高考数学总复习专题01集合与常用逻辑用语分项练习含解析理
专题01 集合与常用逻辑用语专项高考真题总汇(带答案与解析)
专题01集合与常用逻辑用语1.【2021·浙江高考真题】设集合{}1A x x =≥,{}12B x x =-<<,则A B = ()A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<【答案】D【解析】由交集的定义结合题意可得:{}|12A B x x =≤< .故选:D.2.【2021·全国高考真题】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B【解析】由题设有{}2,3A B ⋂=,故选:B .3.【2021·全国高考真题(理)】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A .103x x ⎧⎫<≤⎨⎩⎭B .143xx ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B【解析】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.4.【2021·全国高考真题(理)】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A .∅B .SC .TD .Z【答案】C【解析】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.5.【2021·浙江高考真题】已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【解析】若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b =,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件故选:B.6.【2021·全国高考真题(理)】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是()A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A【解析】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .7.【2021·全国高考真题(理)】等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】由题,当数列为2,4,8,--- 时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .8.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B 【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.9.【2020年高考全国Ⅱ卷理数】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B = ðA .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.10.【2020年高考全国Ⅲ卷理数】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为A .2B .3C .4D .6【答案】C 【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选C .【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.11.【2020年高考天津】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =∩ðA .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C 【解析】【分析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.【详解】由题意结合补集的定义可知{}2,1,1U B =--ð,则(){}U 1,1A B =- ð.故选C .【点睛】本题主要考查补集运算,交集运算,属于基础题.12.【2020年高考北京】已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B = A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}【答案】D 【解析】【分析】根据交集定义直接得结果.【详解】{1,0,1,2}(0,3){1,2}A B =-=I I ,故选D .【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题.13.【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.【详解】求解二次不等式2a a >可得:1a >或0a <,据此可知:1a >是2a a >的充分不必要条件.故选A .【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题.14.【2020年新高考全国Ⅰ卷】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C 【解析】【分析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B ==U U .故选C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.15.【2020年高考浙江】已知集合P ={|14}x x <<,Q={|23}x x <<,则P I Q =A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}x x <<【答案】B 【解析】【分析】根据集合交集定义求解.【详解】(1,4)(2,3)(2,3)P Q ==I I .故选B.【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.16.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】【分析】将两个条件相互推导,根据能否推导的结果判断充分必要条件.【详解】依题意,,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选B.【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.17.【2020年高考北京】已知,αβ∈R ,则“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k ∈Z 使得π(1)k k αβ=+-时,若k 为偶数,则()sin sin πsin k αββ=+=;若k 为奇数,则()()()sin sin πsin 1ππsin πsin k k αββββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2πm αβ=+或π2πm αβ+=+,m ∈Z ,即()()π12kk k m αβ=+-=或()()π121kk k m αβ=+-=+,亦即存在k ∈Z 使得π(1)k k αβ=+-.所以,“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的充要条件.故选C .【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.18.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<,则{|22}M N x x =-<< .故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分.19.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =A .(–∞,1)B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞ .故选A .【名师点睛】本题考点为集合的运算,为基础题目.20.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B = A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =- .故选A .【名师点睛】本题考查了集合交集的求法,是基础题.21.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B = A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C = ,所以(){1,2,3,4}A C B = .故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.22.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =- ð.故选A.【名师点睛】注意理解补集、交集的运算.23.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果.24.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<,易知由05x <<推不出02x <<,由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件.故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围.25.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.26.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件.故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.27.【2020年高考江苏】已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.【答案】{}0,2【解析】【分析】根据集合的交集即可计算.【详解】∵{}1,0,1,2A =-,{}0,2,3B =,∴{}0,2A B =I .故答案为{}0,2.【点睛】本题考查了交集及其运算,是基础题型.28.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.29.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = ▲.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B = .【名师点睛】本题主要考查交集的运算,属于基础题.。
高考数学(理)总复习:集合与常用逻辑用语(解析版)
高考数学(理)总复习:集合与常用逻辑用语题型一 集合的概念、基本关系与基本运算 【题型要点】解答集合的概念、关系及运算问题的一般思路(1)正确理解各个集合的含义,认清集合元素的属性、代表的意义. (2)根据集合中元素的性质化简集合.(3)依据元素的不同属性采用不同的方法求解,此时常用到以下技巧: ①若已知的集合是不等式的解集,用数轴求解; ②若已知的集合是点集,用数形结合法求解; ③若已知的集合是抽象集合,用Venn 图求解. 易错提醒:注意元素的互异性及空集的特殊性.【例1】已知集合A =⎭⎬⎫⎩⎨⎧≤+-021x x x,B ={x |y =lg(-x 2+4x +5)},则A ∩(∁R B )=( )A .(-2,-1]B .[-2,-1)C .(-1,1)D .[-1,1]【解析】依题意,A =⎭⎬⎫⎩⎨⎧≤+-021x x x={x |-2<x ≤1},B ={x |y =lg(-x 2+4x +5)}={x |-x 2+4x +5>0}={x |-1<x <5},∴∁R B ={x |x ≤-1或x ≥5},A ∩(∁R B )=(-2,-1],选A.【答案】 A【例2】.已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( )A .(0,3)B .(0,1)∪(1,3)C .(0,1)D .(-∞,1)∪(3,+∞)【解析】 因为A ∩B 有4个子集,所以A ∩B 中有2个不同的元素,所以a ∈A ,所以a 2-3a <0,解得0<a <3且a ≠1,即实数a 的取值范围是(0,1)∪(1,3),故选B.【答案】 B【例3】.已知集合A =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛121xx ,B ={x |x 2-2x -8≤0},则A ∩B =( )A .{x |-2≤x ≤0}B .{x |2≤x ≤4}C .{x |0≤x ≤4}D .{x |x ≤-2}【解析】 因为A =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛121x x ={x |x ≥0},B ={x |x 2-2x -8≤0}={x |-2≤x ≤4},所以,A ∩B ={x |0≤x ≤4},故选C.【答案】 C题组训练一 集合的概念、基本关系与基本运算1.若全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是( )【解析】 由题意知,N ={x |x 2+x =0}={-1,0},而M ={-1,0,1},所以N ⊆M ,故选B.【答案】 B2.设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( )A .2B .4C .8D .16【解析】 ∵集合A ={(x ,y )|x 24+y 216=1},∴x 24+y 216=1为椭圆和指数函数y =3x图象,如图,可知其有两个不同交点,记为A 1、A 2,则A ∩B 的子集应为∅,{A 1},{A 2},{A 1,A 2}共四种,故选B.【答案】 B3.若集合A ={x |(a -1)x 2+3x -2=0,x ∈R }有且仅有两个子集,则实数a 的值为________.【解析】 由题意知,方程(a -1)x 2+3x -2=0,x ∈R ,有一个根,∴当a =1时满足题意,当a ≠1时,Δ=0,即9+8(a -1)=0,解得a =-18.【答案】 1或-18题型二 命题真假的判断与否定 【题型要点】 命题真假的判定方法(1)一般命题p 的真假由涉及的相关知识辨别.(2)四种命题真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律.(3)形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定. (4)全称命题与特称(存在性)命题的真假的判定:①全称命题:要判定一个全称命题为真命题,必须对限定集合M 中的每一个元素x 验证p (x )成立,要判定其为假命题时,只需举出一个反例即可;②特称(存在性)命题:要判定一个特称(存在性)命题为真命题,只要在限定集合M 中至少能找到一个元素x 0,使得p (x 0)成立即可;否则,这一特称(存在性)命题就是假命题.【例4】已知命题p :若复数z 满足(z -i)(-i)=5,则z =6i ;命题q :复数1+i1+2i 的虚部为-15i ,则下列为真命题的是( )A .(綈p )∧(綈q )B .(綈p )∧qC .p ∧(綈q )D .p ∧q【解析】 z =5-i +i =6i ,所以命题p 为真;复数1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=3-i 5,虚部为-15,所以命题q 为假.故(綈p )∧(綈q )为假;(綈p )∧q 为假; p ∧(綈q )为真;p ∧q 为假,故选C. 【答案】 C【例5】.下列说法错误的是( )A .对于命题p :∀x ∈R ,x 2+x +1>0,则綈p :∃x 0∈R ,x 20+x 0+1≤0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .若命题p ∧q 为假命题,则p ,q 都是假命题D .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0” 【解析】根据全称命题的否定是特称命题如A 正确;由于x =1可得x 2-3x +2=0,而由x 2-3x +2=0得x =1或x =2,所以“x =1”是“x 2-3x +2=0”的充分不必要条件B 正确;命题p ∧q 为假命题,则p ,q 不一定都是假命题,故C 错;根据逆否命题的定义可知D 正确,故选C.【答案】 C【例6】.已知:命题p :若函数f (x )=x 2+|x -a |是偶函数,则a =0.命题:q ∶∀m ∈(0,+∞),关于x 的方程mx 2-2x +1=0有解.在①p ∨q ;②p ∧q ;③(綈p )∧q ;④(綈p )∨(綈q )中为真命题的是( )A .②③B .②④C .③④D .①④【解析】 函数f (x )=x 2+|x -a |是偶函数x 的方程⇒f (-x )=f (x )⇒a =0⇒p 为真命题;mx 2-2x +1=0有解⇒Δ=4-4m ≥0⇒m ≤1⇒q 为假命题;故①④为真.【答案】 D题组训练二 命题真假的判断与否定1.已知命题p:若a,b是实数,则a>b是a2>b2的充分不必要条件;命题q:“∃x∈R,x2+2>3x” 的否定是“∀x∈R,x2+2<3x”,则下列命题为真命题的是()A.p∧q B.(綈p)∧qC.p∧(綈p) D.(綈p)∧(綈q)【解析】“a>b”是“a2>b2”的既不充分也不必要条件,所以p为假命题;“∃x∈R,x2+2>3x”的否定是“∀x∈R,x2+2≤3x”,所以q为假命题;因此(綈p)∧(綈q)为真命题.故选择D.【答案】 D2.已知命题P:对任意的x∈[1,2],x2-a≥0,命题Q:存在x∈R,x2+2ax+2-a=0,若命题“P且Q”是真命题,则实数a的取值范围是________.【解析】对∀x∈[1,2],x2-a≥0,即a≤(x2)min=1,即命题P:a≤1;∃x∈R,x2+2ax+2-a=0,即x2+2ax+2-a=0有实根,则4a2-4(2-a)≥0,解得a≥1或a≤-2,即命题Q:a≥1或a≤-2;因为命题“P且Q”是真命题,所以a=1或a≤-2,即实数a的取值范围是a=1或a≤-2.【答案】a≤-2或a=1题型三充分必要条件的判断【题型要点】判断充分、必要条件时应关注三点(1)要弄清先后顺序:“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.(2)要善于举出反例:当从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.(3)要注意转化:綈p是綈q的必要不充分条件⇔p是q的充分不必要条件;綈p是綈q 的充要条件⇔p是q的充要条件.【例7】设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”()A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 若y =f (x )的图象关于原点对称,函数为奇函数,f (-x )=-f (x )对于函数y =|f (x )|,有|f (-x )|=|-f (x )|=|f (x )|,说明y =|f (x )|为偶函数,而函数y =|f (x )|,是偶函数,y =f (x )的图象未必关于原点对称,如y =|x 2|是偶函数,而y =x 2的图象并不关于原点对称,所以“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”成立的必要不充分条件,选B.【答案】 B【例8】.“m ≤-12”是“∀x >0,使得x 2+12x -32>m 是真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 若∀x >0,使得x 2+12x -32>m 是真命题,则m <min23212⎪⎭⎫⎝⎛-+x x ,令f (x )=x 2+12x -32, 则f (x )≥2x 2·12x -32=1-32=-12,故m <-12, 故m ≤-12是“m <-12”的必要不充分条件,故选B.【答案】 B【例9】已知e 是自然对数的底数,函数f (x )=e x -e -x +lg(x +x 2+1),a ,b 都是实数,若p :a +b <0,q :f (a )+f (b )<0,则p 是q 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件【解析】 ∵x 2+1>x 2≥-x ,∴∀x ∈R ,x +x 2+1>0,∴f (x )的定义域为(-∞,+∞),关于原点对称,且f (-x )=e -x -e x +lg(-x +x 2+1)=e -x-e x+lg (-x +x 2+1)(x +x 2+1)x +x 2+1=e -x -e x +lg1x +x 2+1=e -x -e x -lg(x +x 2+1)=-[e x -e -x +lg(x +x 2+1)]=-f (x ),∴f (x )为R 上的奇函数,又f (x )为R 上的增函数, ∴p 是q 的充要条件,故选C. 【答案】 C题组训练三 充分必要条件的判断1.设θ∈R ,则“1212ππθ<-”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】 1212ππθ<-⇔0<θ<π6⇒sin θ<12,但θ=0,sin θ<12,不满足 1212ππθ<-,所以是充分不必要条件,选A.【【答案】 A2.给出下列命题:①已知a ,b ∈R ,“a >1且b >1”是“ab >1”的充分条件; ②已知平面向量a ,b ,“|a |>1,|b |>1”是“|a +b |>1”的必要不充分条件; ③已知a ,b ∈R ,“a 2+b 2≥1”是“|a |+|b |≥1”的充分不必要条件;④命题P :“∃x 0∈R ,使e x 0≥x 0+1且ln x 0≤x 0-1”的否定为綈p :“∀x ∈R ,都有e x <x +1且ln x >x -1”.其中正确命题的个数是( )A .0B .1C .2D .3【解析】 ①已知a ,b ∈R ,“a >1且b >1”能够推出“ab >1”,“ab >1”不能推出“ab >1”,本选项正确;②已知平面向量,a ,b ,“|a |>1,|b |>1”不能推出“|a +b |>1”,本选项不正确;③已知a ,b ∈R ,“a 2+b 2≥1”是“|a |+|b |≥1”的充分不必要条件,正确;④命题P :“∃x 0∈R ,使e x 0≥x 0+1且ln x 0≤x 0-1”的否定为綈p :“∀x ∈R ,都有e x <x +1或ln x >x -1”本选项不正确.正确的个数为2.故选:C【答案】 C3.已知a 、b 都是实数,命题p :a +b =2;命题q :直线x +y =0与圆(x -a )2+(y -b )2=2相切,则p 是q 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件【解析】 由直线x +y =0与圆(x -a )2+(y -b )2=2相切,得|a +b |2=2,即a +b =±2,所以p 是q 的充分但不必要条件.【答案】A题型四 全称特称命题的否定 【题型要点】 全(特)称命题的否定全称命题的否定是将全称量词改为存在量词,并把结论否定;特称命题的否定是将存在量词改为全称量词,并把结论否定.【例10】已知命题:p ∶∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0, C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】 C【例11】.命题“存在x 0>1,x 20+(m -3)x 0+3-m <0”为假命题.则m 的取值范围是________.【解析】 由题意知任意的x >1,x 2+(m -3)x +3-m ≥0为真命题,而由x 2+(m -3)x +3-m ≥0变形得(x -1)2-(x -1)+1+(x -1)m ≥0,由于x -1>0则m ≥-()⎥⎦⎤⎢⎣⎡-+-111x x +1对任意x >1恒成立,而-()⎥⎦⎤⎢⎣⎡-+-111x x +1≤-2(x -1)·1x -1+1=-1,当且仅当x -1=1x -1即x =2时取等号,因此m ≥-1.【答案】 [-1,+∞)题组训练四 全称特称命题的否定1.若命题p ∶∀x ∈⎪⎭⎫⎝⎛-2,2ππ,tan x >sin x ,则命题綈p 为( ) A .∃x 0∈⎪⎭⎫⎝⎛-2,2ππ,tan x 0≥sin x 0 B .∃x 0∈⎪⎭⎫⎝⎛-2,2ππ,tan x 0≥sin x 0 C .∃x 0∈⎪⎭⎫⎝⎛-2,2ππ,tan x 0≤sin x 0 D .∃x 0∈⎪⎭⎫⎝⎛-∞-2,π∪⎪⎭⎫⎝⎛+∞,2π,tan x 0>sin x 0 【解析】 ∀x 的否定为∃x 0,>的否定为≤,所以命题綈p 为∃x 0∈⎪⎭⎫⎝⎛-2,2ππ,tan x 0≤sin x 0. 【答案】 C2.命题“存在x 0>-1,x 20+x 0-2019>0”的否定是________.【解析】特称命题的否定是全称命题,故命题“存在x 0>-1,x 20+x 0-2019>0”的否定是“任意x >-1,x 2+x -2019≤0”.【答案】 “任意x >-1,x 2+x -2019≤0”【专题训练】 一、选择题1.设集合A ={1,2,3,4},B ={3,4,5},全集U =A ∪B ,则集合∁U (A ∩B )的元素个数有( ) A .1个 B .2个 C .3个C .4个【解析】 U =A ∪B ={1,2,3,4,5},A ∩B ={3,4}∴∁U (A ∩B )={1,2,5},即集合∁U (A ∩B )的元素个数有3个,故选C. 【答案】 C2.已知集合A ={x |x 2<1},B ={x |2x >2},则A ∩B =( )A.⎪⎭⎫⎝⎛-21,21 B.⎪⎭⎫ ⎝⎛21,0C.⎪⎭⎫ ⎝⎛1,21D.⎪⎭⎫⎝⎛-1,21 【解析】 因为A ={x |-1<x <1},B ={x |x >12},所以A ∩B =⎭⎬⎫⎩⎨⎧<<121x x ,应选答案C.【答案】 C3.给出下列四个结论:①{0}是空集; ②若a ∈N ,则-a ∉N ;③集合A ={x |x 2-2x +1=0}中有两个元素; ④集合B =⎭⎬⎫⎩⎨⎧∈∈N x Qx 6是有限集. 其中正确结论的个数是( ) A .0 B .1 C .2D .3【解析】 对于①,{0}中含有元素0,不是空集,故①错误;对于②,比如0∈N ,-0∈N ,故②错误;对于③,集合A ={x |x 2-2x +1=0}={1}中有一个元素,故③错误;对于④,当x ∈Q 且6x ∈N 时,6x 可以取无数个值,所以集合B =⎭⎬⎫⎩⎨⎧∈∈N xQ x 6是无限集,故④错误.综上可知,正确结论的个数是0.故选A. 【答案】 A4.已知方程(x 2-6x +b 1)(x 2-6x +b 2)(x 2-6x +b 3)=0的所有解都为自然数,其组成的解集为A ={x 1,x 2,x 3,x 4,x 5},则b 1+b 2+b 3的值不可能为( )A .13B .14C .17D .22【解析】 当b 1,b 2,b 3分别取0,5,9时,A ={0,6,1,5,3},b 1+b 2+b 3=14,排除B ,当b 1,b 2,b 3分别取0,8,9时,A ={0,6,2,4,3},b 1+b 2+b 3=17,排除C ,当b 1,b 2,b 3分别取5,8,9时,A ={1,5,2,4,3},b 1+b 2+b 3=22,排除D ,故选A.【答案】 A5.“x >0,y >0”是“y x +xy ≥2”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 “x >0,y >0”⇔“y x +xy ≥2”,反之不成立,例如取x =y =-1.∴x >0,y >0”是“y x +xy ≥2”的充分而不必要条件.故选A. 【答案】A6.已知数列{a n },{b n }满足b n =a n +a n +1,则“数列{a n }为等差数列”是“数列{b n }为等差数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 若数列{a n }为等差数列,设其公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=a n +2-a n =2d 1,所以数列{b n }是等差数列;若数列{b n }为等差数列,设其公差为d 2,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=a n +2-a n =d 2,不能推出数列{a n }为等差数列,所以“数列{a n }为等差数列”是“数列{b n }为等差数列”的充分不必要条件,故选A.【答案】 A7.已知命题p 1:∀x ∈(0,+∞),有3x >2x ,p 2:∃θ∈R ,sin θ+cos θ=32,则在命题q 1:p 1∨p 2;q 2:p 1∧p 2;q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4【解析】 因为y =x⎪⎭⎫ ⎝⎛23在R 上是增函数,即y =x⎪⎭⎫⎝⎛23>1在(0,+∞)上恒成立,所以p 1是真命题;sin θ+cos θ=2sin ⎪⎭⎫⎝⎛+4πθ≤2,所以命题p 2是假命题,綈p 2是真命题,所以命题q 1:p 1∨p 2,q 4:p 1∧(綈p 2)是真命题,选C.【答案】 C8.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A 、B 为两个同高的几何体,p :A 、B 的体积不相等,q :A 、B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 如果A ,B 在等高处的截面积恒相等,则A ,B 的体积相等,因此有p ⇒q ,但q ⇒p 不一定成立,把两个相同锥体放在一个平面上,再把其中一个锥体翻转底向上,顶点在在原底面所在平面,虽然在等高处的截面积不恒相等,但体积相等,故p 是q 的充分不必要条件.故选A.【答案】 A9.对于下列说法正确的是( ) A .若f (x )是奇函数,则f (x )是单调函数B .命题“若x 2-x -2=0,则x =1”的逆否命题是“若x ≠1,则x 2-x -2=0”C .命题p :∀x ∈R,2x >1024,则綈p :∃x 0∈R ,2x 0<1024D .命题“∃x ∈(-∞,0),2x <x 2”是真命题【解析】 对于A ,若f (x )是奇函数,则f (x )是单调函数,不一定,比如y =1x 不是单调函数,在(-∞,0),(0,+∞)递减,故A 错;对于B ,命题“若x 2-x -2=0,则x =1”的逆否命题是“若x ≠1,则x 2-x -2≠0”,故B 错;对于C ,命题p :∀x ∈R,2x >1024,则綈p :∃x 0∈R,2x 0≤1024,故C 错;对于D ,命题“∃x ∈(-∞,0),2x <x 2”是真命题,正确,比如x =-1,2-1=12<1.故选D.【答案】 D10.给出下列五个结论:①回归直线y ∧=b ∧x +a ∧一定过样本中心点(x ,y );②命题“∀x ∈R ,均有x 2-3x -2>0”的否定是“∃x 0∈R ,使得x 20-3x 0-2≤0”; ③将函数y =3cos x +sin x (x ∈R )的图象向右平移π6后,所得到的图象关于y 轴对称;④∃m ∈R ,使f (x )=(m -1)·xm 2-4m +1是幂函数,且在(0,+∞)上递增;⑤函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ·|log 2x |-1,x >0恰好有三个零点.其中正确的结论为( ) A .①②④ B .①②⑤ C .④⑤D .②③⑤【解析】 由回归分析的方法可知,结论①正确;由全称命题的否定方法可知,结论②正确;y =2cos ⎪⎭⎫⎝⎛-6πx ,将其图象向右移动π6后,得到的函数解析式为y =2cos ⎪⎭⎫ ⎝⎛-3πx ,该函数的图象不关于y 轴对称,结论③不正确;m =2时,函数f (x )=x -1是幂函数,但在(0,+∞)上递减,结论④不正确;x +1=0,解得x =-1,为f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ·|log 2x |-1,x >0的一个零点,令23·|log 2x |-1=0,得|log 2x |=12x =x ⎪⎭⎫ ⎝⎛21,画出函数y =|log 2x |,y =x⎪⎭⎫⎝⎛21的图象可知,方程2x ·|log 2x |-1=0有两个实根,所以已知函数f (x )有三个零点,结论⑤正确.【答案】 B11.已知f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,x 2-1,x >0,则“f (f (a ))=1”是“a =1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 当a =1,则f (a )=f (1)=0,则f (0)=0+1=1,则必要性成立. 若x ≤0,若f (x )=1,则2x +1=1,则x =0, 若x >0,若f (x )=1,则x 2-1=1,则x =2, 即若f (f (a ))=1,则f (a )=0或2,若a >0,则由f (a )=0或2得a 2-1=0或a 2-1=2,即a 2=1或a 2=2+1,解得a =1或a =1+2,若a ≤0,则由f (a )=0或2得2a +1=0或2a +1=2,即a =-12,此时充分性不成立,即“f (f (a ))=1”是“a =1”的必要不充分条件.【答案】 B12.关于函数f (x )=x 2(ln x -a )+a ,给出以下4个结论:①∃a >0,∀x >0,f (x )≥0;②∃a >0,∃x >0,f (x )≤0;③∀a >0,∀x >0,f (x )≥0;④∀a >0,∃x >0,f (x )≤0.其中正确结论的个数是( )A .0B .1C .2D .3【解析】 ①当a =12时,f (x )=x 2⎪⎭⎫ ⎝⎛-21ln x +12,其定义域为(0,+∞).由f ′(x )=2x ln x =0,得x =1.当x >1时,f ′(x )>0,f (x )单调递增; 当0<x <1时,f ′(x )<0,f (x )单调递减;∴当x =1时,函数f (x )取得极小值,同时也是最小值f (1)=-12+12=0.∴对∀x >0,f (x )≥f (1)=0,故①正确.②当a =5时,f (x )=x 2(ln x -5)+5,f (e)=e 2(ln e -5)+5=-4e 2+5<0,故②∃a >0,∃x >0,f (x )≤0成立.③由②知,当a =5时,∃x =e ,满足e >0,但f (e)<0,故③∀a >0,∀x >0,f (x )≥0不成立,③错误.④f ′(x )=2x ⎪⎭⎫ ⎝⎛-+a x 21ln ,由f ′(x )=0, 即ln x +12-a =0,得ln x =a -12.∴∀a >0,函数f (x )都存在极值点,即∃x >0,f (x )≤0成立,故④正确,综上①②④正确,故选D.【答案】 D 二、填空题13.已知命题p ∶m ∈R ,且m +1≤0;命题q ∶∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题,则m 的取值范围是__________.【解析】 当命题p 为真命题时,m ≤-1,当命题q 为真命题时,m 2-4<0,-2<m <2,p ∧q 为假命题的否定是p ∧q 为真命题,则p ,q 都为真命题,所以有⎩⎪⎨⎪⎧m ≤-1,-2<m <2,解得-2<m ≤-1,故当若p ∧q 为假命题时,m 的范围是(-∞,-2]∪(-1,+∞).【答案】 (-∞,-2]∪(-1,+∞)14.设有两个命题,p :关于x 的不等式a x >1(a >0,且a ≠1)的解集是{x |x <0};q :函数y =lg(ax 2-x +a )的定义域为R .如果p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围是________.【解析】 p :关于x 的不等式a x >1(a >0,且a ≠1)的解集是{x |x <0},则0<a <1;q :函数y =lg(ax 2-x +a )的定义域为R ,a =0时不成立,a ≠0时,则⎩⎪⎨⎪⎧a >0Δ=1-4a 2<0,解得0<a <12.如果p ∨q 为真命题,p ∧q 为假命题,则命题p 与q 必然一真一假. ∴⎩⎪⎨⎪⎧ 0<a <1a ≤0或a ≥12,或⎩⎪⎨⎪⎧a ≤0或a ≥10<a <12,解得12≤a <1, 则实数a 的取值范围是12≤a <1.【答案】 12≤a <115.将集合M ={1,2,3,...,15}表示为它的5个三元子集(三元集:含三个元素的集合)的并集,并且这些三元子集的元素之和都相等,则每个三元集的元素之和为________;请写出满足上述条件的集合M 的5个三元子集__________(只写出一组)【解析】 因为5个三元子集(三元集:含三个元素的集合)的并集为集合M ={1,2,3,...,15},所以元素总和为:15×(1+15)2=120,又因为这5个三元子集的元素之和都相等,所以每个集合的元素和为1205=24.满足上述条件的集合M 的5个三元子集可以是:{1,8,15},{3,7,14},{5,6,13},{2,10,12},{4,9,11}(答案不唯一).【答案】 24 {1,8,15},{3,7,14},{5,6,13},{2,10,12},{4,9,11}(答案不唯一)。
高中数学高考专题汇编:专题01 集合与常用逻辑用语(理)(含答案解析)
1.【2015高考四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x <<(){|23}D x x <<【答案】A【命题立意】本题考查集合的基本运算,属于容易题.【解析】 {|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<<,选A.2.【2015高考广东,理1】若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =( )A .∅B .{}1,4--C .{}0D .{}1,4【答案】A .【命题立意】本题主要考查一元二次方程的解集,有限集合的交集运算和运算求解能力,属于容易题.【解析】因为()(){}{}|4104,1M x x x =++==--,()(){}{}|4101,4N x x x =--==,所以M N =∅,故选A .3.【2015高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈【答案】C【命题立意】本题主要考查特称命题的否定【解析】p ⌝:2,2n n N n ∀∈≤,故选C.【易错警示】全称命题的否定与特称命题的否定是高考考查的重点,对特称命题的否定,将存在换成任意,后边变为其否定形式,注意全称命题与特称命题否定的书写,是常规题,很好考查了学生对双基的掌握程度.4.【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1] B .(0,1] C .[0,1) D .(,1]-∞ 【答案】A【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N =,故选A .【命题立意】本题主要考查的是一元二次方程、对数不等式和集合的并集运算,属于容易题.解题时要看清楚是求“”还是求“”和要注意对数的真数大于0,否则很容易出现错误.5.【2015高考湖北,理5】设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列; q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【答案】A【命题立意】本题考查等比数列的判定,柯西不等式,充分条件与必要条件.【方法技巧】判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ,二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.6.【2015高考天津,理4】设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件【答案】A【命题立意】本题主要考查不等式的解法、充分条件与必要条件相关问题,考查综合应用数学知识解决问题的能力,是基础题 【解析】2112113x x x -<⇔-<-<⇔<<,2202x x x +->⇔<-或1x >,所以 “21x -< ”是“220x x +-> ”的充分不必要条件,故选A.7.【2015高考重庆,理1】已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA【答案】D【命题立意】本题考查子集的概念,考查学生对基础知识的掌握程度.【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .8.【2015高考福建,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B等于 ( )A .{}1-B .{}1C .{}1,1-D .φ【答案】C【命题立意】本题考查复数的概念和集合的运算,利用21i =-和交集的定义求解,属于基础题.【解析】由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .9.【2015高考重庆,理4】“1x >”是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件【答案】B【命题立意】本题考查充分必要条件. 【解析】12log (2)0211x x x +<⇔+>⇔>-,因此选B .【易错警示】本题把充分必要条件与对数不等式结合在一起,既考查了对数函数的性质,又考查了充分必要条件的判断,从本题可知我们可能用集合的观点看充分条件、必要条件:A ={x |x 满足条件p },B ={x |x 满足条件q },(1)如果A ⊆B ,那么p 是q 的充分不必要条件;(2)如果B ⊆A ,那么p 是q 的必要不充分条件;(3)如果A =B ,那么p 是q 的充要条件;(4)如果A B ⊂≠,且B A ⊂≠,那么p 是q 的既不充分也不必要条件.本题易错点在于解对数不等式时没有考虑对数的定义域.10.【2015高考新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2【答案】A【命题立意】本题考查一元二次不等式解法和集合运算,要求运算准确,属于基础题. 【解析】由已知得{}21B x x =-<<,故{}1,0A B =-,故选A .11.【2015高考天津,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =ð( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8【答案】A【命题立意】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题.【解析】{2,5,8}U B =ð,所以{2,5}U A B =ð,故选A.12.【2015高考安徽,理3】设:12,:21x p x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件【答案】A【命题立意】本题考查充分必要条件的证明.【解析】由0,12>>x x得可知由p 可以推出q ,但是由q 无法推出p ,所以p 是q 的充分不必要条件.A 正确【举一反三】对于指对数运算问题,需要记住常见的等式关系,如0112,22,1log ,0log 1a a a ====,进而转化成同底的问题进行计算;充要关系的判断问题,可以分为由“:12p x <<”推证“:0q x >”以及由“:0q x >”推证“:12p x <<”.13.【2015高考山东,理1】已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B =( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)【答案】C【命题立意】本题考查集合的概念与运算,利用解一元二次不等式的解法化简集合并求两集合的交集,考查运算求解能力,本题属基础题. 【解析】因为{}{}243013A x x x x x =-+<=<<, 所以{}{}{}132423A B x x x x x x =<<<<=<<.故选:C.14.【2015高考浙江,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >【答案】D.【解析】根据全称命题的否定是特称命题,可知选D.【命题立意】本题主要考查了全称命题的否定等知识点,属于容易题.【易错警示】全称(存在性)命题的否定与一般命题的否定有着一定的区别,全称(存在性)命题的否定是将其全称量词改为存在量词(或把存在量词改为全称量词),并把结论否定;而一般命题的否定则是直接否定结论即可,全称量词与特称量词的意义.15.【2015高考浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]【答案】C.【命题立意】本题主要考查了解一元二次不等式,求集合的补集与交集,属于容易题.【解析】由题意得,)2,0(=P C R ,∴()(1,2)R P Q =ð,故选C. 16.【2015高考山东,理12】若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为 .【答案】1【命题立意】本题考查的知识点是明题的真假及正切函数的图像及性质.考查学生综合利用所学知识解决问题的能力,注意等价转化的思想的应用,属中档题. 【解题思路】由题可知,只需tan ,[0,]4x x π∈的最大值小于等于m 即可,所以1m ≤,m 的最小值为1,故答案为1.17.【2015高考江苏,1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______.【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个.【命题立意】本题考查集合运算【方法技巧】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或属于集合B 的元素的个数. 本题需注意检验集合的元素是否满足互异性,否则容易出错.18.【2015高考湖南,理2】.设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C.【命题立意】本题主要考查了集合的关系与充分必要条件,属于容易题【解析】由题意得,AB A A B =⇒⊆,反之,A B A B A =⇒⊆ ,故为充要条件,选C.19.【2015高考上海,理1】设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则U A B =ð .【答案】{}1,4【解析】因为{|32}U C B x x x =><或,所以{4,1}U A C B =【命题立意】本题考查集合运算【方法技巧】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或不属于集合B 的元素的集合. 本题需注意两集合一个是有限集,一个是无限集,按有限集逐一验证为妥.。
高考数学复习考点知识与题型专题讲解训练01 集合与常用逻辑用语(含解析)
高考数学复习考点知识与题型专题讲解训练专题01集合与常用逻辑用语考点1 集合的含义与表示1.(2021·江苏高三模拟)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( ) A .9 B .10C .12D .13【答案】D【解析】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、()1,1-、()1,0、()1,1、()2,0,共13个.故选:D.2.(2021·江西高三模拟)已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1} B .{0} C .{0,1,1}- D .{0,1}【答案】D【解析】①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a ∆=-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D . 考点2 集合间的基本关系3.(2021·西安市经开第一中学高三模拟)集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【答案】A 【解析】B A ⊆,∴①当B =∅时,即10ax +无解,此时0a =,满足题意.②当B ≠∅时,即10ax +有解,当0a >时,可得1xa-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当0a <时,可得1xa-, 要使B A ⊆,则需要013a a <⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .4.(2021·四川石室中学高三一模)已知集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,则M 的子集个数是( ) A .2 B .3 C .4 D .8【答案】D【解析】因为集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,所以当,,x y z 都是正数时,4m =;当,,x y z 都是负数时,4m =-;当,,x y z 中有一个是正数,另两个是负数时,0m =, 当,,x y z 中有两个是正数,另一个是负数时,0m =,所以集合M 中的元素是3个,所以M 的子集个数是8,故选D. 考点3 集合的基本运算 角度1:交集运算5.(2021·四川高三三模(文))设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .6.(2021·浙江瑞安中学高三模拟)已知集合{}31A x Z x =∈-<<,{}2,B y y x x A ==∈,则A B 的元素个数为( )A .1B .2C .3D .4【答案】B【解析】因为{}{}2,1,031A x Z x =-∈--=<<所以{}{}4,2,02,=B y y x x A =--=∈, 所以{}=2,0A B -,所以A B 的元素个数为2个.故选B. 角度2:并集运算7.(2021·陕西高三模拟)已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( )A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈C .{}21,x x k k Z =+∈D .∅【答案】C【解析】因为集合{}21,M x x k k ==+∈Z ,集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立,所以{}21,M N x x k k ⋃==+∈Z .故选:C.8.(2021·天津高三二模)已知集合{|42}M x x =-<<,2{|60}N x x x =--=,则M N ⋂=___________.【答案】{}2-【解析】因为集合{|42}M x x =-<<,{}2{|60}2,3N x x x =--==-,所以M N ⋂= {}2-角度3:补集运算9.(2021·四川高三零模(文))设全集{}*|9U x x =∈<N ,集合{}3,4,5,6A =,则U A ( )A .{}1,2,3,8B .{}1,2,7,8C .{}0,1,2,7D .{}0,1,2,7,8【答案】B【解析】因为{}{}*91,2,3,4|,5,6,7,8U x x =∈<=N ,{}3,4,5,6A =,所以{}1,2,7,8U A =.故选:B .10.(2021·江苏省江浦高级中学高三月考)已知集合{}1U x x =>,{}2A x x =>,则UA________.【答案】{}12x x <≤【解析】{}1U x x =>,{}2A x x =>,∴12U A x x ,角度4:交、并、补混合运算11.(2021·辽宁高三二模)已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤【答案】A【解析】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.12.(2021·山东烟台市·烟台二中高三三模)已知集合{}13A x x =<<,{}2B x x =<,则RAB =( )A .{}12x x <<B .{}23x x <<C .{}23x x ≤<D .{}3x x >【答案】C 【解析】{}13A x x =<<,{}2B x x =<,{}R 2B x x ∴=≥,{}R 23A B x x ∴⋂=≤<.故选:C.13.【多选】(2021·重庆高三三模)已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =【答案】CD【解析】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确; 由()U A B B =,知UA B ⊆,∴()()UU AA AB =⊆,∴A B U ⋃=,由UA B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.故选CD.14.(2021·江苏高三模拟)某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是________. 【答案】6【解析】如图所示,(a +b +c +x )表示周一开车上班的人数,(b +d +e +x )表示周二开车上班人数,(c +e +f +x )表示周三开车上班人数,x 表示三天都开车上班的人数,则有:1410820a b c x b d e x c e f x a b c d e f x +++=⎧⎪+++=⎪⎨+++=⎪⎪++++++=⎩,即22233220a b c d e f x a b c d e f x ++++++=⎧⎨++++++=⎩,即212b c e x +++=,当0b c e ===时,x 的最大值为6, 即三天都开车上班的职工人数至多是6. 角度5:利用集合的运算求参数15.(2021·江西高三模拟)已知集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B φ⋂≠,则实数m 的取值范围是_______. 【答案】{|113}m m -<<【解析】由题意,集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B ⋂=∅时,则有92m +≤-或3m ≥,解得11m ≤-或3m ≥,所以当A B ⋂≠∅时,实数m 的取值范围为{|113}m m -<<.16.(2021·山东高三模拟)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1 B .2± C .3± D .4±【答案】B【解析】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B考点4 集合中的新定义17.(2021·黑龙江哈师大附中高三三模(理))设全集{}1,2,3,4,5,6U =,且U 的子集可表示由0,1组成的6位字符串,如:{}2,4表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算{A B x x A -=∈且}x B ∉,()()A B A B B A *=-⋃-.若{}2,3,4,5A =,{}3,5,6B =,则A B *表示的6位字符串是( ) A .101010 B .011001C .010101D .000111【答案】C【解析】由题意可得若{}2,3,4,5A =,{}3,5,6B =,则{}2,4,6A B *=, 所以此集合的第2个字符为1,第4个字符为1,第6个字符为1, 其余字符均为0,即A B *表示的6位字符串是010101.故选C18.【多选】(2021·开原市第二高级中学高三三模)满足{}1234,,,M a a a a ⊆,且{}{}12312,,,Ma a a a a =的集合M 可能是( )A .{}12,a aB .{}123,,a a aC .{}124,,a a aD .{}1234,,,a a a a【答案】AC 【解析】∵{}{}12312,,,Ma a a a a =,∴集合M 一定含有元素12,a a ,一定不含有3a ,∴12{,}M a a =或124{,,}M a a a =.故选AC .19.(2021·江苏省宜兴中学高三模拟)设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 【答案】7【解析】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”, 则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.考点5 全称量词与特称量词20.“0[2,)x ∃∈+∞,20log 1x <”的否定是( ) A .[2,)x ∀∈+∞,2log 1x ≥ B .(,2)x ∀∈-∞,2log 1x > C .0(,2)x ∃∈-∞,20log 1x ≥ D .[2,)x ∃∈+∞,2log 1x ≤【答案】A【解析】“0[2,)x ∃∈+∞,20log 1x <”是特称命题,特称命题的否定是全称命题, 所以“0[2,)x ∃∈+∞,20log 1x <”的否定是“[2,)x ∀∈+∞,2log 1x ≥”.故选:A21.(2021·黑龙江大庆中学高三期末)命题“0x ∀>,总有()11xx e +>”的否定是( )A .0x ∀>,总有()11xx e +≤ B .0x ∀≤,总有()11xx e +≤C .00x ∃≤,使得()0011xx e +≤D .00x ∃>,使得()0011xx e +≤【答案】D【解析】由全称命题的否定可知,命题“0x ∀>,总有()11xx e +>”的否定是“00x ∃>,使得()0011xx e +≤”.故选D.考点6 充分条件、必要条件的判断22.(2021·南京师范大学附属扬子中学高三模拟)设乙的充分不必要条件是甲,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分又不必要【答案】A【解析】甲是乙的充分不必要条件,即甲⇒乙,乙⇒甲, 乙是丙的充要条件,即乙⇔丙,丁是丙的必要非充分条件,即丙⇒丁,丁⇒丙,所以甲⇒丁,丁⇒甲,即甲是丁的充分不必要条件,故选:A .23.(2021·宁波中学高三模拟)△ABC 中,“△ABC 是钝角三角形”是“AB AC BC +<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】在△ABC 中,若∠A 为锐角,如图画出平行四边形ABCD ∴AB AC AD +=易知AD BC >∴“△ABC 是钝角三角形”不一定能推出“AB AC BC +<”; 在△ABC 中,A B C ,,三点不共线, ∵AB AC BC +<∴AB AC AC AB +<-∴22AB AC AC AB +<-∴0AB AC ⋅<∴∠A 为钝角∴△ABC 为钝角三角形 ∴“AB AC BC +<”能推出“△ABC 是钝角三角形”故“△ABC 是钝角三角”是“AB AC BC +<”的必要不充分条件,故选:B. 考点7 充分条件、必要条件的应用24.(2021·内蒙古高三二模(理))设计如下图的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是( )A .B .C .D .【答案】C【解析】选项A :“开关A 闭合”是“灯泡B 亮”的充分不必要条件; 选项B :“开关A 闭合”是“灯泡B 亮”的充要条件; 选项C :“开关A 闭合”是“灯泡B 亮”的必要不充分条件;选项D :“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C.25.(2021·山东高三其他模拟)已知p :x a ≥,q :23x a +<,且p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(]1-∞-,B .()1-∞-,C .[)1+∞,D .()1+∞,【答案】A【解析】因为q :23x a +<,所以:2323q a x a --<<-+, 记{}|2323A x a x a =--<<-+;:p x a ≥,记为{}|B x x a =≥.因为p 是q 的必要不充分条件,所以A B ,所以23a a ≤--,解得1a ≤-.故选:A .26.(2021·河北衡水中学高三模拟)若不等式()21x a -<成立的充分不必要条件是12x <<,则实数a 的取值范围是________. 【答案】[]1,2【解析】由()21x a -<得11a x a -<<+,因为12x <<是不等式()21x a -<成立的充分不必要条件, ∴满足1112a a -≤⎧⎨+≥⎩且等号不能同时取得,即21a a ≤⎧⎨≥⎩,解得12a ≤≤. 考点8 根据命题的真假求参数的取值范围11 / 11 27.(2021·涡阳县育萃高级中学高三月考(文))若命题“0x R ∃∈,200220x mx m +++<”为假命题,则m 的取值范围是( )A .12m -≤≤B .12m -<<C .1m ≤-或2m ≥D .1m <-或2m >【答案】A【解析】若命题“0x R ∃∈,200220x mx m +++<”为假命题, 则命题“x R ∀∈,2220x mx m +++≥”为真命题,即判别式()2=4420m m ∆-+≤,即()()210m m -+≤,解得12m -≤≤.故选:A.28.(2021·广东石门中学高三其他模拟)若“2[4,6],10x x ax ∃∈-->”为假命题,则实数a 的取值范围为___________. 【答案】356a ≥ 【解析】因为“2[4,6],10x x ax ∃∈-->”为假命题,所以[]24,6,10x x ax ∀∈--≤恒成立, 即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[]4,6x ∈, 又因为()1f x x x=-在[]4,6上是增函数,所以()()max 1356666f x f ==-=,所以356a ≥.。
高考数学必刷真题分类大全-专题01-集合与常用逻辑用语
【答案】D
【试题解析】由题意, B= x x2 4x 3 0 1,3,所以 A B 1,1, 2,3 ,
所以 ðU A B 2, 0 .故选:D.
【命题意图】本类题通常主要考查简单不等式解法、交集、并集、补集等运算. 【命题方向】这类试题在考查题型上主要以选择题的形式出现.试题难度不大,多为低档题,集合的基本 运算是历年高考的热点.集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解 及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力. 常见的命题角度有: (1)求交集或并集;(2)交、并、补的混合运算;(3)新定义集合问题. 【得分要点】 解集合运算问题应注意如下三点:
”的(
)
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
7.(2022·青海·海东市第一中学模拟预测(文))设
m,
n
为实数,则“
0.1m
0.1n
”是“
lg
1 m
lg
1 n
”的(
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
8.(2022·上海虹口·二模)已知 l1 ,l2 是平面 内的两条直线,l 是空间的一条直线,则“ l ”是“ l l1 且 l l2 ”
CU A _____.
13.(2022·广东·华南师大附中三模)当 x a 时, x 1 0 成立,则实数 a 的取值范围是____________. x
14.(2022·山东聊城·三模)命题“ x R ,a2 4 x2 a 2 x 1 0 ”为假命题,则实数 a 的取值范围为______.
(新课标Ⅰ)高考数学总复习专题01集合与常用逻辑用语分项练习(含解析)理(2021学年)
(新课标Ⅰ)2018年高考数学总复习专题01 集合与常用逻辑用语分项练习(含解析)理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标Ⅰ)2018年高考数学总复习专题01集合与常用逻辑用语分项练习(含解析)理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标Ⅰ)2018年高考数学总复习专题01 集合与常用逻辑用语分项练习(含解析)理的全部内容。
专题01 集合与常用逻辑用语一.基础题组1。
【2014课标Ⅰ,理1】已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( ) A.]1,2[-- B . )2,1[- C..]1,1[- D.)2,1[ 【答案】A【解析】由已知得,{1A x x =≤-或}3x ≥,故{}21A B x x =-≤≤-,选A.2。
【2013课标全国Ⅰ,理1】已知集合A ={x|x 2-2x >0},B ={x|-5<x<5},则( ). A.A ∩B = B .A ∪B =R C.B ⊆A D.A ⊆B【答案】B【解析】∵x (x -2)>0,∴x <0或x >2。
∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R,故选B 。
3. 【2012全国,理1】已知集合A ={1,2,3,4,5},B ={(x ,y)|x ∈A,y ∈A ,x -y ∈A},则B 中所含元素的个数为( )A .3B .6 C.8 D.10 【答案】D4。
【2010新课标,理1】已知集合A ={x ||x|≤2,x ∈R },B ={x x x ∈Z},则A∩B =( )A .(0,2) B.0,2] C.{0,2} D.{0,1,2} 【答案】:D【解析】∵A={-2,-1,0,1,2},B={0,1,2,3,…,16},∴A∩B={0,1,2}.5. 【2009全国卷Ⅰ,理1】设集合A={4,5,7,9},B ={3,4,7,8,9},全集U=A∪B,则集合(A∩B)中的元素共有( )A 。
三年高考高考数学试题分项版专题01集合和常用逻辑用语理(含解析)
三年高考(2014-2016)数学(理)试题分项版解析第一章 集合和常用逻辑用语一、选择题1. 【2014课标Ⅰ,理1】已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( )A .]1,2[--B . )2,1[- C..]1,1[- D .)2,1[【答案】A 【解析】由已知得,{1A x x =≤-或}3x ≥,故{}21A B x x =-≤≤-,选A .【名师点睛】本题主要考查了集合的交集运算,熟练掌握集合的交集运算规律是解题的关键,本题考查了考生的基本运算能力.2. 1.【2016高考新课标1理数】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.3. 【2015高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2nn N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈【答案】C【解析】p ⌝:2,2n n N n ∀∈≤,故选C.【考点定位】本题主要考查特称命题的否定【名师点睛】全称命题的否定与特称命题的否定是高考考查的重点,对特称命题的否定,将存在换成任意,后边变为其否定形式,注意全称命题与特称命题否定的书写,是常规题,很好考查了学生对双基的掌握程度.4. 【2016高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞)【答案】D考点:1、不等式的解法;2、集合的交集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.5. 【2016年高考四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则AZ 中元素的个数是( )(A )3 (B )4 (C )5 (D )6【答案】C【解析】试题分析:由题意,{2,1,0,1,2}A Z =--,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.6. 【2014高考重庆理第6题】 已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝【答案】D试题分析:由题设可知:p 是真命题,q 是假命题;所以,p ⌝是假命题,q ⌝是真命题;所以,p q ∧是假命题,p q ⌝∧⌝是假命题,p q ⌝∧是假命题,p q ∧⌝是真命题;故选D.考点:1、指数函数的性质;2、充要条件;3、判断复合命题的真假.【名师点睛】本题主要考查了指数函数的性质,充要条件,判断复合命题的真假,属于中档题,先根据指数函数及充要条件的知识判断出每一个命题的真假,再利用真值表得出结论.7. 【2015高考重庆,理1】已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA【答案】D【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.8. 【2015高考重庆,理4】“1x >”是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件【答案】B 【解析】12log (2)0211x x x +<⇔+>⇔>-,因此选B .【考点定位】充分必要条件.【名师点晴】本题把充分必要条件与对数不等式结合在一起,既考查了对数函数的性质,又考查了充分必要条件的判断,从本题可知我们可能用集合的观点看充分条件、必要条件:A={x |x 满足条件p },B ={x |x 满足条件q },(1)如果A ⊆B ,那么p 是q 的充分不必要条件;(2)如果B ⊆A ,那么p 是q 的必要不充分条件;(3)如果A =B ,那么p 是q 的充要条件;(4)如果A B ⊂≠,且B A ⊂≠,那么p 是q 的既不充分也不必要条件.本题易错点在于解对数不等式时没有考虑对数的定义域.9. 【2014年.浙江卷.理1】设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{解析:{}{25A x N x x N x =∈≥=∈≥,故{{}22u C A x N x =∈≤<=,故选B考点:集合运算.【名师点睛】此题属于以一元二次不等式的解法为平台,考查了补集及并集的运算,是高考中常考的题型.在求补集时注意全集的范围.有关集合的运算问题要注意:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图.10. 【2016高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( ) (A )(1,1)-(B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 【答案】C【解析】试题分析:}0|{>=y y A ,}11|{<<-=x x B ,则A B =∞(-1,+),选C.考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.11. 【2016高考新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,,【答案】C考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.12. 【2015高考浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]【答案】C.【解析】由题意得,)2,0(=P C R ,∴()(1,2)R P Q =ð,故选C.【考点定位】1.解一元二次不等式;2.集合的运算.【名师点睛】本题主要考查了解一元二次不等式,求集合的补集与交集,属于容易题,在解题过程中要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.13. 【2015高考浙江,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >【答案】D.【解析】根据全称命题的否定是特称命题,可知选D.【考点定位】命题的否定【名师点睛】本题主要考查了全称命题的否定等知识点,属于容易题,全称(存在性)命题的否定与一般命题的否定有着一定的区别,全称(存在性)命题的否定是将其全称量词改为存在量词(或把存在量词改为全称量词),并把结论否定;而一般命题的否定则是直接否定结论即可,全称量词与特称量词的意义,是今年考试说明中新增的内容,在后续的复习时应予以关注.14. 【2016年高考北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则AB =( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-【答案】C【解析】试题分析:由}22|{<<-=x x A ,得}1,0,1{-=B A ,故选C.考点:集合交集.【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.15. 【2015高考天津,理4】设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件【答案】A 【解析】2112113x x x -<⇔-<-<⇔<<,2202x x x +->⇔<-或1x >,所以 “21x -< ”是“220x x +-> ”的充分不必要条件,故选A.【考点定位】不等式解法与充分条件、必要条件.【名师点睛】本题主要考查不等式的解法、充分条件与必要条件相关问题,将含绝对值不等式与一元二次不等式和解法、充分条件、必要条件、充要条件相关的问题联系在起来,体现综合应用数学知识解决问题的能力,是基础题16. .【2015高考天津,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =ð( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8【答案】A【解析】{2,5,8}U B =ð,所以{2,5}U AB =ð,故选A.【考点定位】集合的运算.【名师点睛】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题. 17. 【2014天津,理7】设,a b R Î,则|“a b >”是“a a b b >”的( )(A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要又不必要条件【答案】C .考点:1.充分条件、必要条件、充要条件的判断;2.不等式的性质.【名师点睛】本题考查函数的单调性和充要条件,本题属于基础题,本题函数的单调性与不等式为载体,考查充要条件.考查学生对充要条件的理解.充要条件问题有两种:一种是本题类型,利用充要条件定义判断,另一种借助数集的包含关系加以说明. 充要条件问题主要命题方法有两种,一种为判断条件是结论的什么条件?第二种是寻求结论成立的某种条件是什么?近几年高考充要条件命题以选填题为主,表面看很简单。
2021-2022年高考数学总复习专题01集合与常用逻辑用语分项练习含解析文(I)
2021年高考数学总复习专题01集合与常用逻辑用语分项练习含解析文(I)一.基础题组1. 【xx 全国2,文1】设集合2{2,0,2},{|20}A B x x x =-=--=,则( )A. B. C. D.【答案】B【解析】由已知得,,故,选B .2. 【xx 课标全国Ⅱ,文1】已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D ..{-3,-2,-1}【答案】:C3. 【xx 全国2,文1】设全集U ={x ∈N *|x <6},集合A ={1,3},B ={3,5},则 (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,4}D .{2,5}【答案】:C【解析】∵U ={1,2,3,4,5},A ∪B ={1,3,5},∴ (A ∪B )={2,4}.4. 【xx 全国2,文2】设集合U={1,2,3,4},A={1,2},B={2,4},则 (A∪B)= ( )(A) {2} (B){3} (C) {1,2,4} (D) {1,4} 【答案】:B【解析】,∴.5. 【xx 全国2,文2】已知集合{}2{|3},|log 1M x x N x x =<=>,则( )(A ) (B ) (C ) (D )【答案】D【解析】,∴.6. 【xx 全国2,文10】已知集合,,则为( )(A) 或(B) 或 (C) 或(D) 或 【答案】A【解析】,∴{|427}M N x x x =-≤<-<≤或3.7. 【xx 新课标2文数】已知集合,则(A)(B)(C)(D)【答案】D【考点】一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.8.【xx新课标2文数】已知集合,,则()A. B. C. D.【答案】A【解析】因为,,所以故选A.【考点定位】本题主要考查不等式基础知识及集合的交集运算.【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.9.【xx新课标2,文1】设集合,则A.B.C.D.【答案】A【解析】由题意,故选A.【考点】集合运算【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.二.能力题组1. 【xx全国2,文3】函数在处导数存在,若;是的极值点,则()A.是的充分必要条件 B. 是的充分条件,但不是的必要条件C. 是的必要条件,但不是的充分条件D. 既不是的充分条件,也不是的必要条件【答案】C2. 【xx全国新课标,文1】已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( ) A.AB B.BA C.A=B D.A∩B=【答案】 B【解析】由题意可得,A={x|-1<x<2},而B={x|-1<x<1},故BA.三.拔高题组1. 【xx全国新课标,文1】已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=( ) A.(0,2) B.0,2]C.{0,2} D.{0,1,2}【答案】:D【解析】∵A={-2,-1,0,1,2},B={0,1,2,3,…,16},∴A∩B={0,1,2}.。
2021-2022年高考数学总复习专题01集合与常用逻辑用语分项练习含解析文
2021年高考数学总复习专题01集合与常用逻辑用语分项练习含解析文一.基础题组1. 【xx 全国1,文1】已知集合{}{}|13,|21M x x N x x =-<<=-<<,则( )A. B. C. D.【答案】B2. 【xx 课标,文1】已知集合M={0,1,2,3,4},N={1,3,5}, 则P 的子集共有( )A.2个B.4个C.6个D.8个【答案】B【解析】因为中有两个元素,所以其子集个个数为个,选B.3. 【xx 全国1,文1】设集合U=,则(A ) (B ) (C ) (D )【答案】D【解析】,.4. 【xx 全国1,文5】下面四个条件中,使成立的充分而不必要的条件是( )(A ) (B ) (C ) (D )【答案】A【精讲精析】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b ,而由a>b 推不出的选项.即寻找条件p 使pp ,逐项验证可知选A.5. 【xx 全国1,文2】设全集U ={1,2,3,4,5},集合M ={1,4},N ={1,3,5},则N ∩(M )等于( )A .{1,3}B .{1,5}C . {3,5}D .{4,5}【答案】:C【解析】∵ M ={2,3,5},∴N ∩(M )={1,3,5}∩{2,3,5}={3,5}.6. 【xx 全国卷Ⅰ,文2】设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A ∪B,则集合(A∩B)中的元素共有( )A.3个B.4个C.5个D.6个【答案】:A【解析】:由题意知A ∪B={3,4,5,7,8,9},A∩B={4,7,9},∴(A∩B)={3,5,8}.∴共3个元素.7. 【xx 高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合中的元素个数为( )(A) 5 (B)4 (C)3 (D)2【答案】D【解析】8. 【xx新课标1文数】设集合,,则( )(A){1,3} (B){3,5} (C){5,7} (D){1,7}【答案】B【解析】试题分析:集合与集合的公共元素有3,5,故,故选B.【考点】集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题的形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式,再进行运算,如果是不等式的解集、函数的定义域及值域等有关数集之间的运算,常借助数轴求解.9.【xx新课标1,文1】已知集合A=,B=,则( )A.AB= B.ABC.AB D.AB=R【答案】A【解析】试题分析:由得,所以33{|2}{|}{|}22A B x x x x x x=<<=<,选A.【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.二.能力题组1. 【xx课标全国Ⅰ,文1】已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( ) A.{1,4} B.{2,3} C.{9, 16} D.{1,2}【答案】:A2. 【xx全国1,文1】设,,则( )A. B. C. D.【答案】:D【解析】:15{|},{|}23S x x T x x=>-=<,∴.三.拔高题组1. 【xx课标全国Ⅰ,文5】已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是( ).A.p∧q B.p∧q C.p∧q D.p∧q【答案】:B【解析】:由20=30知,p为假命题.令h(x)=x3-1+x2,∵h(0)=-1<0,h(1)=1>0,∴x3-1+x2=0在(0,1)内有解.∴∃x∈R,x3=1-x2,即命题q为真命题.由此可知只有p∧q为真命题.故选B.2. 【xx全国1,文1】已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( )A.AB B.CB C.DC D.AD【答案】B【解析】∵正方形组成的集合是矩形组成集合的子集,∴CB.3. 【xx全国1,文1】设I为全集,是的三个非空子集,且,则下面论断正确的是(A)(B)(C)(D)【答案】C【解析】。
2024年高考数学真题分类汇编01:集合与常用逻辑用语
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
二、填空题ห้องสมุดไป่ตู้
10.(2024·上海)设全集U 1, 2,3, 4,5 ,集合 A 2, 4 ,则 A
.
1.A
参考答案:
【分析】化简集合 A ,由交集的概念即可得解.
【解析】因为 A x | 3 5 x 3 5 , B 3, 1, 0, 2,3 ,且注意到1 3 5 2 ,
【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件. 【解析】根据立方的性质和指数函数的性质, a3 b3 和 3a 3b 都当且仅当 a b ,所以二者 互为充要条件. 故选:C.
10. 1, 3, 5
【分析】根据补集的定义可求 A .
【解析】由题设有 A 1,3,5 ,
b
或
a
b
”的(
)条件.
A.必要而不充分条件
B.充分而不必要条件
C.充分且必要条件
D.既不充分也不必要条件
8.(2024·天津)集合 A 1, 2,3, 4 , B 2,3, 4,5 ,则 A B ( )
A.1, 2,3, 4
B.2,3, 4
C.2, 4
D. 1
9.(2024·天津)设 a,b R ,则“ a3 b3 ”是“ 3a 3b ”的( )
【解析】因为 A 1, 2,3, 4,5,9, B x x A ,所以 B 1, 4,9,16, 25,81 ,
则 A B 1, 4,9 , ðA A B 2, 3, 5
故选:D
5.C
【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.
【解析】对 A,当 a b 时,则 a b 0 ,
三年高考-高考数学试题分项版 专题01集合和常用逻辑用语 理(含解析)-人教版高三全册数学试题
第一章 集合和简易逻辑一、选择题1. 【2014课标Ⅰ,理1】已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( )A .]1,2[--B . )2,1[- C..]1,1[- D .)2,1[【答案】A2. 【2013课标全国Ⅰ,理1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ).A .A ∩B =B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B【名师点睛】本题考查集合的基本运算,熟练掌握集合的运算规律是解题的关键,本题考查了考生的基本运算能力和数形结合的能力..3.【2015高考新课标1,理3】设命题p :2,2nn N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈【答案】C4. 【2013高考某某理第1题】已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则U (A ∪B )=( ).A .{1,3,4}B .{3,4}C .{3}D .{4}【答案】D【解析】∵A ∪B ={1,2,3},而U ={1,2,3,4},故U(A ∪B )={4},故选D . 【名师点睛】本题考查了集合的概念和运算,本题属于基础题,注意求解顺序应是先内后外,同时注意仔细观察.5. 【2013高考某某理第2题】命题“对任意x ∈R ,都有x 2≥0”的否定为( ).A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<0【答案】D【解析】全称命题的否定是一个特称命题(存在性命题),故选D .【名师点睛】本题考查了全称命题与特称命题的否定命题的写法,本题属于基础题,注意全称命题的否定是一个特称命题,特称命题的否定是一个全称命题.6. 【2014高考某某理第6题】已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ) .A p q ∧.B p q ⌝∧⌝.C p q ⌝∧.D p q ∧⌝【答案】D【名师点睛】本题主要考查了指数函数的性质,充要条件,判断复合命题的真假,属于中档题,先根据指数函数及充要条件的知识判断出每一个命题的真假,再利用真值表得出结论.7. 【2015高考某某,理1】已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、AB D 、B A【答案】D【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.8. 【2015高考某某,理4】“1x >”是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件【答案】B(3)如果A =B ,那么p 是q 的充要条件;(4)如果A B ⊂≠,且B A ⊂≠,那么p 是q 的既不充分也不必要条件.本题易错点在于解对数不等式时没有考虑对数的定义域.9. 【2014年.某某卷.理1】设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{答案:B【名师点睛】此题属于以一元二次不等式的解法为平台,考查了补集及并集的运算,是高考中常考的题型.在求补集时注意全集的X围.有关集合的运算问题要注意:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图.10. 【2013年.某某卷.理2】设集合S={x|x>-2},T={x|x2+3x-4≤0},则(R S)∪T =( ).A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)【答案】:C【解析】:由题意得T={x|x2+3x-4≤0}={x|-4≤x≤1}.又S={x|x>-2},∴(R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1},故选C.【名师点睛】此题属于以一元二次不等式的解法为平台,考查了补集及并集的运算,是高考中常考的题型.在求补集时注意全集的X围.有关集合的运算问题要注意:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图.11. 【2013年.某某卷.理4】已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“π2ϕ=”的( ).A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】:B【名师点睛】本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.充分条件、必要条件的判定方法有定义法、集合法和等价转化法.三种不同的方法各适用于不同的类型,定义法适用于定义、定理判断性问题,而集合法多适用于命题中涉及字母的X 围的推断问题,等价转化法适用于条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.12. 【2015高考某某,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]【答案】C.【解析】由题意得,)2,0(=P C R ,∴()(1,2)R P Q =,故选C.【考点定位】1.解一元二次不等式;2.集合的运算.【名师点睛】本题主要考查了解一元二次不等式,求集合的补集与交集,属于容易题,在解题过程中要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.13. 【2015高考某某,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >【答案】D.【解析】根据全称命题的否定是特称命题,可知选D.【考点定位】命题的否定【名师点睛】本题主要考查了全称命题的否定等知识点,属于容易题,全称(存在性)命题的否定与一般命题的否定有着一定的区别,全称(存在性)命题的否定是将其全称量词改为存在量词(或把存在量词改为全称量词),并把结论否定;而一般命题的否定则是直接否定结论即可,全称量词与特称量词的意义,是今年考试说明中新增的内容,在后续的复习时应予以关注.14. 【2013某某,理1】1.(2013某某,理1)已知集合A ={x ∈R ||x |≤2},B ={x ∈R |x ≤1},则A ∩B =( ).A .(-∞,2]B .[1,2]C .[-2,2]D .[-2,1]【答案】D15. 【2015高考某某,理4】设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A 16. .【2015高考某某,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8【答案】A【解析】{2,5,8}U B =,所以{2,5}U A B =,故选A.【考点定位】集合的运算.【名师点睛】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题.17. 【2014某某,理7】设,a bR ,则|“a b ”是“a a b b ”的( )(A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要又不必要条件【答案】C . 18. 【2013某某,理1】设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =()(A ){2}-(B ){2}(C ){2,2}-(D )∅【答案】A 19. 【2013某某,理4】设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:p x A ∀∈,2x B ∈,则()(A ):p x A ⌝∃∈,2x B ∉(B ):p x A ⌝∀∉,2x B ∉(C ):p x A ⌝∃∉,2x B ∈(D ):p x A ⌝∃∈,2x B ∉【名师点睛】在书写全称命题和特称命题否定时,一定要抓住决定命题性质的量词,从对量词的否定入手.全称命题的否定是特称命题,特称命题的否定时全称命题.20. 【2014某某,理1】已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=( )A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-【答案】A【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答. 21. 【2015高考某某,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B ( )(){|13}A x x -<<(){|11}B x x -<<(){|12}C x x <<(){|23}D x x <<【答案】A【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.22. 【2014高考某某卷.理.1】已知集合{}1,0,1M =-,{}0,1,2N =,则M N =( ) A .{}1,0,1-B .{}1,0,1,2-C .{}1,0,2-D .{}0,1【答案】B【解析】由题意知{}1,0,1,2M N =-,故选B .【考点定位】本题考查集合的基本运算,属于容易题.【名师点晴】本题主要考查的是集合的并集运算,属于容易题.解题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.23. 【2013高考某某卷.理.1】设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( ).A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}【答案】D24. 【2015高考某某,理1】若集合{|(4)(1)0}Mx x x ,{|(4)(1)0}N x x x ,则M N ( )A .∅B .{}1,4--C .{}0D .{}1,4【答案】A .【考点定位】一元二次方程的解集,集合的基本运算.【名师点睛】本题主要考查一元二次方程的解集,有限集合的交集运算和运算求解能力,属于容易题.25. 【 2014某某5】已知命题.,:,:22y x y x q y x y x p ><-<->则若;命题则若在命题①q p q p q p q p ∨⌝⌝∧∨∧)④(③②);(;;中,真命题是( ) A ①③ B.①④ C.②③ D.②④【答案】C【解析】当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,当1,2x y ==-时,因为2214x y =<=,所以命题q 为假命题,则q ⌝为真命题,所以根据真值表可得②③为真命题,故选C.【考点定位】命题真假 逻辑连接词 不等式【名师点睛】复合命题的真假判定主要是根据简单命题的真假结合逻辑联结次进行判断即可,如果p 或q 真(假)则需分三种情况讨论,如果p 且q 真(假)则p,q 真(p 真q 假或p,q 假,p 真q 假,p 假q 真),如果p 真,则非p 一定假.26. 【2013某某,理2】已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ).A .1B .3C .5D .9【答案】:C 【名师点睛】本题考查集合的基本关系,解答本题的关键,是理解集合B 的意义,能从其定义出发,讨论x,y 的取值情况.本题易错点是忽视集合的互异性,出现错误.本题属于基础题,注意基本概念的正确理解以及基本运算方法的准确性.27. 【2013某某,理7】给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】:A【名师点睛】本题考查充要条件、简易逻辑联结词.此类问题的基本解法是在理解充要条件概念的基础上,利用“真值表”,判断命题的真假.本题属于基础题,也是常见题目,故考生易于正确解答.28. 【2015高考某某,理1】已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B =( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)【答案】C【名师点睛】本题考查集合的概念与运算,利用解一元二次不等式的解法化简集合并求两集合的交集,本题属基础题,要求学生最基本的算运求解能力.29. 【2014某某.理2】设集合{}{}]2,0[,2|,2|1||∈==<-=x y y B x x A x ,则=B A ( )A.]2,0[B. )3,1(C. )3,1[D. )4,1(【答案】C【名师点睛】本题考查集合的基本运算、函数的值域、绝对值不等式的解法等,解答本题的关键,是正确化简集合A,B ,明确集合中的元素.本题体现了高考命题“小题综合化”的命题原则.本题属于基础题,注意基本概念的正确理解以及基本运算方法的准确性.30. 【2013高考某某版理第1题】设全集为R ,函数f (x )=21x -的定义域为M ,则R M为( ).A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)【答案】D 【名师点晴】本题主要考查的是函数的定义域,一元二次不等式的解法和集合的补集运算,属于容易题.求函数的定义域时要注意一元二次不等式的二次项系数为负,否则很容易出现错误.31. 【2014高考某某版理第1题】已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D【答案】B【名师点晴】本题主要考查的是一元二次不等式的解法和集合的交集运算,属于容易题.求两个集合的交集时要注意画出数轴,利用数轴求交集可以有效防止出现错误.32. 【2015高考某某,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A【名师点晴】本题主要考查的是一元二次方程、对数不等式和集合的并集运算,属于容易题.解题时要看清楚是求“”还是求“”和要注意对数的真数大于0,否则很容易出现错误.33. 【2013高考某某版理第3题】设a ,b 为向量,则“|a·b |=|a ||b |”是“a ∥b ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【名师点晴】本题主要考查的是充分必要条件,向量的数量积,共线向量等知识点,属于容易题.解题时要注意两点:一是a 与b 中有一个为零向量的情况,以及a 与b 都不为零向量的情况;二是既要说明充分性,又要说明必要性,二者缺一不可34. 【2014某某理8】原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假【答案】B【解析】试题分析:设复数1z a bi =+,则21z z a bi ==-,所以2212z z a b ==+,故原命题为真;逆命题:若12z z =,则12,z z 互为共轭复数;如134z i =+,243z i =+,且125z z ==,但此时12,z z 不互为共轭复,故逆命题为假;否命题:若12,z z 不互为共轭复数,则12z z ≠;如134z i =+,243z i =+,此时12,z z 不互为共轭复,但125z z ==,故否命题为假;原命题和逆否命题的真假相同,所以逆否命题为真;故选B .考点:命题以及命题的真假.【名师点晴】本题主要考查的是共轭复数,命题以及命题的真假等知识,属于容易题;在解答时对于正确选项要说明理由,对于错误选项则只要举出反例即可,在本题中原命题为真,则其逆否命题也为真;而对于逆命题举出反例即可说明其为假,则否命题亦为假35. 【2013课标全国Ⅱ,理1】已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}【答案】:A 【名师点睛】本题考查集合的概念和运算,本题属于基础题,注意仔细观察.36. 【2015高考新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2【答案】A【解析】由已知得{}21B x x =-<<,故{}1,0AB =-,故选A .【考点定位】集合的运算.【名师点睛】本题考查一元二次不等式解法和集合运算,要求运算准确,属于基础题.37. 【2014新课标,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}【答案】D【解析】因为N={}|12x x ≤≤,所以M N ⋂={}1,2,故选D.【名师点睛】本题主要考查了集合的交集运算,熟练掌握集合的交集运算规律是解题的关键,本题考查了考生的基本运算能力.38. 【2013高考理第1题】已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ).A .{0}B .{-1,0}C .{0,1}D .{-1,0,1}【答案】B【名师点睛】本题考查集合的交集运算,本题属于基础题,集合部分高考题主要以集合的概念、集合的运算为主,首先要正确解读集合,确认集合中的元素,近几年高考重点考查有限数集和无限数集的交、并、补运算,要求学生灵活运用韦恩图和数轴工具,正确求出结果,另外遇到点集时,还要利用直角坐标系.39. 【2014高考理第1题】已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B =( )A.{0} B .{0,1} C .{0,2} D .{0,1,2}【答案】C【名师点睛】:本题考查集合的交集运算,本题属于基础题,集合部分高考题主要以集合的概念、集合的运算为主,首先要正确解读集合,确认集合中的元素,近几年高考重点考查有限数集和无限数集的并、补运算,要求学生灵活运用韦恩图和数轴工具,正确求出结果,另外遇到点集时,还要利用直角坐标系.40. 【2013某某卷2】已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =( )A.{}|0x x ≤B. }42|{<<x xC. {}|024x x x ≤<>或D.{}|024x x x <≤≥或【答案】C【解析】试题分析:[)0,A =+∞,[]2,4B =,[)()0,24,R A C B ∴=+∞.故选C.【名师点睛】将集合间的基本运算、指数不等式的求解和一元二次不等式的解法融合在一起,不仅考查了集合间的基本运算,也考查了指数不等式的求法和一元二次不等式的解法,充分体现了学科内知识之间的联系性,能够较好的反应学生基础知识的综合运用能力.41. 【2013某某卷3】在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定X 围”,q 是“乙降落在指定X 围”,则命题“至少有一位学员没有降落在指定X 围”可表示为( )A.()()p q ⌝∨⌝B. ()p q ∨⌝C. ()()p q ⌝∧⌝D.p q ∨【答案】A42. 【2014某某卷3】设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查集合间的基本关系,体现了分类讨论的思想方法的重要性以及考虑问题的全面性,能较好的考查学生知识间的综合能力、知识迁移能力和科学计算能力.43. 【2015高考某某,理5】设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列; q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【答案】A【名师点睛】判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ,二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.44. 【2014某某,理15】设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件【答案】B【解析】若2,2a b >>,则4a b +>,但当4,1a b ==时也有4a b +>,故本题就选B .【考点】充分必要条件.【名师点睛】判断充分条件和必要条件的方法(1)命题判断法:设“若p ,则q ”为原命题,那么:①原命题为真,逆命题为假时,p 是q 的充分不必要条件;②原命题为假,逆命题为真时,p 是q 的必要不充分条件;③原命题与逆命题都为真时,p 是q 的充要条件;④原命题与逆命题都为假时,p 是q 的既不充分也不必要条件.(2)集合判断法:从集合的观点看,建立命题p ,q 相应的集合:p :A ={x |p (x )成立},q :B ={x |q (x )成立},那么:①若A ⊆B ,则p 是q 的充分条件;若A B 时,则p 是q 的充分不必要条件;②若B ⊆A ,则p 是q 的必要条件;若B A 时,则p 是q 的必要不充分条件;③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件.(3)等价转化法:p 是q 的什么条件等价于非q 是非p 的什么条件.2.转化与化归思想由于互为逆否命题的两个命题具有相同的真假性,因而当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.45. 【2013某某,理15】设常数a ∈R ,集合A ={x |(x -1)(x -a )≥0},B ={x |x ≥a -1}.若A ∪B =R ,则a 的取值X 围为( )A.(-∞,2) B.(-∞,2]C.(2,+∞) D.[2,+∞)【答案】B46. 【2013某某,理16】钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件 B.必要条件C.充分必要条件 D.既非充分又非必要条件【答案】B【解析】根据等价命题,便宜⇒没好货,等价于,好货⇒不便宜,故选B.【名师点睛】判断充分条件和必要条件的方法(1)命题判断法:设“若p,则q”为原命题,那么:①原命题为真,逆命题为假时,p是q的充分不必要条件;②原命题为假,逆命题为真时,p是q的必要不充分条件;③原命题与逆命题都为真时,p是q的充要条件;④原命题与逆命题都为假时,p是q的既不充分也不必要条件.(2)集合判断法:从集合的观点看,建立命题p,q相应的集合:p:A={x|p(x)成立},q:B={x|q(x)成立},那么:①若A⊆B,则p是q的充分条件;若A B时,则p是q的充分不必要条件;②若B⊆A,则p是q的必要条件;若B A时,则p是q的必要不充分条件;③若A⊆B且B⊆A,即A=B时,则p是q的充要条件.(3)等价转化法:p是q的什么条件等价于非q是非p的什么条件.2.转化与化归思想由于互为逆否命题的两个命题具有相同的真假性,因而当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.47.(2013某某,理2)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A48. 【2015高考某某,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ【答案】C【解析】由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .【考点定位】1、复数的概念;2、集合的运算.【名师点睛】本题考查复数的概念和集合的运算,利用21i =-和交集的定义求解,属于基础题,要注意运算准确度.49. 【2015高考某某,理8】设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 ( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【答案】B【考点定位】命题与逻辑.【名师点睛】充分性必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考.50. 【2014,某某理2】“0<x ”是“0)1ln(<+x ”的( )A .充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 【答案】B . 【名师点睛】对于判断充分条件和必要条件的问题,首先需要将复杂的形式化简成简单形式(即化简题中所给式子或解不等式等),然后在判断两者X 围的大小,在数轴上进行比较,若命题p 对应集合A ,命题q 对应集合B ,则A B ⊆等价于p q ⇒.同时要熟练掌握对数常见的运算规律,如log 10,log 1a a a ==.51.【2013,某某理4】"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C .【命题立意】考查充分条件、必要条件的判断.【名师点睛】本题需要考生了解以下两点:①由二次函数的图像可知()f x 在(0,)+∞内单调递增等价于()0f x =在区间(0,)+∞内无实根;②函数|()|f x 的画法是把函数()f x 在x 轴下方的图像对折到x 轴上方,在x 轴上方的图像不变即可.52. 【2015高考某某,理3】设:12,:21xp x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件【答案】A 53.(2013某某,理2)已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B =( ).A .(0,1)B .(0,2]C .(1,2)D .(1,2]【答案】D54. 【2014某某理1】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =( ) A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<【答案】D【解析】试题分析:因为A ∪B ={x |x ≤0或x ≥1},所以(){|01}U C AB x x =<<,故选D .考点:集合的运算.【名师点睛】本题考查集合的基本运算,将不等式、集合结合在一起综合考查考生的基本数学素养,是高考命题“小题综合化”的原则的具体体现.本题属于基础题,注意基本概念的正确理解以及基本运算方法的准确性. 55. 【2014某某理5】设,,a b c 是非零向量,已知命题P :若0a b •=,0b c •=,则0a c •=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝【答案】A56. 【2014新课标,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}【答案】D【解析】因为N={}|12x x ≤≤,所以M N ⋂={}1,2,故选D.【考点定位】集合的运算.【名师点睛】本题考查集合的概念和运算,本题属于基础题,注意仔细观察.57. 【2015某某理2】设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C.【解析】试题分析:由题意得,AB A A B =⇒⊆,反之,A B A B A =⇒⊆ ,故为充要条件,选C.【考点定位】1.集合的关系;2.充分必要条件.【名师点睛】本题主要考查了集合的关系与充分必要条件,属于容易题,高考强调集合作为工具与其他知识点的结合,解题的关键是利用韦恩图或者数轴求解,充分,必要条件的判断性问题首要分清条件和结论,然后找出条件和结论之间的推出或包含关系.二、填空题1. 【2014高考某某理第11题】设全集{|110},{1,2,3,5,8},{1,3,5,7,9},()U U n N n A B A B =∈≤≤===则______.【答案】{}7,9【名师点睛】本题考查了集合的概念和运算,本题属于基础题,注意求解顺序应是先内后外,同时注意仔细观察.2. 【2015高考某某,理9】i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为.【答案】2-【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.3. 【2015高考某某,理12】若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为.【答案】1所以答案应填:1.【考点定位】1、命题;2、正切函数的性质.【名师点睛】本题涉及到全称命题、正切函数的性质、不等式恒成立问题等多个知识点,意在考查学生综合利用所学知识解决问题的能力,注意等价转化的思想的应用,此题属中档题.4. 【2013某某,理4】集合{-1,0,1}共有__________个子集.【答案】8【解析】由于集合{-1,0,1}有3个元素,故其子集个数为23=8..【考点定位】子集个数【名师点晴】研究集合问题,一定要抓住元素,看元素应满足的属性.n 个元素的集合的子集个数为2n 个。
2025年新高考数学专题 集合与常用逻辑用语 含解析
专题01集合与常用逻辑用语易错点一:对集合表示方法的理解存在偏差(集合运算问题两种解题方法)方法一:列举法列举法就是通过枚举集合中的所有元素,然后根据集合基本运算的定义求解的方法。
其解题具体步骤如下:第一步定元素:确定已知集合中的所有元素,利用列举法或画数轴写出所有元素或范围;第二步定运算:利用常见不等式或等式解未知集合;第三步:定结果。
方法二:赋值法高考对集合的基本运算的考查以选择题为主,所以我们可以利用特值法解题,即根据选项之间的明显差异,选择一些特殊元素进行检验排除,从而得到正确选项.其解题具体步骤如下:第一步:辨差异:分析各选项,辨别各选项的差异;第二步:定特殊:根据选项的差异,选定一些特殊的元素;第三步:验排除:将特殊的元素代入进行验证,排除干扰项;第四步:定结果:根据排除的结果确定正确的选项。
易错提醒:对集合表示法的理解先观察研究对象(丨前),研究对象是点集还是数集,故要对本质进行剖析,需要明确集合中的代表元素类型及代表元素的含义.若A B ⊆,即A 是B 的子集,所以A B A = ,所以(4)正确;根据元素与集合的关系可知{}∅∈∅正确,也即(5)正确.所以正确的个数是4.故选:A易错点二:忽视(漏)空集导致错误(集合中的含参问题)1.利用两个集合之间的关系确定参数的取值范围解题时务必注意:由于∅是任意集合的子集,若已知非空集合B,集合A 满足A ⊆B 或A ⊂B,则对集合A 分两种情中的含参问题况讨论:(1)当A=∅时,若集合A 是以不等式为载体的集合,则该不等式无解;(2)当A≠∅时,要利用子集的概念把子集关系转化为两个集合对应区间的端点值的大小关系,从而构造关于参数的不等式(组)求解.2.利用两集合的运算求参数的值或取值范围解决此类问题的步骤一般为:第一步:化简所给集合;第二步:用数轴表示所给集合;第三步:根据集合端点间关系列出不等式(组);(4)解不等式(组);第四步:检验,通过返回代入验证端点是否能够取到.第五步:解决此类问题多利用数形结合的方法,结合数轴或Venn 图进行求解.易错提醒:勿忘空集和集合本身.由于∅是任意集合的子集,是任何集合的真子集,任何集合的本身是该集合的子集,所以在进行列举时千万不要忘记。
高考数学专题01集合与常用逻辑用语-高考数学试题分项版解析(解析版).docx
专题1 集合与常用逻辑用语1. 【2014高考安徽卷文第2题】命题“0||,2≥+∈∀x x R x ”的否定是( )A.0||,2<+∈∀x x R xB. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R xD. 0||,2000≥+∈∃x x R x2. 【2014高考北京卷文第1题】若集合A={}0,1,2,4,B={}1,2,3,则A B ⋂=( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}33. 【2014高考北京卷文第5题】设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分也不必要条件4. 【2014高考大纲卷文第1题】设集合M={1,2,4,6,8},N={2,3,5,6,7},则MN 中元素的个数为( )A. 2B. 3C. 5D. 7【答案】B【解析】试题分析:{1,2,6)M N =.故选B.考点:集合的运算.5.【2014高考福建卷文第1题】若集合}{}{24,3,P x x Q x x =≤<=≥则P Q ⋂等于 ( ) }{}{}{}{.34.34.23.23A x x B x x C x x D x x ≤<<<≤<≤≤6. 【2014高考福建卷文第5题】命题“[)30,.0x x x ∀∈+∞+≥”的否定是 ( ) ()()[)[)3333000000.,0.0.,0.0.0,.0.0,.0A x x x B x x x C x x x D x x x ∀∈-∞+<∀∈-∞+≥∃∈+∞+<∃∈+∞+≥7. 【2014高考广东卷文第1题】已知集合{}2,3,4M =,{}0,2,3,5N =,则MN =( )A.{}0,2B.{}2,3C.{}3,4D.{}3,58. 【2014高考湖北卷文第1题】 已知全集}7,6,5,4,3,2,1{=U ,集合}6,5,3,1{=A ,则=A C U ( )A.}6,5,3,1{B. }7,3,2{C. }7,4,2{D. }7,5,2{【答案】C【解析】试题分析:依题意,}7,4,2{=A C U ,故选C.考点:补集的运算,容易题.9. 【2014高考湖北卷文第3题】命题“R ∈∀x ,x x ≠2”的否定是( )A. R ∉∀x ,x x ≠2B. R ∈∀x ,x x =2C. R ∉∃x ,x x ≠2D. R ∈∃x ,x x =210. 【2014高考湖南卷文第1题】设命题2:,10p x R x ∀∈+>,则p ⌝为( )200.,10A x R x ∃∈+> 200.,10B x R x ∃∈+≤200.,10C x R x ∃∈+< 2.,10D x R x ∀∈+≤11. 【2014高考湖南卷文第2题】已知集合{|2},{|13}A x x B x x =>=<<,则A B =( ).{|2}A x x > .{|1}B x x > .{|23}C x x << .{|13}D x x <<12. 【2014高考江苏卷第1题】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂= .【答案】{1,3}-【解析】由题意得{1,3}AB =-.【考点】集合的运算 13. 【2014高考江西卷文第2题】设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =( ).(3,0)A - .(3,1)B -- .(3,1]C -- .(3,3)D -14. 【2014高考江西卷文第6题】下列叙述中正确的是( ).A 若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤.B 若,,a b c R ∈,则22""ab cb >的充要条件是""a c >.C 命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”.D l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ15. 【2014高考辽宁卷文第1题】 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<【答案】D【解析】 试题分析:由已知得,{=0A B x x ≤或}1x ≥,故()U C A B ={|01}x x <<.【考点定位】集合的运算.16. 【2014高考全国1卷文第1题】已知集合{}{}|13,|21M x x N x x =-<<=-<<,则MN =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-17. 【2014高考全国2卷文第1题】设集合2{2,0,2},{|20}A B x x x =-=--=,则AB =( )A. ∅B. {}2C. {0}D. {2}-18. 【2014高考全国2卷文第3题】函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x的极值点,则( )A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,也不是q 的必要条件19. 【2014高考山东卷文第2题】设集合{}{},41,022≤≤=<-=x x B x x x A 则=B A ( )(A )(]2,0 (B )()2,1 (C ) [)2,1 (D )()4,120. 【2014高考陕西卷文第1题】已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则M N =( ) .[0,1]A .(0,1)B .(0,1]C .[0,1)D【答案】D【解析】试题分析:由{|0,}[0,)M x x x R =≥∈=+∞2{|1,}(1,1)N x x x R =<∈=-所以[0,1)MN =故选D考点:集合间的运算.21. 【2014高考四川卷文第1题】已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B ⋂=( )A .{1,0}-B .{0,1}C .{2,1,0,1}--D .{1,0,1,2}-22. 【2014高考天津卷卷文第3题】已知命题为则总有p e x x p x ⌝>+>∀,1)1(,0:( )A.1)1(,0000≤+≤∃x e x x 使得B. 1)1(,0000≤+>∃x e x x 使得C.0000,(1)1x x x e ∀>+≤总有D.0000,(1)1x x x e ∀≤+≤总有【答案】B【解析】试题分析:因为命题:,p x d ∀的否定为:,p x d ⌝∃⌝,所以命题:0,(1)1,x p x x e p ∀>+>⌝总有为0000,(1)1x x x e ∃>+≤使得,选B.考点:命题的否定23. 【2014高考浙江卷文第1题】设集合 {|2}S x x =≥,}5|{≤=x x T ,则S T =( )A. ]5,(-∞B. ),2[+∞C. )5,2(D.]5,2[24. 【2014高考浙江卷文第2题】设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的( )A. 充分不必要条件B. 必要不成分条件C. 充要条件D. 既不充分也不必要条件25. 【2014高考重庆卷文第6题】已知命题:p 对任意x R ∈,总有||0x ≥; :1q x =是方程20x +=的根,则下列命题为真命题的是( ).A p q ∧⌝ .B p q ⌝∧ .C p q ⌝∧⌝ .D p q ∧26. 【2014高考重庆卷文第11题】已知集合{3,4,5,12,13},{2,3,5,8,13}A B ==,则AB =_______. 【答案】{}3,5,13【解析】试题分析:{}{}{}3,4,5,12,132,3,5,8,133,5,13A B ==所以答案应填{}3,5,13.考点:集合的运算.27. 【2014高考上海卷文第15题】设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件。
新高考地区专用2024_2025三年高考数学真题分项汇编专题01集合与常用逻辑用语
专题01 集合与常用逻辑用语1.【2024年新高考1卷】若集合M ={x ∣√x <4}, N ={x ∣3x ≥1},则M ∩N =( )A .{x |0≤x <2 }B .{x |13≤x <2 }C .{x |3≤x <16 }D .{x |13≤x <16 }【答案】D【分析】求出集合M,N 后可求M ∩N .【解析】M ={x ∣0≤x <16},N ={x ∣x ≥13},故M ∩N ={x|13≤x <16},故选:D.2.【2024年新高考2卷】已知集合A ={−1,1,2,4},B ={x ||x −1|≤1 },则A ∩B =( )A .{−1,2}B .{1,2}C .{1,4}D .{−1,4} 【答案】B【分析】求出集合B 后可求A ∩B .【解析】B ={x|0≤x ≤2},故A ∩B ={1,2},故选:B. 3.【2024年新高考1卷】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【分析】利用交集的定义可求A B .【解析】由题设有{}2,3A B ⋂=,故选:B .4.【2024年新高考2卷】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B =( )A .{3}B .{1,6}C .{5,6}D .{1,3} 【答案】B【分析】依据交集、补集的定义可求()U A B ⋂.【解析】由题设可得{}U 1,5,6B =,故(){}U 1,6A B ⋂=,故选:B.5.【2024年新高考1卷(山东卷)】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【分析】依据集合并集概念求解.【解析】[1,3](2,4)[1,4)A B ==,故选:C.【点睛】本题考查集合并集,考查基本分析求解实力,属基础题.6.【2024年新高考2卷(海南卷)】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =( )A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C【分析】依据集合交集的运算可干脆得到结果.【解析】因为A {2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B =,故选:C.【点睛】本题考查的是集合交集的运算,较简洁.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题01 集合与常用逻辑用语
一.基础题组
1. 【2014课标Ⅰ,理1】已知集合{}
{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( ) A .]1,2[-- B . )2,1[- C..]1,1[- D .)2,1[ 【答案】A
【解析】由已知得,{
1A x x =≤-或}3x ≥,故{}21A
B x x =-≤≤-,选A .
2. 【2013课标全国Ⅰ,理1】已知集合A ={x |x 2
-2x >0},B ={x |x ,则( ). A .A ∩B = B .A ∪B =R C .B ⊆A D .A ⊆B
【答案】B
【解析】∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:
由图象可以看出A ∪B =R ,故选B.
3. 【2012全国,理1】已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )
A .3
B .6
C .8
D .10 【答案】D
4. 【2010新课标,理1】已知集合A ={x ||x |≤2,x ∈R },B ={x x ∈Z },则A ∩B =( )
A .(0,2)
B .0,2]
C .{0,2}
D .{0,1,2} 【答案】:D
【解析】∵A={-2,-1,0,1,2},B ={0,1,2,3,…,16},∴A∩B={0,1,2}.
5. 【2009全国卷Ⅰ,理1】设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合(A∩B)中的元素共有( )
A.3个
B.4个
C.5个
D.6个 【答案】A
【解析】由题意知A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴(A∩B)={3,5,8}. ∴共3个元素.
6. 【2006全国,理1】设集合M ={x│x 2
-x <0},N={x││x│<2},则( ) (A )φ=N ⋂M (B )M N =⋂M (C )M N =⋃M (D )R N =⋃M 【答案】B
7. 【2015高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( ) (A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤ (C )2
,2n
n N n ∀∈≤ (D )2
,=2n
n N n ∃∈ 【答案】C
【解析】p ⌝:2,2n n N n ∀∈≤,故选C. 【考点定位】本题主要考查特称命题的否定
8. 【2016高考新课标理数1】设集合2
{|430}A x x x =-+< ,{|230}B x x =->,则
A B =
(A )3(3,)2-- (B )3(3,)2- (C )3(1,)2 (D )3(,3)2
【答案】D 【解析】
试题分析:因为2
3
{|430}={|13},={|},2
A x x x x x
B x x =+<<<>
-所以33
={|13}{|}={|3},22
A B x x x x x x <<><<故选D.
【考点】集合的交集运算
【名师点睛】集合是每年高考中的必考题,一般以基础题的形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式,再进行运算,如果是不等式的解集、函数的定义域及值域等有关数集之间的运算,常借助数轴求解.
9.【2017新课标1,理1】已知集合A ={x |x <1},B ={x |31x
<},则( )
A .{|0}A
B x x =<
B .A B =R
C .{|1}A
B x x =>
D .A
B =∅
【答案】A
【考点】集合的运算,指数运算性质
【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 二.能力题组
1. 【2011新课标,理10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:
p 1:|a +b |>1⇔θ∈0,23π) p 2:|a +b |>1⇔θ∈(23
π,π] p 3:|a -b |>1⇔θ∈0,
3π) p 4:|a -b |>1⇔θ∈(3
π
,π] 其中的真命题是( ) A .p 1,p 4
B .p 1,p 3
C .p 2,p 3
D .p 2,p 4
【答案】A 【解析】
2. 【2011全国,理3】下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2
>b 2
D .a 3
>b 3
【答案】A
【解析】由>+1,得>;反之不成立。
3. 【2005全国1,理1】设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( ) A. 123()I C S S S φ= B. 123()I I S C S C S ⊆ C. 1
2
3I I I C S C S C S φ= D. 12
3()I I S C S C S ⊆
【答案】C 【解析】
三.拔高题组
1. 【2010新课标,理5】已知命题:
p 1:函数y =2x -2-x 在R 上为增函数, p 2:函数y =2x +2-x 在R 上为减函数,
则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(
p 1)∨p 2和q 4:p 1∧(p 2)中,真命题是( )
A .q 1,q 3
B .q 2,q 3
C .q 1,q 4
D .q 2,q 4 【答案】C
2. 【2017新课标1,理3】设有下面四个命题
1p :若复数满足1
z
∈R ,则z ∈R ;
2p :若复数满足2z ∈R ,则z ∈R ;
3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .
其中的真命题为( ) A .13,p p
B .14,p p
C .23,p p
D .24,p p
【答案】B
【考点】命题的真假
【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.。