法. 可利用轴对称图形的知识找出点B 关于直线AD 的对称点,因AD B '为的平分线,故在AC 上,连结,从而构造与两个轴对称图BAC ∠B 'P B 'P B A '∆ABP ∆形,再利用三角形两边之差小于第三边来证明.证明:作点B 关于直线AD 的对称点,连结.B 'P B '∵AD 是的平分线,BAC ∠∴点在AC 上(是以角平分线AD 所在直线为对称轴的轴对称图形),B 'BAC ∠又∵AP 在对称轴AD 上,∴,P B BP B A AB '='=,在中,C B P '∆∵,C B B P PC '<'-,AB AC B A AC C B -='-=' ,P B BP '=∴.AB AC BP PC -<-说明:和就是利用角平分线AD 构造出的轴对称图形,这种方法对于证BAC ∆P B A '∆明有关线段的不等关系非常方便、有效.典型例题七例07.如图,E 、F 是的边AB 、AC 上的点,在BC 上求一点M ,使的ABC ∆EMF ∆周长最小.分析 因为E 、F 是定点,所以EF 是定值. 要使△EMF 的周长最小,只要MF ME +最小.解答 (1)作点F 关于直线BC 的对称点.F '(2)连结交BC 于M ,点M 就是所求.F E '说明 这类问题在日常生活中经常可以遇到.典型例题八例08.如图,过C 作的平分线AD 的垂线,垂足为D ,作交AC 于BAC ∠AB DE //E .求证:.CE AE =分析 由已知条件容易得到,从而. 要证明,只须证明32∠=∠DE AE =CE AE =,联想到AD 是角平分线又是垂线,若延长CD 交AB 的延长线于P ,则C 、P 关CE DE =于直线AD 对称,于是问题可以解决.解答 延长CD 交AB 的延长线于P .在和中,ADP ∆ADC ∆⎪⎩⎪⎨⎧∠=∠=∠=∠ADP ADC ADAD 21∴(角边角)ADC ADP ∆≅∆故.ACD P ∠=∠又∵,AP DE //∴,P ∠=∠4则.,4CE DE ACD =∠=∠∵,AB DE //∴,31∠=∠又∵,21∠=∠∴,32∠=∠∵(等边对等角),AE DE =∴.CE AE =说明 全等三角形是证明角或线段相等的一种方法,但不是惟一方法,不要一证线段相等就找全等三角形. 等腰三角形的判定定理及其推论,中垂线的性质,都是证线段相等的重要途径.典型例题九例09.如图,AD 是中的平分线,且.ABC ∆BAC ∠AC AB >求证:.DC BC>分析 由于AD 是的平分线,所以可以以AD 为轴构造轴对称图形,即把BAC ∠ADC ∆沿AD 翻折,这样,就可以在中解决问题.︒180DC DE =BED ∆证明 在AB 上截取AE ,使,连结DE .AC AE =∵AD 是的平分线,BAC ∠∴,21∠=∠在和中,AED ∆ACD ∆⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已证作图AD AD AC AE ∴(边角边),ACD AED ∆≅∆∴,DC DE =∴(全等三角形对应边对应角相等),43∠=∠∵,(内角和定理的推论),3∠>∠BED B ∠>∠4∴(大角对大边),ED BD B BED >∠>∠,∴.DC BD >说明 本题中的的就是利用角平分线构造出来的轴对称图形. 本题还有AED ∆ACD ∆其他构造轴对称图形的方法,比如把沿AD 翻折,也可证明结论.ADB ∆︒180选择题1.选择题(1)在下列命题中:①两个全等三角形是轴对称图形②两个关于直线对称的图形是全等形l ③等边三角形是轴对称图形④线段有三条对称轴正确命题的个数是()(A )1 (B )2 (C )3 (D )4(2)下列图形是一定轴对称图形的是()(A )任意三角形 (B )有一个角等于的三角形︒60(C )等腰三角形 (D )直角三角形(3)P 为内一点,且,则P 点是()ABC ∆PC PB PA ==(A )三条中线的交点 (B )三条高的交点(C )三个角的平分线的交点 (D )三边垂直平分线的交点(4)已知:D 为的边BC 的中点,且,下面各结论不正确的是()ABC ∆BC AD ⊥(A ) (B )ACD ABC ∆≅∆CB ∠=∠(C )AD 是的平分线 (D )是等边三角形BAC ∠ABC ∆(5)正五角星的对称轴有()(A )1条 (B )2条 (C )5条 (D )10条(6)等边三角形的对称轴共有()(A )1条 (B )3条 (C )6条 (D )无数条(7)下列四个图形①等腰三角形 ②等边三角形 ③等腰直角三角形 ④直角三角形中,一定是轴对称图形的有()(A )1个 (B )2个 (C )3个 (D )4个(8)下列图形中,不一定是轴对称图形的是()(A )线段 (B )角 (C )三角形 (D )等腰直角三角形参考答案:1.选择题(1)B (2)C (3)D (4)D (5)C (6)B (7)C (8)C 填空题1.填空题(1)等边三角形的对称轴有______条.(2)如果沿着一条直线折叠,两个点能互相重合,那么这两个点叫做_______.(3)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形_______.(4)如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做_______.参考答案1.填空题(1)3 (2)对称点 (3)轴对称 (4)轴对称图形解答题1.如图,已知线段AB 及直线MN ,求作线段AB 关于MN 的对称图形.2.如图,已知及直线EF ,求作关于EF 的对称图形.ABC ∆ABC ∆3.如图,已知折线ABC 及直线PQ ,求作折线ABC 关于直线PQ 的对称图形.4.如图,已知,分别以OM ,ON 为对称轴作三角形与它对称.ABC ∆5.在中,,,垂足为H ,点B 关于AH 的对称点是. ABC ∆C B ∠=∠2BC AH ⊥B '求证:.AB C B ='6.如图,已知:在直线MN 的同侧有两点A 和B .求作:MN 上一点,使.BCN ACM ∠=∠7.如图,EFGH 是一个矩形的台球台面,有黑白两球分别位于A ,B 两点位置上,试问:怎样撞击黑球A ,求能使A 先碰撞台边EF 反弹后两击中白球B ?参考答案1.略 2.略 3.略 4.略5.证明:连结,则易证,B A 'B A AB '=B B A B '∠=∠∵,∴,即.B CAC B B A '∠+∠='∠B ∠=C ∠=2B CA C '∠=∠AB C B AB =''=6.作法:作点A 关于MN 的对称点,连结,与MN 的交点为C ,则点C 就是所A 'A B '要求作的点. 证明:略.7.作点A 关于EF 的对称点,连结与EF 的交点为C ,则沿AC 方向撞击黑球A 'B A '就可以满足要求.。
初中数学专题复习(轴对称-最短距离问题)
初中数学专题复习(轴对称-最短距离问题)一.轴对称-最短路线问题1.(2020•荆门)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2B.2C.6D.3解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD=+,∴要求AC+BD的最小值,相当于在x轴上找一点P(n,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,如图1中,作点M关于x轴的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P ′M+P′N的最小值=P′N+P′Q=NQ==2,∴AC+BD的最小值为2.故选:B.2.(2020•贵港)如图,动点M在边长为2的正方形ABCD内,且AM⊥BM,P是CD边上的一个动点,E是AD边的中点,则线段PE+PM的最小值为()A.﹣1B.+1C.D.+1解:作点E关于DC的对称点E',设AB的中点为点O,连接OE',交DC于点P,连接PE,如图:∵动点M在边长为2的正方形ABCD内,且AM⊥BM,∴点M在以AB为直径的圆上,OM=AB=1,∵正方形ABCD的边长为2,∴AD=AB=2,∠DAB=90°,∵E是AD的中点,∴DE=AD=×2=1,∵点E与点E'关于DC对称,∴DE'=DE=1,PE=PE',∴AE'=AD+DE'=2+1=3,在Rt△AOE'中,OE'===,∴线段PE+PM的最小值为:PE+PM=PE'+PM=ME'=OE'﹣OM=﹣1.故选:A.3.(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长=5+1=6,故选:B.4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB 交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1D.解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴=,即=,解得,PO=故选:B.5.(2020•西宁)如图,等腰△ABC的底边BC=20,面积为120,点D在BC边上,且CD=5,直线EF是腰AC 的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为18.解:如图,作AH⊥BC于H,连接AM,∵EF垂直平分线段AC,∴MA=MC,∴DM+MC=AM+MD,∴当A、D、M共线时,DM+MC的值最小,∵等腰△ABC的底边BC=20,面积为120,AH⊥BC,∴BH=CH=10,AH==12,∴DH=CH﹣CD=5,∴AD===13,∴DM+MC的最小值为13,∴△CDM周长的最小值=13+5=18,故答案为18.6.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15.解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′作A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.7.(2020•毕节市)如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD上的动点,则AP+PE的最小值是.解:如图,连接CE交BD于点P,连接AP,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AP=CP,∴AP+EP=CP+EP=CE,此时AP+PE的最小值等于CE的长,∵正方形ABCD的边长为4,点E是边AB的中点,∴BC=4,BE=2,∠ABC=90°,∴CE==,∴AP+PE的最小值是,故答案为:.8.(2020•黑龙江)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EG=AB=1,EG∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴EG=CD,EG∥CD,连接ED∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点M,连接CM交定直线于E,则CM的长度即为EC+DE的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=AD=,∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×CD=.故答案为:.9.(2020•日照)如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)P,N分别为AC,BE上的动点,连接AN,PN,若DF=5,AC=9,求AN+PN的最小值.(1)证明:∵Rt△ABC中,∠C=90°,DF⊥CB,∴∠C=∠DFB=90°.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90°,∵∠DBF+∠ABC=90°,∠CAB+∠ABC=90°,∴∠DBF=∠CAB,∴△ABC≌△BDF(AAS);(2)解:∵△ABC≌△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.10.(2019•西藏)如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A.2B.2C.3D.解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=6,AE=2+2=4,∴BE===2,即PA+PB的最小值为2.故选:A.11.(2019•聊城)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB 的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.12.(2019•黑龙江)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为4.解:如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.∵四边形ABC都是矩形,∴AB∥CD,AB=CD=4,BC=AD=6,∵S△P AB=S△PCD,∴×4×x=××4×(6﹣x),∴x=2,∴AM=2,DM=EM=4,在Rt△ECD中,EC==4,∵PM垂直平分线段DE,∴PD=PE,∴PC+PD=PC+PE≥EC,∴PD+PC≥4,∴PD+PC的最小值为4.13.(2019•陕西)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.解:如图所示,以BD为对称轴作N的对称点N',连接PN',延长PN′交BC于M,根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.14.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.15.(2019•德阳)如图,在四边形ABCD中,BC∥AD,BC=AD,点E为AD的中点,点F为AE的中点,AC⊥CD,连接BE、CE、CF.(1)判断四边形ABCE的形状,并说明理由;(2)如果AB=4,∠D=30°,点P为BE上的动点,求△PAF的周长的最小值.解:(1)四边形ABCE是菱形,理由如下:∵点E是AD的中点,∴AE=AD.∵BC=AD,∴AE=BC.∵BC∥AD,即BC∥AE.∴四边形ABCE是平行四边形∵AC⊥CD,点E是AD的中点,∴CE=AE=DE,∴四边形ABCE是菱形(2)由(I)得,四边形ABCE是菱形.∴AE=EC=AB=4,且点A、C关于BE对称∵点F是AE的中点,AF=AE=2∴当PA+PF最小时,△PAF的周长最小即点P为CF与BE的交点时,△PAF的周长最小,此时△PAF的周长=PA+PF+AF=CF+AF,在Rt△ACD中,点E是AD的中点,则CE=DE,∠ECD=∠D=30°,∠ACE=90°﹣30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,CF⊥AE∴CF==2△PAF的周长最小=CF+AF=2.。
【精编版】中考数学轴对称与中心对称专题复习讲义
苏科版中考数学轴对称与中心对称专题一、选择题1.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,若∠AOB =15°,则∠AOB ′的度数是( )A .25°B .30°C .35°D .40°2.(2022湖北黄石一模)如图,在矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( )A.258 cmB.254 cmC.252 cm D .8 cm3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED′等于( ).A.︒50 B 、︒55 C 、︒60 D 、︒654.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =2 3,则四边形MABN 的面积是( )A .6 3B .12 3C .18 3D .24 3二、填空5.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△C B A 11,连结1AA ,若11B AA ∠=15°,则∠B 的度数是6.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0)、),(01x ,且1<1x <2,与y轴交于的正半轴的交点在(0,2)的下方。
下列结论:①a <b <0;②2a+c >0;③4a-2b+c >0;④2a -b+1>0,其中正确结论个数是A .1个B .2个C .3个D .4个填空题1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是__________.2.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ′BC ′的位置,且点A ,C 仍落在格点上,则线段AB 扫过的图形的面积是 __________平方单位(结果保留π).3如图,矩形纸片ABCD ,AB =2,∠ADB =30°,沿对角线BD 折叠(使△ABD 和△EBD •落在同一平面内),则A 、E 两点间的距离为________.4 如图,正方形ABCD 和正方形AEFG ,边AE 在边AB 上,AB =2AE =2.将正方形AEFG 绕点A 逆时针旋转60°,BE 的延长线交直线DG 于点P ,旋转过程中点P 运动的路线长为 .5 如图,在正方形ABCD 中,E 是AB 上一点,BE =2,AE =3BE ,P 是AC 上一动点,则PB +PE 的最小值是_______.C BA EG D F6.如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.三、解答:1、如图,在∠ABC内有一点P,问:(1)能否在BA,BC边上各找到一点M,N,使△PMN的周长最短?若能,请画图说明;若不能,请说明理由;(2)若∠ABC=40°,在(1)问的条件下,能否求出∠MPN的度数?若能,请求出它的数值;若不能,请说明理由.2去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河同一侧的张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴,建立平面直角坐标系(如图6-1-20),两村的坐标分别为A(2,3),B(12,7).(1)若从节约经费考虑,水泵站建在距离大桥O多远的地方,可使所用输水管最短?(2)水泵站建在距离大桥O多远的地方,可使它到张村、李村的距离相等?3、如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP 与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.4.如图,抛物线y=x2﹣2mx﹣3m2(m为常数,m>0),与x轴相交于点A、B,与y轴相交于点C,(1)用m的代数式表示:点C坐标为,AB的长度为;(2)过点C作CD∥x轴,交抛物线于点D,将△ACD沿x轴翻折得到△AEM,延长AM 交抛物线于点N,①求的值;②若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使△AQN的面积最大?如果存在,求t的值;如果不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.6、在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为22的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与A G在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,将线段DG与线段BE相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.答案:选择题:1、B2、B3、4、、605、︒6、C填空题π1、613π2、4 34、2 35、6、作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值,根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON ′中,M′N′=32+12=10,故答案为107、解答题:1、解:(1)如图D27,作P点关于AB,BC两边的对称点E,F,连接E,F;与AB,BC交于点M,N,连接PM,PN,△PMN的周长最短.因为EM=PM,PN=FN,NM=NM,PM +PN+MN=EM+FN+MN=EF的长(两点之间,线段最短).(2)能.∵∠ABC=40°,∴∠EPF=140°.又∵∠PMN=∠EPM+∠MEP=2∠EPM,∠PNM=∠FPN+∠NFP=2∠FPN,∴∠PMN+∠PNM=2(∠EPM+∠FPN).∴180°-∠MPN=2(140°-∠MPN).∴∠MPN=100°.2.解:(1)如图D28,作点B关于x轴的对称点E,连接AE,则点E为(12,-7).设直线AE 的函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧ 2k +b =3,12k +b =-7.解得⎩⎪⎨⎪⎧k =-1,b =5. ∴直线AE 的解析式为y =-x +5.当y =0时,x =5.所以,当水泵站应建在距离大桥5千米的地方时,可使所用输水管道最短.图D28(2)如图D28作线段AB 的垂直平分线GF ,交AB 于点F ,交x 轴于点G ,设点G 的坐标为(x,0).在Rt △AGD 中,AG 2=AD 2+DG 2=9+(x -2)2.在Rt △BCG 中,BG 2=BC 2+GC 2=49+(12-x )2.∵AG =BG ,∴9+(x -2)2=49+(12-x )2.解得x =9.∴水泵站建在距离大桥9千米的地方,可使它到张村、李村的距离相等.3、(1)证明:如图,连接OE .∵CD 是圆O 的直径,∴∠CED=90°.∵OC=OE ,∴∠1=∠2.又∵∠PED=∠C ,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE ⊥EP ,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)证明:∵AB 、CD 为⊙O 的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED 平分∠BEP ;(3)解:设EF=x ,则CF=2x ,∵⊙O 的半径为5,∴OF=2x ﹣5,在RT △OEF 中,OE 2=OF 2+EF 2,即52=x 2+(2x ﹣5)2, 解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8, ∴DF=CD ﹣CF=10﹣8=2,∵AB 为⊙O 的直径,∴∠AEB=90°,∵AB=10,BE=8,∴A E =6 ∵∠BEP=∠A ,∠EFP=∠AEB=90°,∴△AEB ∽△EFP , ∴=,即=,∴PF=,∴PD=PF ﹣DF=﹣2=.4、解:(1)令x=0,则y=﹣3m 2,即C 点的坐标为(0,﹣3m 2), ∵y=x 2﹣2mx ﹣3m 2=(x ﹣3m )(x+m ),∴A (﹣m ,0),B (3m ,0),∴AB=3m ﹣(﹣m )=4m ,故答案为:(0,﹣3m 2),4m ;(2)①令y=x 2﹣2mx ﹣3m 2=﹣3m 2,则x=0(舍)或x=2m ,∴D(2m,﹣3m2),∵将△ACD沿x轴翻折得到△AEM,∴D、M关于x轴对称,∴M(2m,3m2),设直线AM的解析式为y=kx+b,将A、M两点的坐标代入y=kx+b得:,解得:,∴直线AM的解析式为:y=mx+m2,联立方程组:,解得:(舍)或,∴N(4m,5m2),∴;②如图:∵AB=4,∴m=1,∴抛物线的解析式为y=x2﹣2x﹣3,直线AM的解析式为y=x+1,∴P(t,t+1),Q(t,t2﹣2t,﹣3),N(4,5),A(﹣1,0),B(3,0)设△AQN的面积为S,则:S===,∴t=,S最大.5、解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).6、(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90∘,AG=AE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90∘,∴∠AEB+∠ADG=90∘,在△EDH中,∠AEB+∠ADG+∠DHE=180∘,∴∠DHE=90∘,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90∘,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90∘,∵BD为正方形ABCD的对角线,∴∠MDA=45∘,在Rt△AMD中,∠MDA=45∘,∴cos45∘=DMAD,∵AD=2,∴DM=AM=2√,在Rt△AMG中,根据勾股定理得:GM=AG2−AM2−−−−−−−−−−√=6√,∵DG=DM+GM=2√+6√,∴BE=DG=2√+6√;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.轴对称知识点总结:【知识脉络】【基础知识】Ⅰ. 轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.Ⅱ. 作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).Ⅲ. 等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. Ⅳ. 最短路径一.图形旋转1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角;在平面内,将一个图形一个定点转动一定的角度,这样的图形运动称为图形的旋转。
中考数学复习轴对称图形专题训练
中考数学复习轴对称图形专题训练一、选择题1.①直角三角形②线段③平行四边形④梯形⑤角⑥等腰三角形上述图形中,不是轴对称图形的有()A.②⑤B.③⑤C.③④D.①③④2.将A、B、C、D、E、F、G、H、I、J这十个字母竖立在镜子前,在镜子中看到的像能与原字母相同的有()个.A.3 B.4 C.5 D.63.如图,下列图案是几家银行的标志,其中是轴对称图形的有()个A.1个B.2个C.3个D.4个4.下图中,不是轴对称图形的是().A.B.C.D.5.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如下图示,则电子表的实际时刻是()A.10:51 B.10:21 C.15:01 D.12:01不6.已知:下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,与其他三个..同的是( )A . ①B . ②C . ③D .④7.如图,△ABC 与△A 1B 1C 1关于直线对称,将向右平移得到△A 2B 2C 2.由此得出下列判断:(1)AB//A 2B 2;(2)∠A=∠A 2;(3)AB= A 2B 2.其中正确的是( )A .(1)(2)B .(2)(3)C .(1)(3)D .(1)(2)(3) 8.已知点P 1(a ,3)和P 2(4,b )关于轴对称,则(a+b )2020的值为( ) A .1 B .-1 C . 72020 D .-72020第7题图 第9题图9.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠+∠12 之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A. ∠=∠+∠A 12 B. 212∠=∠+∠A C. 3212∠=∠+∠A D. )21(23∠+∠=∠A 10.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为( )A.4 B.6 C.8 D.10二、填空题11.设A,B关于直线EF对称,则AB______EF.12.关于直线EF对称的两个图形_________(填“一定”或“不一定”)全等.13.在等腰△ABC中,∠A=108°,D,E是BC上的两点,且BD=AD,AE=•EC,•则图中共有_______个等腰三角形.14.在△ABC中,高AD,BE交于O点,且BO=AC,则∠ABC=________.15.等腰三角形有一底角的外角为105°,那么它的顶角的度数为________.16.在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交BC于D,且BD=10cm,则DC=_________.17.在△ABC中,∠A=78°,点D,E,F分别在边BC,AB,AC上,BD=BE,CD=CF,•则∠EDF=_______三、作图题18.如图,给出了一个轴对称图形的一半,其中直线l为这个图形的对称轴,请你画出这个图形的另一半(不用写作法,但要保留作图痕迹).解:第18题图四、能力提高19.如图所示,在四边形ABCD 中,对角线AC 与BD 相交于点E ,若AC 平分∠DAB ,•且AB=AE ,AC=AD ,求证∠DBC=12∠DAB .20.如图所示,△ABC 中,已知∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,若BD+CE=9,求线段DE 的长.21.某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案.22.如图所示,△ABC 中,D ,E 在BC 上,且DE=EC ,过D 作DF ∥BA ,交AE 于点F ,•DF=AC ,求证AE 平分∠BAC .CE BADCE BAD F答案一、1.B 2.C 3.C 4.B 5.B 6.B 7.C 8.D 9.C 10.A二、11.垂直平分12.一定13.6 14.45°15.30°16.20cm 17.51°三、18.略19.解:在AC边上取一点E,使AE=AB,连接DE,在△BAD和△EAD中,,,,AB AEBAD EAD AD AD=⎧⎪∠=∠⎨⎪=⎩所以△BAD≌△EAD(SAS),所以BD=DE,因为AC=AB+BD,所以AC=AE+DE,又因为AC=AE+EC,所以DE=EC,所以∠EDC=∠C=30°,所以∠AED=∠EDC+∠C=60°,因为△BAD≌△EAD,所以∠B=∠AED=60°,所以∠BAC=180°-∠B-∠C=90°.20.解:因为AB=AC,所以∠ABC=∠ACB,又因为∠OBC=∠OCA,EBADF所以∠ABC+∠ACB=2(∠OBC+∠OCB),因为∠BOC=110°,所以∠OBC+∠OCB=70°,所以∠ABC+∠ACB=140°,所以∠A=180°-(∠ABC+∠ACB)=40°.四、21.略22.证明:延长FE到G,使EG=EF,连接CG,在△DEF和△CEG中,ED=EC,∠DEF=∠CEG,FE=EG,所以△DEF≌△CEG,所以DF=GC,∠DFE=∠G,因为DF∥AB,所以∠DFE=∠BAE,因为DF=AC,所以GC=AC,所以∠G=∠CAE,所以∠BAE=∠CAE,即AE平分∠BAC.。
人教版八年数学上 第13章_轴对称单元复习课件(共27张PPT)
(3)图形轴对称的性质:如果两个图形关于某直线对 称,那么对称轴是任何一对对应点所连线段的垂直平
分线。
3
(4)轴对称图形的性质:轴对称图形的对称轴是任何一 对对应点所连线段的垂直平分线。
13
例1 如图,以直线AE为对称轴,画出该图形的另一部分。
B C
A D E
解:作图过程如下:
(1)分别作出点B、C关 F 于直线AE的对称点F、H。
(2)连结AF、FD、DH、 HE,得到所求的图形。
H
14
点P(a,b)关于x轴对称的点的坐标为(a,-b)
点P(a,b)关于y轴对y 称的点的坐标为(-a,b)
到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上。
4
正方形、长方形、等腰三角形、等腰梯形 和圆都是轴对称图形。有的轴对称图形有不止 一条对称轴。
5
二、题目特点:
• 判断轴对称图形或对称轴的条数 • 根据轴对称图形的性质作对称轴 • 用线段垂直平分线的性质解决计算题或进行证明说理 三、解题切入点:
4
A5E来自FG3
12
∴ AB=DB, ∠1= ∠2=60° 从而有 ∠3= ∠1=60° 在△ABF和△DBG中
∠3= ∠1
BC
∠4= ∠5
AB=DB
∴ △ABF≌ △DBG
∴BF=BG
1.如图,在△ABC中,BP、CP分别是∠ABC和 ∠ACB的平分线,且PD//AB,PE//AC,求 △PED的周长 .
3
2
B1
初三数学中考复习专题图形的轴对称 练习试题
初三数学中考复习专题图形的轴对称 练习试题1 / 19图形的轴对称一、选择题1. 下列图案属于轴对称图形的是( )A.B.C.D.2. 下列说法:①角是轴对称图形,对称轴是角的平分线;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对称点一定在直线的两旁,其中正确的有( )A. 4个B. 3个C. 2个D. 1个3. 下列大学的校徽图案是轴对称图形的是( )A. 清华大学B. 北京大学C. 中国人民大学D. 浙江大学4. 给出下列图形名称:(1)线段;(2)直角;(3)等腰三角形;(4)平行四边形;(5)长方形,在这五种图形中是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个5. 如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.B.C.D. 7cm6.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A. △是等腰三角形B. MN垂直平分,C. △与△面积相等D. 直线AB、的交点不一定在MN上7.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.8.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后得到的是()A. B. C. D.9.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A. 1个初三数学中考复习专题图形的轴对称 练习试题3 / 19B. 2个C. 3个D. 4个10. 如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A. B. C. D. 11. 如图,在等腰△ABC 中,AB =AC ,∠BAC =50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A.B.C.D.12. 如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在直线折叠得到△AGE ,延长AG 交CD 于点F ,已知CF =2,FD =1,则BC 的长是()A. 5cmB. 10cmC. 20cmD. 15cm二、填空题13.如图,在A BCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为______.14.如图,把一张长方形纸片ABCD沿EF折叠,C点落在C′处,D点落在D′处,ED′交BC于点G.已知∠EFG=50°,则∠BGD′的度数为______ .15.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有________种选择.16.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是______.17.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(-4,0),点P为直线一动点,当PC+PO值最小时点P的坐标为______.三、解答题(本大题共3小题,共24.0分)18.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,BD=6,DC=4,求AD的长.小明同学利用翻折,巧妙地解答初三数学中考复习专题图形的轴对称 练习试题5 / 19了此题,按小明的思路探究并解答下列问题:(1)分别以AB ,AC 所在直线为对称轴,画出△ABD 和△ACD 的对称图形,点D 的对称点分别为点E ,F ,延长EB 和FC 相交于点G ,求证:四边形AEGF 是正方形;(2)设AD =x ,建立关于x 的方程模型,求出AD 的长.19. 如图,它是一个8×10的网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上.(1)画出△ABC 关于直线OM 对称的△A 1B 1C 1.(2)画出△ABC 关于点O 的中心对称图形△A 2B 2C 2.(3)△A 1B 1C 1与△A 2B 2C 2组成的图形是轴对称图形吗?如果是,请画出对称轴.△A 1B 1C 1与△A 2B 2C 2组成的图形______(填“是”或“不是”)轴对称图形.20.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.初三数学中考复习专题图形的轴对称练习试题答案和解析1.【答案】A【解析】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选:A.根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.2.【答案】C【解析】解:①角是轴对称图形,对称轴是角的平分线所在的直线,而非角平分线,故①错误;②等腰三角形至少有1条对称轴,至多有3条对称轴,正三角形有三条对称轴,故②正确;③关于某直线对称的两个三角形一定可以完全重合,所以肯定全等,故③正确;④两图形关于某直线对称,对称点可能重合在直线上,故④错误;综上有②、③两个说法正确.故选C.7 / 19要找出正确的说法,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.本题考查了轴对称以及对称轴的定义和应用,难度不大,属于基础题.3.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.此题主要考查了轴对称图形,关键是找出图形中的对称轴.4.【答案】D【解析】解:(1)线段;(2)直角;(3)等腰三角形;(5)长方形是轴对称图形,共4个,故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.此题主要考查了轴对称图形,关键是找出图形的对称轴.5.【答案】A【解析】初三数学中考复习专题图形的轴对称练习试题解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN-MQ=4-2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ 的长,即可得出QR的长.此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.6.【答案】D【解析】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,A、B、C选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上.D错误;故选:D.据对称轴的定义,△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,可以判断出图中各点或线段之间的关系.本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.7.【答案】C【解析】9 / 19解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.根据中心对称图形和轴对称图形对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.【答案】C【解析】解:如图,展开后图形为正方形.故选:C.由图可知减掉的三角形为等腰直角三角形,展开后为正方形.本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.9.【答案】C【解析】【分析】本题考查了画轴对称图形.找出对称轴,根据对称轴的性质画图是解题的关键.根据网格可知,画三角形ABC的对称图形共有3个符号题意得对称轴,所以可以画3个符合题意的三角形即可解答.【解答】解:根据题意画出图形如下:初三数学中考复习专题图形的轴对称 练习试题11 / 19,共有三条对称轴,分别是a ,b ,c ,根据画轴对称图形的方法可以画3个符合题意的三角形.故选C.10.【答案】D【解析】【分析】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.连接BF ,根据三角形的面积公式求出BH ,得到BF ,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4,∴AE==5,由折叠知,BF ⊥AE (对应点的连线必垂直于对称轴)∴BH==,则BF=, ∵FE=BE=EC ,∴∠BFC=90°,∴CF==.故选D.11.【答案】C【解析】解:如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC-∠ABO=65°-25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-40°-40°=100°,∴∠CEF=∠CEO=50°.故选:C.连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.该题主要考查了等腰三角形的性质以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析、判断.初三数学中考复习专题图形的轴对称 练习试题13 / 1912.【答案】B【解析】解:连接EF ,∵E 是BC 的中点,∴BE=EC ,∵△ABE 沿AE 折叠后得到△AFE ,∴BE=EG ,∴EG=EC ,∵在矩形ABCD 中,∴∠C=90°, ∴∠EGF=∠B=90°, ∵在Rt △EFG 和Rt △EFC 中,,∴Rt △EFG ≌Rt △EFC (HL ),∴FG=CF=2,∵在矩形ABCD 中,AB=CD=CF+DF=2+1=3,∴AG=AB=3,∴AF=AG+FG=3+2=5,∴BC=AD===2.故选B .首先连接EF ,由折叠的性质可得BE=EG ,又由E 是BC 边的中点,可得EG=EC ,然后证得Rt △EFG ≌Rt △EFC (HL ),继而求得线段AF 的长,再利用勾股定理求解,即可求得答案.此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.注意证得FG=FC 是关键.17.【答案】80°【解析】 【分析】本题主要考查的是平行线的性质和轴对称的性质.首先由平行线的性质得出∠DEF=∠EFG=50°,然后由折叠性质得出∠DEG=100°,最后根据对顶角相等得出∠BGD′的度数即可.【解答】解:∵四边形ED′C′F 由四边形EDCF 折叠而成,∴∠DEG=2∠DEF=2∠D′EF.∵AD∥BC,∴∠DEF=∠EFG=50°,∠AEG=∠EGF,∴∠GEF=∠DEF=50°,∴∠DEG=∠GEF+∠DEF=100°.∴∠AEG=180°-∠DEG=80°∴∠EGF=80° ,∴∠BGD′=∠EGF=80°.故答案为80°.18.【答案】3【解析】【分析】本题主要考查轴对称图形的概念.此题利用格点图,考查学生轴对称性的认识.此题关键是找对称轴,按对称轴的不同位置,可以有多种画法.根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有3个位置使之成为轴对称图形.故答案为3.19.【答案】(-10,3)【解析】解:设CE=a,则BE=8-a,由题意可得,EF=BE=8-a,∵∠ECF=90°,CF=4,∴a2+42=(8-a)2,解得,a=3,初三数学中考复习专题图形的轴对称练习试题设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E的坐标为(-10,3),故答案为(-10,3).根据题意可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E 的坐标.本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化-对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【答案】(-,)【解析】【分析】本题考查的是一次函数的应用和轴对称的性质,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求.求出AB两点的坐标,据此可得出∠BAO及∠ACC′的度数,根据轴对称的性质得出△ACC′是等腰直角三角形,故可得出C′点的坐标,利用待定系数法求出直线OC′的坐标,进而可得出P点坐标.【解答】解:如图,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求,15 / 19∵直线y=x+6与x轴、y轴分别交于点A和点B,∴A(-6,0),B(0,6),∴∠BAO=45°.∵CC′⊥AB,∴∠ACC′=45°.∵点C,C′关于直线AB对称,∴AB是线段CC′的垂直平分线,∴△ACC′是等腰直角三角形,∴AC=AC′=2,∴C′(-6,2).设直线OC′的解析式为y=kx(k≠0),则2=-6k,解得k=-,∴直线OC′的解析式为y=-x,∴,解得,∴P(-,).故答案为(-,).21.【答案】(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF.∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,∴∠EAF=90°.又∵AD⊥BC∴∠E=∠ADB=90°,∠F=∠ADC=90°.∴四边形AEGF是矩形,又∵AE=AD,AF=AD初三数学中考复习专题图形的轴对称 练习试题17 / 19∴AE =AF .∴矩形AEGF 是正方形;(2)解:设AD =x ,则AE =EG =GF =x .∵BD =6,DC =4,∴BE =6,CF =4,∴BG =x -6,CG =x -4,在Rt △BGC 中,BG 2+CG 2=BC 2,∴(x -6)2+(x -4)2=102.化简得,x 2-10x -24=0解得x 1=12,x 2=-2(舍去)所以AD =x =12.【解析】(1)先根据△ABD ≌△ABE ,△ACD ≌△ACF ,得出∠EAF=90°;再根据对称的性质得到AE=AF ,从而说明四边形AEGF 是正方形;(2)利用勾股定理,建立关于x 的方程模型(x-6)2+(x-4)2=102,求出AD=x=12.本题考查图形的翻折变换和利用勾股定理,建立关于x 的方程模型的解题思想.要能灵活运用.22.【答案】是【解析】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)如图,△A 1B 1C 1与△A 2B 2C 2组成的图形是轴对称图形,其对称轴为直线l .(1)根据△ABC与△A1B1C1关于直线OM对称进行作图即可;(2)根据△ABC与△A2B2C2关于点O成中心对称进行作图即可;(3)一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.本题主要考查了利用轴对称变换以及中心对称进行作图,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时互相重合.把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点中心对称.23.【答案】解:(1)∵四边形ABCD是矩形,∴∠D=∠C=∠B′=90°,AD=CB=AB′,∵∠DAF+∠EAF=90°,∠B′AE+∠EAF=90°,∴∠DAF=∠B′AE,在△ADF和△AB′E中,,∴△ADF≌△AB′E(ASA).(2)由折叠性质得FA=FC,设FA=FC=x,则DF=DC-FC=18-x,初三数学中考复习专题图形的轴对称 练习试题19 / 19 在Rt △ADF 中,AD 2+DF 2=AF 2,∴122+(18-x )2=x 2.解得x =13.∵△ADF ≌△AB ′E (已证),∴AE =AF =13,∴S △AEF = = =78.【解析】(1)根据折叠的性质以及矩形的性质,运用ASA 即可判定△ADF ≌△AB′E ;(2)先设FA=FC=x ,则DF=DC-FC=18-x ,根据Rt △ADF 中,AD 2+DF 2=AF 2,即可得出方程122+(18-x )2=x 2,解得x=13. 再根据AE=AF=13,即可得出S △AEF==78.本题属于折叠问题,主要考查了全等三角形的判定与性质,勾股定理以及三角形面积的计算公式的运用,解决问题的关键是:设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.。
中考数学复习《轴对称》专题训练-带含有参考答案
中考数学复习《轴对称》专题训练-带含有参考答案一、选择题1.下列交通标志中,是轴对称图形的是()A.B.C.D.2.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,5)C.(﹣4,﹣5)D.(﹣5,4)3.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,线段AB 的顶点均在格点上.在图中画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N均为格点,这样的线段能画()条.A.2 B.3 C.5 D.64.如图,在△ABC中,DE是AC的垂直平分线AB=5cm,BC=8cm,则△ABD的周长为()A.10cm B.13cm C.15cm D.16cm5.等腰三角形的周长为11,其中一边长为3,则该等腰三角形的底边长为()A.3B.5C.4或5D.3或56.如图,在Rt△ABC中∠ACB=90°,∠B=15°,AB的垂直平分线交AB于点E,交BC于点D,且BD=12cm,则AC的长是()A.12cm B.6cm C.4cm D.6√3cm7.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G,F,若FG=3,ED=6,则EB+DC的值为()A.7 B.8 C.9 D.108.如图,已知ΔABC是正三角形,D是BC边上任意一点,过点D作DF⊥AC于点F,ED⊥BC交AB于点E,则∠EDF等于()A.50°B.65°C.60°D.75°二、填空题9.某车标是一个轴对称图形,有条对称轴.10.在平面直角坐标系中,点M(a,3)与点N(5,b)关于y轴对称,则a﹣b=.11.如图,在△ABC中,边AB的垂直平分线分别交BC于点D,交AB于点E.若AE=3,△ADC的周长为8,则△ABC的周长为.12.如图,在△ABC中,AB=AC,AD=BD,∠A=36°,则图中等腰三角形的个数是.13.如图,在△ABC中AB=AC,∠C=30°,AB⊥AD,AD=6,BC的长是.三、解答题14.图①、图②均是由边长为1的小正方形组成的网格,每个小正方形的顶点称为格点,点A、B、C均在格点上.请用无刻度的直尺按下列要求在网格中作图.(1)在图①中,连接AC,以线段AC为腰作一个等腰直角三角形ACD;(2)在图②中确定一个格点D,并画出以A、B、C、D为顶点的四边形.使其为轴对称图形.15.如图,在中,的垂直平分线分别交线段,于点M,P,的垂直平分线分别交线段,于点N,Q.(1)如图,当时,求的度数;(2)当时,求的度数.16.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点△A1B1C1的坐标.17.如图,在△ABC中,AB=AC,点D、E、F分别在△ABC的三条边上,且BF=CD,BD=CE.(1)求证:△DFE是等腰三角形;(2)若∠A=56°,求∠EDF的度数.18.如图,在△ABC中AB=AC,点D在△ABC内BD=BC,∠DBC=60°点E在△ABC外∠BCE=150°,∠ABE=60° .(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8求AD的长.参考答案1.B2.A3.C4.B5.D6.B7.C8.C9.310.﹣811.1412.313.1814.(1)解:如图①所示(2)解:如图②所示15.(1)解:∵、分别是的垂直平分线∴∵∴∵∴∴(2)解:∵分别是的垂直平分线∴∴∴当P点在Q点右侧时,如图:∵∴∵∴.当P点在Q点左侧时∵∴∵∴.综上或.16.(1)解:S△ABC= 12×5×3=152(或7.5)(平方单位)(2)解:如图.(3)解:A1(1,5),B1(1,0),C1(4,3). 17.(1)证明:∵AB=AC∴∠B=∠C在△FBD与△DCE中{BF=CD∠B=∠CBD=CE∴△FBD≌△DCE.∴DF=ED,即△DEF是等腰三角形(2)解:∵AB=AC,∠A=56°∴∠B=∠C= 12(180°−56°)=62°.∴∠EDF=∠B=62°.18.(1)解:∵BD=BC,∠DBC=60°∴△DBC是等边三角形,∴DB=DC,∠BDC=∠DBC=∠DCB=60°在△ADB和△ADC中{AB=ACAD=ADDB=DC∴△ADB≌△ADC,∴∠ADB=∠ADC,∴∠ADB= 12(360°﹣60°)=150°.(2)解:结论:△ABE是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE在△ABD和△EBC中{AB=EB∠ADB=∠BCE=150°∠ABD=∠CBE∴△ABD≌△EBC ∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形.(3)解:连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°∴∠EDC=30°,∴EC= 12DE=4,∵△ABD≌△EBC,∴AD=EC=4.。
专题复习1:利用轴对称求最值_
专题复习1:利用轴对称求最值Ⅱ. 请你设计一个用时最少的方案.二、关于两(多)条线段和最小问题思路指导:此类问题一般通过适当的几何变换实现“折”转“直”。
即将连接两点的折线转化为线段最短问题1.直接运用两点间线段最短解决问题.例:如图8,已知A(1,1)B(3,-3),C为x轴上一个动点,当AC+BC最小时,C点坐标为,此时AC+BC的最小值为.练习:如图9,四边形ABCD为边长为5的正方形,以B为圆心4为半径画弧交BA与M,交BC于N,P在MN上运动,则PA+PB+PC的最小值为.2.平移后应用两点间线段最短例:已知:如图10,A(1,2),B(4,-2),C(m,0),D(m+2,0)(1)在图中作出当AC+CD+DB最小时C点的位置,并求出此时m的值(2)求AC+CD+DB的最小值.练习:如图11,NP,MQ为一段河的两岸(河的两侧为平坦的地面,可以任意穿行),NP∥MQ,河宽PQ 为60米,在NP一侧距离河岸110米处有一处藏宝处A,某人从MQ一侧距离河岸40米的B处出发,随身携带恰好横穿(与河岸垂直)河面的绳索(将绳索利用器械投掷至河对岸并固定,人扶绳索涉水过河),请计算此人从出发到目的地最少的行进路程,并确定固定绳索处(MQ一侧)到B处的最近距离.3.旋转后应用两点间线段最短例:如图12,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为31+时,求正方形的边长.练习:点O 为正方形ABCD内一点,(1)正方形边长为4,求OB+OD的最小值(2)若OB+OC+OD的最小值为26+,求正方形的边长4.对称后应用两点间线段最短数学模型已知:如图14,直线l 及直线同侧两点P、Q,在直线l 上求作点M,使线段PM+QM最小,并说明理由关系探究上图中:相等的角:线段关系:类型一:单动点单对称轴(直线同侧两线段和转化为异侧,进而应用两点间线段最短)练习:1.如图15,已知菱形ABCD的边长为6,M、N 分别为AB、BC边的中点,P为对角线AC上的一动点,则PM+PN的最小值.2. 如图16,已知菱形ABCD的边长为6,点E为AB边的中点,∠BAD=60°,点P为对角线AC上的一动点,则PE+PB的最小值..3. 如图17,已知正方形ABCD的边长为2,点M为BC 边的中点,P为对角线BD上的一动点,则PM+PC的最小值4. 如图18,正方形ABCD的面积为a,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,PD+PE的和最小值为4,则a= .5.如图19,已知⊙O的半径为1,AB、CD为⊙O的两互相垂直的直径,点M在弧AD上,且∠MOD=30°,点P为半径OD上的一动点,则PM+PA的最小值.6. 如图20,已知⊙O的半径为1,AB为⊙O的直径,C是⊙O上的一点,且∠CAB=30°点M是弧CB的中点,,点P为直径AB上的一动点,则PM+PC的最小值.7.如图21,⊙O的直径为10,A,B在圆周上,AC⊥MN,BD⊥MN,AC=6,BD=8.P为MN上一个动点,则PA+PB的最小值为.8.如图22,已知∠AOB=60°,OA=6,C为OA的中点,OD平分∠AOB,M为OD上一动点,则AM+CM的最小值为9.如图23,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为.10.如图24,已知抛物线y=x2-2x-3,与x轴相交于点A、B两点(点A在点B的左边),与y轴相较于点C,P 为抛物线对称轴上的一点,则PO+PC的最小值是.11.如图25,以正方形ABCD中AB为边向外作等边三角形AMB,N为对角线BD上一点,若AN+MN的最小值为2226,则正方形边长为.12.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设C为AB的中点,P为OB上一动点,求PC+PA取最小值时P点的坐标.13.如图27,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由14.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.类型二:双动点单对称轴(在类型一基础上应用垂线段最短)例:如图,已知∠CAB=30°,BA=6,AF平分∠BAC,P,Q分别为AB,AF上的动点,则BQ+PQ的最小值为练习:1.如图29,正方形ABCD中,AE为∠BAC的平分线,M,N分别为AE,AB上的动点,若MN+BM最小值为3,则正方形边长为.2.如图30,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC 的平分线交BC于点D, M、N分别是AD和AB上的动点,则BM+MN的最小值是___________ .3.如图31,矩形ABCD中,AB=6,BC=8,M,N分别为BD,BC上的动点,则CM+MN的最小值为. 类型三:单动点双对称轴例:如图32,已知:∠AOB=30°,P为∠AOB内一点,OP=6,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.练习:1.如图33,已知:∠AOB=60°,P为∠AOB内一点,OP=10,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.2.如图34,两个镜子成45°角,P为夹角内一个光源,P距离交点2米,光线从P发出后经过OB,OA反射后经过点P,则光线经过的路线长为.3.如图35,已知A(3,2)为坐标平面上一点,在x,y 轴上确定点M,N,使△AMN周长最小,并求出此时M,N坐标.类型四. 双动点双对称轴例:已知P,Q为∠AOB内两个定点,M,N分别为OA,OB上的动点。
人教版八年级下册数学专题复习及练习(含解析):轴对称
专题13.1 轴对称知识点1:轴对称图形1.定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴。
这时我们就说这个图形关于这条直线(或轴)对称.2.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称. 这条直线叫做对称轴,折叠后互相重合的点是对应点,叫做对称点.3.轴对称图形和轴对称的区别:轴对称图形是一个图形,轴对称是两个图形。
4.轴对称和全等的关系:轴对称一定是全等图形,但全等图形不一定是轴对称。
知识点2:轴对称的性质(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.知识点3:线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫这条线段的垂直平分线.2.线段垂直平分线的性质:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.【例题1】若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A B C D【例题2】下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【例题3】如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【例题4】如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.一、选择题1.下列图形中,是轴对称图形的是()A B C D2.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形3.下列图案属于轴对称图形的是()A B C D4.下列图形中,是轴对称图形的是()A B C D二、解答题5.如图所示的是一个在19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离都是1,请你画出“中国结”的对称轴,并直接写出阴影部分的面积。
全等三角形、轴对称复习专题
全等三⾓形、轴对称复习专题全等三⾓形、轴对称复习专题(⼀)知识要点1.全等三⾓形的概念:能够完全重合的两个三⾓形叫做全等三⾓形。
理解:①全等三⾓形形状与⼤⼩完全相等,与位置⽆关;②⼀个三⾓形经过平移、翻折、旋转可以得到它的全等形;③三⾓形全等不因位置发⽣变化⽽改变。
2.全等三⾓形有哪些性质(1)全等三⾓形的对应边相等、对应⾓相等。
(理解:①长边对长边,短边对短边;最⼤⾓对最⼤⾓,最⼩⾓对最⼩⾓;②对应⾓的对边为对应边,对应边对的⾓为对应⾓)。
(2)全等三⾓形的周长相等、⾯积相等。
(3)全等三⾓形的对应边上的对应中线、⾓平分线、⾼线分别相等。
3.⾓的平分线:从⼀个⾓的顶点得出⼀条射线把这个⾓分成两个相等的⾓,称这条射线为这个⾓的平分线。
性质:⾓的平分线上的点到⾓的两边的距离相等。
判定:⾓的内部到⾓的两边的距离相等的点在⾓的平分线上。
4.全等三⾓形找法(运动法寻找)翻折法:找到中⼼线经此翻折后能互相重合的两个三⾓形,易发现其对应元素旋转法:两个三⾓形绕某⼀定点旋转⼀定⾓度能够重合时,易于找到对应元素平移法:将两个三⾓形沿某⼀直线推移能重合时也可找到对应元素5.全等三⾓形的判定(证明⽅法)边边边:三边对应相等的两个三⾓形全等(可简写成“SSS”)边⾓边:两边和它们的夹⾓对应相等两个三⾓形全等(可简写成“SAS”)⾓边⾓:两⾓和它们的夹边对应相等的两个三⾓形全等(可简写成“ASA”)⾓⾓边:两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等(可简写成“AAS”)斜边.直⾓边:斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等(可简写成“HL”)⼩贴⼠:学习全等三⾓形应注意以下⼏个问题:(1)要正确区分“对应边”与“对边”,“对应⾓”与“对⾓”的不同含义;(2)表⽰两个三⾓形全等时,表⽰对应顶点的字母要写在对应的位置上;(3)“有三个⾓对应相等”或“有两边及其中⼀边的对⾓对应相等”的两个三⾓形不⼀定全等;(4)时刻注意图形中的隐含条件,如 “公共⾓” 、“公共边”、“对顶⾓”(5)截长补短法证三⾓形全等。
2020中考数学专题复习:图形和变换(轴对称、轴对称图形)(共29张PPT)
3- 2
例题6.
A O
Q
F
B E
综合提优
①求证:DQ=AE;②推断:GF:AE的值;
D
G
C
综合提优
A
D BC:AB=k(k为常数).探究GF与AE之间的数量
关系,并说明理由;
MO
F
B
E
G P
C
A
5X
O2 10 F 3 10 x
4X 5X
拓展应用:在(2)的条件下,连接CP,当k= 2 D 时,若tan∠CGP= 3 ,GF=2 10 ,求CP的长.3
2. 下列图形中,为轴对称图形的是( D )
基础训练
3.(2017黑龙江哈尔滨)下列图形中,既是轴对称图形
又是中心对称图形的是 ( D )
基础训练
4.如图所示,在Rt△ABC中,
∠C= 90°,以顶点A为圆心,适当
长为半径画弧,分别交AC,AB
于点M、N,再分别以点M,N为
圆心,大于0.5MN的长为半径画
例题讲解
∵以△ADE、△AD′E,关于直线AE 成轴对称图形∴AD=AD′, ∵在△ABD和△ACD′中
∴△ABD≌△ACD′(sss)
(2)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′, ∴∠BAC=∠DAD′=120°, ∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形 △AD′E, ∴∠DAE=∠D′AE= ∠DAD′=60°,即∠DAE=60°
E是边CD上一点,连接AE.折叠该纸片,使点A落在AE
上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.
若DE=5,则GE的长为
.
例题讲解
12
由折叠及轴对称的性质可知, △ABF≌△GBF,BF垂直平分AG,
中考数学专题复习卷:轴对称、平移与旋转(含解析)
轴对称、平移与旋转一、选择题1.下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D【解析】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C、平行四边形是中心对称图形不是轴对称图形,故不符合题意;D、矩形是轴对称图形,有两条对称轴,故符合题意,故答案为:D.【分析】把一个图形沿着一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据轴对称图形的定义,再一一判断即可。
2.下列图形中,是轴对称图形但不是中心对称图形的是()A. 正三角形B. 菱形C. 直角梯形D. 正六边形【答案】C【解析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A符合题意;B.菱形既是轴对称图形,又是中心对称图形,故错误,B不符合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误,C不符合题意;D.正六边形既是轴对称图形,又是中心对称图形,故错误,D不符合题意;故答案为:A.【分析】根据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x +l向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为().A. y=-5(x+1) -1B. y=-5(x-1) -1C. y=-5(x+1) +3D. y=-5(x-1) +3【答案】A【解析】:将抛物线y=-5x+l向左平移1个单位长度,得到的抛物线解析式为:y=-5(x+1)2+1再向下平移2个单位长度得到的抛物线为:y=-5(x-1)+1-2即y=-5(x+1)-1故答案为:A【分析】根据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m个单位,再向左或向右平移n个单位即得到y=a(x±n)2±m。
根据平移规则即可得出平移后的抛物线的解析式。
即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【解析】:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
中考数学专题复习12轴对称试题
卜人入州八九几市潮王学校12轴对称一、知识性专题专题1轴对称及轴对称图形【专题解读】此局部内容是近几年中考中常见的题型,也是新题型之一,解题的根据主要是轴对称及轴对称的性质.例1如图12-112所示的是小方画的正方形风筝图案,她以图中的对角线所在直线为对称轴,在对角线的下方画一个三角形,使得新的风筝图案成为轴对称图形,假设如图12-113所示的图形中有一图形为此轴对称图形,那么此图为()专题2利用轴对称变换作轴对称变换后的图形及设计方案【专题解读】利用轴对称变换设计精巧图案,当对称轴改变方向时,原图形的对称图形也改变方向,一个图形经过假设干次轴对称变换,再结合平移、旋转等.就可以得到非常美丽的图案.例2如图12-114①所示,给出了一个图案的一半,其中的虚线就是这个图案的对称轴,请画出这个图案的另一半.专题3等腰三角形的性质和断定【专题解读】等腰三角形的性质和断定可以用来证明角相等、线段相等以及线段垂直,这是几何证明中最重要的知识之一,它经常与其他几何知识(如四边形、圆等)综合在一起考察.例3如图12-115所示,AB=AC,E,D分别在AB,AC上,BD和CE相交于点F,且∠ABD=∠ACE.求证BF=CF.专题4等边三角形的性质和断定【专题解读】等边三角形是一个很特殊的三角形,它的三边都相等,三个角都是60°,正是由于它的特殊性,因此在很多的几何证明题中都会用到.例4如图12-116所示,AD是△ABC的中线,∠ADC=60°,BC=4,假设将△ADC沿直线AD折叠,那么C点落在点E的位置上,求BE的长.专题5含30°角的直角三角形的性质与等腰三角形的综合应用【专题解读】直角三角形中,30°角所对的直角边等于斜边的一半,这条性质在实际生活中有着广泛的应用.由角的特殊性,提醒了直角三角形中直角边和斜边的关系.例5如图12-117所示,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D.求证BE=3AD.二、规律方法专题专题6正确作辅助线解决问题【专题解读】本章涉及等腰三角形的性质、角平分线及线段的垂直平分线的性质,做题时可通过添加适当的辅助线由全等等知识获得结论.例6如图12-118所示,∠B=90°,AD=AB=BC,DE⊥AC.求证BF=DC.例7如图12-119所示,在△ABC中,AB=AC,在AB上取一点E,在AC的延长线上取一点F,使BE=CF,EF交BC于G.求证EG=FG.三、思想方法专题专题7分类讨论思想【专题解读】本章涉及等腰三角形的边、角的计算,应通过题意讨论其可能存在的情况,运用相关知识一一讨论不难获得结论.例8等腰三角形一腰上的中线把这个三角形的周长分为13 cm和15 cm两局部,试求此等腰三角形的腰长和底边长.,专题8数形结合思想【专题解读】数形结合思想是比较常用的数学思想,在解有关三角形的问题时显得尤为重要.例9(开放题)如图12-121所示,△ABC中,AB=AC,要使AD=AE,需添加的条件是.例10(探究题)如图12-122所示,线段OP的一个端点O在直线a上,以OP为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能画几个例11(动手操作题)如图12-124①所示,△ABC中,AB=AC,∠A=36°,仿照图①请你再用两种不同的方法,将△ABC分割成3个三角形,使每个三角形都是等腰三角形(作图工具不限,不写作法和证明,但要标出所分得的每个等腰三角形的内角的度数).综合验收评估测试题一、选择题(每一小题3分,一共30分)1.如图12-125所示的四个中文艺术字中,不是轴对称图形的是()一日千里ABCD图12-1252.如图12-126所示,把等腰直角三角形ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的选项是()A.AB=BEB.AD=DCC.AD=CED.AD=EC3.如图12-127所示,直线CD是线段AB的垂直平分线,P为直线CD上的一点,线段PA=5,那么线段PB的长度为()A.6B.5C.4D.34.点P(3,-5)关于x轴对称的点的坐标为()A.(-3,-5)B.(5,3)C.(-3,5)D.(3,5)5.如图12-128所示,△ABC与△A′B′C′关于直线,对称,且∠A=78°,∠C′=48°,那么∠B的度数为()A.48°B.54°C.74°D.78°6.如图12-129所示的是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的间隔相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC的三边的中垂线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点7.如图12-130所示的是把一张长方形的纸沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,外面局部展开后的图形是图12-131中的()8.如图12-132所示,在△ABC中,AB=AC,∠A=36°,BD,CE分别是△ABC,△BCD的角平分线,那么图中的等腰三角形有()A.5个B.4个C.3个D.2个9.如图12-133所示,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,假设以点P,O,A 为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2B.3C.4D.510.如图12-134所示,∠A=15°,AB=BC=CD=DE=EF,那么∠DEF等于()A.90°B.75°C.70°D.60°二、填空题(每一小题3分,一共30分)11.等腰三角形ABC的两边长为2和5.那么第三边长为.12.如图12-135所示,镜子中的号码实际是.13.如图12-136所示.△ABC中,DE垂直平分AC,交AB于E,∠A=30°,∠ACB=80°,那么∠BCE=°.14.从一个等腰三角形纸片的底角顶点出发,能将其剪成两个等腰三角形纸片,那么原等腰三角形纸片的底角等于.15.如图12-137所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,假设∠ABE=20°,那么∠EFC′的度数为度.16.假设等腰三角形一腰上的高与底边的夹角为35°.那么这个三角形的顶角为.17.等边三角形是轴对称图形,它有条对称轴.18.(1)假设等腰三角形的一个内角等于130°,那么其余两个角分别为.(2)假设等腰三角形的一个内角等于70°,那么其余两个角分别为.19.如图12-138所示,在△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=3,那么点D到AB的间隔为.20.如图12-139所示,在△ABC中,AB=AC,∠A=60°,BE⊥AC于E,延长BC到D,使CD=CE,连接DE,假设△ABC的周长是24,BE=a,那么△BDE的周长是.三、解答题(每一小题10分.一共60分)21.如图12-140所示,有分别过A,B两个加油站的公路l1,l2相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足到A,B两个加油站的间隔相等,而且P到两条公路l1,l2的间隔也相等.请用尺规作图作出点P(不写作法,保存作图痕迹).22.如图12-141所示,∠BAC=∠ABD.(1)要使OC=OD,可以添加的条件为或者;(写出2个符合题意的条件即可)(2)请选择(1)中你所添加的一个条件.证明OC=OD.23.如图12-142所示,△ABC中,AB=AC,E在CA的延长线上,AE=AF,AD是BC边上的高,试判断EF与BC的位置关系,并说明理由.24.如图12-143所示,△ABC中,点E在AC上,点N在BC上,在AB上找一点F,使△ENF的周长最小,并说明理由.25.如图12-144所示,某船上午11时30分在A处观测海岛B在北偏东60°方向,该船以每小时10海里的速度向正向航行,航行到C处时,再观测海岛B在北偏东30°方向,又以同样的速度继续航行到D处,再观测海岛B在北偏西30°方向,当轮船到达C处时恰好与海岛B相距20海里,请你确定轮船到达C处和D处的时间是.26.如图12-145所示,在△ABC中,∠ABC=2∠C,AD为BC边上的高,延长AB到E点,使BE=BD,过点D,E引直线交AC于点F,那么有AF=FC.为什么附:中考真题精选轴对称图形1.以下交通标志是轴对称图形的是〔〕A 、B 、C 、D 、2.下面的图形中,既是轴对称图形又是中心对称图形的是〔〕A 、B 、C 、D 、3.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么以下列图案中不符合要求的是〔〕A .B .C .D .4.将一个矩形纸片依次按图〔1〕、图⑵的方式对折,然后沿图〔3〕中的虚线裁剪,最后头将图〔4〕的纸再展开铺平,所得到的图案是〔〕5.以下几何图形:①角②平行四边形③扇形④正方形,其中轴对称图形是〔〕A .①②③B .②③④C .①③④D .①②③④ 6.以下有一面国旗是轴对称图形,根据选项里面的图形,判断此国旗为何〔〕A 、B 、C 、D 、7.如图1,将某四边形纸片ABCD 的AB 向BC 方向折过去〔其中AB <BC 〕,使得A 点落在BC 上,展开后出现折线BD ,如图2.将B 点折向D ,使得B 、D 两点重迭,如图3,展开后出现折线CE ,如图4.根据图4,〔向上对折〕 图〔3〕 〔向右对折〕图〔4〕 DC B A 〔第6题〕判断以下关系何者正确?〔〕A、AD∥BCB、AB∥CDC、∠ADB=∠BDCD、∠ADB>∠BDC8.以下四个图案中,轴对称图形的个数是〔〕A、1B、2C、3D、49.在三角形、四边形、五边形、和正六边形中,是轴对称图形的是〔〕A、三角形B、四边形C、五边形D、正六边形10.观察以下列图案,既是中心对称图形又是轴对称图形的是〔〕A、B、C、D、11.以下汽车标志中既是轴对称又是中心对称图形的是〔〕A.B.C.D.12.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,假设BC=3,那么折痕CE的长为〔〕A .32B .233C .3D .613.如图,阴影局部是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑.得到新的图形(阴影局部),其中不是..轴对称图形的是() 图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是〔〕A 、B 、C 、D 、14.以下几何图形:①角②平行四边形③扇形④正方形,其中轴对称图形是〔〕A .①②③B .②③④C .①③④D .①②③④15.如图,在Rt △ABC 中,∠ABC =90°,∠C =60°,AC =10,将BC 向BA 方向翻折过去,使点C 落在BA 上的点C ′,折痕为BE ,那么EC 的长度是〔〕A .35B .35-5C .10-35D .5+316.在以下几何图形中,一定是轴对称图形的有〔〕A 、1个B 、2个C 、3个D 、4个17.如图.在直角坐标系中,矩形ABC 0的边OA 在x 轴上,边0C 在y 轴上,点B 的坐标为〔1,3〕,将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E .那么点D 的坐标为〔〕A 、412(,)55-B 、213(,)55-C 、113(,)25-D 、312(,)55- 等腰三角形1.如图(十三),ΔABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB 于D 、E 两点,并连接BD 、DE .假设∠A =30∘,AB =AC ,那么∠BDE 的度数为何?A .45B .52.5C .67.5D .752.假设一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cmC .17cmD .16cm 或者17cm3.如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE AB ⊥,垂足为点E ,那么DE 等于〔〕A .1013B .1513C .6013D .7513二、填空题1.边长为6cm 的等边三角形中,其一边上高的长度为________.2.等腰三角形的周长为14,其一边长为4,那么,它的底边为.3.如图,在△ABC 中,AB =AC ,︒=∠40A ,那么△ABC 的外角∠BCD =°.4.如图6,在△ABC 中,AB=AC ,∠BAC 的角平分线交BC 边于点D ,AB=5,BC=6,那么AD=__________________. 5如图,△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,那么∠E =度.6.如图,∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连结A 2B 2…按此规律上去,记∠A 2B 1B 2=1θ,∠3232A B B θ=,…,∠n+11A n n n B B θ+=那么⑴1θ=;⑵n θ=。
中考数学专题复习题:轴对称的性质
中考数学专题复习题:轴对称的性质一、单项选择题(共8小题)1.如图,矩形纸片ABCD,M为AD边的中点,将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠BMC=110°,则∠1是()A.30°B.40°C.45°D.70°2.如图,点P在锐角∠AOB的内部,连接OP,OP=3,点P关于OA、OB所在直线的对称点分别是P1、P2,则P1、P2两点之间的距离可能是()A.8 B.7 C.6 D.53.如图所示的图形,长方形纸片沿AE折叠后,点D与D′重合,已知∠CED′=50°.则∠AED是()A.60°B.50°C.75°D.65°4.如图,直线AB、CD相交于点O,P为这两条直线外一点,连接OP.点P关于直线AB、CD的对称点分别是点P1、P2.若OP=3.5,点P1、P2之间的距离可能是()A.0 B.6 C.7 D.95.剪纸是我国传统的民间艺术.将一张正方形纸片按图1,图2中的方式沿虚线依次对折后,再沿图3中的虚线裁剪,最后将图4中的纸片打开铺平,所得图案是()A.B.C.D.6.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=106°,则∠C的度数为()A.40°B.37°C.36 D.32°7.在4×4的正方形网格中,如果以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,那么最多能画()个.A.5 B.6 C.7 D.88.如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°二、填空题(共5小题)9.如图,五边形ABCDE,将∠C沿BD折叠与∠F重合,若∠C=110°,则∠A+∠E+∠EDF+∠ABF度数为________.第9题图第10题图10.如图,△ABC中,点D为边BC的中点,连接AD,将△ADC沿直线AD翻折至△ABC所在平面内,得△ADC′,连接CC′,分别与边AB交于点E,与AD交于点O.若AE=BE,AD=6,则BC′的长为________.11.如图,在三角形纸片ABC中,点D,E,F分别在边AB,AC,BC上,BC=20,BF=12,将这张纸片沿直线DE翻折,点A与点F重合,若DE∥BC,AF=DF,则四边形ADFE的面积为________.第11题图第12题图第13题图12.如图,四边形纸片ABCD中,∠C=∠D=90°,AD=3,BC=9,CD=8,点E在BC上,且AE⊥BC.将四边形纸片ABCD沿AE折叠,点C、D分别落在点C'、D'处,C'D'与AB交于点F,则BF长为________.13.如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C= 度.三、解答题(共4小题)14.画出下面图形的对称轴(只画一条即可)15.图①、图②、图③都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的端点都在格点上,在给定的网格中,只用无刻度的直尺,按下列要求画图,只保留作图痕迹,不要求写画法.(1)在图①中画△ABC,使∠BAC=45°,且面积为;(2)在图②中画△ABD,使△ABD是轴对称图形;(3)在图③中画△ABE,使AB边上的高将△ABE分成面积比为1:2的两部分.16.如图1,已知直线AB∥CD,点E、F分别在直线AB、CD上,G点为射线FD上一动点,且∠FEG>∠EFG,将△EFG沿着EF翻折得到△EFH,直线EQ平分∠BEH交直线CD于点P.(1)当EG⊥CD时,①若∠EFG=30°,则∠PEF=________.②若去掉条件“∠EFG=30°”,你还能求出∠PEF的度数吗?试一试.(2)如图2,在点G运动的过程中,当∠EGF=a时,求∠PEF的度数(用含a的代数式表示);(3)在点G运动的过程中,若∠PEG=5°,且∠EGF=4∠EFG,直接写出∠EGF的度数.17.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,将边AB沿AD折叠,点B的对应点B'落在DC上.(1)利用尺规作出∠CAB'的平分线AP,交CD于点E;延长AB'到点F,使AF=AC,连接EF;(保留作图痕迹,不写作法)(2)判断(1)中EF与BC的位置关系,并说明理由;(3)在(1)的条件下,若AB=3,AC=4,BC=5,BD=,直接写出EF的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)轴对称图形: 如果把一个图形沿着一条直线折 叠,直线两旁的部分能够互相重合,那么这个图形叫 做轴对称图形,这条直线叫做对称轴。 (2)轴对称:把一个图形沿着某一条直线折叠后,能 够与另一个图形重合,那么这两个图形关于这条直线 成轴对称,这条直线叫做对称轴,两个图形中的对应 点叫做对称点。 (3)图形轴对称的性质:如果两个图形关于某直线对 称,那么对称轴是任何一对对应点所连线段的垂直平 分线。
第十二章 轴对称复习课
1
主要内容:
1.认识轴对称、轴对称图形,探究轴对称 的基本性质,理解对应点连线被垂直平分的 性质。了解线段垂直平分线的概念、掌握其 性质。了解等腰三角形、等边三角形的有关 概念,掌握其性质及判定方法。 2.能够按照要求做出简单图形经过一次或 两次轴对称后的图形。
2
专题一:轴对称
线交AC于D,求∠ FBC的度数。 A 解:∵ AB=AC, ∠A=50° ∴ ∠ABC= ∠C=65° D F 又∵ AC是线段AB的垂直平分线 ∴ AD=DB ∴ ∠ABD=∠A=50°
从而 ∠ DBC= ∠ABC- ∠ABD
B
C
=65°-50°=15°
10
专题二:轴对称变换
一、知识要点 1.轴对称变换
3a-b=9
4=-(2a+b)
∴ a=1, b=-6Biblioteka 15专题三:等腰三角形
一、知识要点:
1.等腰三角形
(1)有两条边相等的三角形叫做等腰三角形。等腰三 角形是轴对称图形。 (2)性质:①等腰三角形的两个底角相等 ②等腰三角形的顶角平分线、底边的中线、 底边上的高互相重合。 (3)判别方法:①有两条边相等(概念) ②等角对等边
∴ AB=DB, BE=BC
∠ABD= ∠CBE=60°
D E
又∵ ∠ABE= ∠ABD+ ∠DBE
∠DBC= ∠CBE+ ∠DBE
∴ ∠ABE= ∠DBC 在△ABD和△BCE中
F
A B
G C
AB=DB
∠ABE= ∠DBC BE=BC
∴ △ABD≌△BCE
∴ AE=DC
21
(2)求证:BF=BG 证明:由(1)得 (△BFG是等边三角形) △ABD≌△BCE (3)求证:FG∥AC ∴ ∠4= ∠5
23
2.如图,已知△ABC中,AB=AC,AF是BC边的中 线,D是BA延长线上一点,E在AC上,且AD=AE. 求证:DE⊥BC.
24
3.如图,已知AB=AD,∠BAD=60°, ∠BCD=120°,延长B到E,使CE=CD, 连结DE.求证:BC+DC=AC.
25
26
DE=EF=FD , 又∵∠CED+∠AEF=120°, ∠CDE+∠CED=120° ∴∠AEF=∠CDE, 同理,得∠CDE=∠BFD, ∴△AEF≌△BFD≌△CDE(AAS), ∴AE=BF=CD,AF=BD=CE .
20
例3 如图,A、B、C三点在同一直线上,分别以AB,BC为边
在AC同侧作等边△ABD和等边△BCE,AE交BD于点F, DC交BE于点G, 证明:∵ △ABD、 △BCE是等边三角形 (1)求证:AE=DC
∴ ∠DBC= ∠ECB
即 △OBC是等腰三角形
19
例2 如图,已知△ABC为等边
三角形,D、E、F分别在边 BC、CA、AB,且△DEF也 解:图中还有相等的线段是: 是等边三角形.除已知相等 AE=BF=CD,AF=BD=CE , 的边以外,请你猜想还有哪∵△ABC与△DEF都是等边三角形, 些相等线段,并证明你的猜 ∴∠A=∠B=∠C=60°, 想是正确的. ∠EDF=∠DEF=∠EFD=60°,
18
例1 如图7,在△ABC中,已知AB=AC,BD、CE是两条角平
分线,BD、CE相交于点O,△OBC是等腰三角形吗? 为什么? 解:△OBC是等腰三角形
∵在△ABC中,AB=AC
∴ ∠ABC= ∠ACB(等边 对等角) 又∵ BD、CE是两条角平分 ∴ ∠DBC= ∠ABD, ∠ACB= ∠ECB 而 ∠ABC= ∠DBC+ ∠ABD ∠ACB= ∠ACB+ ∠ECB
D
5
∵ △ABD 、 △BCE是等边三角形
E
3
∴ AB=DB, ∠1= ∠2=60° 从而有 ∠3= ∠1=60°
F
4 1 2
G C
在△ABF和△DBG中
∠3= ∠1
∠4= ∠5 AB=DB ∴ △ABF≌ △DBG ∴BF=BG
A
B
1.如图,在△ABC中,BP、CP分别是∠ABC和 ∠ACB的平分线,且PD//AB,PE//AC,求 △PED的周长 .
例3 哪一面镜子里是他的像?
7
例4 如图,要在街道旁修建一个奶站,向居民区A、B提
供牛奶,奶站应建在什么地方,才能使从A、B到它的 距离相等? M B 居民区 B
P A L N
居民区 A
街 道
8
例5 如图,△ABC中,∠BAC=120°,若DE、FG分别
垂直平分AB、AC,△AEF的周长为10cm,求∠EAF的 度数及BC长。 解:∵ ∠BAC=120° A D B E F G
3
(4)轴对称图形的性质:轴对称图形的对称轴是任何一 对对应点所连线段的垂直平分线。 (5)图形对称轴的做法:要作两个图形的对称轴,只要 找到这两个图形的一对对应点,然后连接它们,得到一条 直线,在作出这条线段的垂直平分线,这条垂直平分线就 是这两个图形的对称轴。
2.线段的垂直平分线
(1)经过线段的中点并且垂直于这条线段的直线,叫做 线段的垂直平分线。 (2)线段垂直平分线的性质: 线段垂直平分线上的点到线段两个端点的距离相等; 到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上。
4
正方形、长方形、等腰三角形、等腰梯形 和圆都是轴对称图形。有的轴对称图形有不止 一条对称轴。
5
二、题目特点:
• 判断轴对称图形或对称轴的条数 • 根据轴对称图形的性质作对称轴 • 用线段垂直平分线的性质解决计算题或进行证明说理 三、解题切入点: 熟练掌握轴对称图形概念、性质以及线段垂直平分 线的性质是解决有关问题的关键。
16
2.等边三角形
(1)三边都相等的三角形叫做等边三角形,其是轴对 称图形,有三条对称轴。
(2)性质:等边三角形的三个角都是60° (3)判定: ①三个角都相等的三角形是等边三角形 ②有一个角是60°的等腰三角形是等边三角形 ③有三个边都相等的三角形是等边三角形
17
二、题型特点: (1)计算题,如求等腰三角形的腰长、周长、角等 (2)说理题,如证明一个三角形是等腰(或等边)三角形 (3)实际应用题,如根据实际问题构造等腰三角形解 决问题 三、解题切入点:解决和等腰三角形有关的计算问题, 要把握等腰三角形的性质,注意分类思想在等腰三角 形中的应用,解决证明问题主要依据等腰(或等边)三角 形的性质和判定方法,有的问题还需要做恰当的辅助 线。
例1 国旗是一个国家的象征,观察下面的国旗,是轴对
称图形的是( C ) A.加拿大、韩国、乌拉圭 B.加拿大、瑞典、澳大利亚 C.加拿大、瑞典、瑞士 D.乌拉圭、瑞典、瑞士
加拿大
韩国
澳大利亚 乌拉圭
瑞典
6 瑞士
例2 小明照镜子的时候,发现T恤上的英文单词在镜子中呈
现“ A C ”的样子,请你判断这个英文单词( A B D )
11
2.以坐标轴为对称轴作轴对称图形
(1)点P(x, y)关于x轴对称的对称点为P1(x, -y) 点P(x, y)关于y轴对称的对称点为P2(-x, y) (2)作一个图形关于坐标轴对称的图形,一般先作图形上关 键点关于坐标轴的对称点,然后连接对称点即可。 二、题型特点 (1)作一个平面图形关于已知直线的对称图形 (2)求已知点关于坐标轴对称的对称点的坐标 (3)根据轴对称变换设计图案 (4)根据轴对称变换解决实际生活中问题 三、解题切入点:作一个平面图形的轴对称图形,关键是确定 原图形上的关键点,只要作出这些关键点之间的对称点,然 后按原图形的顺序连接即可;求一个点关于坐标轴对称点的 坐标,关键是熟练掌握对称点之间的坐标特征。 12
∴ ∠B+ ∠C=60 °
又∵ DE垂直平分AB ∴ BE=AE,∠B= ∠BAE 同理 AF=CF,∠C= ∠CAF C ∴ AE+EF+AF
=BE+EF+CF=10cm
∠EAF= ∠BAC-∠BAE-∠CAF =120°- ∠B- ∠C=60°
9
例6 如图,△ABC中,AB=AC,∠A=50°,AB的垂直平分
A (A 1) 4
3 2 B1 B2 C2 3 4
A2
C
1 C 1 1 2
x
-2 -1 0
5 6 7
14
例3 点M(3a-b, 4)与点N(9,2a+b)关于x轴对称,求a 和b 。
解:由于(x, y)关于x轴对称的点的坐标为(x, -y), 则 点M(3a-b, 4)与点N(9,2a+b)关于x轴对称有
(1)有一个平面图形得到它的轴对称图形叫做轴对称变换。 由轴对称变换得到的图形与原图形形状、大小完全相同; 新图形上的每一点都是原图形上的某一点关于对称轴的对 称点;连接任意一对对应点的线段被对称轴垂直平分。 (2)作一个平面图形的对称图形,先作一些点的对应点, 再连接这些对应点,就可得到原图形的轴对称图形。对于 线段、三角形、四边形等由直线、线段或射线组成的图形, 只要做出原图形上的关键点的对应点,然后连接这些对应 点,即可得到相应的对称图形。 (3)利用轴对称变换设计图案,主要是借助平移等有关知 识。
例1 如图,以直线AE为对称轴,画出该图形的另一部分。