201509中考数学模拟试卷附答案

合集下载

2015中考数学模拟试题含答案(精选5套)

2015中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2015年中考模拟考试数学试题及答案(绝密)

2015年中考模拟考试数学试题及答案(绝密)

2015年中考模拟考试数学试题(绝密)(时间120分钟,满分120分)2015.4.4 一、选择题(本大题共12小题,每小题3分,共36分)1.数轴上表示 – 5的点到原点的距离为A. 5B. – 5C. 15D. 15-2.若式子x 的取值范围是A.x<7 B .x ≤7 C .x>7 D .x≥7 3.下面的计算正确的是A.6a -5a =6=± C. 1122-⎛⎫=- ⎪⎝⎭D.2(a +b)=2a +2b4.如图所示,直线a ∥b ,∠B=22°,∠C=50°,则∠A 的度数为A. 22°B.28°C. 32°D.38°5.若一个三角形三个内角度数的比为1︰2︰3,那么这个三角形最小角的正切值为A. 13B. 12C. 3D. 26.在盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子A.1颗B.2颗C.3颗D.4颗 7.一个几何体的三视图如右图所示,则这个几何体是8.点M (︒-60sin ,︒60cos )关于x 轴对称的点的坐标是A.(, 12) B.(12-) C.(12) D.(12-,9.若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法判断 10.如图所示,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接CE .若AB=8,CD=2,则CE 的长为A.8C.11.如图所示,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分的面积为A.π-10B.π-8C.π-12 D .π-612.如图所示,OAC ∆和BAD ∆都是等腰直角三角形, 90=∠=∠ADB ACO ,反比例函数xky =在第一象限的图象经过点B ,若2218OA AB -=,则k 的值为 A. 12 B. 9 C.8 D. 6A B C D二、填空题(本大题共6小题,每小题3分,共18分)13.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在 0.000075千克以下.将0.000075用科学记数法表示为 . 14.分解因式:=+-x x x 24223 .15.已知一组数据: –3,x ,– 2, 3,1,6的中位数为1,则其方差为 . 16.如图所示,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG , EF 交AD 于点H ,则四边形DHFC 的面积为 .17.如图所示,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半 r=2cm ,扇形的圆心角=θ120°,则该圆锥的母线长l 为 cm .18.如图所示,在一张长为8cm ,宽为6cm 的矩形纸片上,现要剪下一个腰长为5cm 的等腰三 角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边 上),则剪下的等腰三角形的面积为 cm 2(把下列正确序号填在横线上). ①25cm 2; ②6cm 2; ③10cm 2; ④12cm 2; ⑤2三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19、(本题满分10分,每小题5分)(1)计算:41280+--+πsin30°; (2)解不等式组:⎩⎨⎧+≥-<-24413x x x .20、(本题满分5分)第10题图 第11题图第12题图B 第4题图第16题图第17题图第18题图如图,四边形ABCD 是矩形:①用直尺和圆规作出∠A 的平分线与BC 边的垂直平分线的交点Q (不写作法,保留作图痕迹); ②连结QD ,则DQ AQ (填:“>或<或 =”).21、(本题满分6分)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成下表.(1)根据分布表中的数据,直接写出a ,b ,c 的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.22、(本题满分8分)如图,反比例函数)0(>=x xky 的图象经过点A (32,1), 直线AB 与反比例函数图象交与另一点B (1,a ),射线AC 与y 轴交于点C ,y AD BAC ⊥=∠,75 轴,垂足为D .(1)求反比例函数的解析式;(2)求DAC ∠tan 的值及直线AC 的解析式.xyOABD C23、(本题满分8分)某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?24、(本题满分9分)如图,△ABC 中,E 是AC 上一点,且AE=AB ,BAC EBC ∠=∠21, 以AB 为直径的⊙O 交AC 于点D ,交EB 于点F . (1)求证:BC 与⊙O 相切;(2)若18,sin 4AB EBC =∠=,求AC 的长.25、(本题满分11分)如图,二次函数c bx x y ++-=241的图像经过点()()4,4,0,4--B A ,且与y 轴交于点C . (1)求此二次函数的解析式;(2)证明:CAO BAO ∠=∠(其中O 是原点); (3)若P 是线段AB 上的一个动点(不与A 、B 重合),过P 作y 轴的平行线,分别交此二次函数图 像及x 轴于Q 、H 两点,试问:是否存在这样的点P , 使QH PH 2=?若存在,请求出点P 的坐标;若不 存在,请说明理由.26、(本题满分9分)在Rt△ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时:①如图1,三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2,三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的 结论是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,三角板的两直角边分别交AB ,BC 于E 、F 两点, 若15AO AC,则OE OF= .图1BA OCEFCB AOEF图2图3OABCE F数学参考答案与评分标准一、 选择题:(本大题共12小题,每小题3分,共36分)1、A2、D3、D4、B5、C6、B7、D8、B9、A 10、D 11、A 12、B 二、 填空题:(本大题共6小题,每小题3分,共18分) 13、57.510-⨯ 14、22(1)x x - 15、 9 16、33 17、6 18、①、③、⑤ 三、解答题:(本大题共8小题,满分66分) 19、(本题满分10分)解:(1)原式=12221142+--+⨯……4分 (2)由13<-x 得4<x …………2分=32 …………5分 由244+≥-x x 得2≥x …………4分 所以原不等式组的解为42<≤x …5分20、(本题满分5分)解:①如图所示:(画图4分)②DQ=AQ (5分) 21、(本题满分6分)解:(1)a=0.1,b=30,c=0.3;……………………3分(2)设“此人购买的节能灯恰好不是次品”为事件A .由表可知:这批灯泡中优等品有60个,正品有110个,次品有30个,所以此人购买的节能灯恰好不是次品的概率为:P (A )==0.85……………………6分22、(本题满分8分) 解:(1)由反比例函数)0(>=x xky 的图象经过点A (32,1),得: 32132=⨯=k ……………………………………2分∴反比例函数为)0(32>=x xy ……………………3分 (2)由反比例函数)0(32>=x xy 得点B 的坐标为(1,32),于是有 30,45=∠∴=∠DAC BAD ,33tan =∠DAC ………………………………5分 AD =32,则由33tan =∠DAC 可得CD =2,C 点纵坐标是–1,直线AC 过点A (32,1),C(0, –1)则直线AC 解析式为133-=x y …………………8分 23、(本题满分8分)解:(1)由题意得,y=………………………………………………………………1分把y=120代入y=,得x=3 把y=180代入y=,得x=2,∴自变量的取值范围为:2≤x≤3, ∴y=(2≤x≤3)…………………………3分O F E D C B A (2)设原计划平均每天运送土石方x 万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:245.0360360=+-x x .........................................................5分 解得:x=2.5或x=﹣3 (6)分经检验x=2.5或x=﹣3均为原方程的根,但x=﹣3不符合题意,故舍去 (7)分答:原计划每天运送2.5万米3,实际每天运送3万米3. …………………………8分 24、(本题满分9分)(1)证明:连接AF ,∵AB 为直径, ∴∠90AFB =︒. ∵AE AB =, ∴△ABE 为等腰三角形……………1分∴∠12BAF =∠BAC .∵BAC EBC ∠=∠21, ∴∠BAF =∠.EBC ………2分∴∠FAB +∠FBA =∠EBC +∠90FBA =︒.………3分∴∠90ABC =︒ . ∴BC 与⊙O 相切. …………………………………………………4分 (2) 解:过E 作EG BC ⊥于点.G∠BAF =∠EBC , ∴1sin sin 4BAF EBC ∠=∠=.在△AFB 中,∠90AFB =︒,∵8AB =,∴BF AB =⋅sin ∠18 2.4BAF =⨯= (5)分∴24BE BF ==.…………………………………………6分在△EGB 中,∠90EGB =︒,∴1sin 4 1.4EG BE EBC =⋅∠=⨯=…………………7分∵EG BC ⊥,AB ⊥BC ,∴EG ∥.AB ∴△CEG ∽△.CAB∴CE EGCA AB =. ∴1.88CE CE =+………………………8分 ∴8.7CE = ∴8648.77AC AE CE =+=+=…………………………………………9分25、(本题满分11分) 解:(1)∵点()0,4A 与()4,4--B 在二次函数图像上,∴⎩⎨⎧+--=-++-=c b c b 444440,解得⎪⎩⎪⎨⎧==221c b ,……………………………………………3分 ∴二次函数解析式为221412++-=x x y .………………………………………4分(2)过B 作x BD ⊥轴于点D ,由(1)得()2,0C ,…………………………………5分 在AOC Rt ∆中,2142tan ===∠AO CO CAO ,在ABD Rt ∆中,2184tan ===∠AD BD BAD , ∵BAD CAO ∠=∠tan tan …………………………………………………………6分 ∴BAO CAO ∠=∠……………………………………………………………………7分(3)由()0,4A 与()4,4--B ,可得直线AB 的解析式为221-=x y , 设1(,2)2P x x -,(4-<x <4),则⎪⎭⎫⎝⎛++-22141,2x x x Q ,∴22141,2122212++-=-=-=x x QH x x PH . …………………………8分∴2214122122++-=-x x x ……………………………………………………9分当4212122++-=-x x x ,解得 4,121=-=x x (舍去),∴⎪⎭⎫ ⎝⎛--25,1P ……10分当4212122--=-x x x ,解得 4,321=-=x x (舍去),∴⎪⎭⎫ ⎝⎛--27,3P ……11分综上所述,存在满足条件的点,它们是⎪⎭⎫ ⎝⎛--25,1与⎪⎭⎫ ⎝⎛--27,3.26、(本题满分9分)(1)①猜想:222AE CF EF +=…………2分②成立. …………………………3分 证明:连结OB.∵AB =BC , ∠ABC =90°,O 点为AC 的中点,∴12OB AC OC ==,∠BOC =90°,∠ABO =∠BCO =45°. ∵∠EOF =90°,∴∠EOB =∠FOC . 又∵∠EBO =∠FCO ,∴△OEB ≌△OFC (ASA ).∴BE =CF ……………………………………………………5分 又∵BA=BC , ∴AE =BF.在Rt ΔEBF 中,∵∠EBF =90°,222BF BE EF ∴+=.222AE CF EF ∴+=……………………………………………………6分(2)14OE OF =. ………………………………………………………………………………9分CBAOF。

2015中考模拟试卷数学卷和答案

2015中考模拟试卷数学卷和答案

2015年中考模拟试卷数学卷和答案
2015年中考模拟试卷数学卷
考生须知:
1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。

2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。

3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

4.考试结束后,上交试题卷和答题卷
试题卷
一、仔细选一选(本题有10个小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.
1.如果,那么,两个实数一定是()
A.一正一负
B.相等的数
C.互为相反数
D.互为倒数
2.下列调查适合普查的是()
A.调查2011年3月份市场上西湖龙井茶的质量
B.了解萧山电视台188热线的收视率情况
C.网上调查萧山人民的生活幸福指数
D.了解全班同学身体健康状况
3.函数,一次函数和正比例函数之间的包含关系是()
4.已知下列命题:①同位角相等;②若a0,则;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2-2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等。

从中任选一个命题是真命题的概率为()
A.B.C.D.
精心整理,仅供学习参考。

2015中考数学模拟试卷及答案

2015中考数学模拟试卷及答案

2015中考数学模拟试卷一、选择题(本大题共8小题,每小题4分,满分32分) 1.在数轴上表示2-的点离开原点的距离等于( A )A .2B .2-C .2±D .42.已知2243a b x y x y x y -+=-,则a +b 的值为( C ). A. 1 B. 2 C. 3 D. 4 3.从某个方向观察一个正六棱柱,可看到如图所示的图形,其 中四边形ABCD 为矩形,E 、F 分别是AB 、DC 的中点.若 AD =8,AB =6,则这个正六棱柱的侧面积为( D ) A .48 3 B .96 C .144 D .96 34.如图,以点P 为圆心,以25为半径的圆弧与x 轴交于A ,B 两点,点A 的坐标为(2,0),点B 的坐标为(6,0),则圆心P 的坐标为( C )A.(4, 14) B .(4,2) C.(4,4) D.(2, 26)5.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是( B )A .121 B .61 C .41D .316.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( A ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠57.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90º,点A 的坐标为(1,2).将△AOB 绕点A 逆时针旋转90º,点O 的对应点C 恰好落在双曲线y = kx (x >0)上,则k =( B )A .2B .3C .4D .68.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y轴的正半轴的交点在(02),的下方.下列结论: ①420a b c -+=;②ac <0;③4a+2b+c <0;④-2<2ba-<0.其中正确结论是( D ). A.①④ B. ②④ C.①③④ D.①②③④ 二.填空题(本大题共8个小题,每小题4分,共32分) 9.当的值为最小值时,a 的取值为﹣2 . 10.已知关于x 的分式方程2x +2 - ax +2=1的解为负数,那么字母a 的取值范围a>0. 11.如图AB 是⊙O 的直径,AB=4,AC 是弦,AC=23,∠AOC 的度数是120°.12.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知CE=3 cm ,AB=8 cm ,则图中阴影部分面积为___30______cm2.OAB PxyABD CEF (第3题)13.如图,△ABC 是等腰直角三角形,∠ACB=90°,CB=AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB ’C ’,若AB=2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是____4π____ (结果保留π). 14.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD BE =,AE 与CD 交于点F ,AG CD ⊥于点G , 则AGAF 的值为 23 . 15.如图,在平面直角坐标系中有一正方形AOBC,反比例函数ky x=经过正方形AOBC 对角线的交点,半径为(422-)的圆内切于△ABC ,则k 的值为__4______。

2015中考数学模拟试卷及答案

2015中考数学模拟试卷及答案

2015年中考数学模拟试卷及答案如何实现中考好成绩,需要我们从各方面去努力。

小编为大家整理了2015年中考数学模拟试卷及答案,希望对大家有所帮助。

二次函数A级基础题1.(2013年浙江丽水)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c 的值为()A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.(2013年浙江宁波)如图311,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc0B.2a+b0C.a-b+c0D.4ac-b204.(2013年山东聊城)二次函数y=ax2+bx的图象如图312,那么一次函数y=ax+b的图象大致是()5.(2013年四川内江)若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.(2013年江苏徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x-3-2-101y-3-2-3-6-11则该函数图象的顶点坐标为()A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.(2013年湖北黄石)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.(2013年北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.(2013年浙江湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.(2013年江苏苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.(2013年四川绵阳)二次函数y=ax2+bx+c的图象如图313,给出下列结论:①2a+b②b③若-1图31312.(2013年广东)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图314,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2013年黑龙江绥化)如图315,已知抛物线y=1a(x-2)(x+a)(a0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.(2012年广东肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10(1)求证:n+4m=0;(2)求m,n的值;(3)当p0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图316,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.二次函数1.A2.B解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-18.y=x2+1(答案不唯一)9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B11.①③④12.解:(1)将点O(0,0)代入,解得m=1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=1262=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:∵二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:∵二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x10OA=-x1,OB=x2,x1+x2=-nm,x1x2=pm.令x=0,得y=p,C(0,p).OC=|p|.由三角函数定义,得tanCAO=OCOA=-|p|x1,tanCBO=OCOB=|p|x2.∵tanCAO-tanCBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1x2=-1|p|.将x1+x2=-nm,x1x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|=1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.∵二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与⊙C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO∽Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.∵以点C为圆心的圆与直线BD相切,⊙C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2426.则此时抛物线的对称轴与⊙C相离.(3)假设存在满足条件的点P(xp,yp),∵A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).第二部分空间与图形2015年中考数学模拟试卷及答案已经呈现在各位考生面前,望各位考生能够努力奋斗,成绩更上一层楼。

2015届中考数学模拟试卷附 答案

2015届中考数学模拟试卷附 答案

2015届中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个数中,最大的数是( )A.3 B.﹣1 C.0 D.2.下列运算正确的是( )A.a3•a2=a6B.a6÷a3=a3C.(a﹣b)2=a2﹣b2D.(﹣a2)3=(﹣a3)2 3.下列四个几何体中,主视图与其它三个不同的是( )A.B.C.D.4.不等式组的解集为( )A.x>3 B.x≤4 C.3<x<4 D.3<x≤45.若一个多边形的内角和等于其外角和,则这个多边形的边数是( )A.6 B.5 C.4 D.36.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查7.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是( )A.1 B.C.D.8.如图,在平面直角坐标系xOy中,Rt△OAC,Rt△OA1C1,Rt△OA2C2,…的斜边都在坐标轴上,∠AOC=∠A1OC1=∠A2OC2=∠A3OC3=…=30°.若点A的坐标为(3,0),OA=OC1,OA1=OC2,OA2=OC3,…则依此规律,点A2015的纵坐标为( )A.0 B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.4的算术平方根是__________.10.分解因式:a3﹣9a=__________.11.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m,其最小直径用科学记数法表示约为__________m.12.若在实数范围内有意义,则x的取值范围是__________.13.如图,过∠CDF的一边上DC的点E作直线AB∥DF,若∠AEC=110°,则∠CDF的度数为__________°.14.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为__________m.15.如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是__________cm.16.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是__________.17.已知点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,则代数式m2+n2的值为__________.18.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y 轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k=__________.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.计算:|2﹣1|+(﹣1)0﹣()﹣1﹣tan30°.20.先化简,再求值:÷(﹣a﹣2),其中a2+3a﹣1=0.21.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为__________;(2)条形统计图中存在错误的是__________(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?23.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.24.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.25.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.26.某仓储系统有12条输入传送带,12条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(1),每条输出传送带每小时出库的货物流量如图(2),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(3).(1)每条输入传送带每小时进库的货物流量为多少吨?每条输出传送带每小时出库的货物流量为多少吨?(2)在0时至5时内,仓库内货物存量y(吨)与时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)在4时至5时有多少条输入传送带和输出传送带在工作?27.【情境阅读】在图1中,点A在边OB上,点D在边OC上,且AD∥BC﹒将这样的图形定义为“A型”﹒将△OAD绕着点O旋转α°(0<α<90)得到新的图形(如图2),将图2中的四边形A′B′C′D′称为“准梯形”,A′D′称为上底,B′C′称为下底﹒【新知学习】(1)若情境阅读中的△OBC是等腰直角三角形,OB=OC,∠BOC=90°,其余条件不变﹒①请说明图2中的△O′A′B′≌△O′D′C′﹒②在图1中,S四边形ABCD=S△OBC﹣S△OAD,请探索图2中的S四边形A′B′C′D′与图1中的S四边的大小关系﹒【变式探究】形ABCD(2)如图3,四边形ABCD是由有一个角是60°的“A型”通过旋转变换得到的“准梯形”,AD 是上底,BC是下底,且AB=5,BC=8,CD=5,DA=2﹒求这个“准梯形”的面积.【迁移拓展】(3)如图4是由具有公共直角顶点的“A型”绕着直角定点旋转α°(0<α<90)得到的“准梯形”,斜边AD为上底,斜边BC为下底,且AB=3,BC=4,CD=6,AD=3.求这个“准梯形”的面积.28.如图,在平面直角坐标系中,四边形ABCD为梯形,AD∥BC,∠C=90°,tan∠ABC=2,点D(﹣8,6),将△AOB沿直线AB翻折,点O落在点E处,直线AE交x轴于点F.(1)求点F的坐标;(2)矩形AOCD以每秒1个单位长度的速度沿x轴向右运动,当点C′与点F重合时停止运动,运动后的矩形A′O′C′D′与△AOF重合部分的面积为S,设运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,在矩形A′O′C′D′运动过程中,直线A′O′与射线AB交于G,是否存在时间t,使点A关于直线FG的对称点恰好落在x轴上?若存在,求t的值;若不存在,请说明理由.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个数中,最大的数是( )A.3 B.﹣1 C.0 D.考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣1,所以最大的数是3.故选:A.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列运算正确的是( )A.a3•a2=a6B.a6÷a3=a3C.(a﹣b)2=a2﹣b2D.(﹣a2)3=(﹣a3)2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:分别根据同底数幂的乘法、同底数幂的除法、完全平方公式及幂的乘方与积的乘方法则对各选项进行逐一判断即可.解答:解:A、a3•a2=a3+2=a5,故本选项错误;B、a6÷a3=a6﹣3=a3,故本选项正确;C、(a﹣b)2=a2+b2﹣2ab,故本选项错误;D、(﹣a2)3=﹣a6,而(﹣a3)2=a6,故本选项错误.故选B.点评:本题考查的是同底数幂的除法及乘法、幂的乘方与积的乘方法则及完全平方公式,熟知以上知识是解答此题的关键.3.下列四个几何体中,主视图与其它三个不同的是( )A.B.C.D.考点:简单组合体的三视图.分析:根据主视图是从正面看得到的图形,可得答案.解答:解:A、的主视图是第一层两个小正方形,第二层左边一个小正方形,B、的主视图是第一层两个小正方形,第二层左边一个小正方形,C、的主视图是第一层两个小正方形,第二层左边一个小正方形,D、的主视图是第一层两个小正方形,第二层左两个小正方形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的视图是主视图.4.不等式组的解集为( )A.x>3 B.x≤4 C.3<x<4 D.3<x≤4考点:解一元一次不等式组.专题:计算题.分析:本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.解答:解:依题意得:在数轴上表示为:∴原式的解集为3<x≤4.故选D.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.5.若一个多边形的内角和等于其外角和,则这个多边形的边数是( )A.6 B.5 C.4 D.3考点:多边形内角与外角.分析:任何多边形的外角和是360度,根据n边形的内角和是(n﹣2)•180°,可得方程(n ﹣2)•180=360,解方程就可以求出多边形的边数.解答:解:设多边形的边数为n,根据题意,得(n﹣2)•180=360,解得:n=4,故选C.点评:本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.6.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查考点:全面调查与抽样调查;众数;方差;随机事件.分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断即可.解答:解:A、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.点评:本题考查了必然事件的定义,方差的性质,众数的定义及抽样调查的定义,知识点较多,但都是基础知识,需牢固掌握.7.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是( )A.1 B.C.D.考点:圆周角定理;锐角三角函数的定义.专题:压轴题;网格型.分析:由题意可得:∠AOB=90°,然后由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠APB的度数,又由特殊角的三角函数值,求得答案.解答:解:由题意得:∠AOB=90°,∴∠APB=∠AOB=45°,∴tan∠APB=tan45°=1.故选A.点评:此题考查了圆周角定理与特殊角的三角函数值问题.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.8.如图,在平面直角坐标系xOy中,Rt△OAC,Rt△OA1C1,Rt△OA2C2,…的斜边都在坐标轴上,∠AOC=∠A1OC1=∠A2OC2=∠A3OC3=…=30°.若点A的坐标为(3,0),OA=OC1,OA1=OC2,OA2=OC3,…则依此规律,点A2015的纵坐标为( )A.0 B.C.D.考点:规律型:点的坐标.分析:根据题意确定出A1,A2,A3,A4…纵坐标,归纳总结得到点A2015的纵坐标与A3纵坐标相同,即可得到结果.解答:解:∵点A1的坐标为(3,0),OA1=OC2=3,在Rt△OA2C2中,∠A2OC2=30°,设A2C2=x,则有OA2=2x,根据勾股定理得:x2+9=4x2,解得:x=,即OA2=2,∴A2纵坐标为2,由OA2=OC3=2,在Rt△OA3C3中,∠A3OC3=30°,设A3C3=y,则有OA3=2y,根据勾股定理得:y2+12=4y2,解得:y=2,即OA3=4,∴A3纵坐标为0,∵2015÷4=503…3,∴点A2015的纵坐标与A3纵坐标相同,为0.故选:A.点评:此题考查了规律型:点的坐标,判断出点A2015的纵坐标与A3纵坐标相同是解本题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.4的算术平方根是2.考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.10.分解因式:a3﹣9a=a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.分析:本题应先提出公因式a,再运用平方差公式分解.解答:解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m,其最小直径用科学记数法表示约为8×10﹣8m.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000008m=8×10﹣8;故答案为:8×10﹣8.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若在实数范围内有意义,则x的取值范围是x≤.考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,1﹣2x≥0,解得x≤.故答案为:x≤.点评:本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13.如图,过∠CDF的一边上DC的点E作直线AB∥DF,若∠AEC=110°,则∠CDF的度数为70°.考点:平行线的性质.专题:探究型.分析:先根据平角的定义求出∠CEB的度数,再由平行线的性质即可得出结论.解答:解:∵∠AEC=110°,∠AEC+∠CEB=180°,∴∠CEB=180°﹣110°=70°,∵AB∥DF,∴∠CDF=∠CEB=70°.故答案为:70.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.14.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为2m.考点:垂径定理的应用;勾股定理.分析:根据题意可得出AO=5cm,AC=4cm,由勾股定理得出CO的长,则CD=OD﹣OC=AO ﹣OC.解答:解:如图所示:∵输水管的半径为5m,水面宽AB为8m,水的最大深度为CD,∴DO⊥AB,∴AO=5m,AC=4m,∴CO==3(m),∴水的最大深度CD为:CD=OD﹣OC=AO﹣OC=2m.故答案是:2.点评:本题考查的是垂径定理的应用及勾股定理,根据题意构造出直角三角形是解答此题的关键.15.如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是2cm.考点:圆锥的计算.专题:计算题.分析:把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.解答:解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=2cm.故答案为2.点评:主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.16.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是10.考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,=0.2,解得,n=10.故估计n大约有10个.故答案为:10.点评:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.17.已知点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,则代数式m2+n2的值为7.考点:反比例函数与一次函数的交点问题.分析:先解两函数式组成的方程组,得出一个一元二次方程,根据根与系数的关系得出m+n=3,mn=1,再根据完全平方公式变形后代入求出即可.解答:解:方程组得:=﹣x+3,即x2﹣3x+1=0,∵点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,∴m+n=3,mn=1,∴m2+n2=(m+n)2﹣2mn=32﹣2×1=7,故答案为:7.点评:本题考查了反比例函数和一次函数的交点问题,一元二次方程的根与系数的关系,完全平方公式的应用,主要考查学生的理解能力和计算能力.18.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y 轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k=8.考点:反比例函数综合题.分析:先根据反比例函数比例系数k的几何意义得到S△OB1C1=S△OB2C2=S△OB3C3=|k|=k,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值.解答:解:根据题意可知,S△OB1C1=S△OB2C2=S△OB3C3=|k|=k,∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,设图中阴影部分的面积从左向右依次为s1,s2,s3则s1=k,∵OA1=A1A2=A2A3,∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,∴s2=k,s3=k,∴k+k+k=,解得k=8.故答案为:8.点评:此题综合考查了反比例函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴与y轴引垂线形成的矩形面积等于反比例函数的比例系数|k|.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.计算:|2﹣1|+(﹣1)0﹣()﹣1﹣tan30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=2﹣1+1﹣﹣=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:÷(﹣a﹣2),其中a2+3a﹣1=0.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把分子分母因式分解,接着把除法运算化为乘法运算,则约分后得到原式=﹣,然后把a2+3a﹣1=0变形得到a2+3a=1,再利用整体代入的方法计算.解答:解:原式=÷=•=﹣=﹣,∵a2+3a﹣1=0,∴a2+3a=1,∴原式=﹣=﹣.点评:分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为200;(2)条形统计图中存在错误的是C(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据A、B的人数和所占的百分比求出抽取的学生人数,并判断出条形统计图A、B长方形是正确的;(2)根据(1)的计算判断出C的条形高度错误,用调查的学生人数乘以C所占的百分比计算即可得解;(3)求出D的人数,然后补全统计图即可;(4)用总人数乘以A、B所占的百分比计算即可得解.解答:解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;(2)由(1)可知C条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50,即C的条形高度改为50;故答案为:200;C;(3)D的人数为:200×15%=30;(4)600×=360(人).答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBF E是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?考点:三角形中位线定理;平行四边形的判定;菱形的判定.专题:几何图形问题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.解答:(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.23.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.考点:列表法与树状图法;根的判别式;点的坐标;概率公式.专题:计算题.分析:(1)四个数字中正数有一个,求出所求概率即可;(2)表示出已知方程根的判别式,根据方程有实数根求出a的范围,即可求出所求概率;(3)列表得出所有等可能的情况数,找出点(x,y)落在第二象限内的情况数,即可求出所求的概率.解答:解:(1)根据题意得:抽取的数字为正数的情况有1个,则P=;(2)∵方程ax2﹣2ax+a+3=0有实数根,∴△=4a2﹣4a(a+3)=﹣12a≥0,且a≠0,解得:a<0,则关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率为;(3)列表如下:﹣3 ﹣1 0 2﹣3 ﹣﹣﹣(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1 (﹣3,﹣1)﹣﹣﹣(0,﹣1)(2,﹣1)0 (﹣3,0)(﹣1,0)﹣﹣﹣(2,0)2 (﹣3,2)(﹣1,2)(0,2)﹣﹣﹣所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有2种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD==≈36.33(米),…2分在Rt△BDC中,BD=≈12.11(米),…4分则AB=AD﹣BD=36.33﹣12.11=24.22≈24.2(米)…6分(2)超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,…9分∵大于40千米/小时,∴此校车在AB路段超速.…10分点评:此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.25.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.考点:切线的判定与性质;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)连接OD,求出∠EOC=∠DOC,根据SAS推出△EOC≌△DOC,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据全等三角形的性质求出CE=CD=4,根据平行四边形性质求出OA=3,根据平行四边形的面积公式求出即可.解答:(1)证明:连接OD,∵OD=OA,∴∠ODA=∠A,∵四边形OABC是平行四边形,。

2015届九年级中考模拟考试数学试题及答案

2015届九年级中考模拟考试数学试题及答案

2015年中考模拟考试数学试卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分...为试题...卷和答...题.卷,答案要求......写.在答..题.卷上,在....试题..卷上作答不.....给.分... 一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确的选项,请把正确选项的代号填涂在答题卷的相应位置上. 1. 3-的相反数是 A .3B .31 C .3- D . 31-2.下列运算正确的是A . 523x x x =+B .x x x =-23C .623x x x =⋅D .x x x =÷233. 直线y=x -1的图像经过的象限是A. 第二、三、四象限B.第一、二、四象限C. 第一、三、四象限D.第一、二、三象限 4.下列几何体各自的三视图中,只有两个视图相同的是A .①③B .②④C .③④D .②③ 5. 如图,点A 、B 、C 的坐标分别为(0, -1),(0,2),(3,0).从下面四个点M (3,3),N (3,-3),P (-3,0),Q (-3,1)中选择一个点,以A 、B 、C 与该点为顶点的四边形是中心对称图形的个数有 A .1个 B .2个 C .3个 D .4个(第4题图 )6.类比二次函数图象的平移,把双曲线y=x1向右平移2个单位,再向上平移1个单位,其对应的函数解析式变为 A .2x 3x y ++=B .2x 1x y -+=C .2x 1x y ++=D .2x 1x y --= 二、填空题(本大题共8小题,每小题3分,共24分)7.国家统计局初步测算,2011年中国国内生产总值(GDP )约为470000亿元.将“470000亿元”用科学记数法表示为********* 亿元. 8.函数x y 24-=的自变量的取值范围是********* .①正方体 ②圆锥体 ③球体9.分解因式:22a b ab b -+= ********* .10.如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =********* . 11. 若不等式3(2)x x a --≤的解为1-≥x ,则a 的值为********* .12. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是********* .13. 如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ’,则图中阴影部分的面积是********* .14.如图,△ABC 是一个直角三角形,其中∠C=90゜,∠A=30゜,BC=6;O 为AB 上一点,且OB=3, ⊙O 是一个以O 为圆心、OB 为半径的圆;现有另一半径为333-的⊙D 以每秒为1的速度沿B →A →C →B 运动,设时间为t ,当⊙D 与⊙O 外切时,t 的值为 ****** . (本题为多解题,漏写得部分分,错写扣全部分)三、(本大题共4小题,每小题6分,共24分) 15计算:()1260cos 2218π-+︒-⎪⎪⎭⎫⎝⎛+--16. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2(第12题图) CBA(第13题图)A B C D E 50°(第10题图)17.新余某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示.请在答题卷的原图上利用尺规作出音乐喷泉M 的位置.(要求:不写已知、求作、作法和结论,只保留作图痕迹,必须用铅笔作图)18.甲乙丙三个同学在打兵乓球时,为了确定哪两个人先打,商定三人伸出手来,若其中两人的手心或手背同时向上,则这两个人先打,如果三个人手心或手背都向上则重来. (1)求甲乙两人先打的概率; (2)求丙同学先打的概率.四、(本大题共2小题,每小题8分,共16分)19. 如图,在Rt △ABC 中,∠C 为直角,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .(1)若AC=8,AB=12,求⊙O 的半径;(2)连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四 边形,试判断四边形OFDE 的形状,并说明理由.20.如图:把一张给定大小的矩形卡片ABCD 放在间距为10mm 的横格纸中(所有横线互相平行),恰好四个顶点都在横格线上,AD 与l 2交于点E, BD 与l 4交于点F. (1)求证:△ABE ≌△CDF ;(2)已知α=25°,求矩形卡片的周长.(可用计算器求值,答案精确到1mm ,参考数据: sin25°≈0.42,cos25°≈0.91, tan25°≈0.47)五、(本大题共2小题,每小题9分,共18分)21. 某公司为了解顾客对自己商品的总体印象,采取随机抽样的方式,对购买了自己商品的年龄在16~65岁之间的400个顾客,进行了抽样调查.并根据每个年龄段的抽查人数和该年龄段对商品总体印象感到满意的人数绘制了下面的图(1)和图(2).根据上图提供的信息回答下列问题:(1)被抽查的顾客中,人数最多的年龄段是 岁;FEA(2)已知被抽查的400人中有83%的人对商品总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);(3)比较31~40岁和41~50岁这两个年龄段对商品总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.22. 某超市经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元?(2)该超市平均每天卖出甲商品50件和乙商品20件.经调查发现,甲、乙两种商品零售单价分别每降0.2元,这两种商品每天可各多销售10件.为了使每天获取更大的利润,超市决定把甲、乙两种商品的零售单价都下降m 元.设总利润为n 元,请用含m 的式子表示超市每天销售甲、乙两种商品获取的总利润n ,在不考虑其他因素的条件下,当m 定为多少时,才能使超市每天销售甲、乙两种商品获取的总利润最大?每天的最大利润是多少?六、(本大题共2小题,每小题10分,共20分) 23. 已知抛物线22232y x mx m m =-++.(1)若抛物线经过原点,求m 的值及顶点坐标,并判断抛物线顶点是否在第三象限的平分线所在的直线上;(2)是否无论m 取任何实数值,抛物线顶点一定不在第四象限?说明理由;当实数m 变化时,列出抛物线顶点的纵、横坐标之间的函数关系式,并求出该函数的最小函数值.51~60岁 7%21~30岁 39%31~40岁 20%16~20岁 16%61~65岁 3% 41~50岁 15% 图(1)24.已知:如图(1),△OAB是边长为2的等边三角形,0A在x轴上,点B在第一象限内;△OCA是一个等腰三角形,OC=AC,顶点C在第四象限,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在OA上(点O、A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.参考答案一、选择题(本大题共6小题,每小题3分,共18分)二、填空题(本大题共8小题,每小题3分,共24分)7、54.710⨯ 8、2≤x 9、()21-a b10、25゜ 11、8 12、74 13、24π 14、3612或3312或333+++(每写对一个1分,但写错0分) 三、(本大题共4小题,每小题6分,共24分) 15、解:原式=1212222+⨯-+…………………………………………………3分 =222+ ……………………………………………………………6分16、解:原式=()()21222+⋅++x x x x=x 1……………………………………………4分 将2=x 代入得:221=x………………………………………………………6分 17.………………………………………………6分18、 甲: 手心向上 手背向上乙:手心向上手背向上手心向上手背向上……2分丙:手心向上 手背向上 手心向上 手背向上 手心向上 手背向上 手心向上手背向上 (1)P(甲乙两人先打)=0.25 …………………………………………………………4分 (2)P(丙同学先打)=0.5………………………………………………………………6分 四、(本大题共2小题,每小题8分,共16分) 19、(1)设⊙O 的半径为r .∵BC 切⊙O 于点D ∴OD ⊥BC∵∠C =90° ∴OD ∥AC ∴△OBD ∽△ABC . …………………………2分∴ODAC = OB AB,即12128r r-=解得:524=r ∴⊙O 的半径为524………………………4分A(2)四边形OFDE 是菱形 ………………5分 ∵四边形BDEF 是平行四边形 ∴∠DEF =∠B .∵∠DEF =12∠DOB ∴∠B =12∠DOB .∵∠ODB =90° ∴∠DOB +∠B =90° ∴∠DOB =60°∵DE ∥AB ,∴∠ODE =60°.∵OD =OE ,∴△ODE 是等边三角形∴OD =DE ∵OD =OF ∴DE =OF ∴四边形OFDE 是平行四边形 ………7分∵OE =OF ∴平行四边形OFDE 是菱形. …………………………………8分20、(1) ∵l 2∥l 4 BC ∥AD ∴四边形BFDE 是平行四边形∴BE=FD ……………………………………………………………………2分 ∵AB=CD ,∠BAE=∠FCD=90゜∴△ABE ≌△CDF ……………………………………………………………4分(2)(批改时注意若学生用计算器计算,中间答案会有少许不同,但最终答案一样) 过A 作AG ⊥l 4,交l 2于H ∵α=25° ∴∠ABE=25°∴ sin 0.42AHABE AB∠=≈ 解得:AB ≈47.62 ………………5分∵∠ABE+∠AEB=90゜ ∠HAE+∠AEB=90゜ ∴∠HAE=25゜ ∴91.0cos ≈=∠ADAGDAG 解得:AD ≈43.96 ………………7分 ∴矩形卡片ABCD 的周长为(47.62+43.96)×2≈183(mm ) ………8分 五、(本大题共2小题,每小题9分,共18分)21、(1) 被抽查的顾客中,人数最多的年龄段是21~30岁 ……………………2分(2)总体印象感到满意的人数共有83400332100⨯=(人) 31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) ………………………………4分图略 …………………………………………………………………………6分 (3) 31~40岁年龄段被抽人数是2040080100⨯=(人) 总体印象的满意率是66100%82.5%83%80⨯=≈ ………………………7分 41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人, 总体印象的满意率是5388.3%88%60=≈ …………………………………8分 ∴41~50岁年龄段比31~40岁年龄段对商品总体印象的满意率高 ……9分22、(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元. ………………1分F EGH根据题意,得⎩⎨⎧x +y =53(x +1)+2(2y -1)=19 解得⎩⎨⎧x =2y =3………………………3分答:甲商品的进货单价是2元,乙商品的进货单价是3元. ………………4分(2)设商店每天销售甲、乙两种商品获取的利润为n 元,则………………5分n =(1-m )(50+10×m 0.2)+(5-3-m )(20+10×m0.2) 即 n =-100m 2+80m +90 =-100(m -0.4)2+106. ……………………………7分∴当m =0.4时,n 有最大值,最大值为106. ………………………………8分答:当m 定为0.4时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是106元. ………………………………………………………………9分 六、(本大题共2小题,每小题10分,共20分) 23、解:∵()m m m x m m mx x y 222322222++-=++-=∴抛物线顶点为()m mm 22,2+(1)将(0,0)代入抛物线解析式中解得:m=0或m=32-………………………1分 当m=0时,顶点坐标为(0,0) 当m=32-时,顶点坐标为(32-,94-) ……………………………………3分 ∵第三象限的平分线所在的直线为y=x ∴(0,0)在该直线上,(32-,94-)不在该直线上 ……………………………4分 (2)∵m>0时,m m 222+>0∴抛物线顶点一定不在第四象限 …………………………………………6分 设顶点横坐标为m ,纵坐标为n ,则m m n 222+= …………………8分 ∵212122222-⎪⎪⎭⎫ ⎝⎛+=+=m m mn ∴当21-=m 时,n 有最小值21- …………………………………10分 24、解:(1)过点C 作CD OA ⊥于点D .(如图①) ∵OC AC =,120ACO ∠=︒,∴30AOC OAC ∠=∠=︒. ∵OC AC =,CD OA ⊥, ∴1OD DA ==.在Rt ODC ∆中,1cos cos30OD OC AOC ===∠︒(1)当203t <<时,OQ t =,3AP t =,23OP OA AP t =-=-; 过点Q 作QE OA ⊥于点E .(如图①)在Rt OEQ ∆中,∵30AOC ∠=︒,∴122t QE OQ ==, ∴21131(23)22242OPQ t S OP EQ t t t ∆=⋅=-⋅=-+. 即23142S t t =-+ .………………………………………2分(图①)(2)当23t <≤时,(如图②) OQ t =,32OP t =-.∵60BOA ∠=︒,30AOC ∠=︒,∴90POQ ∠=︒. ∴2113(32)222OPQ S OQ OP t t t t ∆=⋅=⋅-=-.即232S t t =-.故当203t <<时,23142S t t =-+,当23t <≤时,232S t t =-……………4分(2),0)或2(,0)3 …………………6分 (3)BMN ∆的周长不发生变化.延长BA 至点F ,使AF OM =,连结CF .(如图③)∵90,MOC FAC OC AC ∠=∠=︒=,∴MOC ∆≌FAC ∆. ∴MC CF =,MCO FCA ∠=∠ …………………7分∴FCN FCA NCA MCO NCA ∠=∠+∠=∠+∠60OCA MCN =∠-∠=. ∴FCN MCN ∠=∠. 又∵,MC CF CN CN ==.∴MCN ∆≌FCN ∆.∴MN NF = ……………………………………9分∴BM MN BN BM NF BN ++=++AF BA OM BO ++-=BA BO =+4=. ∴BMN ∆的周长不变,其周长为4 ……………………………………10分x。

2015中考模拟考试试题数学科参考答案

2015中考模拟考试试题数学科参考答案

2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。

(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。

2015年中考数学模拟试题(一)附答案

2015年中考数学模拟试题(一)附答案

2015年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上)1.2-等于(▲)A.2B.-2C.±2D.±122.使1x-有意义的x的取值范围是(▲)A.x>1B.x≥1C.x<1D.x≤13.计算(2a2) 3的结果是(▲)A.2a5B.2a6C.6a6D.8a64.如图所示几何体的俯视图是(▲)A.B.C.D.5.在□ABCD中,AB=3,BC=4,当□ABCD的面积最大时,下列结论正确的有(▲)①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为(▲)A.3或4 2 B.4或32C.3或4D.32或42E DCBAA'( 第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.计算 (-1)3+( 14)-1= ▲ . 8.计算 23+13= ▲ . 9.方程3x -4 x -2=12-x的解为x = ▲ . 10.南京地铁三号线全长为44830米,将44830用科学记数法表示为 ▲ . 11.已知关于x 的方程x 2-m x +m -2=0的两个根为x 1、x 2,则x 1+ x 2-x 1x 2= ▲ .12.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是 ▲ 岁.13.如图,正六边形ABCDEF 的边长为2,则对角线AC = ▲ .14.某体育馆的圆弧形屋顶如图所示,最高点C 到弦AB 的距离是20 m ,圆弧形屋顶的跨度AB 是80 m ,则该圆弧所在圆的半径为_____▲_____m .15.如图,将边长为6的正方形ABCD 绕点C 顺时针旋转30°得到正方形A ′B ′CD ′,则点A 的旋转路径长为 ▲ .(结果保留π)16.如图,A 、B 是反比例函数y = kx 图像上关于原点O 对称的两点,BC ⊥x 轴,垂足为C ,连线AC 过点D (0,-1.5),若△ABC 的面积为7,则点B 的坐标为 ▲ . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)化简: x -1 x +2 ÷(3x +2-1).18.(6分)解不等式组:⎩⎪⎨⎪⎧1- x +13≥0,3+4(x -1)>1.19.(8分)如图,E 、F 是四边形ABCD 的对角线AC 上两点,AE =CF ,DF ∥BE ,DF =BE .(1)求证:四边形ABCD 是平行四边形; (2)若AC 平分∠BAD ,求证:□ABCD 为菱形.(第19题)A BCD EF FED C B A ( 第13题 )C OB A (第14题)(第16题) A B D A'D' B' (第15题)20.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是____▲______. (2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关..的概率. (3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)21.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0—50时为1级,质量为优;51—100时为2级,质量为良;101—200时为3级,轻度污染;201—300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了____▲___天的空气质量检测结果进行统计; (2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为____▲____°; (4)如果空气污染达到中度污染或者以上........,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)22.(8分)已知P (-5,m )和Q (3,m )是二次函数y =2x 2+b x +1图像上的两点.(1)求b 的值;(2)将二次函数y =2x 2+b x +1的图像沿y 轴向上平移k (k >0)个单位,使平移后的图像与x 轴无交点,求k 的取值范围.23.(8分)如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA =75厘米.展开小桌板使桌面保持水平,此时CB ⊥AO ,∠AOB =∠ACB =37°,且支架长OB 与桌面宽BC 的长度之和等于OA 的长度.求小桌板桌面的宽度BC .(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)O C B A 空气质量等级天数统计图 空气质量等级天数占所抽取天数百分比统计图24.(8分)水池中有水20 m 3,12:00时同时打开两个每分钟出水量相等且不变的出水口,12:06时王师傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14时再关闭另一个出水口,12:20时水池中有水56 m 3,王师傅的具体记录如下表.设从12:00时起经过t min 池中有水y m 3,右图中折线ABCD 表示y 关于t 的函数图像.(1)每个出水口每分钟出水 ▲ m 3,表格中a = ▲ ; (2)求进水口每分钟的进水量和b 的值;(3)在整个过程中t 为何值时,水池有水16 m 3 ?25.(9分)如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径, ⌒ BD = ⌒AD ,DE ⊥BC ,垂足为E . (1)求证:CD 平分∠ACE ;(2)判断直线ED 与⊙O 的位置关系,并说明理由; (3)若CE =1,AC =4,求阴影部分的面积.26.(9分)某水果超市以8元/千克的单价购进1000千克的苹果,为提高利润和便于销售,将苹果按大小分两种规格出售,计划大、小号苹果都为500千克,大号苹果单价定为16元/千克,小号苹果单价定为10元/千克,若大号苹果比计划每增加1千克,则大苹果单价减少0.03元,小号苹果比计划每减少1千克,则小苹果单价增加0.02元.设大号苹果比计划增加x 千克. (1)大号苹果的单价为 ▲ 元/千克;小号苹果的单价为 ▲ 元/千克;(用含x 的代数式表示) (2)若水果超市售完购进的1000千克苹果,请解决以下问题: ① 当x 为何值时,所获利润最大? ② 若所获利润为3385元,求x 的值.时间 池中有水(m 3)12:00 20 12:04 12 12:06 a12:14 b 12:20 56(第25题) (第24题) a t/min y /m 3 O 20 b 56AB CD27.(10分)【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图①,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=▲, FBGC=▲.(2)如图②,在△ABC中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB 为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图③,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)图③aAB CAB CD EGF图①图②AB CD EGFMN2015年中考数学模拟试题(一)参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)三、解答题(本大题共11小题,共88分)7.解:原式= x -1 x +2÷3-x -2x +2……………………………………………………………………………2分= x -1 x +2× x +21-x…………………………………………………………………………………4分 =-1 …………………………………………………………………………………………6分18.解:解不等式①,得x ≤2. …………………………………………………………………………2分解不等式②,得x >12.…………………………………………………………………………4分所以,不等式组的解集是12<x ≤2. …………………………………………………………6分19.证明:(1)∵DF ∥BE ,∴∠AFD =∠CEB , ……………………………………………………………1分 ∵AE =CF ,∴AF =CE .∵AF =CE ,DF =BE ,…………………………………………………………2分∴△ADF ≌△CBE . ……………………………………………………3分∴AD =BC ,∠DAF =∠BCE ,∴AD ∥BC ,∴四边形ABCD 是平行四边形. ………………………………………………4分 (2)∵AC 平分∠BAD ,∴∠DAC =∠BAC .…………………………………………………………………5分 ∵四边形ABCD 是平行四边形, ∴CD ∥AB ,∴∠DCA =∠BAC .∴∠DCA =∠DAC , ………………………………………………………………6分 ∴AD =DC ,…………………………………………………………………………7分 ∴□ABCD为菱形. ………………………………………………………………8分20.解:(1)31------------------------------------------------------------------------------------------------------------2分 (2)树状图或列表正确---------------------------------------------------------------------------------------------5分 将第一题中的三个选项记作A 1、B1、C1,第二题中去掉一个错误选项后的三个选项分别记作A2、B2、C2,其中A1、A2分别是两题的正确选项.列表如下:共有9种等可能的结果,其中,同时答对2题通关有1种结果, ∴P (同时答对两题)=19·······························……………………………………………………··········7分 (3)第一题··································………………………………………………………………·················8分21.解:(1)50; ·······································································································································2分 (2)5·································································4分(3)72;····················································································································································6分 (4)365×24+650=219天····························································································································8分22.解:(1)∵点P 、Q 是二次函数y =2x 2+bx +1图像上的两点,∴此抛物线对称轴是直线x =-1.·······························································································2分∴有-b2×2=-1.∴b =4.·········································································································4分(2)平移后抛物线的关系式为y=2x2+4x+1-k.∵平移后的图像与x轴无交点,∴△=16-8+8 k<0··················································································································6分解得k>1 (8)分23.解:设小桌板桌面宽度BC 的长为 x 厘米,则支架OB 的长为(75-x )厘米.延长CB 交OA 于点D ,由题意知,CD ⊥OA ,…………………………1分 在Rt △OBD 中,OD =OB cos37°=0.8(75-x )=60-0.8x ,………2分 BD =OB sin37°=0.6(75-x )=45-0.6x ,…………………………4分 所以CD =CB +BD =45+0.4x ,AD =15+0.8x ,所以tan37°=ADCD……………………………………………………………6分 即0.75=15+0.8x45+0.4x ,解之得,x =37.5答:小桌板桌面宽度BC 的长为37.5厘米. ……………………………………8分24.解:(1)1,8 …………………………………………………………………………2分 (2)设进水口每分钟进水x m 3,由题意得:8+(x -1)(14-6)+ x (20-14)=56解得x =4 ……………………………………………………………………3分 所以b =8+(4-1)×8=32 m 3 ……………………………………………4分(3)在0~6分钟:y =20-2t当y =16时,16=20-2t ,……………………………………………………5分 解得t =2…………………………………………………………………………6分 在6~14分钟:y =kt +b (k ≠0)把(6,8)(14,32)得:⎩⎪⎨⎪⎧6k +b =8,14k +b =32. 解得⎩⎪⎨⎪⎧k =3,b =﹣10.即y =3t -10当y =16时,16=3t -10,t =263………………………………………………8分则t =2和t =263水池有水16 m 3.25.解:(1)∵四边形ABCD 是⊙O 内接四边形,∴∠BAD +∠BCD =180°,∵∠BCD +∠DCE =180°,∴∠DCE =∠BAD ,………………………………………………………1分∵ ⌒ BD = ⌒AD ,∴∠BAD =∠ACD ,………………………………………………………………………2分 ∴∠DCE =∠ACD ,∴CD 平分∠ACE .………………………………………………………………3分 (2)ED 与⊙O 相切.………………………………………………………………………………………4分 理由:连接OD ,∵OC =OD ,∴∠ODC =∠OCD , ∵∠DCE =∠ACD ,∴∠DCE =∠ODC ,∴OD ∥BE ,∵DE ⊥BC ,∴OD ⊥DE ,∴ED 与⊙O 相切. …………………………………………………………6分 (3)∵AC 为直径,∴∠ADC =90°=∠E ,∵∠DCE =∠ACD ,∴△DCE ∽△ACD ,…………………7分 ∴CE CD =CD CA ,即1CD =CD4,∴CD =2,………………………………………………………………………8分 ∵OC =OD =CD =2,∴∠ DOC =60°,∴S 阴影=S 扇形-S △OCD =23π-3.…………………………9分OC BAD26.解:(1)16-0.03x ;10+0.02x ; ………………………………………………………………2分 (2)①设售完购进1000千克的苹果所获利润为y 元,由题意得:y =38000)02.010)(500()03.016)(500(=-+-+-+x x x x ………………………………····5分=﹣0.05x 2+x +5000 x =﹣b2a=10,y =5005.当x =10时,所获最大利润为5005元. ………………………………………………………····6分 ②由题意,列方程:33858000)02.010)(500()03.016)(500(=-+-+-+x x x x ……………7分 化简,整理得032300202=--x x ………………………………………………………………····8分 解得:190=x 或170-=x ………………………………………………………………………····9分 答:大号苹果比计划增加190千克或减少170千克时,才能确保这批苹果的利润为3385元.27.解:(1)3;2.……………………………………………………………………………………····2分 (2)证明:∵DE ∥FG ,∴AD AE = DF EG .………………………………………………………………………………………····3分 ∵DE ∥FG ∥BC , ∴DF EG =FB GC, ∴AD AE = DF EG =FB GC ,即AD AE = MD NE =AM AN,………………………………………………………····5分 ∴△AMD ∽△ANE , ……………………………………………………………………………····6分 ∴∠M =∠N . ………………………………………………………………………………····7分 (3)简要步骤:第一步:在射线DM 上截取△ABC 的三边.第二步:在射线DN 上截取DH =a ,连接HG ,作FI ∥C'E ∥HG ,第三步:以DC'、C'I 、IH 为边构造△A' B' C'.………………………………………………………………………………………………····10分MD(A') E F G N H IC'B'CA B。

【VIP专享】2015年九年级数学中考模拟试题五(附加答题卡答案)

【VIP专享】2015年九年级数学中考模拟试题五(附加答题卡答案)

3.光速约为 300 000 千米/秒,将数字 300 000 用科学记数法表示为( )
A.3×104
B.3×105
4.在一次中学生田径运动会上,参加调高的 15 名运动员的成绩如下表所示:
成绩 1.50 1.60 1.65 1.70 1.75 1.80 (m)
人数
1
那么这些运动员跳高成绩的众数是( )
A.4
5.下列代数运算正确的是( )
A.(x3)2=x5
2=x2+1
6.如图,线段 AB 两个端点的坐标分别为 A(6,6)、
2
B.1.75
B.(2x)2=2x2
B(8,2),以原点 O 为位似中心,在第一象限内将线
段 AB 缩小为原来的后得到线段 CD,则端点 C 的坐标
为( )
A.(3,3)
C.(3,1图形中的个数,其中第 1 个图中共有 4 个点,第 2 个图中共有 10 个点,第
3
2
C.1.70 C.x3·x2=x5
C.12
D.3
D.x≤3
D.30×104
D.1.65 D.(x+1)
D.15
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2.征通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1.和通过学理解的蛔虫1.过适观1、于察程3观阅 六寄蛔.内列察读 、生虫出蚯材 让生标容3根常蚓料 学活本教.了 据见身: 生的,师2、解 问的体巩鸟 总形看活作 用蛔 题线的固类 结态雌动业 手虫 自形练与 本、雄学三: 摸对 学动状习人 节结蛔生4、、收 一人 后物和同类 课构虫活请一蚯集 摸体 回并颜步关 重、的动学、蚓鸟 蚯的 答归色学系 点生形教生让在类 蚓危 问纳。习从 并理状学列学平的害 题线蚯线人 归特四、意出四生面体以形蚓形类 纳点、大图常、五观玻存 表及动的鸟动文 本以请小引见引、察璃现 ,预物身类物明 节及3学有言的、导巩蚯上状 是防的体之和历 课蚯生什根环怎学固蚓和, 干感主是所环史 学蚓列么据节二样生练引牛鸟 燥染要否以节揭 到适举不上动、区回习导皮类 还的特分分动晓 的于蚯同节物让分答。学纸减 是方征节布物起 一穴蚓,课并学蚯课生上少 湿法。?广教, 些居的体所归在生蚓前回运的 润;4泛学鸟生益色学纳.靠物完的问答动原 的4蛔,目类 习活处和习环.近在成前题蚯的因 ?了虫以标就 生的。体节身其实端并蚓快及 触解寄上知同 物特表内动体结验和总利的慢我 摸蚯生适识人 学点有容物前构并后结用生一国 蚯蚓在于与类 的,什的端中思端线问活样的 蚓人飞技有 基进么引主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方“征本特节.化下物让并为珍 近习会形理切 法生。课征有以问的小学引什稀 腹性态解的 。物2课。什游题主.结生出么鸟 面和起结蛔关体观题么戏:要利明蚯?类 处适哪构虫系的察:特的特用确蚓等 ,于些特适。形蛔章殊形征板,这资 是穴疾点于可态虫我结式。书生种料 光居病是寄结的们构,五小物典, 滑生?重生鸟构内学,学、结的型以 还活5要生类与部习.其习巩鸟结的爱 是如原活生功结了颜消固类构线鸟 粗形何因的存能构腔色化练适特形护 糙态预之结的相,肠是系习于点动鸟 ?、防一构现适你动否统。飞都物为结蛔。和状应认物与的行是。主构虫课生却”为和其结的与题、病本理不的蛔扁他构特环以生?8特乐观虫形部8特征境小理三页点观的动位点梳相组等、这;,教哪物相,理适为方引些2鸟育些,同.师知应单面导鸟掌类;结了?生识的位学你握日2构解.互。办特生认线益通特了动手征观识形减过点它,抄;察吗动少理是们生报5蛔?物,解与的.参一了虫它和有蛔寄主与份解结们环些虫生要其。蚯构都节已对生特中爱蚓。会动经人活征培鸟与飞物灭类相。养护人吗的绝造适这兴鸟类?主或成应节趣的为要濒的课情关什特临危?就感系么征灭害来教;?;绝,学育,使习。我学比们生它可理们以解更做养高些成等什良的么好两。卫类生动习物惯。的根重据要学意生义回;答3的.通情过况了,解给蚯出蚓课与课人题类。的回关答系:,线进形行动生物命和科环学节价动值环观节的动教物育一。、教根学据重蛔点虫1病.蛔引虫出适蛔于虫寄这生种生典活型的结线构形和动生物理。特二点、;设2置.蚯问蚓题的让生学活生习思性考和预适习于。穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

苏州市2015届九年级中考数学模拟试卷(九)及答案

苏州市2015届九年级中考数学模拟试卷(九)及答案

20XX 年苏州市初三数学中考模拟试卷(九)1.计算(一2) X 5的结果是3 .设x = ,13,则x 的值满足而减小的函数有()是6,众数是8;乙所中的环数的平均数是 6,方差是4.根据以上数据,对甲、乙射击成绩的正确判断是()A .甲射击成绩比乙稳定B .乙射击成绩比甲稳定C .甲、乙射击成绩稳定性相同D .甲、乙射击成绩稳定性无法比较6.若—Ky < 2,则代数式、.2x-3 + y + 1 有()(满分:130时间120分钟)、选择题(本大题共 10小题,每小题3分,共30分)A . 10B. 5C .D.— 102.下列运算正确的是 ()A . x 3 • x 2= 16B .2 3!(x ) = x C . 2a — 3a = — a2 2D. (x — 2) = x — 4A . 1<x<2B. 2<x<3C .3<x<4D. 4<x<54.给出下列四个函数:① y =-x ; ②y = x ;③y2④y =A .①③ B.②④ C.①④ D.①③④5.甲、乙两人各射击 6次,甲所中的环数是 8, 5, 5, a , b , c ,且甲所中的环数的平均数A .最大值0B. 最大值3C. 最小值D. 最小值17.圆锥底面圆的半径为 3 cm ,其侧面展开图是半圆, 则圆锥的母线长为A . 3 cmD . 12 cm&如图,下列条件中不能判断直线 11// l 2 的是( C . 7 4=7 57 2+7 4 = 1809. 如图,O O的半径为5,若OP= 3,则经过点P的弦长可能是()10.如图,O O 是以原点为圆心、、2为半径的圆,点 P 是直线y = — x + 6上的一点,过点P 作O O 的一条切线PQ Q 为切点,则切线长 PQ 的最小值为C. 6 — . 213•现有五张完全相同的卡片,上面分别写有“中国”、“英国”,把卡片背面朝上洗匀,从中随机抽取一张,抽到卡片对应的国家为亚洲国家的概 率是 . 14•不等式组$ -2 >0的解集是 ______________ .x +6 >3x15. 如图,点 A 在反比例函数 y = — (x>0)的图像上,且 OA= 4,过点A 作AC 丄x 轴,垂足x为C, OA 的垂直平分线交 OC 于点B -则厶 ABC 的周长为 ________ .16. 在四边形 ABCD 中,给出三个条件:① AD// BC;②AB = DC ③AD= BC.以其中两个作为 题设,余下一个作为结论,写出一个真命题: __________ .(用“序号二序号”表示)2 3 17. 已知一次函数 y = x + b 与反比例函数y = 中,x 与y 的对应值如下表:3x-3-2i 3 3 $=今工十b-33 03g~26 37j-a33 T1则不等式2x + b>-的解集为 ___________.3 x18. 如图,以 Rt △ ABC 的斜边BC 为一边在厶ABC 的同侧作正方形 BCEF 设正方形的中心为 O,连接AO 如果AB= 3, AO= 2,那么AC 的长等于 _____________ .B. 6C. 9D. 12B. 4二、填空题(本大题共11.我国雾霾天气多发,2.5微米的颗粒物,已知12 .分解因式:x — 6x + 9x =8小题,每小题3分,共24分) PM2.5颗粒物被称为大气污染的元凶. 1毫米=1000微米,用科学记数法表示PM2.5是指直径小于或等于 2.5微米是毫米.美国”、三、解答题(本大题共11小题,共76分)20. (本题满分5分)解方程组:3X 2y=7]2x -3y =921. (本题满分6分)x 2-1( 2x _1、先化简,再计算: 字x-亠1,其中x 是一元二次方程X 2— 2x — 2= 0的正数X +X I X 丿 根.22. (本题满分6分)某市举办中学生足球赛,初中男子组共有市区学校的A 、B 两队和县区学校的 e 、f 、g 、h 四队报名参赛,六支球队分成甲、乙两组,甲组由 A e 、f 三队组成,乙组由 B 、g 、h 三 队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛.(1) 在甲组中,首场比赛抽 e 队的概率是 _________ ; (2) 请你用画树状图或列表的方法,求首场比赛出场的两个队都是县区学校队的概率.23. (本题满分6分)“校园手机”现象越来越受到社会的关注。

2015届九年级数学中考模拟考试试题_新人教版

2015届九年级数学中考模拟考试试题_新人教版

2015年学业考试模拟考试 数学试题卷(含答案)本试卷共6页.全卷满分120分.考试时间为120分钟.一、选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.若2=+a ,则a 的值为A .2B .-2C .±2D .22.化简16 的结果是A .4B .-4C .±4D .±83. 2012年恩施机场和火车站的客流总量达到824000人次,这个数用科学记数法表示为 A.824×104 B. 8.24×105 C. 8.24×106 D. 0.824×107 4.如果事件A 发生的概率是1100,那么在相同条件下重复试验,下列陈述中,正确的是 A .说明做100次这种试验,事件A 必发生1次 B .说明事件A 发生的频率是 1100C .说明做100次这种试验中,前99次事件A 没发生,后1次事件A 才发生D .说明做100次这种试验,事件A 可能发生1次5. 右图是一个由相同小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何体的左视图是B6.如图:在直角坐标系中,直线x y -=6与函数)0(4>=x x y 的图象相交于点A 、B,设点A 的坐标为),(11y x ,那么长为1x ,宽为1y 的矩形面积和周长分别为A .4,12; B. 8 , 12; C 、4,6; D 、 8,6;7.某班每位学生上、下学期各选择一个社团,下表分别为该班学生上、下学期各社团 的人数比例.若该班上、下学期的学生人数不变,关于上学期,下学期各社团的学 生人数变化,下列叙述正确的是A .文学社增加,篮球社不变B .文学社不变,篮球社不变C .文学社增加,篮球社减少 D. 文学社不变,篮球社减少8.用一把带有刻度的直尺,①可以画出两条平行的直线a与b ,如图⑴;②可以画出∠AOB 的平分线OP ,如图⑵所示;③可以检验工件的凹面是否为半圆,如图⑶所示;④可以量出一个圆的半径,如图⑷所示.这四种说法正确的个数有 ( ) A .1个 B .2个 C .3个 D .4个9.小翔在如图2所示的场地上匀速跑步,他从点A 出发,沿箭头所示的方向经过B 跑到 点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2,刚这个固定位置可能是图1的( )A .点MB .点NC .点PD .Q图1 图210.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,若∠AOB=15°,则∠AOB ′的度数是( )A. 25°B. 30°C. 35°D. 40° 11. 已知BD 是⊙O 的直径,点A 、C 在⊙O 上,=,∠AOB=60°,则∠BDC 的度数是( )A. 40°B. 30°C. 25°D. 20°12.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为A .4B .8C .D .16二、填空题(本大题共4小题,每小题3分,共12分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)13.不等式 3-2-3x 5≤1+x2的解集为 ▲ .14.如图,平面上有两个全等的正十边形,其中A 点与A ′点重合,C 点与C ′点重合.∠BAJ ′为 ▲ °.15. 如图,将2个正方形并排组成矩形OABC, OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M 、N 的二次函数的图象也过矩形的顶点B 、C,若三个正方形边长均为1,则此二次函数的的关系式为 ▲ .16.规定22),(b ab a b a T ++=下列说法:①)4,3()4,3(--=T T ; ②),(),(n m kT kn km T =;③)1,(x T 和)1,(-x T 的最小值都是43;④方程)5,()1,2(x T x T =的两个实数根为2331,233121-=+=x x其中正确的结论有___▲ ______________(填写所有正确的序号)三、解答题(本大题共8小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)先化简,再求值:)2()113(2-÷---x x xx x 其中x 满足012=--x x18. (8分)已知:如图,在△ABC 中,∠ACB=90°,AD 平分∠CAB , DE ⊥AB ,垂足为E , CD=ED .连接CE ,交AD 于点H . (1)求证:△ACD ≌△AED ;(2)点F 在AD 上,连接CF ,EF . 现有三个论断:①EF ∥BC ;②EF =FC ;③CE ⊥AD . 请从上述三个论断中选择一个论断作为条件,证明四边形CDEF 是菱形.19. (8分)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= ; (2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少? 20、(8分)九年级一班数学兴趣小组在社会实践活动中,进行了如下的课题研究,用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架的面积最大,小组讨论后,同学们做了以下三种实验:请根据以上图案回答下列问题:(1)在图(1)中,如果铝合金材料总长度(图中所有黑线的长度和)为6m ,当ABAC BDHE F(第20题)为1m,长方形框架ABCD的面积是___________2 m.(2)在图(2)中,如果铝合金材料总长度(图中所有黑线的长度和)为6m,设AB为x m,长方形框架ABCD的面积为S=__________________(用含x的代数式表示);当AB=______________m时,长方形框架ABCD的面积S最大;在图(3)中,如果铝合金材料总长度(图中所有黑线的长度和)为l m,设AB为x m,当AB=______________m时,长方形框架ABCD的面积S最大;(3)经过这三种情形的试验,他们发现对于图(4)这种情形也存在着一定的规律。

2015年初三中考模拟数学(试卷、答卷、答案)

2015年初三中考模拟数学(试卷、答卷、答案)

2014学年第二学期九年级数学阶段检测试题卷考生须知:1.本试卷分试题卷和答题卡两部分.满分120分,考试时间100分钟; 2.答题前,必须在答题卡填写校名、班级、姓名,正确涂写考试号;3.不允许使用计算器进行计算,凡题目中没有要求取精确值的,结果中应保留根号或π.一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列各数中,倒数为– 2的数是( )A. 2B. – 2C. 21D.21- 2.下列各式中,错误..的是( ) A. 3)3(2=-B.3=-C. 3)3(2=D. 3=-3. 图象经过点(2,1)的反比例函数是( )A. 2y x =-B. 2y x =C. 12y x= D. 2y x = 4.如图,点A 在直线BG 上,AD ∥BC ,AE 平分∠GA D .若∠CBA =80°, 则∠GAE =()A .60°B .50°C .40°D .30° 5.若四个数据2,x ,3,5的中位数是4,则有( )A .4x =B .6x =C .5x ≥D .5x ≤6.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是( ) A .4π B .3π C .2π D .2π7.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB =45°,则折叠后重叠部分(△ABC)的面积为( )A .cm 2B .cm 2C .cm 2D .cm 28. 已知⊙O 半径为3cm ,下列与⊙O 不是..等圆的是( ) A. ⊙1O 中,120°圆心角所对弦长为B. ⊙2O 中,45°圆周角所对弦长为C. ⊙3O 中,90°圆周角所对弧长为32πcm D. ⊙4O 中,圆心角为60°的扇形面积为32π2cm(第2题)G EDCBA(第7题)(第9题)9. 如图,正方形OABC 的一个顶点O 是平面直角坐标系的原点,顶点A ,C 分别在y 轴和x 轴上, P 为边OC 上的一个动点,且BP ⊥PQ , BP=PQ ,当点P 从点C 运动到点O 时,可知点Q 始终在某函数图象上运动,则其函数图象是( ) A .线段 B .圆弧C .抛物线的一部分D . 不同于以上的不规则曲线.10. 已知关于x ,y 的方程组⎩⎨⎧-=+-=+a y x a y x 34321323 其中 1 ≤ a ≤ 3,给出下列结论:①⎪⎪⎩⎪⎪⎨⎧==5152y x 是方程组的解;② 当a =2时,53=+y x ; ③ 当a =1时,方程组的解也是方程x – y =a 的解; ④ 若x ≤ 1 , 则y 的取值范围是52-≥y .其中正确的是( ) A .①② B .②③ C . ②③④ D . ①③④二、 认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11. 使代数式1313--x x 有意义的x 的取值范围是 . 12. 如图,过⊙O 上一点C 作⊙O 的切线,交⊙O 直径AB 的 延长线于点D ,若∠D=40°,则∠A 的度数为 13.△ABC 中,∠C=90°,sin 3A =,AB =AC = 14.无论a 取什么实数,点P (12-a ,3-a )都在直线l 上,Q (m ,n )是直线l 上的点, 则2)12(--n m 的值为. 15.在等腰Rt △ABC 中,∠C = 90°,AC =C 作直线l ∥AB ,F 是直线l 上的一点,且 AB = AF ,则点F 到直线BC 的距离为 16.如图,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点, 动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q .当CQ =12CE 时,EP +BP = ; 当CQ=1nCE 时,EP +BP = .三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 . 17.(本小题满分6分) 阅读材料,解答问题: 观察下列方程:① 23x x +=; ②65x x +=; ③127x x+=;…; (1)按此规律写出关于x 的第4个方程为 ,第n 个方程为 ;(2)直接写出第n 个方程的解,并检验此解是否正确.18.(本题满分6分)如图,已知□ABCD 水平放置在平面直角坐标系xOy 中,若点A ,D 的坐标分别为()()2,5,0,1-,点()3,5B 在反比例函数()0ky x x=>图像上. (1)求反比例函数ky x=的解析式 (2)将□ABCD 沿x 轴正方向平移10个单位后,能否使点C 落在反比例函数ky x=的图像上?并说明理由?19. (本题满分8分)一凸透镜MN 放置在如图所示的平面直角坐标系中,透镜的焦点为F (1,0),物体AB 竖直放置在x 轴上,B 点的坐标为(-2.5,0),AB =2.我们知道通过光心的光线AO 不改变方向,平行主轴的光线AE 通过透镜后过焦点F ,两线的交点C 就是A 的像,这样能得到物体AB 的像CD . (1)求直线AC ,EC 的函数表达式; (2)求像CD 的长.20.(本小题满分10分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):FC根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有 人,男生最喜欢“乒乓球”项目的有 人; (2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.21.(本题10分)对于平面直角坐标系 x Oy 中的点P (a ,b ),若点P '的坐标为(ba k+,ka b +)(其中k 为常数,且0k ≠),则称点P '为点P 的“k 属派生点”. 例如:P (1,4)的“2属派生点”为P '(1+42,214⨯+),即P '(3,6). (1) ①点P (-1,-2)的“2属派生点”P '的坐标为____________;②若点P 的“k 属派生点” P '的坐标为(3,3),请写出一个符合条件的点P 的坐标_________; (2)若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P '点,且△OPP '为等腰直角三角形,求k 的值.22.(本题满分12分)如图,在矩形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE △,且点G 在矩形ABCD 内部,再延长BG 交DC 于点F .(1)求证: A 、G 、D 三点在以点E 为圆心,EA 的长为半径的圆上; (2)若AD =,求DCDF的值; (3)若DC k DF =,求ADAB的值.23.(本小题满分12分)已知抛物线232y ax bx c =++(1)若1,1a b c ===-求该抛物线与x 轴的交点坐标;(2)若1,23a cb ==+且抛物线在22x -≤≤区间上的最小值是-3,求b 的值; (3)若++1a b c =,是否存在实数x ,使得相应的y 的值为1,请说明理由.第21题图2014学年第二学期九年级数学阶段检测答题卷一、选择题:(每小题3分,共30分)二、填空题:(每小题4分,共24分)11.____________________. 12.___________________. 13.___________________.14.___________________. 15.__________________. 16.________ ,_________.三、解答题:(共66分)17、(本题6分)(1),(2)18、(本题8分)解方程:(1)(2)(1)(2)20、(本题10分)(1),(2)请将条形统计图补充完整;(3)21、(本小题10分)(1)①,②(2)(第19题)(1)C (2)(3)23、(本题12分) (1)(2)(3)2014学年第二学期九年级数学阶段检测答案卷一、选择题:(每小题3分,共30分)二、填空题:(每小题4分,共24分) 11.____31>x _____. 12._____25°_____. 13. ____ _6 _____. 14._____ 16 ___. 15.____ 16._ 12 , 6(n-1)_., 三、解答题(本题有7小题,共66分) 17、(本题满分6分) (1)920=+x x ,-------------------------1分 12)1(+=++n xn n x ---------------2分 (2)1,21+==n x n x --------------------2分 检验----------------------------------1分 18、(本题满分8分)解:(1)A (-2.5,2),代入kx y =得2=-2.5k ……. ……1分(若下一步解析式正确,而此方程不列,不扣这1分) 得 AC 的解析式为x y 54-=……………………………1分 E(0,2),F(1,0)代入⎩⎨⎧=+=+=02b k b b kx y 得…………………….1分得CE 的解析式:22+-=x y ……………………………1分(2)⎪⎩⎪⎨⎧+-=-=2254x y x y ………………………………………….2分 解得y=-34…………………………….1分 (x=35解错不扣分)答: CD=34厘米.……………………………..1分(第18题)19、(本题满分8分)20、(本题满分10分)解:(1) 女生最喜欢“踢毽子”项目的有 10 人,(2) 男生最喜欢“乒乓球”项目的有 20 人;----------------------------------------4分 (2)补充条形统计图如右图;---------------2分 (3)193509450%28400=⨯+⨯. 所以估计该校喜欢“羽毛球”项目的学生总人数为193人.---------------------------------------------4分21、(本小题满分10分)解:(1)①(-2,-4); ……………………………………………………………3分②答案不唯一,只需横、纵坐标之和为3即可,如(1,2) .………3分 (2)±1; ………………………………………………………………………4分22、(本题满分12分) (1)证明:∵E 是AD 的中点∴AE=DE∵ABE △沿BE 折叠后得到GBE △ ∴AE=EG …………1分 ∴AE=DE= EG …………2分CF (2)连接EF ,则90EGF D ∠=∠=°,EG AE ED EF EF ===,.Rt Rt EGF EDF ∴△≌△GF DF ∴=设AB a =,DF b =,则有BC =,CF DC DF a b =-=-,由对称性有BG AB a ==,BF BG GF a b ∴=+=+.在Rt BCF △中,222BC CF BF +=,即222)()()a b a b +-=+, 34a b ∴=, ∴43a b = ∴43DC a DF b == …………6分(3)由(2)知,GF DF =.设DF x BC y ==,,则有.GF x AD y ==, ∵DC k DF= DC k DF =∙,DC AB BG kx ∴===.(1)1CF k x BF BG GF k x ∴=-=+=+,().在Rt BCF △中,222BC CF BF +=,即222[1][(1)]y k x k x +-=+().2y ∴=…………13分AD y AB kx k∴== …………10分23、(本题满分12分)解(1)当1==b a ,1-=c 时,抛物线为1232-+=x x y ,∵方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. --------------------------------3分(2)1,23a cb =-=,则抛物线可化为222y x bx b =+++,其对称轴为x b =-, 当2x b =--<时,即2b >,则有抛物线在2x =-时取最小值为-3,此时-23(2)2(2)2b b =-+⨯-++,解得3b =,合题意--------------5分当2x b =->时,即2b <-,则有抛物线在2x =时取最小值为-3,此时-232222b b =+⨯++,解得95b =-,不合题意,舍去.--------------7分 当2b --≤≤2时,即2b -≤≤2,则有抛物线在x b =-时取最小值为-3,此时23()2()2b b b b -=-+⨯-++,化简得:250b b --=,解得:b =(不合题意,舍去),12b -=. --------------9分综上:3b =或12b =(3)由1y =得2321ax bx c ++=,2412(1)b a c ∆=--22222412()412124(33)b a a b b ab a b ab a =---=++=++22334[()]24b a a =++, .0,0>∆≠a 所以方程2321ax bxc ++=有两个不相等实数根,即存在两个不同实数0x ,使得相应1y =.-------------------------12分。

2015届中考数学模拟试卷附答案

2015届中考数学模拟试卷附答案

2015届中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上)1.下列各数中,属于无理数的是( )A.﹣2 B.0 C.D.0.101001000 2.如图中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.下列运算正确的是( )A.B.a3•a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a64.甲、乙两人在相同的条件下各射靶10次,射击成绩的平均数都是8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8.下列说法中不一定正确的是( )A.甲、乙射击成绩的众数相同B.甲射击成绩比乙稳定C.乙射击成绩的波动比甲较大D.甲、乙射中的总环数相同5.不等式组的解集在数轴上表示为( )A.B.C.D.6.如图,某个反比例函数的图象经过点P,则它的解析式为( )A.y=(x>0)B.y=(x>0)C.y=(x<0)D.y=(x<0)7.如图,AB∥CD,直线EF分别交AB、CD于点E、F,HF平分∠EFD,若∠1=110°,则∠2的度数为( )A.55°B.40°C.35°D.45°8.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有( )A.2个B.3个C.4个D.5个二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)9.2﹣1=__________.10.分解因式:x2﹣4=__________.11.一个多边形的每个外角都等于72°,则这个多边形的边数为__________.12.2014年3月14日,“玉兔号”月球车成功在距地球约384400公里远的月球上自主唤醒,将384400这个数用科学记数法表示为__________.13.已知正四边形的外接圆的半径为2,则正四边形的周长是__________.14.已知:一元二次方程x2﹣6x+c=0有一个根为2,则另一根为__________.15.如图,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域的概率为__________.16.如图,已知l3∥l4∥l5,它们依次交直线l1、l2于点E、A、C和点D、A、B,如果AD=2,AE=3,AB=4,那么CE=__________.17.如图,在△ABC中,G是重心,点D是BC的中点,若△ABC的面积为6cm2,则△CGD 的面积为__________cm2.18.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为__________.三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:(π﹣2015)0++|﹣2|;(2)解方程:1﹣=.20.先化简,再求值:(a+2b)2+(b+a)(b﹣a),其中a=﹣1,b=2.21.2014年6月,我校结合全省中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图①)补充完整;(3)求出扇形统计图(图②)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生4800名,请你估计该校最喜爱科普类书籍的学生人数.22.某市今年理化生实验操作考试,采用学生抽签的方式决定自己的考试内容.规定:每个考生从三个物理实验(题签分别用代码W1、W2,W3表示)、两个化学实验题(题签分别用代码H1、H2表示)、两个生物实验(题签分别用代码S1、S2表示)中分别抽取一个进行考试.小亮在看不到题签的情况下,从它们中随机的各抽取一个题签.(1)直接写出他恰好抽到H2的情况;(2)求小亮抽到的题签的代码的下标(例如“W2”的下标是“2”)之和为5的概率.23.如图,在矩形ABCD中,点F是CD中点,连接AF并延长交BC延长线于点E,连接AC.(1)求证:△ADF≌△ECF;(2)若AB=1,BC=2,求四边形ACED的面积.24.如图,小明在大楼45米高(即PH=45米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P、H、B、C、A在同一个平面上,点H、B、C在同一条直线上,且PH⊥HC.(1)山坡坡脚(即∠ABC)的度数等于__________度;(2)求A、B两点间的距离.(结果精确到1米,参考数据:≈1.732)25.如图,AB为⊙O的直径,D、T是圆上的两点,且AT平分∠BAD,过点T作AD的延长线的垂线PQ,垂足为C.(1)求证:PQ是⊙O的切线;(2)已知⊙O的半径为2,若过点O作OE⊥AD,垂足为E,OE=,求弦AD的长.26.如图,线段AB、CD分别是一辆轿车和一辆客车在行驶过程中油箱内的剩余油量y1(升)、y2(升)关于行驶时间x(小时)的函数图象.(1)写出图中线段CD上点M的坐标及其表示的实际意义;(2)求出客车行驶前油箱内的油量;(3)如果两车同时从相距300千米的甲、乙两地出发,相向而行,匀速行驶,已知轿车的行驶速度比客车的行驶速度快30千米/小时,且当两车在途中相遇时,它们油箱中所剩余的油量恰好相等,求两车的行驶速度.27.已知△ABC中,点E为边AB的中点,将△ABC沿CE所在的直线折叠得△A′EC,BF∥AC,交直线A′C于F.(1)如图①,若∠ACB=90°,∠A=30°,BC=,求A′F的长;(2)如图②,若∠ACB为任意角,已知A′F=a,求BF的长(用a表示);(3)如图③,若∠ACB为任意角,猜想出AC、CF、BF之间的数量关系:__________,并说明理由;(4)如图④,若∠ACB=120°,BF=8,BC=6,则AC的长为__________.28.在平面直角坐标系xOy中,一块含60°角的三角板作如图1摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0),抛物线y=x2+bx+c经过点A、B、C.(1)请直接写出点B、C的坐标:B(__________,__________)、C(__________,__________);(2)求经过A、B、C三点的抛物线的函数表达式;(3)如图2现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于第一象限的点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上)1.下列各数中,属于无理数的是( )A.﹣2 B.0 C.D.0.101001000考点:无理数.分析:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.解答:解:∵﹣2、0是整数,∴﹣2、0是有理数;∵0.101001000是有限小数,∴0.101001000是有理数;∵是无限不循环小数,∴是无理数.故选:C.点评:此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.如图中,既是轴对称图形又是中心对称图形的是( )A.B.C. D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列运算正确的是( )A.B.a3•a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a6考点:二次根式的加减法;幂的乘方与积的乘方;同底数幂的除法.分析:此题可根据二次根式的加减运算法则;同底数幂相乘,同底数幂相乘除及积的乘方运算法则去验证每个选项是否正确即可.解答:解:A、原式=2﹣=,故本选项错误;B、a3•a2=a5,故本选项正确;C、a8÷a2=a6,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项错误.故选B.点评:本题考查了二次根式的加减和整式的混合运算:积的乘方;同底数幂相乘;同底数幂相乘除掌握好每种运算法则是解题的必备工具.4.甲、乙两人在相同的条件下各射靶10次,射击成绩的平均数都是8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8.下列说法中不一定正确的是( )A.甲、乙射击成绩的众数相同B.甲射击成绩比乙稳定C.乙射击成绩的波动比甲较大D.甲、乙射中的总环数相同考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵甲射击成绩的方差是1.2,乙射击成绩的方差是1.8,∴S甲2<S乙2,∴甲射击成绩比乙稳定,乙射击成绩的波动比甲较大,∵甲、乙两人在相同的条件下各射靶10次,∴甲、乙射中的总环数相同,虽然射击成绩的平均数都是8环,但甲、乙射击成绩的众数不一定相同;故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.不等式组的解集在数轴上表示为( )A. B. C. D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x<0;由②得,x≤1,故此不等式组的解集为:x<0,在数轴上表示为:故选B.点评:本题考查的是在数轴上表示不等式组的解集,熟知实心原点与空心原点的区别是解答此题的关键.6.如图,某个反比例函数的图象经过点P,则它的解析式为( )A.y=(x>0)B.y=(x>0)C.y=(x<0)D.y=(x<0)考点:待定系数法求反比例函数解析式.专题:待定系数法.分析:先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.解答:解:设反比例函数的解析式为(k≠0)由图象可知,函数经过点P(﹣1,1)得k=﹣1∴反比例函数解析式为y=(x<0).故选D.点评:本题考查了待定系数法求反比例函数的解析式,由反比例函数图象上点的坐标代入求得k值即可.7.如图,AB∥CD,直线EF分别交AB、CD于点E、F,HF平分∠EFD,若∠1=110°,则∠2的度数为( )A.55°B.40°C.35°D.45°考点:平行线的性质.分析:根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.解答:解:∵∠1=110°,∴∠3=∠1=110°,∵AB∥CD,∴∠DFE=180°﹣∠3=180°﹣110°=70°,∵HF平分∠EFD,∴∠DFH=∠DFE=×70°=35°,∵AB∥CD,∴∠2=∠DFH=35°.故选C.点评:本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键.8.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有( )A.2个B.3个C.4个D.5个考点:点的坐标.专题:新定义.分析:首先根据题意,可得距离坐标为(2,1)的点是到l1的距离为2,到l2的距离为1的点;然后根据到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.解答:解:如图1,,到l1的距离为2的点是两条平行直线l3、l4,到l2的距离为1的点也是两条平行直线l5、l6,∵两组直线的交点一共有4个:A、B、C、D,∴距离坐标为(2,1)的点的个数有4个.故选:C.点评:此题主要考查了点的坐标,以及对“距离坐标”的含义的理解和掌握,解答此题的关键是要明确:到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)9.2﹣1=.考点:负整数指数幂.专题:计算题.分析:根据负整数指数幂的定义:a﹣p=(a≠0,p为正整数)求解即可.解答:解:2﹣1=,故答案为:.点评:本题考查了负整数指数幂的定义,解题时牢记定义是关键,此题基础性较强,易于掌握.10.分解因式:x2﹣4=(x+2)(x﹣2).考点:因式分解-运用公式法.专题:因式分解.分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.11.一个多边形的每个外角都等于72°,则这个多边形的边数为5.考点:多边形内角与外角.分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.解答:解:多边形的边数是:360÷72=5.故答案为:5.点评:本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.12.2014年3月14日,“玉兔号”月球车成功在距地球约384400公里远的月球上自主唤醒,将384400这个数用科学记数法表示为3.844×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:384400=3.844×105,故答案为:3.844×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.已知正四边形的外接圆的半径为2,则正四边形的周长是8.考点:正多边形和圆.分析:连接OA、OB,由正四边形的性质得出∠AOB=90°,AB=BC=CD=DA,由勾股定理求出AB,即可求出正四边形的周长.解答:解:如图所示:连接OA、OB,∵四边形ABCD是正四边形,∴∠AOB=90°,AB=BC=CD=DA,∵OA=OB=2,∴AB==2,∴正四边形的周长=4AB=8.故答案为:8.点评:本题考查了正四边形的性质、勾股定理、正四边形周长的计算;熟练掌握正四边形的性质,并能进行推理计算是解决问题的关键.14.已知:一元二次方程x2﹣6x+c=0有一个根为2,则另一根为4.考点:根与系数的关系.专题:计算题.分析:设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.解答:解:设方程另一根为t,根据题意得2+t=6,解得t=4.故答案为4.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.15.如图,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域的概率为.考点:几何概率.分析:先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.解答:解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为;故答案为:.点评:此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.16.如图,已知l3∥l4∥l5,它们依次交直线l1、l2于点E、A、C和点D、A、B,如果AD=2,AE=3,AB=4,那么CE=9.考点:平行线分线段成比例.分析:根据平行线分线段成比例定理得出比例式,代入求出AC即可.解答:解:∵l3∥l4∥l5,∴=,∵AD=2,AE=3,AB=4,∴=,∴AC=6,∴CE=6+3=9,故答案为:9.点评:本题考查了平行线分线段成比例定理的应用,解此题的关键是能根据定理得出比例式.17.如图,在△ABC中,G是重心,点D是BC的中点,若△ABC的面积为6cm2,则△CGD 的面积为1cm2.考点:三角形的重心.专题:计算题.分析:由于点D是BC的中点,则根据三角形面积公式得到S△ACD=S△ABC=3,再利用重心性质得到AG:GD=2:1,然后再利用三角形面积公式可计算出S△CGD=S△ACD=1(cm2).解答:解:∵点D是BC的中点,∴BD=CD,∴S△ACD=S△ABC=×6=3,∵G是重心,∴AG:GD=2:1,∴S△CGD=S△ACD=×3=1(cm2).故答案为1.点评:本题考查了三角形重心:三角形的重心是三角形三边中线的交点.重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了三角形面积公式.18.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为(2,1006).考点:等腰直角三角形;点的坐标.专题:压轴题;规律型.分析:由于2012是4的倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2012在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答.解答:解:∵2012是4的倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2012÷4=503 0∴A2012在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A2012的纵坐标为2012×=1006.故答案为:(2,1006).点评:本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:(π﹣2015)0++|﹣2|;(2)解方程:1﹣=.考点:实数的运算;解分式方程;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用零指数幂法则计算,第二项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=1+2+2﹣=3+;(2)去分母得:x﹣1﹣1=﹣2x,解得:x=,经检验x=是分式方程的解.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(a+2b)2+(b+a)(b﹣a),其中a=﹣1,b=2.考点:整式的混合运算—化简求值.专题:计算题.分析:原式第一项利用完全平方公式化简,第二项利用平方差公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=a2+4ab+4b2+b2﹣a2=4ab+5b2,当a=﹣1,b=2时,原式=﹣8+20=12.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.2014年6月,我校结合全省中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图①)补充完整;(3)求出扇形统计图(图②)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生4800名,请你估计该校最喜爱科普类书籍的学生人数.考点:折线统计图;用样本估计总体;扇形统计图.分析:(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.解答:解:(1)90÷30%=300(名),故,一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:×360°=48°;(4)4800×=1080(名).答:4800名学生中估计最喜爱科普类书籍的学生人数为1080人.点评:本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.22.某市今年理化生实验操作考试,采用学生抽签的方式决定自己的考试内容.规定:每个考生从三个物理实验(题签分别用代码W1、W2,W3表示)、两个化学实验题(题签分别用代码H1、H2表示)、两个生物实验(题签分别用代码S1、S2表示)中分别抽取一个进行考试.小亮在看不到题签的情况下,从它们中随机的各抽取一个题签.(1)直接写出他恰好抽到H2的情况;(2)求小亮抽到的题签的代码的下标(例如“W2”的下标是“2”)之和为5的概率.考点:列表法与树状图法.专题:计算题.分析:(1)直接根据概率公式求解;(2)先画出树状图展示所有12种等可能的结果数,再找出题签的代码的下标(例如“W2”的下标是“2”)之和为5的结果数,然后根据概率公式计算.解答:解:(1)他恰好抽到H2的概率=;(2)画树状图为:共有12种等可能的结果数,其中题签的代码的下标(例如“W2”的下标是“2”)之和为5的结果数为4,所以小亮抽到的题签的代码的下标(例如“W2”的下标是“2”)之和为5的概率==.点评:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,在矩形ABCD中,点F是CD中点,连接AF并延长交BC延长线于点E,连接AC.(1)求证:△ADF≌△ECF;(2)若AB=1,BC=2,求四边形ACED的面积.考点:矩形的性质;全等三角形的判定与性质;平行四边形的判定与性质.分析:(1)由矩形的性质和已知条件得出DF=CF,∠ADF=∠ECF,由ASA即可证明△ADF≌△ECF;(2)证明四边形ACED是平行四边形,即可得出四边形ACED的面积=AD×DC.解答:(1)证明:∵F是CD中点,∴DF=CF,∵四边形ABCD是矩形,∴AD∥BC,即AD∥CE.∴∠ADF=∠ECF,在△ADF和△ECF中,∵,∴△ADF≌△ECF(ASA);(2)解:∵四边形ABCD是矩形,∴AD=BC=2,AB=CD=1,CD⊥AD.由(1)知,△ADF≌△ECF.∴AD=CE.∵AD∥CE,∴四边形ACED是平行四边形,∴四边形ACED的面积=AD×DC=2,点评:本题考查了矩形的性质、全等三角形的判定与性质、平行四边形的判定与性质以及面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.24.如图,小明在大楼45米高(即PH=45米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P、H、B、C、A在同一个平面上,点H、B、C在同一条直线上,且PH⊥HC.(1)山坡坡脚(即∠ABC)的度数等于30度;(2)求A、B两点间的距离.(结果精确到1米,参考数据:≈1.732)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:(1)根据俯角以及坡度的定义即可求解;(2)在直角△PHB中,根据三角函数即可求得PB的长,然后利用直角△PBA为等腰直角三角形,即可求解.解答:解:(1)∵tan∠ABC=1:,∴∠ABC=30°;故答案为:30;(2)由题意得:∠PBH=60°,∵∠ABC=30°,∴∠ABP=90°,又∠APB=45°,∴△PAB为等腰直角三角形,在直角△PHB中,PB===30,在直角△PBA中,AB=PB=30≈52米.点评:此题考查了解直角三角形的应用,用到的知识点是俯角的定义以及坡度坡角的知识,注意能借助俯角构造直角三角形并解直角三角形是关键,注意数形结合思想的应用.25.如图,AB为⊙O的直径,D、T是圆上的两点,且AT平分∠BAD,过点T作AD的延长线的垂线PQ,垂足为C.(1)求证:PQ是⊙O的切线;(2)已知⊙O的半径为2,若过点O作OE⊥AD,垂足为E,OE=,求弦AD的长.考点:切线的判定.分析:(1)由同圆的半径相等和角平分线证出∠OTA=∠CA T,得出OT∥AC,由PQ⊥AC,证出PQ⊥OT,即可得出结论;(2)由垂径定理得出AE=DE,由勾股定理求出AE,即可得出AD的长.解答:(1)证明:连接OT,如图1所示:∵OA=OT,∴∠OA T=∠OTA,∵AT平分∠BAD,∴∠OA T=∠CAT,∴∠OTA=∠CAT,∴OT∥AC,∵PQ⊥AC,∴PQ⊥OT,∴PQ是⊙O的切线;(2)解:如图2所示:∵OE⊥AD,∴AE=DE,∠AEO=90°,∴AE===1,∴AD=2AE=2.点评:本题考查了切线的判定、垂径定理、勾股定理、平行线的判定;熟练掌握圆的有关性质,证明平行线和运用垂径定理是解决问题的关键.26.如图,线段AB、CD分别是一辆轿车和一辆客车在行驶过程中油箱内的剩余油量y1(升)、y2(升)关于行驶时间x(小时)的函数图象.(1)写出图中线段CD上点M的坐标及其表示的实际意义;(2)求出客车行驶前油箱内的油量;(3)如果两车同时从相距300千米的甲、乙两地出发,相向而行,匀速行驶,已知轿车的行驶速度比客车的行驶速度快30千米/小时,且当两车在途中相遇时,它们油箱中所剩余的油量恰好相等,求两车的行驶速度.考点:一次函数的应用.分析:(1)根据直角坐标系得出M点的坐标,进而得出其表示的实际意义;(2)首先求出直线CD的解析式,求出图象与y轴的交点坐标即可得出答案;(3)设客车的速度为xkm/时,则小轿车的速度为(x+30)km/时,先根据相遇问题表示出相遇时间,再由图象可以求出客车和小轿车每小时的耗油量,再根据剩余的油相等建立方程求出其解即可.解答:解:(1)行驶1小时后油箱内还有60升的油;(2)将M(1,60),D(3,0)代入解析式y=ax+b,得:,解得:.故CD的解析式为y=﹣30x+90,点C的坐标是(0,90).故客车行驶前油箱内的油量是90升;(3)设客车的速度为xkm/时,则小轿车的速度为(x+30)km/时,所以两车的相遇时间为:,轿车每小时的耗油量为60÷4=15升,客车每小时耗油量为90÷3=30升.∵相遇时,它们油箱中所剩余的油量恰好相等,∴90﹣30×=60﹣15×,解得:x=60,经检验,x=60是原方程的解,轿车的速度为:60+30=90千米/时.答:客车60千米/小时,轿车90千米/小时.点评:本题考查了运用待定系数法求一次函数的解析式的运用,相遇问题的解法的运用,解答本题时先表示出两车相遇的时间利用剩余的油量相等建立分式方程是关键,分式方程要检验是解答的必要过程,学生容易忘记.27.已知△ABC中,点E为边AB的中点,将△ABC沿CE所在的直线折叠得△A′EC,BF∥AC,交直线A′C于F.(1)如图①,若∠ACB=90°,∠A=30°,BC=,求A′F的长;(2)如图②,若∠ACB为任意角,已知A′F=a,求BF的长(用a表示);(3)如图③,若∠ACB为任意角,猜想出AC、CF、BF之间的数量关系:AC=CF﹣BF,并说明理由;(4)如图④,若∠ACB=120°,BF=8,BC=6,则AC的长为8+2..考点:几何变换综合题.分析:(1)根据翻折得出AC=A'C,利用含30°的直角三角形的性质进行解答即可;(2)连接A′B,根据翻折的性质可得A′E=AE,A′C=AC,∠A=∠CA′E,根据中点定义可得AE=BE,从而得到BE=A′E,然后根据等边对等角可得∠EA′B=∠EBA′,根据两直线平行,内错角相等可得∠A=∠ABF,然后求出∠FA′B=∠FBA′,根据等角对等边可得A′F=BF;(3)图(3)连接A′B,根据翻折的性质可得A′E=AE,A′C=AC,∠A=∠CA′E,根据中点定义可得AE=BE,从而得到BE=A′E,然后根据等边对等角可得∠EA′B=∠EBA′,根据两直线平行,内错角相等可得∠A=∠ABF,然后求出∠FA′B=∠FBA′,根据等角对等边可得A′F=BF,再根据A′C=CF﹣A′F整理即可得证;(4)连接A′B,过点F作FG⊥BC于G,根据两直线平行,同旁内角互补求出∠CBF=60°,然后解直角三角形求出BG、FG,再求出CG,然后利用勾股定理列式求出CF,再根据AC=CF+BF代入数据计算即可得解.。

2015年中考数学模拟考试试题和答案

2015年中考数学模拟考试试题和答案

2015年中考数学模拟数学试卷总分:120分 时间:120分钟一、选择题:(每小题3分,共36分)1、若分式52-x 有意义,则x 的取值范围是( ) A .5≠x B .5-≠x C .5>x D .5->x2、关于x 的一元二次方程0222=+-k x x 有实数根,则k 的取值范围是( ) A .21<k B.21≤k C.21>k . D.21≥k 3、下面与3是同类二次根式的是( )A.2B.12C.13-D.18 4、下列运算正确的是( )A.624a a a =⋅ B 23522=-b a b a C.523)(a a =- D.63329)3(b a ab =5、甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同, 但乙的成绩比甲的成绩稳定,那么两者的方差的大小关系是( )。

A.22乙甲S S <B.22乙甲S S >C.22乙甲S S = D.不能确定6、如图,已知直线a ∥b,直线c 与a 、b 分别交于A 、B ,且1201=∠,则=∠2( ) A .60B .150C . 30D .1207、在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( ) A .53 B. 54 C. 43 D. 55 8、下列图形中,既是轴对称图形又是中心对称图形的是( ) A . 等边三角形 B . 平行四边形 C . 正方形 D . 等腰梯形9、已知关于x 的一元二次方程02=+-c bx x 的两根分别为,2,121-==x x 则b 与c 的值分别为( )A .2,1=-=c bB .2,1-==c bC .2,1==c bD .2,1-=-=c b10、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )。

11、如图,直线)0(>=t t x 与反比例函数xy x y 1,2-==的图象分别交于B 、C 两点,A 为y 轴上的任意一点,则∆ABC 的面积为( ) A .3 B .t 23 C .23D .不能确定12、如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB=a ,CG=b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③CEGOGC DG =;④a b S S BCG EOF =∆∆.其中结论正确的个数是( )A . 4个B . 3个C . 2个D . 1个二、选择题:(每小题3分,共18分)13、因式分解:=-a a 43.14、某市棉花产量约378000吨,将378000用科学计数法表示应是______________吨. 15、已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m+n= . 16、如图,AB 是⊙O 的弦,OC ⊥AB 于C ,若cm AB 52=,cm OC 1=,则⊙O 的半径长为 。

2015年中考数学模拟试卷附答案

2015年中考数学模拟试卷附答案

2015年中考数学模拟试卷说明:1.考试用时100 分钟.满分为 120 分。

2.所有作答必须在答题卡指定位置完成.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案;非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.在-2,-12,0,2四个数中,最大的数是( )A. -2B. -12 C. 0 D. 22.下列各数中,与3的积为有理数的是 ( ) A .2B .23C .32D .32-3.据统计,今年某市中考报名确认考生人数是96 200人,用科学记数法表示96 200为 ( ) A .49.6210⨯ B .50.96210⨯ C .59.6210⨯ D .396.210⨯ 4. 如图是某个几何体的三视图,则该几何体的形状是( ) A .长方体B .圆锥C .圆柱D .三棱柱 5.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9, 这5个数据的中位数是( ) A.6B .7C .8D . 96.如图,AB 是⊙O的直径,弦CD ⊥AB ,垂足为E, 如果AB =10,CD =8,那么线段OE 的长为( ) A.6 B.5C.4 D.3 7.下列式子正确的是( )A. x 6÷x 3=x 2B. (-1)1-=-1C.4m 2-=241mD.(a 2)4=a 68. 在平面直角坐标系内,点P(-2 ,3)关于原点的对称点Q 的坐标为 ( ) A .(2,-3) B .(2,3)C .(3,-2)D .(-2,-3)Q9.如图,直线l 1∥l 2,l 3⊥l 4,∠1=44°,那么∠2的度数( ) A .46° B .44°C .36°D .22° (第9题图) 10.某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率为 ( ) A. 2% B.5% C. 10% D.20%二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上)11.不等式9>-3x 的解集是 .12.分解因式:x(x-2) +1= . 13.有三辆车按1,2,3编号,甲和乙两人可任意选坐一辆车. 则两人同坐3号车的概率为 .14.如图,小明用长为3 m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,测得竹竿与旗杆的距离DB =12m ,且OD=6m ,则旗杆AB 的高为m .15.如图,A ,B 两点的坐标分别是A (1,B 0),则ABO ∆的面积是 .(第14题图) 16.用一个圆心角为150°,半径为2cm 的扇形作一个圆锥的侧面,则这个圆锥的底面圆的半径为cm .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算: 0|2|(1--18.先化简,后求值:1)111(2-÷-+x xx ,其中x =-4. 19.在版面设计过程中,将一个半圆面三等分,请你用尺规作出图形,要求保留作图痕迹.A B四、解答题(二)(本大题3小题,每小题7分,共21分)20. 一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.21. 据调查,超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学用所学过的知识在一条笔直的道路上检测车速.如图,观测点C到公路的距离CD为100米,检测路段的起点A位于点C的南偏西60°方向上,终点B位于点C的南偏西45°方向上.某时段,一辆轿车由西向东匀速行驶,测得此车由A处行驶到B处的时间为4秒. 问此车是否超过了该路段16米/秒的限制速度?(参考数据:≈1.4,≈1.7)(第21题图)22. 小明家离学校2千米,平时骑自行车上学.这天自行车坏了,小明只好步行上学.已知小明骑自行车的速度是步行速度的4倍,结果比平时慢了20分钟到学校.求小明步行和骑自行车的速度各是多少?五、解答题(三)(本大题3小题,每小题9分,共27分) 23.已知:如图,在ABCD 中,O 为对角线BD 的中点,过点O 的直线EF 分别交AD 、BC 于E 、F 两点,连结BE ,DF . (1)求证:△DOE ≌△BOF .(2)当∠DOE 等于多少度时,四边形BFDE 为菱形?请说明理由.24.如图,已知反比例函数y =kx (x >0,k 是常数)的图象经过点A(1,4),点B(m ,n),其中m >1,AM ⊥x 轴,垂足为M ,BN ⊥y 轴,垂足为N ,AM 与BN 的交点为C. (1)求反比例函数的解析式; (2)求证:△ACB ∽△NOM ;(3)若△ACB 与△NOM 的相似比为2,求出B 点的坐标及AB 所在直线的解析式. (第24题图) 25. 如图,抛物线c bx x y ++-=221与x 轴交于A 、B 两点,与y 轴交于点C ,且OA=2,OC=3。

2015年九年级中考模拟数学试题及答案

2015年九年级中考模拟数学试题及答案

2015年中考数学模拟考试题(含答案)一、选择题(本大题共8小题,每小题4分,共32分)1.﹣5的相反数是( ) A .﹣ B .﹣5 C .D .5 2. 钓鱼岛自古以来就是中国的固有领土,在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为4640000,这个数用科学记数法表示为 ( ) A. 464×104B .46.4×106C .46.4×106D .4.64×1063. 在50,20,50,30,50,25,35这组数据中,中位数是( ) A .20 B .30 C .35D .504. 在下图的几何体中,它的左视图是 ( )5. x 的取值范围是( )A .x≥1 B .x ≤1 C.x >1D .x ≠16.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )7. 下列计算不正确...的是 ( ) A .32a a a =⋅ B .426a a a =÷ C .632)(x x = D .2m + 3n=5mn8. 如图,AB 是⊙O 的直径,C 是⊙O 上的一点,若AC =8,AB =10,OD ⊥BC 于点D ,则BD 的长为( )A. 1.5B. 3C. 5D. 6 二、填空题(本大题共5小题,每小题4分,共20分) 9. 分解因式:x 2-16=_________________.10. 从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是 .OAA .B .C .D . 第4题图 ABC D第11题图A 11. 如图,AB ∥CD ,CP 交AB 于O ,AO =PO ,若∠C =50°,则∠A =______°.12. 如下图1是二环三角形, 可得S =∠A 1+∠A 2+ … +∠A 6=360°, 下图2是二环四边形, 可得S =∠A 1+∠A 2+ … +∠A 7=720°, 下图3是二环五边形, 可得S =1080°, ……, 请你根据以上规律直接写出二环二零一三边形中,S =___________°.13.已知圆锥中,母线长为5,底面半径为3,则圆锥的侧面积为 cm 2(结果保留含π的形式)。

2015年数学中考模拟试卷9

2015年数学中考模拟试卷9

2015年中考数学模拟卷九一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.)1.图中几何体的主视图是 ( )2.下列运算中,计算结果正确的是 ( )A .x 2·x 3=x 6B .x 2n ÷x n -2=x n +2 C .(2x 3)2=4x 9 D .x 3+x 3=x 3.如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是 ( )4.多项式2a 2-4ab +2b 2分解因式的结果正确的是 ( ) A .2(a 2-2ab +b 2) B .2a (a -2b )+2b 2 C .2(a -b ) 2 D .(2a -2b ) 2 5.如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是 ( ) A .30° B .45° C .40° D .50°6.在a 2□4a □4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是 ( )A .12B .13C .14D .17.将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为 ( ) A .y =(x +1)2+4 B .y =(x -1)2+4 C .y =(x +1)2+2 D .y =(x -1)2+2 8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是 ( ) A .8 B .5 C .2 2 D .3 9.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( )A .13B .12C .34D .110.如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为( )D .C . B . A .D .正面a b 1A .6B .4C .2D .1二、填空题(本大题共8小题,每小题4分,共32分.) 11.计算8-12=_ . 12.若x +y =3,xy =1,则x 2+y 2=_ .13.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处,然后观测考沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7m ,观测者目高CD =1.6m ,则树高AB 约是_ .(精确到0.1m )14.如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m 2,求道路宽为多少?设宽为x m ,从图(2)的思考方式出发列出的方程是_ .15.已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 .16.如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是 _________ .(只需填一个即可)17.抛物线y =-x 2+bx +c 的部分图象如图所示,若函数y >0值时,则x 的取值范围是18.如图,在梯形ABCD 中,AB ∥CD ,∠BAD =90°,AB =6,对角线AC 平分∠BAD ,点E 在AB 上,且AE =2(AE <AD ),点P 是AC 上的动点,则PE +PB 的最小值是_ . 三、解答题(共88分). 19.(两道小题共12分)(1) (2)D CC ECEBA E EB D(1)计算:()﹣1﹣20090+|﹣2|﹣(2)先化简,再求值,其中x=3.20.(8分)已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由.21.(本题共8分).某中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的同学一共42人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷一、选择题:(每小题4分,共40分)1.下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形2.已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2 B.15πcm2 C.24πcm2 D.30πcm23.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.154.下列说法中正确的是()A.3,4,3,5,5,2这组数据的众数是3B.为了解参加运动会的运动员的年龄情况,从中抽了100名运动员的年龄,在这里100名运动员是抽取的一个样本C.如果数据x1,x2…x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n﹣)=0 D.一组表据的方差是S2,将这组数据中的每个数据都乘以3,所得的一组新数据的方差是3S25.在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值()A.都扩大两倍B.都缩小两倍C.不变D.都扩大四倍6.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC 边上的中点,则MP+NP的最小值是()A.2 B.1 C.D.7.下列运算中正确的是()A.(a﹣b)2=a2﹣b2 B.(﹣a+1)(﹣a﹣1)=a2﹣1C.(﹣)﹣2=1 D.﹣(﹣2ab2)2=4a2b48.有一新娘去商店买新婚衣服,购买了不同款式的上衣2件,不同颜色的裙子3条,利用“树状图”表示搭配衣服所有可能出项的结果数为()A.2 B. 3 C. 5 D. 69.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条10.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大二、填空题:(每小题4分,共20分;将答案直接写在该题目中的横线上)11.已知是方程组的解,则a+2b的值为.12.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,如果要通过最大轮船的水面高度为20米,则设计拱桥的半径应是m.13.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y 随x的增大而增大的概率是.14.据有关媒体披露,2014年全国高校毕业生人数达727万人,创历史新高,将727万用科学记数法表示应为.15.如图,梯形ABCD中,AD∥BC,DC⊥BC,AB=8,BC=5,若以AB为直径的⊙O与DC相切于E,则DC=.三、解答题:(本大题共5个小题,每小题8分,共40分)16.计算:|﹣|+sin45°+tan60°﹣(﹣)﹣1﹣+(π﹣3)0.17.化简求值:已知:a是4的小数部分,求代数式+的值.18.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米,高速公路通车后,有一长途汽车的行驶速度提高了45千米/小时,从甲地到乙地的行驶时间减少了一半,求该长途汽车在原来国道上行驶的速度.19.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?20.如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC于点F.(1)求证:BE=CF;(2)求BE的长.四、灵活应用:(本大题共5个小题,每小题10分,共50分)21.(10分)(2015•蓬溪县校级模拟)某学区为了解教师对网上教研活动的满意度,利用“网上短信平台”,对本区在20~60岁之间的300名教师,进行短信抽样调查.被抽查人中,各年龄段人数所占比例如图甲所示,各年龄段对活动感到满意的人数如图乙(部分)所示,根据图形信息回答下列问题:(1)被抽查的教师中,人数最多的年龄段是岁;(2)被抽查的300人中有83%的人对网上教研活动感到满意,请你求出26~30岁年龄段的满意人数,并补全图乙;(3)比较26~30岁和41~50岁这两个年龄段对网上教研活动的满意度的高低(四舍五入到1%).(注:某年龄段满意度=该年龄段满意人数÷该年龄段被抽查人数×100%).22.(10分)(2015•蓬溪县校级模拟)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C的圆与y轴的另一个交点为D.已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4).(1)求此抛物线的表达式与点D的坐标;(2)若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值.23.(10分)(2015•江西校级模拟)数学活动课上,小颖同学用两块完全一样的透明等腰直角三角板ABC、DEF进行探究活动.操作:使点D落在线段AB的中点处并使DF过点C(如图1),然后将其绕点D顺时针旋转,直至点E落在AC的延长线上时结束操作,在此过程中,线段DE与AC或其延长线交于点K,线段BC与DF相交于点G(如图2,3).探究1:在图2中,求证:△ADK∽△BGD.探究2:在图2中,求证:KD平分∠AKG.探究3:①在图3中,KD仍平分∠AKG吗?若平分,请加以证明;若不平分,请说明理由.②在以上操作过程中,若设AC=BC=8,KG=x,△DKG的面积为y,请求出y与x 的函数关系式,并直接写出x的取值范围.24.(10分)(2015•江西校级模拟)如图,AB=AC=8,∠BAC=90°,直线l与以AB为直径的⊙O相切于点B,点D是直线l上任意一动点,连接DA交⊙O于点E.(1)当点D在AB上方且BD=6时,求AE的长.(2)当点D在什么位置时,CE恰好与⊙O相切?请说明理由.25.(10分)(2014•南宁)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP 面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题4分,共40分)1.下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形考点:平面镶嵌(密铺).分析:正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.解答:解:A、正三角形的每个内角是60°,正方形的每个内角是90°,3×60°+2×90°=360°,故能铺满,不合题意;B、正方形和正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满,符合题意;C、正三角形和正六边形内角分别为60°、120°,2×60°+2×120°=360°,故能铺满,不合题意;D、正五边形和正十边形内角分别为108°、144°,2×108°+1×144°=360°,故能铺满,不合题意.故选:B.点评:此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.2.已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2 B.15πcm2 C.24πcm2 D.30πcm2考点:圆锥的计算.专题:计算题.分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.解答:解:∵底面半径为3,高为4,∴圆锥母线长为5,∴侧面积=2πrR÷2=15πcm2.故选:B.点评:由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.3.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15考点:二次根式的化简求值.分析:由a﹣b=2+,b﹣c=2﹣可得,a﹣c=4然后整体代入.解答:解:∵a﹣b=2+,b﹣c=2﹣,∴a﹣c=4,∴原式====15.故选D.点评:此题的关键是把原式转化为的形式,再整体代入.4.下列说法中正确的是()A.3,4,3,5,5,2这组数据的众数是3B.为了解参加运动会的运动员的年龄情况,从中抽了100名运动员的年龄,在这里100名运动员是抽取的一个样本C.如果数据x1,x2…x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n﹣)=0 D.一组表据的方差是S2,将这组数据中的每个数据都乘以3,所得的一组新数据的方差是3S2考点:方差;总体、个体、样本、样本容量;算术平均数;众数.分析:利用方差、算术平均数、众数的定义分别判断后即可确定正确的选项.解答:解:A、3,4,3,5,5,2这组数据的众数是3和5,故错误;B、为了解参加运动会的运动员的年龄情况,从中抽了100名运动员的年龄,在这里100名运动员的年龄是抽取的一个样本,故错误;C、如果数据x1,x2…x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n﹣)=0,正确;D、一组表据的方差是S2,将这组数据中的每个数据都乘以3,所得的一组新数据的方差是9S2,故错误,故选C.点评:本题考查了方差、算术平均数、众数的定义,属于统计的基础知识,难度较小.5.在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值()A.都扩大两倍B.都缩小两倍C.不变D.都扩大四倍考点:锐角三角函数的定义.专题:常规题型;压轴题.分析:根据三边对应成比例,两三角形相似,可知扩大后的三角形与原三角形相似,再根据相似三角形对应角相等解答.解答:解:∵各边的长度都扩大两倍,∴扩大后的三角形与Rt△ABC相似,∴锐角A的各三角函数值都不变.故选C.点评:本题考查了锐角三角形函数的定义,理清锐角的三角函数值与角度有关,与三角形中所对应的边的长度无关是解题的关键.6.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC 边上的中点,则MP+NP的最小值是()A.2 B. 1 C.D.考点:轴对称-最短路线问题;菱形的性质.专题:压轴题;动点型.分析:首先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形PMBN为菱形,即可求出MP+NP=BM+BN=BC=1.解答:解:作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形AM′BN是平行四边形,∴PN∥AB,又N是BC边上的中点,∴PN是△CAB的中位线,∴P是AC中点,∴PM∥BN,PM=BN,∴四边形PMBN是平行四边形,∵BM=BN,∴平行四边形PMBN是菱形.∴MP+NP=BM+BN=BC=1.故选B.点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.7.下列运算中正确的是()A.(a﹣b)2=a2﹣b2 B.(﹣a+1)(﹣a﹣1)=a2﹣1C.(﹣)﹣2=1 D.﹣(﹣2ab2)2=4a2b4考点:完全平方公式;幂的乘方与积的乘方;平方差公式;负整数指数幂.专题:计算题.分析:A、原式利用完全平方公式化简得到结果,即可做出判断;B、原式利用平方差公式化简得到结果,即可做出判断;C、原式利用负整数指数幂法则计算得到结果,即可做出判断;D、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式=a2+b2﹣2ab,错误;B、原式=a2﹣1,正确;C、原式=4,错误;D、原式=﹣4a2b4,错误,故选B点评:此题考查了完全平方公式,幂的乘方与积的乘方,平方差公式,以及负整数指数幂法则,熟练掌握公式及法则是解本题的关键.8.有一新娘去商店买新婚衣服,购买了不同款式的上衣2件,不同颜色的裙子3条,利用“树状图”表示搭配衣服所有可能出项的结果数为()A.2 B. 3 C. 5 D. 6考点:列表法与树状图法.专题:计算题.分析:列出得出所有等可能的情况数即可.解答:解:列表如下:上衣用a,b表示,裙子用c,d,e表示,a bc (a,c)(b,c)d (a,d)(b,d)e (a,e)(b,e)所有等可能的情况有6种,故选D点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.9.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条考点:相似三角形的判定.分析:过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.解答:解:由于△ABC是直角三角形,过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故选:C.点评:本题主要考查三角形相似判定定理及其运用.解题时,运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.10.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大考点:反比例函数图象上点的坐标特征;矩形的性质.专题:压轴题;数形结合.分析:设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b 为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=AB•AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.解答:解:设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=AB•AD=ab,又∵a+b为定值时,当a=b时,ab最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选:C.点评:本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度.根据题意得出k=AB•AD=ab是解题的关键.二、填空题:(每小题4分,共20分;将答案直接写在该题目中的横线上)11.已知是方程组的解,则a+2b的值为7.考点:二元一次方程组的解.分析:把代入方程组中,得出关于a,b的值,再计算即可.解答:解:把代入方程组中,可得:,解得:,把代入a+2b=7,故答案为:7.点评:本题主要考查了方程组的解的定义:能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.12.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,如果要通过最大轮船的水面高度为20米,则设计拱桥的半径应是50m.考点:垂径定理的应用;勾股定理.分析:根据垂径定理和勾股定理求解.解答:解:如图,点E是拱桥所在的圆的圆心,作EF⊥AB,延长交圆于点D,则由垂径定理知,点F是AB的中点,AF=FB=AB=40,EF=ED﹣FD=AE﹣DF,由勾股定理知,AE2=AF2+EF2=AF2+(AE﹣DF)2,设圆的半径是r.则:r2=402+(r﹣20)2,解得:r=50故答案是:50.点评:本题利用了垂径定理和勾股定理求解.建立数学模型是关键.13.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是.考点:概率公式;一次函数图象与系数的关系.分析:从﹣1,1,2三个数中任取一个,共有三种取法,其中函数y=﹣1•x+3是y随x增大而减小的,函数y=1•x+3和y=2•x+3都是y随x增大而增大的,所以符合题意的概率为.解答:解:P(y随x增大而增大)=.故本题答案为:.点评:用到的知识点为:概率=所求情况数与总情况数之比;一次函数未知数的比例系数大于0,y随x的增大而增大.14.据有关媒体披露,2014年全国高校毕业生人数达727万人,创历史新高,将727万用科学记数法表示应为7.27×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将727万用科学记数法表示为:7.27×106.故答案为:7.27×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.如图,梯形ABCD中,AD∥BC,DC⊥BC,AB=8,BC=5,若以AB为直径的⊙O与DC相切于E,则DC=2.考点:切线的性质;勾股定理;梯形中位线定理.分析:如图:连接OE,过D作DF∥AB,则OE⊥CD;OE是梯形ABCD的中位线,故OE=(BC+AD),则AD=2OE﹣BC=2×4﹣5=3,可求BF=AD=3,故CF可求,进而可求出CD的长.解答:解:连接OE,过D作DF∥AB,梯形ABCD中,AD∥BC,DC⊥BC,AB为直径的⊙O与DC相切于E,故OE⊥CD,OE是梯形ABCD的中位线,OE=(BC+AD),即AD=2OE﹣BC=2×4﹣5=3.∵AD∥BC,AB∥DF,∴四边形ABFD是平行四边形,BF=AD=3,CF=BC﹣BF=5﹣3=2,DF=AB=8,CD===2.点评:本题考查的是切线的性质,勾股定理及中位线定理,解答此题的关键是作出辅助线,构造出直角三角形解答.三、解答题:(本大题共5个小题,每小题8分,共40分)16.计算:|﹣|+sin45°+tan60°﹣(﹣)﹣1﹣+(π﹣3)0.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二、三项利用特殊角的三角函数值计算,第四项利用负指数幂法则计算,第五项化为最简二次根式,最后一项利用零指数幂法则计算即可得到结果.解答:解:原式=+×+﹣(﹣3)﹣2+1=+1++3﹣2+1=5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.化简求值:已知:a是4的小数部分,求代数式+的值.考点:二次根式的化简求值.分析:先求出4的范围,求出a的值,再求出每一部分的值,最后代入求出即可.解答:解:∵4=,∴6<4<7,∴a=4﹣6,∴a﹣1<0,∴+=+=a﹣1+=a﹣1﹣=4﹣6﹣1﹣=4﹣7﹣=4﹣7﹣﹣=﹣7.点评:本题考查了二次根式的混合运算的应用,解此题的关键是能根据a的值化简二次根式,有一定的难度.18.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米,高速公路通车后,有一长途汽车的行驶速度提高了45千米/小时,从甲地到乙地的行驶时间减少了一半,求该长途汽车在原来国道上行驶的速度.考点:分式方程的应用.分析:设该长途汽车在原来国道上行驶的速度为x千米/时,根据“甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半”,可列出方程.解答:解:设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意得=•,解得:x=55,经检验:x55是原分式方程的解,答:该长途汽车在原来国道上行驶的速度55千米/时.点评:本题主要查了分式方程的应用,关键是设出速度,以时间做为等量关系列方程.19.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?考点:解直角三角形的应用-方向角问题.专题:应用题.分析:本题要求的实际上是C到AB的距离,过C点作CD⊥AB,CD就是所求的线段,由于CD是条公共直角边,可用CD表示出AD,BD,然后根据AB的长,来求出CD的长.解答:解:过C点作CD⊥AB于D,由题可知:∠CAD=30°,设CD=x千米,tan∠CAD=,所以AD==x,由CD⊥AB,得到∠CDB=90°,又∠CBD=45°,所以△CDB为等腰直角三角形,则BD=CD=x,∵AB=2,∴x+x=2,∴x====﹣1>0.7.∴计划修筑的这条公路不会穿过公园.点评:解直角三角形的应用关键是构建直角三角形,如果有共用直角边的,可以利用公共边来进行求解.20.如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC于点F.(1)求证:BE=CF;(2)求BE的长.考点:正方形的性质;角平分线的性质;等腰直角三角形.分析:(1)由角平分线的性质可得到BE=EF,再证明△CEF为等腰直角三角形,可证明BE=CF;(2)设BE=x,在△CEF中可表示出CE,由BC=1,可列出方程,可求得BE.解答:(1)证明:∵四边形ABCD为正方形,∴∠B=90°,∵EF⊥AC,∴∠EFA=90°,∵AE平分∠BAC,∴BE=EF,又∵AC平分∠BCD,∴∠ACB=45°,∴∠FEC=∠FCE,∴EF=FC,∴BE=CF;(2)解:设BE=x,则EF=CF=x,在Rt△CEF中可求得CE=x,∵BC=1,∴x+x=1,解得x=﹣1,即BE的长为﹣1.点评:本题主要考查正方形的性质,掌握正方形的四边相等、对角线平分每一对对角是解题的关键.四、灵活应用:(本大题共5个小题,每小题10分,共50分)21.(10分)(2015•蓬溪县校级模拟)某学区为了解教师对网上教研活动的满意度,利用“网上短信平台”,对本区在20~60岁之间的300名教师,进行短信抽样调查.被抽查人中,各年龄段人数所占比例如图甲所示,各年龄段对活动感到满意的人数如图乙(部分)所示,根据图形信息回答下列问题:(1)被抽查的教师中,人数最多的年龄段是26~30岁;(2)被抽查的300人中有83%的人对网上教研活动感到满意,请你求出26~30岁年龄段的满意人数,并补全图乙;(3)比较26~30岁和41~50岁这两个年龄段对网上教研活动的满意度的高低(四舍五入到1%).(注:某年龄段满意度=该年龄段满意人数÷该年龄段被抽查人数×100%).考点:条形统计图;扇形统计图.专题:图表型.分析:(1)根据图甲的百分比解答即可;(2)求出感到满意的总人数,然后列式计算即可求出26~30岁年龄段的满意人数;(3)分别用满意的人数除以被调查的人数,计算后比较即可得解.解答:解:(1)由图甲可知,被抽查的教师中,人数最多的年龄段是26~30岁;故答案为:26~30;(2)感到满意的总人数=300×83%=249人,26~30岁年龄段的满意人数=249﹣41﹣50﹣40﹣18﹣7=249﹣156=93人;补全统计图如图所示;(3)26~30岁满意度=×100%≈79%,41~50岁满意度=×100%≈89%,所以,41~50岁年龄段比26~30岁年龄段对网上教研活动的满意度高.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(10分)(2015•蓬溪县校级模拟)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C的圆与y轴的另一个交点为D.已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4).(1)求此抛物线的表达式与点D的坐标;(2)若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值.考点:二次函数综合题.分析:(1)利用待定系数法求抛物线的解析式;利用勾股定理的逆定理证明∠ACB=90°,由圆周角定理得AB为圆的直径,再由垂径定理知点C、D关于AB对称,由此得出点D的坐标;(2)求出△BDM面积的表达式,再利用二次函数的性质求出最值.解答中提供了两种解法,请分析研究.解答:解:(1)∵抛物线y=ax2+bx+c过点A(﹣2,0),B(8,0),C(0,﹣4),∴,解得,∴抛物线的解析式为:y=x2﹣x﹣4;∵OA=2,OB=8,OC=4,∴AB=10.如答图1,连接AC、BC,由勾股定理得:AC=,BC=.∵AC2+BC2=AB2=100,∴∠ACB=90°,∴AB为圆的直径.由垂径定理可知,点C、D关于直径AB对称,∴D(0,4);(2)解法一:设直线BD的解析式为y=kx+b,∵B(8,0),D(0,4),∴,解得,∴直线BD解析式为:y=﹣x+4.设M(x,x2﹣x﹣4),如答图2﹣1,过点M作ME∥y轴,交BD于点E,则E(x,﹣x+4).∴ME=(﹣x+4)﹣(x2﹣x﹣4)=﹣x2+x+8.∴S△BDM=S△MED+S△MEB=ME(x E﹣x D)+ME(x B﹣x E)=ME(x B﹣x D)=4ME,∴S△BDM=4(﹣x2+x+8)=﹣x2+4x+32=﹣(x﹣2)2+36.∴当x=2时,△BDM的面积有最大值为36;解法二:如答图2﹣2,过M作MN⊥y轴于点N.设M(m,m2﹣m﹣4),∵S△OBD=OB•OD==16,S梯形OBMN=(MN+OB)•ON=(m+8)[﹣(m2﹣m﹣4)]=﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4),S△MND=MN•DN=m[4﹣(m2﹣m﹣4)]=2m﹣m(m2﹣m﹣4),∴S△BDM=S△OBD+S梯形OBMN﹣S△MND=16﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4)﹣2m+m(m2﹣m﹣4)=16﹣4(m2﹣m﹣4)﹣2m=﹣m2+4m+32=﹣(m﹣2)2+36;∴当m=2时,△BDM的面积有最大值为36.点评:本题考查了待定系数法求解析式,直角三角形的判定及性质,图形面积计算,三角形相似的判定和性质,二次函数的系数与x轴的交点的关系等,在解答此题时要注意构造出辅助线,利用勾股定理求解.23.(10分)(2015•江西校级模拟)数学活动课上,小颖同学用两块完全一样的透明等腰直角三角板ABC、DEF进行探究活动.操作:使点D落在线段AB的中点处并使DF过点C(如图1),然后将其绕点D顺时针旋转,直至点E落在AC的延长线上时结束操作,在此过程中,线段DE与AC或其延长线交于点K,线段BC与DF相交于点G(如图2,3).探究1:在图2中,求证:△ADK∽△BGD.探究2:在图2中,求证:KD平分∠AKG.探究3:①在图3中,KD仍平分∠AKG吗?若平分,请加以证明;若不平分,请说明理由.②在以上操作过程中,若设AC=BC=8,KG=x,△DKG的面积为y,请求出y与x 的函数关系式,并直接写出x的取值范围.考点:相似形综合题.分析:探究1,根据△ABC、△DEF是等腰直角三角形可知∠KAD=∠KDG=∠DBG=45°,由三角形内角和定理可知∠KDA+∠BDG=135°.∠BDG+∠BGD=135°,故可得出△ADK∽△BGD;探究2,根据△ADK∽△BGD可知=,再由点D是线段AB的中点得出BD=AD,故可得出△ADK∽△DCK,∠AKD=∠DKC,由此可得出结论;探究3,①同探究1可得△ADK∽△BGD,同探究2可得,△ADK∽△DGK,故可得出结论;②过点D作DM⊥AC于点M,DN⊥KG于点N,由①知线段KD平分∠AKG,故DM=DN.再由AC=BC=8,点D是线段AB的中点,∠KAD=45°,可知DM=DN=4.根据三角形的面积公式即可得出结论.解答:解:探究1,∵∠KAD=∠KDG=∠DBG=45°,∴∠KDA+∠BDG=135°.∵∠BDG+∠BGD=135°,∴∠KDA=∠BGD,∴△ADK∽△BGD;探究2,∵△ADK∽△BGD,∴=,∵点D是线段AB的中点,∴BD=AD,∴=,∴=,∵∠KAD=∠KDG=45°,∴△ADK∽△DCK,∴∠AKD=∠DKC,∴KD平分∠AKG.探究3,①KD仍平分∠AKG.理由如下:∵同探究1可得△ADK∽△BGD,同探究2可得,△ADK∽△DGK,∴∠AKD=∠DKG,∴KD仍平分∠AKG;②如图,过点D作DM⊥AC于点M,DN⊥KG于点N,由①知线段KD平分∠AKG,∴DM=DN.∵AC=BC=8,点D是线段AB的中点,∠KAD=45°,∴DM=DN=4.∵KG=x,∴S△DKG=y=×4x=2x,对于图3的情况同理可得y=2x,综上所示,y=2x,其中8﹣8≤x≤8﹣8.点评:本题考查的是相似形综合题,涉及到相似三角形的判定与性质、等腰直角三角形的性质等知识.难度适中.24.(10分)(2015•江西校级模拟)如图,AB=AC=8,∠BAC=90°,直线l与以AB为直径的⊙O相切于点B,点D是直线l上任意一动点,连接DA交⊙O于点E.(1)当点D在AB上方且BD=6时,求AE的长.(2)当点D在什么位置时,CE恰好与⊙O相切?请说明理由.考点:切线的判定与性质.。

相关文档
最新文档